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Hydrodynamics can be formulated in terms of a perturbative series in derivatives of the temperature,
chemical potential, and flow velocity around an equilibrium state. Different formulations for this series
have been proposed over the years, which consequently led to the development of various hydrodynamic
theories. In this work, we discuss the relativistic generalizations of the perturbative expansions put forward
by Chapman and Enskog, and Hilbert, using general matching conditions in kinetic theory. This allows us
to describe, in a comprehensive way, how different out-of-equilibrium definitions for the hydrodynamic
fields affect the development of the hydrodynamic perturbative series. We provide a perturbative method
for systematically deriving the hydrodynamic formulation recently proposed by Bemfica, Disconzi,
Noronha, and Kovtun (BDNK) from relativistic kinetic theory. The various transport coefficients that
appear in BDNK (at first-order) are explicitly computed using a new formulation of the relaxation time
approximation for the Boltzmann equation. Assuming Bjorken flow, we also determine the hydrodynamic
attractors of BDNK theory and compare the overall hydrodynamic evolution obtained using this
formulation with that generated by the Israel-Stewart equations of motion and also kinetic theory.

DOI: 10.1103/PhysRevD.106.036010

I. INTRODUCTION

Hydrodynamics is an effective theory constructed to
describe the near-equilibrium dynamics of a many-body
system in the regime where the time and length scales
associated with microscopic interactions are much smaller
than those defined by the variation of conserved quantities.
In the context of kinetic theory, hydrodynamics is expected
to emerge when the evolution of the system can be
reasonably well described in terms of the few moments
of the single-particle distribution function directly associ-
ated with conservation laws [1]. Understanding how this
truncation in the number of degrees of freedom takes place
and how that process depends on the strength of the
interactions define a very active area of research especially
in the relativistic regime [2–4].
Throughout the years, these questions have been inves-

tigated in kinetic theory using mainly three approaches.
The oldest method, pioneered by D. Hilbert more than a
century ago [5,6], was the first to recognize that hydro-
dynamic behavior could be systematically investigated via

a perturbative expansion. However, even though the lowest
order truncation of the Hilbert series led to the Euler
equations, it was soon realized that this method did not lead
to the celebrated nonrelativistic Navier-Stokes equations
[6]. The derivation of the latter from kinetic theory was
achieved only later by S. Chapman [7,8] and D. Enskog [9],
using a nontrivial modification of Hilbert’s ideas. Their
method has become the standard way to derive hydro-
dynamics from the Boltzmann equation [6,10]. Grad [11]
formulated the third way within which such a reduction
of degrees of freedom can take place in kinetic theory.
Different than Hilbert or Chapman and Enskog, in Grad’s
approach the Boltzmann equation is converted into an
infinite set of coupled equations of motion for the moments
of the distribution function. Hydrodynamics then emerges
from a truncation of such an infinite set of equations in
terms of the lowest order moments, whose evolution
equations are given by the conservation laws. The gener-
alization of the moments method to relativistic kinetic
systems can be found, e.g., in [4,12–17].
Even though the Chapman-Enskog approach can be

formulated in a relativistic covariant manner [4,13,14],
fundamental issues appear after truncation—the corre-
sponding relativistic generalization of Navier-Stokes equa-
tions derived from this approach are incompatible with
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relativistic causality [18,19], and small perturbations
around global equilibrium are unstable [20]. A solution
to these problems was put forward byMüller [21] and Israel
and Stewart [12,22]. In this approach, instead of using
the constitutive relations characteristic of the Navier-Stokes
formulation, the dissipative currents are promoted to
independent variables that, in turn, obey additional equa-
tions of motion that describe how those variables relax
towards their Navier-Stokes values. Then, causality and
stability constrain the possible values of relaxation times
and coupling constants between the dissipative currents
[20,23–27]. Recently, it has been rigorously proven that
stability in a causal theory is a Lorentz invariant statement
[28,29], and conditions under which thermodynamic sta-
bility imply causality in relativistic fluids have been derived
[30]. The Israel-Stewart (IS) formulation can be derived
from the Boltzmann equation by truncating an infinite
tower of equations obeyed by irreducible moments of the
single-particle distribution function generalizing Grad’s
[11] moments method [12,15–17] or by power-counting
schemes [31,32].
A new solution to the causality and stability problems

was recently proposed by Bemfica, Disconzi, Noronha, and
Kovtun (BDNK) [28,33–36]. This formulation, which is
deeply rooted on effective field theory arguments, when
truncated to first-order in derivatives also leads to con-
stitutive relations for the dissipative currents as in Navier-
Stokes theory, but with the important difference that it
includes timelike derivatives in these relations (i.e., time
derivatives of the hydrodynamic fields are present in the
constitutive relations even in the local rest frame of the
fluid). Conditions that ensure causality, strong hyperbol-
icity, and well-posedness of solutions of the equations of
motion, which are valid even in the full nonlinear regime
and when the fluid is coupled to Einstein’s equations, were
derived in [28,33,35,37,38] and stability was proven to
hold [28,33–36]. BDNK theory also motivates the inves-
tigation of alternative definitions of the hydrodynamic
variables out of equilibrium, the so-called hydrodynamic
frames [39], due to the fact that causality in this framework
requires that some of the coefficients associated with
energy diffusion and the nonequilibrium correction to
energy density must be nonzero in the first-order theory.
This framework has also been explored numerically in
Refs. [40–42], where it was compared to other hydro-
dynamic formulations.
Matching conditions define the local equilibrium state,

which serve as starting point of hydrodynamic expansions.
Consequently, they define the temperature T, chemical
potential μ, and fluid 4-velocity uμ of nonequilibrium
systems. In kinetic theory, these definitions are imple-
mented by constraints in the moments of the single-particle
distribution function. Even though they have a significant
effect on the truncation procedures leading to different
formulations of hydrodynamics, the interplay between

these definitions and hydrodynamic attractors [43] are
far from understood. In fact, Ref. [43] proposed that
hydrodynamics should be seen as an attractor which
determines the late-time behavior of many-body systems
and, thus, dictates their approach towards equilibrium. This
has been confirmed in Bjorken [44] and Gubser [45] flow
backgrounds (see, e.g., Refs. [43,46,47] and [48,49]), and
this topic remains under active investigation (for reviews,
see [2,50–52]).
In this work, we provide a systematic perturbative

procedure for the derivation of BDNK theory starting from
the relativistic Boltzmann equation. The various transport
coefficients that appear in BDNK (at first-order) are
explicitly determined, for the first time, using the new
formulation of the relaxation time approximation for the
Boltzmann equation proposed in [53]. For completeness,
we also provide a comprehensive review of the relativistic
Hilbert series and formulate Chapman-Enskog theory for
general matching conditions. Focusing on Bjorken flow,
we determine the hydrodynamic attractors of BDNK
theory and compare the evolution obtained using this
approach with that obtained using Israel-Stewart equations
of motion and also kinetic theory (in the relaxation time
approximation).
This paper is organized as follows. In Sec. II we review

the formulation of hydrodynamic equations using general
matching conditions. Next, in Sec. III, we show how this
general procedure is implemented within kinetic theory. In
Sec. IV, we discuss the various perturbative procedures
used to derive hydrodynamic equations of motion from
the Boltzmann equation. We implement the well-known
Chapman-Enskog expansion, used to derive relativistic
Navier-Stokes theory, using general matching conditions
and provide formulas that can be used to determine its
transport coefficients. We then proceed to discuss the
Hilbert expansion, which leads to another perturbative
hydrodynamic formulation. Afterwards, we introduce the
perturbative procedure suitable for the derivation of
BDNK formalism in kinetic theory. In Sec. V, we use
the new relaxation time approximation for the relativistic
Boltzmann equation proposed in Ref. [53] to explicitly
compute the transport coefficients present in first-order
BDNK and also those present in the Hilbert series, in the
case of an ultrarelativistic gas. In Sec. VI we initiate our
discussion of Bjorken flow. We first discuss the behavior of
Hilbert’s equations of motion and compare their exact
solution in Bjorken with the solution of relativistic Navier-
Stokes theory. For completeness, we also outline the
corresponding Israel-Stewart equations of motion in
Bjorken flow under general matching conditions, following
[17]. We present numerical and also exact solutions of
BDNK theory for different matching prescriptions and
investigate the corresponding hydrodynamic attractor.
Comparisons between solutions of BDNK, Israel-
Stewart, and kinetic theory (obtained by solving a system
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of moment equations) are also made. Section VII summa-
rizes the main text and states our conclusions and future
plans. Appendix A summarizes the 19 moments truncation
procedure used to obtain the IS equations of motion under
general matching conditions, originally performed in
Ref. [17]. Appendix B shows the procedure necessary to
derive the Chapman-Enskog constitutive relations when
the basis contains the zero modes of the collision term.
Appendix C gives further details on the choice of basis
used to compute transport coefficients. Finally, Appendix D
gives the details concerning the moment equations in
Bjorken flow.
Notation: We use a mostly minus metric signature and

natural units, ℏ ¼ c ¼ kB ¼ 1.

II. FLUID DYNAMICAL VARIABLES

The main dynamical equations in hydrodynamics come
from the local conservation of energy, momentum, and net
charge,

∂μNμ ¼ 0;

∂μTμν ¼ 0; ð1Þ

where Nμ is the net-charge 4-current and Tμν is the energy-
momentum tensor. Without any loss of generality, these
tensors can be decomposed in terms of a timelike normal-
ized 4-vector uμ, uμuμ ¼ 1, in the following way:

Nμ ¼ nuμ þ νμ;

Tμν ¼ εuμuν − PΔμν þ hμuν þ hνuμ þ πμν: ð2Þ

The 4-vector uμ is identified as the fluid 4-velocity and will
be formally defined after the imposition of the so-called
matching conditions—a procedure that will be discussed
later. Above, we also defined the projection operator
Δμν ¼ gμν − uμuν. Each term introduced in the decompo-
sition done above can be expressed in terms of projections
and contractions of the conserved currents,

n ≡ uμNμ; ε ≡ uμuνTμν; P ≡ −
1

3
ΔμνTμν;

νμ ≡ Δμ
νNν; hμ ≡ Δμ

νuλTνλ; πμν ≡ Δμν
αβT

αβ; ð3Þ

which are identified as the total particle density, the
total energy density, the total pressure, the particle diffusion
4-current, the energy diffusion 4-current, and the
shear-stress tensor, respectively. We note that we have
introduced above the doubly symmetric traceless tensor
Δμναβ ¼ ðΔμαΔνβ þ ΔναΔμβÞ=2 − ΔμνΔαβ=3.
Next, we introduce a reference local equilibrium state

[22] and separate the particle density, energy density, and
pressure into equilibrium and nonequilibrium parts. In
general,

n ≡ n0ðα; βÞ þ δn;

ε ≡ ε0ðα; βÞ þ δε;

P ≡ P0ðα; βÞ þ Π; ð4Þ

where α and β are the thermal potential and inverse
temperature of this (fictitious) reference equilibrium state.
The densities n0, ε0 and P0 are the local equilibrium net-
charge density, energy density, and pressure, respectively,
and are determined in terms of the temperature and thermal
potential using an equation of state. The variables α and β
are determined by the matching conditions. The variables
δn, δε, and Π represent the corresponding nonequilibrium
corrections for the net-charge density, energy density, and
pressure, respectively.
The most widely employed matching condition imposes

that the particle and energy densities are completely
determined by α and β alone as if the fluid were in local
equilibrium. That is, in this case we have the constraints,

n ≡ n0ðα; βÞ⟺ δn ≡ 0;

ε ≡ ε0ðα; βÞ⟺ δε ≡ 0: ð5Þ

Then, the temperature and thermal potential are determined
by inverting the thermodynamic functions n0ðα; βÞ and
ε0ðα; βÞ. In order to complete the matching procedure, we
must also define the local rest frame of the fluid; i.e., we
have to define the 4-velocity introduced in the tensor
decomposition of the conserved currents. In this case,
two different constraints are widely employed in the field.
The first is the so-called Landau matching condition (or
Landau picture) which stipulates that no energy diffusion
should occur in the rest frame of the fluid [54],

Tμ
νuν ≡ εuμ ⟺hμ ≡ 0: ð6Þ

This condition is frequently used in fluid-dynamical
simulations of ultrarelativistic heavy-ion collisions; see
[55–58]. The second is the Eckart matching condition
(or Eckart picture) which imposes that no particle diffusion
should occur in the rest frame of the fluid [59],

Nμ ≡ nuμ ⟺ νμ ≡ 0: ð7Þ

This condition is commonly used in astrophysics applica-
tions [60,61].
It is important to remark that different matching con-

ditions, which differ from Landau or Eckart’s, can in
principle be chosen [62–65]. Indeed, this choice reflects
the fact that there is no unique definition of temperature,
chemical potential, and flow velocity in an out of equilib-
rium state. However, different choices of such matching
conditions do affect the properties of the hydrodynamic
equations of motion—for instance, some choices can lead
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to well-defined behavior while for others causality may
be lost.
In the following, we shall perform our calculations

assuming a wide set of matching conditions, which will
be defined in the next section in the context of kinetic
theory. In this general case, the conserved currents have the
form,

Nμ ¼ ðn0 þ δnÞuμ þ νμ

Tμν ¼ ðε0 þ δεÞuμuν − ðP0 þ ΠÞΔμν þ hμuν þ hνuμ þ πμν:

ð8Þ

Substituting this expression into the conservation laws (1),
we obtain the following equations of motion (already
projected into their components parallel and orthogonal
to uμ):

Dn0 þDδnþ ðn0 þ δnÞθ þ ∂μν
μ ¼ 0; ð9aÞ

Dε0 þDδεþ ðε0 þ δεþ P0 þ ΠÞθ
− πμνσμν þ ∂μhμ þ uμDhμ ¼ 0; ð9bÞ

ðε0 þ δεþ P0 þ ΠÞDuμ −∇μðP0 þ ΠÞ
þ hμθ þ hαΔμν

∂αuν þ ΔμνDhν þ Δμν
∂απ

α
ν ¼ 0; ð9cÞ

where we make use of the irreducible decomposition of the
4-derivative, ∂μ ¼ uμDþ∇μ, with D ≡ uν∂ν being the
comoving time derivative and ∇μ ¼ Δμ

ν
∂ν the 4-gradient,

while θ ≡ ∂μuμ is the scalar expansion rate and σμν ≡
Δμν

αβ∂αuβ is the shear tensor.
Different approaches can be used to supplement the

equations of motion (9a)–(9c) with information about
viscous effects. One may provide constitutive relations
satisfied by the nonequilibrium fields and express them in
terms of derivatives of the fluid-dynamical variables that
already appear in equilibrium. This is the case of the
relativistic formulation of Navier-Stokes (NS) theory [54]
and of the recently proposed BDNK theory [28,33–36]—
both these frameworks will be discussed in detail in the
remainder of this paper in the context of kinetic theory. As
mentioned in the previous section, another way to describe
viscous effects consists in postulating that the nonequili-
brium fields are independent dynamical variables which

obey their own equations of motion (this can be achieved
using entropy arguments or the moments method in kinetic
theory). That is the case of the Israel-Stewart [22] and the
Denicol-Niemi-Molnar-Rischke (DNMR) [31] formula-
tions of relativistic hydrodynamics, where the nonequili-
brium variables relax asymptotically to Navier-Stokes-like
constitutive relations. In this regard, a generalized version
of the moments method [15] has been recently proposed to
consider the case of general matching conditions in
Ref. [17]. Second-order theories have also been derived
under general matching conditions using entropy argu-
ments in [66]. One of the goals of this paper is to compare
the fluid-dynamical solutions that emerge from all these
different formalisms and better understand their differences
and domain of applicability, in particular when uncommon
matching conditions are employed.

III. BOLTZMANN EQUATION AND FLUID-
DYNAMICAL VARIABLES

The relativistic Boltzmann equation is a nonlinear
integrodifferential equation for the single-particle momen-
tum distribution function fðx;pÞ ≡ fp [13]. Assuming that
we have a one-component gas composed of classical
particles that only interact through binary collisions, the
relativistic Boltzmann equation becomes

pμ
∂μfp ¼

Z
dQdQ0dP0Wpp0↔qq0 ðfqfq0 − fpfp0 Þ ≡ C½fp�;

ð10Þ

where pμ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p
;pÞ is the 4-momentum of the

particle and we introduced the transition rate Wpp0↔qq0 and
the phase space integration measure dP ¼ d3p=½ð2πÞ3p0�.
The particle 4-current and energy-momentum tensor can

be expressed as integrals of fp. Multiplying Eq. (10) by 1
or pν and integrating it in momentum-space, one obtains
the conservation laws (1) and identifies

Nμ ¼
Z

dPpμfp;

Tμν ¼
Z

dPpμpνfp: ð11Þ

Hence, from the tensor decomposition (8), it follows that

n ≡
Z

dPEpfp; ε ≡
Z

dPE2
pfp; P ≡ −

1

3

Z
dPΔμνpμpνfp;

νμ ≡
Z

dPphμifp; hμ ≡
Z

dPEpphμifp; πμν ≡
Z

dPphμpνifp

δn ≡
Z

dPEpδfp; δε ≡
Z

dPE2
pδfp; Π ≡ −

1

3

Z
dPΔμνpμpνδfp; ð12Þ
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where δfp ≡ fp − f0p is the nonequilibrium component of
the distribution function, with f0p being the distribution
function in local equilibrium. Above, we introduced the lth
rank projection operator phμ1 � � �pμli ≡ Δμ1���μl

ν1���νlp
ν1 � � �pνl,

given in terms of the 2l-rank projection tensor Δμ1���μl
ν1���νl . The

latter is constructed from the Δμν projectors in such a way
that it is completely symmetric with respect to permutations
in any of the indices μ1 � � � μl and ν1 � � � νl, separately, and
also traceless within each subset of indices [13]. For
classical particles, the local equilibrium distribution func-
tion is given by

f0p ≡ exp ðα − βEpÞ: ð13Þ

It is also convenient to introduce the deviation function,

ϕp ≡
δfp
f0p

; ð14Þ

which will be widely employed in the remainder of this
paper.
As already mentioned, the local thermodynamic varia-

bles α, β, and uμ are defined by matching conditions.
In kinetic theory, these definitions act as constraints
on the deviation function ϕp. For instance, the Landau
matching conditions, Eqs. (5) and (6), lead to the following
constraints:

hEpϕpi0¼ 0; hE2
pϕpi0¼ 0; hEpphμiϕpi0¼ 0; ð15Þ

where we make use of the notation h� � �i0 ¼
R
dPð� � �Þf0p

to denote integrals with respect to the equilibrium distri-
bution. The Eckart prescription, Eqs. (5) and (7), differs
from the Landau one only in the vector constraint, which is
replaced by

hphμiϕpi0 ¼ 0: ð16Þ

Recent developments have created the demand for more
general definitions of the reference equilibrium state
[28,33,35]. And indeed, in kinetic theory, these constrains
can be readily generalized with the usage of arbitrary
moments of the single-particle distribution function. These
can be written in general as

hgpϕpi0 ¼ 0; hhpϕpi0 ¼ 0; hqpphμiϕpi0 ¼ 0; ð17Þ

where gp and hp are linearly independent functions and qp
is a generic function of the microscopic energy. In this
work, we shall use

gp ¼ Eq
p; hp ¼ Es

p; qp ¼ Ez
p; ð18Þ

which reduce to Landau matching conditions when
ðq; s; zÞ ¼ ð1; 2; 0Þ, while Eckart matching is recovered

when ðq; s; zÞ ¼ ð1; 2; 1Þ. We note that, from the point of
view of the Boltzmann equation, the choice of matching
conditions is arbitrary.

IV. PERTURBATIVE EXPANSIONS

The long wavelength, long time behavior of a micro-
scopic theory, the hydrodynamic limit, can be implemented
in kinetic theory as a truncation of a perturbative series
[6,13,14]. The perturbative parameter is the ratio between
typical microscopic and macroscopic scales; e.g., the mean
free path and the length scale at which the hydrodynamic
fields vary significantly, respectively. The first implemen-
tation of such an expansion was developed by Hilbert in the
nonrelativistic case [5,6,67]. The lowest order truncation of
the Hilbert expansion leads to the Euler equations, which
provided the first microscopic derivation of a fluid-dynami-
cal theory. Nevertheless, its higher order truncations failed
to reproduce any reliable dissipative fluid-dynamical theory
[6]. Afterwards, an improved perturbative series expansion
was put forward by Chapman and Enskog [7–9], inde-
pendently. Chapman and Enskog’s approach was broadly
favored, since it led to Navier-Stokes theory—the most
widely employed fluid-dynamical theory in the nonrela-
tivistic regime.
In this section, we discuss the relativistic generalizations

of the Chapman-Enskog and Hilbert series. We then present
a novel perturbative scheme that can be used to system-
atically derive the BDNK equations from kinetic theory. We
present microscopic expressions for the transport coeffi-
cients appearing in all fluid-dynamical theories emerging
from each perturbative scheme, for arbitrary matching
conditions.

A. Chapman-Enskog expansion

The most widespread formalism used in the derivation
of relativistic fluid dynamics from kinetic theory is the
Chapman-Enskog expansion [13]. In the relativistic regime,
this formalism leads to equations of motion for the macro-
scopic quantities which violate causality and are linearly
unstable around global equilibrium [18–20,24,26,30,33,68]
and, for this reason, such theory cannot be applied to
determine the spacetime evolution of relativistic fluids.
Nevertheless, Chapman-Enskog theory illustrates the basic
aspects of the derivation of fluid dynamics from kinetic
theory and shall be discussed in this section assuming
general matching conditions.
In this formalism, a perturbative solution of the

Boltzmann equation is constructed in terms of an expansion
in powers of gradients of the fluid-dynamical fields. In
practice, one converts the original Boltzmann equation into
the following perturbative problem, introducing the book-
keeping (dimensionless) parameter ϵ:

ϵEpDfp þ ϵpμ∇μfp ¼ C½fp�: ð19Þ
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Conservation of particle number (in binary collisions),
energy, and momentum in microscopic collisions guarantee
that the first two moments of the collision term vanish
[13,14],

Z
dPC½fp� ¼ 0;

Z
dPpμC½fp� ¼ 0: ð20Þ

This leads to the general conservation laws (1), which are
actually nonperturbative in the parameter ϵ,

∂μ

Z
dPpμfp ¼ 0; ∂ν

Z
dPpμpνfp ¼ 0: ð21Þ

We then consider the following asymptotic solution
for fp:

fp ¼
X∞
i¼0

ϵifðiÞp : ð22Þ

The Boltzmann equation is solved order by order in ϵ
[13,14], leading to equations that can be solved to obtain

the expansion coefficients fðiÞp . A solution of the original
equation is then recovered by setting ϵ ¼ 1. Since ϵ is
inserted multiplying a gradient of fp, it effectively serves as
a bookkeeping parameter to count powers or/and order of
gradients. As we shall demonstrate in the following, the
zeroth-order solution of this series will lead to ideal fluid
dynamics and the first order solution to Navier-Stokes
theory. In practice, it is extremely complicated to obtain any
solution beyond first-order.
To zeroth-order in ϵ one obtains the following nonlinear

equation for fð0Þp :

0 ¼ C½fð0Þp �: ð23Þ

The solution to this equation is well-known, and one

readily identifies fð0Þp as the local equilibrium distribution
function. In the classical limit, this amounts to

fð0Þp ¼ exp ðα − βuμpμÞ ≡ f0p; ð24Þ

with α and β being Lorentz scalars and uμ a unitary timelike
4-vector (uμuμ ¼ 1). These quantities, are at this point,
arbitrary functions of spacetime coordinates. We naturally
identify β as the inverse temperature, α as the thermal
potential, and uμ as the 4-velocity. As already stated, these
quantities are formally defined by the matching conditions
introduced in Eq. (17).
The algebraic equations obtained from the higher-order

terms in ϵ are obtained by expanding the collision term and
the comoving time derivative of fp in powers of ϵ,

Dfp ¼ Dð0Þfp þ ϵDð1Þfp þ ϵ2Dð2Þfp þ…;

C½f� ¼ ϵCð1Þ þ ϵ2Cð2Þ þ…; ð25Þ

where DðnÞfp and CðnÞ denote the nth order contribution in
ϵ of the comoving derivative of fp and the collision term,
respectively. The expansion of the collision term is simply
obtained by replacing the expansion of the single-particle
distribution into the expression for the collision term. We
have already used that the zeroth-order contribution of the
collision term is zero; see Eq. (23). The expansion of the
comoving derivative is more convoluted and shall be
explained later. Then,

EpDðn−1Þfp þ pμ∇μfn−1p ¼ CðnÞ; n ≥ 1: ð26Þ

The first order solution satisfies

EpDð0Þfp þ pμ∇μf0p ¼ f0pL̂ϕp; ð27Þ

where ϕp ≡ fð1Þp =f0p defines the first correction to the local
equilibrium distribution and L̂ is the linearized collision
operator,

L̂ϕp ≡
Z

dQdQ0dP0W̃pp0↔qq0f
eq
p0 ðϕp þ ϕp0 − ϕq − ϕq0 Þ:

ð28Þ

The first order solution ϕð1Þ
p is obtained by inverting the

linear operator L̂. Before doing so, let us discuss how to
compute Dð0Þfp. Naively, one would identify this quantity
as Df0p (as was done by Hilbert, see the next subsection).
However, Chapman and Enskog argued that the conserva-
tion laws introduce higher order contributions in ϵ into this
derivative. This can be seen using that

Df0p ¼ ðDα − EpDβ − βDuμphμiÞf0p: ð29Þ

Then, with the conservation laws (9), we reexpress this
term as

Df0p ¼
�
Apθ −

β

ε0 þ P0

phμi∇μP0

�
f0p

þOðδn; δε;Π; νμ; hμ; πμνÞ; ð30Þ

where we introduced the function,

Ap ¼ −I3;0I1;0 þ I2;0ðI2;0 þ I2;1Þ − EpI1;0I2;1
I3;0I1;0 − I22;0

; ð31Þ

which is written in terms of the thermodynamic integrals,
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In;q ¼
1

ð2qþ 1Þ!!
Z

dPð−ΔλσpλpσÞqEn−2q
p f0p: ð32Þ

Note that the dissipative currents δn; δε;Π; νμ; hμ; πμν
vanish in equilibrium and, thus, they are at least of
OðϵÞ. Dð0Þf is the zeroth-order contribution of Dfp,
and, hence, we can identify it as the zeroth-order contri-
bution in ϵ of Df0p,

Dð0Þfp ¼
�
Apθ −

β

ε0 þ P0

phμi∇μP0

�
f0p: ð33Þ

Thus, the equation above is a constraint that must be
enforced when determining the first-order solution of the
Chapman-Enskog expansion. In practice, it guarantees that
any timelike derivative of a fluid-dynamical field must
always be replaced by spacelike derivatives of these fields.
It is this feature that will make the Chapman-Enskog series
an expansion solely in powers of spacelike gradients (i.e.,
there are no time derivatives in the local rest frame of the
fluid). Afterwards, we use the identity,

∇μβ ¼ 1

ε0 þ P0

ðn0∇μα − β∇μP0Þ; ð34Þ

which can be derived directly from Gibbs-Duhem relation,
and Eq. (27) becomes

�
Ap −

β

3
Δλσpλpσ

�
θ þ

�
1 −

n0Ep

ε0 þ P0

�
phμi∇μα

− βphμpνiσμν ¼ L̂ϕp: ð35Þ

The linear operator L̂ satisfies several fundamental
properties that are relevant to our discussion. First, it is
self-adjoint,

Z
dPf0pApL̂Bp ¼

Z
dPf0pBpL̂Ap; ð36Þ

with Ap and Bp being arbitrary functions of momentum
(modulo some assumptions to ensure convergence).
Furthermore, this operator has five degenerate eigenfunc-
tions (the five microscopic quantities that are conserved in
binary elastic collisions) with a vanishing eigenvalue,

L̂1 ¼ 0; L̂pμ ¼ 0: ð37Þ

The self-consistency aspect of this approach may be
demonstrated by multiplying Eq. (35) by 1 or pν and
verifying if these compatibility conditions are indeed
satisfied. Using properties (36) and (37) of the linear
collision operator, one finds the equations,

Z
dP

��
Ap −

β

3
Δμνpμpν

�
θ þ

�
1 −

n0Ep

ε0 þ P0

�
phμi∇μα − βphμpνiσμν

�
¼ 0;

Z
dPpλ

��
Ap −

β

3
Δμνpμpν

�
θ þ

�
1 −

n0Ep

ε0 þ P0

�
phμi∇μα − βphμpνiσμν

�
¼ 0: ð38Þ

These conditions are automatically satisfied without imposing any further constraints to the solution since

Z
dP

�
Ap −

β

3
Δμνpμpν

�
¼ 0;

Z
dPEp

�
Ap −

β

3
Δμνpμpν

�
¼ 0;

Z
dPΔμνpμpν

�
1 −

n0Ep

ε0 þ P0

�
¼ 0; ð39Þ

and the tensors 1, phμi, and phμpνi are elements of an
orthogonal basis [31]. This demonstrates that the approxi-
mation is consistent with the fundamental properties of the
linearized collision term. Note that if the timelike deriv-
atives of the distribution function were not properly
evaluated within the perturbative scheme, this would not
be the case.
Equation (35) is an inhomogeneous linear integral

equation for ϕp. The general solution of this equation is
written as

ϕp ¼ ϕhom
p þ ϕpart

p ; ð40Þ

where ϕhom
p is the solution to the homogeneous equation,

L̂ϕp ¼ 0, and ϕpart
p is a particular solution to the inhomo-

geneous equation. Given the zero-modes of the collision
operator, the homogeneous component is

ϕhom
p ¼ aþ bμpμ; ð41Þ

where a and bμ are arbitrary real-valued constants, which
will be determined by imposing the matching conditions
(17) and (18). The arbitrariness in the choice of these
constants is reflected on the fact that the choice of matching
conditions is also arbitrary in kinetic theory.
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Since L̂ is a linear operator, the particular solution ϕpart
p must have the general form,

ϕpart
p ¼ Spθ þ Vpphμi∇μαþ T pphμpνiσμν; ð42Þ

where Sp, Vp, and T p are unknown functions of Ep. The next step is to replace the particular solution (42) into Eq. (35),

��
Ap−

β

3
Δλσpλpσ

�
θþ

�
1−

n0Ep

ε0þP0

�
phμi∇μα−βphμpνiσμν

�
f0p¼θf0pL̂½Sp�þ∇μαf0pL̂½Vpphμi�þσμνf0pL̂½T pphμpνi�:

ð43Þ

This results in coupled integral equations for S, V, and T .
We now expand these functions using a complete basis of

functions of Ep, P
ðlÞ
n , n;l ¼ 0; 1;…,

Sp ¼
X∞
n¼0

snP
ð0Þ
n ; Vp ¼

X∞
n¼0

vnP
ð1Þ
n ; T p ¼

X∞
n¼0

tnP
ð2Þ
n :

ð44Þ

Equation (43) can be decoupled by multiplying it by the

basis elements PðlÞ
n phμ1 � � �pμli and then integrating over

momentum. This leads to the following systems of equa-
tions:

X
n

Srnsn ¼
Z

dPPð0Þ
r

�
Ap −

β

3
Δλσpλpσ

�
f0p ≡ Ar; ð45aÞ

X
n

Vrnvn ¼
Z

dP ðΔμνpμpνÞPð1Þ
r

�
1−

n0Ep

ε0 þP0

�
f0p ≡Br;

ð45bÞ
X
n

Trntn ¼ −β
Z

dP ðΔμνpμpνÞ2Pð2Þ
r f0p ≡ Cr; ð45cÞ

where we defined the following integrals of the linearized
collision term:

Srn ≡
Z

dPPð0Þ
r L̂½Pð0Þ

n �f0p;

Vrn ≡
Z

dPPð1Þ
r phμiL̂½Pð1Þ

n phμi�f0p;

Trn ≡
Z

dPPð2Þ
r phμpνiL̂½Pð2Þ

n phμpνi�f0p: ð46Þ

Equations (45) can be schematically inverted as

sn ¼
X
m

½S−1�nmAm; vn ¼
X
m

½V−1�nmBm;

tn ¼
X
m

½T−1�nmCm: ð47Þ

We note that, if the basis contains parts of the homogeneous
solution, the corresponding terms must be removed
from the inversion procedure. We discuss an example of
this procedure in Appendix B. Nevertheless, we remark
that this will not be the case for the basis employed in this
work.
The coefficients of the homogeneous solution are

obtained from the matching conditions (17) and (18),
which when substituted in Eq. (40) lead to the conditions,

Iq;0aþ Iqþ1;0bμuμ ¼ −hEq
pSpiθ;

Is;0aþ Isþ1;0bμuμ ¼ −hEs
pSpiθ;

Izþ2;1bhμi ¼
1

3
hðΔμνpμpνÞEz

pVpi0∇μα; ð48Þ

where it was used that pμ ¼ Epuμ þ phμi. These are solved
with

a ¼ Iqþ1;0hEs
pSpi0 − hEq

pSpi0Isþ1;0

Gsþ1;q
θ;

bμuμ ¼
hEq

pSpi0Is;0 − Iq;0hEs
pSpi0

Gsþ1;q
θ;

bhμi ¼
1

3

hðΔμνpμpνÞEz
pVpi0

Izþ2;1
∇μα; ð49Þ

where Gn;m ¼ In;0Im;0 − In−1;0Imþ1;0.
Finally, combining the results displayed above, we

obtain the solution for the first order Chapman-Enskog
deviation function,

ϕp ¼ S̃pθ þ Ṽpphμi∇μαþ T pphμpνiσμν; ð50Þ

where we defined the scalar functions of Ep,
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S̃p ¼
X
n≥0

X
m≥0

½Ŝ−1�nmAm

�
Pð0Þ
n þ Iqþ1;0I

ð0Þ
sn − I ð0Þ

qn Isþ1;0

Gsþ1;q
þ I ð0Þ

qn Is;0 − Iq;0I
ð0Þ
sn

Gsþ1;q
Ep

�
;

Ṽp ¼
X
n≥0

X
m≥0

½V̂−1�nmBm

�
Pð1Þ
n −

I ð1Þ
zn

Izþ2;1

�
;

T p ¼
X
n≥0

X
m≥0

½T−1�nmCmP
ð2Þ
n ; ð51Þ

and the following thermodynamic integral:

I ðlÞ
mn ¼ ð−1Þl

ð2lþ 1Þ!! hðΔ
μνpμpνÞlEm

pP
ðlÞ
n i

0
: ð52Þ

This solution can then be used to obtain the constitutive
relations satisfied by the nonequilibrium corrections under
general matching conditions. Indeed, definitions (12) yield

Π ¼ −ζθ; δn ¼ −ξθ; δε ¼ χθ;

νμ ¼ κ∇μα; hμ ¼ −λ∇μα;

πμν ¼ 2ησμν; ð53Þ

with transport coefficients given by

ζ ¼
X
n≥2

X
m≥2

½Ŝ−1�nmAmH
ðζÞ
n ; ξ ¼

X
n≥2

X
m≥2

½Ŝ−1�nmAmH
ðξÞ
n ; χ ¼ −

X
n≥2

X
m≥2

½Ŝ−1�nmAmH
ðχÞ
n ;

κ ¼
X
n≥1

X
m≥1

½V̂−1�nmBmJ
ðκÞ
n ; λ ¼

X
n≥1

X
m≥1

½V̂−1�nmBmJ
ðλÞ
n ;

η ¼
X
n≥0

X
m≥0

½T−1�nmCmI
ð2Þ
0n ; ð54Þ

where

HðζÞ
n ¼ −

1

3
ðm2I ð0Þ

0n − I ð0Þ
2n Þ −

1

3

m2Gqþ1;0 − Gqþ1;2

Gsþ1;q
I ð0Þ
sn þ 1

3

m2Gsþ1;0 −Gsþ1;2

Gsþ1;q
I ð0Þ
qn ;

HðξÞ
n ¼ I ð0Þ

1n þ Gqþ1;1

Gsþ1;q
I ð0Þ
sn −

Gsþ1;1

Gsþ1;q
I ð0Þ
qn ;

HðχÞ
n ¼ I ð0Þ

2n þ Gqþ1;2

Gsþ1;q
I ð0Þ
sn −

Gsþ1;2

Gsþ1;q
I ð0Þ
qn ;

JðκÞn ¼ −I ð1Þ
0n þ I2;1

Izþ2;1
I ð1Þ
zn ;

JðλÞn ¼ I ð1Þ
1n −

I3;1
Izþ2;1

I ð1Þ
zn : ð55Þ

The transport coefficients are in general quite involved
functions of temperature and chemical potential. Some
simplification can be made with the usage of phenomeno-
logical approximations of the collision term, such as the
relaxation time approximation [53,69]. It is also relevant to
point out that the choice of matching conditions affect
greatly some of the transport coefficients, which explicitly
depend on the parameters q, s, and z necessary to define
the matching conditions. Indeed, if we use the Landau
prescription, ðq; s; zÞ ¼ ð1; 2; 1Þ, we have ξ ¼ χ ¼ λ ¼ 0.
If, instead, we use the Eckart prescription, then ξ ¼ χ ¼
κ ¼ 0. Alternatively, in a matching condition defined such

that q ¼ 0 and s ¼ 2, we would have ζ ¼ 0. It should also
be noted that, in the massless limit, due to the fact that
Ap ¼ − β

3
E2
p and Δμνpμpν ¼ E2

p, we have that Sp ¼ 0,
implying that all transport coefficients related to scalar
nonequilibrium fields must vanish; i.e., ζ ¼ ξ ¼ χ ¼ 0.
Moreover, we note that the combinations,

ζþ
�
∂P0

∂n0

�
ε0

ξþ
�
∂P0

∂ε0

�
n0

χ¼
X
n≥2

X
m≥2

½Ŝ−1�nmAmHn;

κþ n0
ε0þP0

λ¼
X
n≥1

X
m≥1

½V̂−1�nmBmJ n; ð56Þ
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are matching-invariant. In the above equations,

�
∂P0

∂n0

�
ε0

¼ I3;1I2;0 − I2;1I3;0
I22;0 − I1;0I3;0

;

�
∂P0

∂ε0

�
n0

¼ I2;1I2;0 − I3;1I1;0
I22;0 − I1;0I3;0

;

Hn ¼ −
1

3
ðm2I ð0Þ

0n − I ð0Þ
2n Þ þ

�
∂P0

∂n0

�
ε0

I ð0Þ
1n þ

�
∂P0

∂ε0

�
n0

I ð0Þ
2n ;

J n ¼ −I ð1Þ
0n þ n0

ε0 þ P0

I ð1Þ
1n : ð57Þ

These expressions can be derived using (39) with the
identification of the In;m expressions with the thermody-
namic derivatives above.
The equations of motion are obtained replacing the

first order solution for fp in the exact conservation
laws (9), where the nonequilibrium corrections above,
fδε; δn;Π; νμ; hμ; πμνg, are determined in terms of the
hydrodynamic variables by the constitutive relations in
Eq. (53). Using the results in [28], it is straightforward to
demonstrate that the resulting equations of motion are
acausal for any choice of matching condition. Therefore,
one can see that the choice of matching condition cannot
render the hydrodynamic theory emerging from the first-
order truncation of the Chapman-Enskog expansion causal
and (linearly) stable.

B. Hilbert expansion

In this section we discuss the other perturbative formal-
ism used to derive a fluid-dynamical framework from
kinetic theory: the Hilbert expansion [1,5,6]. This approach
was originally developed by D. Hilbert in the nonrelativ-
istic context, prior to the Chapman-Enskog theory. As
previously mentioned, the Hilbert approach is not as widely
employed as the former since it does not lead to Navier-
Stokes theory and has not been worked out in detail in the
relativistic regime. Nevertheless, understanding the Hilbert
expansion allows us to comprehend basic aspects and
assumptions made in perturbative derivations of fluid
dynamics and, for this reason, we find it useful to work
out the details of this formalism (including its transport
coefficients) in this section.
The starting point of the Hilbert expansion is identical to

that of Chapman-Enskog theory, where one introduces a
perturbative parameter into the Boltzmann equation,

ϵpμ
∂μfp ¼ C½fp�: ð58Þ

As shown in the last section, fundamental properties of the
full collision integral (20) lead to nonperturbative con-
servation laws [see Eq. (21)], which act as constraints on
fp. Also similarly to Chapman-Enskog theory, we impose a
perturbative solution for the single-particle distribution
function, as in Eq. (22),

fp ¼
X∞
i¼0

ϵifðiÞp : ð59Þ

Then, solutions are found order by order iteratively. After
this task is performed, the bookkeeping parameter ϵ is set
to one.
The zeroth order solution is identical to the one found in

Chapman-Enskog theory, and satisfies

0 ¼ C½fð0Þp �; ð60Þ

leading to the local equilibrium distribution function,
already displayed in Eq. (24). Thus, the Hilbert expansion
also recovers ideal fluid dynamics as its zeroth-order
solution. The next order solutions will differ from those
of Chapman-Enskog theory and are obtained from the
equations,

pμ
∂μðf0pϕðn−1Þ

p Þ ¼ f0pL̂½ϕðnÞ
p � þ

Xn−1
j¼1

J½fðn−jÞp ; fðjÞp �; n ≥ 1;

ð61Þ

where we defined the bilinear form of the collision
operator,

J½fp; gp� ¼
Z

dQdQ0dP0Wpp0↔qq0 ðfpgp0 − gqfq0 Þ; ð62Þ

and introduced the notation ϕð0Þ
p ¼ 1;ϕðn≥1Þ

p ¼ fðnÞp =f0p.
We note that the equations above are different than the
equations resulting from Chapman-Enskog theory. In the
former, timelike and spacelike derivatives of the single-
particle distribution function are explicitly separated on the
left-hand side of the equation. Such timelike derivatives of
the distribution function are then expanded in ϵ, leading to a
rearrangement of the perturbative series; see Eqs. (25)–
(27). This expansion of the timelike derivatives is then
determined systematically using the zero modes of the
linear collision operator, as shown in (33). Historically
speaking, this approach was understood as a correction to
the Hilbert series. As already mentioned, Chapman and
Enskog’s approach was broadly favored, since it led to
Navier-Stokes theory and, thus, provided the first
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microscopic derivation of this widely employed fluid-
dynamical theory. In the remainder of this section we
discuss the original framework proposed by Hilbert and its
implications.
The main feature of the Hilbert expansion is the

emergence of an infinite set of conservation laws that must
be solved independently order by order. This can be seen by
multiplying Eq. (61) with 1 and pμ and integrating it in
momentum space, leading to

Z
dP½pμ

∂μðf0pϕðn−1Þ
p Þ� ¼ 0;

Z
dPpα½pμ

∂μðf0pϕðn−1Þ
p Þ� ¼ 0; n ≥ 1; ð63Þ

where we used properties (36) and (37) of the collision
operator, L̂, and the following property of the bilinear
collision term, J½f; g�, [1]:

Z
dPJ½fp; gp� ¼ 0;

Z
dPpμJ½fp; gp� ¼ 0: ð64Þ

This implies that the conservation laws of particle number,
energy, and momentum obtained from (58) must be solved
independently order by order in the perturbative parameter
ϵ,

∂μN
μ
ðkÞ ¼ 0; ∂μT

μν
ðkÞ ¼ 0; k ≥ 0: ð65Þ

It is then convenient to decompose this set of conserved
currents in terms of the 4-velocity, as explained in Sec. II,

Nμ
ðkÞ ≡

Z
dPpμfðkÞp ¼ nðkÞuμ þ νμðkÞ ð66aÞ

Tμν
ðkÞ ≡

Z
dPpμpνfðkÞp

¼ εðkÞuμuν −ΠðkÞΔμν þ hμðkÞu
ν þ hνðkÞu

μ þ πμνðkÞ; k ≥ 0;

ð66bÞ

where nðkÞ, εðkÞ, ΠðkÞ, νμðkÞ, hμðkÞ, and πμνðkÞ denote,

respectively, the kth order contribution to particle density,
energy density, bulk viscous pressure, particle diffusion
4-current, energy diffusion 4-current, and shear-stress
tensor. Furthermore, at zeroth order, nð0Þ ¼ n0, εð0Þ ¼ ε0,
Πð0Þ ¼ P0, ν

μ
ð0Þ ¼ 0, hμð0Þ ¼ 0, and πμνð0Þ ¼ 0. As we shall see

later, this will be essential in determining the free para-

meters that appear in the homogeneous solutions for ϕðnÞ
p

in Eq. (61).
For the sake of completeness, we derive the fluid-

dynamical equations stemming from the Hilbert expansion
truncated at first order. First, we note that the five unknown

fields contained in fð0Þp ; i.e., the temperature, thermal
potential, and 4-velocity, must be determined. In the
Hilbert expansion this task is performed by deriving
equations for these variables. Using Eq. (63) with n ¼ 1
or, equivalently, Eq. (65) with k ¼ 0, one finds the
conservation laws,

Dn0 þ n0θ ¼ 0; ð67aÞ

Dε0 þ ðε0 þ P0Þθ ¼ 0; ð67bÞ

ðε0 þ P0ÞDuμ −∇μP0 ¼ 0; ð67cÞ

where, as already explained in Sec. II, ε0, P0, and n0 are
functions of α and β. We note that the conservation laws
above are identical to those obeyed by an ideal fluid, even
when the actual system described is out of equilibrium.
We now proceed to determine the first order correction.

First, we take Eq. (61) for n ¼ 1, which reduces to

pμ
∂μf0p ¼ f0pL̂½ϕð1Þ

p �: ð68Þ

The left-hand side of Eq. (68) can be irreducibly written as

pμ
∂μf0p ¼

�
EpDα − E2

pDβ −
β

3
Δλσpλpσθ þ phμi∇μα − EpphμiðβDuμ þ∇μβÞ − βphμpνiσμν

�
f0p: ð69Þ

Note that the timelike derivatives of temperature, thermal potential, and 4-velocity can be substituted by spacelike ones
analogously to what occurred in Chapman-Enskog theory. Nevertheless, here we have the fundamental difference that this
substitution is exact, and not perturbative, since α, β, and uμ satisfy the ideal fluid-dynamical equations; see Eqs. (67).
Hence, Eq. (68) becomes

��
Ap −

β

3
Δλσpλpσ

�
θ þ

�
1 −

n0Ep

ε0 þ P0

�
phμi∇μα − βphμpνiσμν

�
f0p ¼ f0pL̂ϕ

ð1Þ
p ; ð70Þ

which is mathematically equivalent to Eq. (43) obtained in Chapman-Enskog theory, with Ap already being defined in
Eq. (31). This allows us to proceed with the same steps performed from Eq. (40)–(47), leading to the particular solution,
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ϕpart
p ¼ Spθ þ Vpphμi∇μαþ T pphμpνiσμν; ð71Þ

where S, V, and T are given in Eqs. (44) and (47).
As before, this solution must be complemented by a

homogeneous solution, constructed from a linear combi-
nation of the zero-modes of the collision operator,

ϕhom
p ¼ aþ bμpμ: ð72Þ

The five unknown fields that appear in the homogeneous
solution will be determined in the same way as done
previously for the temperature, thermal potential, and
4-velocity at zeroth order. We derive equations of motion
for these quantities using Eq. (63) with n ¼ 2 or, equiv-
alently, Eq. (65) with k ¼ 1. We note that this procedure
is carried out order by order, always determining the free
parameters of the homogeneous solution using the con-
straints from Eq. (65). This guarantees that the energy-
momentum tensor and the particle 4-current are always
exactly conserved, even when truncated at a given order.
We note that this is a crucial difference with respect to the
traditional Chapman-Enskog theory, where the undeter-
mined coefficients of the homogeneous solution, a and bμ,
are determined using matching conditions.
Then, using decomposition (66) for k ¼ 1 and taking

into account that the zeroth order currents obey the zeroth
order conservation laws (67) separately, we have

Dnð1Þ þ nð1Þθ þ ∂μν
μ
ð1Þ ¼ 0; ð73aÞ

Dεð1Þ þ ðεð1Þ þ Πð1ÞÞθ − πμνð1Þσμν þ ∂μh
μ
ð1Þ þ uμDhμð1Þ ¼ 0;

ð73bÞ

ðεð1Þ þ Πð1ÞÞDuμ −∇μΠð1Þ þ hμð1Þθ

þ hαð1ÞΔ
μν
∂αuν þ ΔμνDhð1Þν þ Δμν

∂απ
α
ð1Þν ¼ 0: ð73cÞ

These equations are complemented with the constitutive
relation satisfied by the shear-stress tensor,

πμνð1Þ ¼ 2ησμν; ð74Þ

where the transport coefficient η is identical to the one
obtained in Chapman-Enskog theory; see Eq. (54).
Furthermore, the variables nð1Þ, εð1Þ, Πð1Þ, ν

μ
ð1Þ, and hμð1Þ

can be expressed in terms of the fields a and bμ and
gradients of α and uμ. Using the decomposition (66) and
definitions (12), we have

nð1Þ ¼ aI1;0 þ ðbμuμÞI2;0 − ξHθ;

εð1Þ ¼ aI2;0 þ ðbμuμÞI3;0 þ χHθ;

Πð1Þ ¼ aI2;1 þ ðbμuμÞI3;1 þ ζHθ;

νμð1Þ ¼ −I2;1bhμi þ κH∇μα;

hμð1Þ ¼ −I3;1bhμi − λH∇μα; ð75Þ

where we defined the following transport coefficients:

ξH¼−hEpSpi0; χH¼hE2
pSpi0; ζH¼−

1

3
hðΔαβpαpβÞSpi0;

κH¼1

3
hðΔαβpαpβÞVpi0; λH¼−

1

3
hðΔαβpαpβÞEpVpi0:

ð76Þ

These transport coefficients depend on the temperature and
thermal potential, which are determined by the zeroth order
equations of motion (67). We note that the homogeneous
solution has five independent degrees of freedom while
nð1Þ, εð1Þ, Πð1Þ, ν

μ
ð1Þ, and hμð1Þ define a total of 9 degrees of

freedom. Using (75), we can derive the constraints which
relate the three scalar fields and the two vector fields, which
are given by

G3;1Πð1Þ ¼ ðI2;1I3;0 − I3;1I2;0Þðnð1Þ þ ξHθÞ
þ ðI2;1I2;0 − I3;1I1;0Þðεð1Þ − χHθÞ þ ζHθ; ð77aÞ

1

I2;1
νμð1Þ −

1

I3;1
hμð1Þ ¼

�
κH
I2;1

þ λH
I3;1

�
∇μα: ð77bÞ

In the massless limit, ζH ¼ χH ¼ ξH ¼ 0 and the first
constraint reduces to Πð1Þ ¼ ð1=3Þεð1Þ, which is consistent
with the tracelessness property of the of the energy-
momentum tensor in this case. As for the second constraint,
it reduces to νμ − ðβ=4Þhμ ¼ ðn0=12Þ∇μα.
The system formed by the partial differential equa-

tions (67) and (73), together with the constraints (77)
correspond to the fluid-dynamical equations that emerge
from the first-order truncation of the Hilbert expansion.
These equations are not of the form of Navier-Stokes theory
and, for this reason, were readily abandoned for applica-
tions in the nonrelativistic regime. In the relativistic regime
they are not often employed as well even though they do
not appear to display the same pathologies of relativistic
Navier-Stokes theory.

C. New perturbative expansion

In the previous sections we discussed two traditional
perturbative frameworks that can be employed to derive
fluid dynamical equations in relativistic kinetic theory.
Nevertheless, both frameworks have fundamental flaws
that must be addressed. As mentioned before, the
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Chapman-Enskog expansion leads to fluid-dynamical
equations in the relativistic regime that are acausal and
linearly unstable around global equilibrium. On the other
hand, the Hilbert expansion leads to an infinite set of
conservation laws, overestimating the number of conserved
quantities in the fluid. Therefore, it cannot correctly
describe the type of collective excitations that appear
near equilibrium. In this section, we discuss another
perturbative procedure that leads to relativistic fluid-
dynamical equations that do not contain the above men-
tioned undesired and unphysical features: the BDNK
equations [28,33,35,36,70].
For the practical purposes discussed in this paper, the

main difference between the BDNK equations and relativ-
istic Navier-Stokes theory is that the former is built upon
constitutive relations for the dissipative currents that do not
only contain spacelike derivatives of the fluid-dynamical
variables. Alternatively, one can say that the Navier-
Stokes formulation did not include all the possible terms
that appear in a first-order formulation. Even though this
may appear to be a minor difference, it has been proven
that the addition of timelike derivatives of the fluid-
dynamical variables to the constitutive relations can
change the character of the equations of motion in such
a way that causal and stable formulations of hydrodynamics
computed at first-order in derivatives can be obtained
[28,33,35,36,70], as long as a judicious choice for the
definition of the hydrodynamic variables out of equilibrium
are employed.
The main reason the Chapman-Enskog expansion

leads to Navier-Stokes theory and not to BDNK theory
is the replacement of timelike derivatives by spacelike
ones that occurs when obtaining the perturbative solution
for the timelike derivatives of the distribution function
[cf. Eq. (33), for instance]. As already discussed, this
replacement is essential to guarantee the validity of the
compatibility conditions (38) in Chapman-Enskog theory.
As for the Hilbert expansion, the timelike derivatives are
exactly substituted by spacelike ones due to the fact that the
equations of motion include the Euler equations explicitly.
In both cases, the zero modes of the linearized collision
operator lead to conditions that force the replacement of
timelike derivatives of the fluid-dynamical variables by
spacelike ones.
In the following we construct a perturbative solution

using moments of the Boltzmann equation and not
the Boltzmann equation itself. We first integrate the
Boltzmann equation with the complete and irreducible
basis PðlÞ

n ðβEpÞphμ1 � � �pμli used in the last sections (the

functions PðlÞ
n are not necessarily orthogonal). The pertur-

bative bookkeeping parameter ϵ is then inserted on the left-
hand side of all moment equations,

ϵ

Z
dPPðlÞ

n ðβEpÞphμ1 � � �pμlip
μ
∂μfp

¼
Z

dPPðlÞ
n ðβEpÞphμ1 � � �pμliC½fp�: ð78Þ

Naturally, if the basis elements correspond to 1; pμ, we
obtain the usual conservation laws already displayed in
(21). These conservation laws will be treated nonperturba-
tively, as was the case of Chapman-Enskog theory. Thus,
from now on, we shall only consider the remaining basis
elements in our analysis.
Then, as usual, one assumes an asymptotic series

solution for fp,

fp ¼
X∞
i¼0

ϵifðiÞp ; ð79Þ

and Eq. (78) is solved order-by-order in the perturbative
parameter. Indeed, at Oðϵ0Þ, we have

0 ¼
Z

dPPðlÞ
n ðβEpÞphμ1 � � �pμliC½fð0Þp �: ð80Þ

The fact that integrals over arbitrary basis elements all

vanish implies that C½fð0Þp � ¼ 0 and, thus, fð0Þp ¼ f0p. Next,
collecting all terms of first order in ϵ, we obtain

Z
dPPðlÞ

n ðβEpÞphμ1 � � �pμlip
μ
∂μf0p

¼
Z

dPPðlÞ
n ðβEpÞphμ1 � � �pμlif0pL̂ϕ

ð1Þ
p : ð81Þ

Here, we emphasize that the zero modes of the linearized
collision operator do not enter this set of equations; i.e., the
basis elements 1 and pμ are not present in this equation.
This implies that the compatibility conditions that require
the exchange of timelike derivatives of fp by spacelike
ones in Chapman-Enskog theory, see Eqs. (38), do not
appear in this case. This is a consequence of performing the
perturbative procedure on moments of the Boltzmann
equation and not on the Boltzmann equation itself. The
term inside each integral on the left-hand sides can be
irreducibly written as

pμ
∂μf0p ¼

�
EpDα − E2

pDβ −
β

3
Δλσpλpσθ þ phμi∇μα − EpphμiðβDuμ þ∇μβÞ − βphμpνiσμν

�
f0p: ð82Þ
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Since L̂ is a linear operator, Eq. (81) implies that the
solution for ϕp can be expressed as the sum of a
homogeneous and a particular solution,

ϕp ¼ ϕhom
p þ ϕpart

p ; ð83Þ

where the homogeneous has the usual form,

ϕhom
p ¼ aþ bμpμ: ð84Þ

Since we do not have any self-consistency or compatibility
conditions that impose the replacement of timelike deriv-
atives of fluid-dynamical variables by spacelike ones, the
particular solution has the general form,

ϕpart
p ¼ SðαÞ

p Dαþ SðβÞ
p Dβ þ SðθÞ

p θ þ VðαÞ
p phμi∇μα

þ VðβÞ
p phμið∇μβ þ βDuμÞ þ T pphμpνiσμν: ð85Þ

The following steps are essentially the same as those
applied in Chapman-Enskog and Hilbert procedures, and
involve the inversion of the linearized collision operator (in
the subspace excluding its zero modes). We assume that the
functions S, V, and T can be expanded in the complete

basis PðlÞ
n ,

Sðα;β;θÞ
p ¼

X
n≥0

sðα;β;θÞn Pð0Þ
n ; Vðα;βÞ

p ¼
X
n≥0

vðα;βÞn Pð1Þ
n ;

T p ¼
X
n≥0

tnP
ð2Þ
n ; ð86Þ

which leads to the following system of linear equations:

X
n

Srns
ðα;β;θÞ
n ¼ Aðα;β;θÞ

r ;

X
n

Vrnv
ðα;βÞ
n ¼ Bðα;βÞ

r ;

X
n

Trntn ¼ Cr; ð87Þ

to be solved for the coefficients sðα;β;θÞn , vðα;βÞn , and tn. The
matrices S, V, and T were already defined in (46). We
further define the thermodynamic integrals,

AðαÞ
r ¼ I ð0Þ

1r ; AðβÞ
r ¼ −I ð0Þ

2r ; AðθÞ
r ¼ β

3
ðI ð0Þ

2r −m2I ð0Þ
0r Þ;

BðαÞ
r ¼ −3I ð1Þ

0r BðβÞ
r ¼ 3I ð1Þ

1r ;

Cr ¼ −15βI ð2Þ
0r : ð88Þ

Equations (87) can be schematically inverted as

sðα;β;θÞn ¼
X
m

½S−1�nmAðα;β;θÞ
m vðα;βÞn ¼

X
m

½V−1�nmBðα;βÞ
m

tn ¼
X
m

½T−1�nmCm: ð89Þ

Then, we proceed to obtain the homogeneous solution
ϕhom
p . This is made by substituting Eqs. (83) and (84) in the

general matching conditions (17) and (18), in complete
analogy with Eq. (48) in the Chapman-Enskog expansion.
In the present case, this procedure yields

Iq;0aþ Iqþ1;0bμuμ ¼ −hEq
pS

ðαÞ
p iDα − hEq

pS
ðβÞ
p iDβ − hEq

pS
ðθÞ
p iθ

Is;0aþ Isþ1;0bμuμ ¼ −hEs
pS

ðαÞ
p iDα − hEs

pS
ðβÞ
p iDβ − hEs

pS
ðθÞ
p iθ

Izþ2;1bhμi ¼
1

3
hðΔμνpμpνÞEz

pV
ðαÞ
p i

0
∇μαþ 1

3
hðΔμνpμpνÞEz

pV
ðβÞ
p i

0
ð∇μβ þ βDuμÞ; ð90Þ

where we used again that pμ ¼ Epuμ þ phμi. The equations above can be solved for a, bμuμ, and bhλi, which gives

a¼ Iqþ1;0hEs
pS

ðαÞ
p i0−hEq

pS
ðαÞ
p i0Isþ1;0

Gsþ1;q
DαþIqþ1;0hEs

pS
ðβÞ
p i0−hEq

pS
ðβÞ
p i0Isþ1;0

Gsþ1;q
DβþIqþ1;0hEs

pS
ðθÞ
p i0−hEq

pS
ðθÞ
p i0Isþ1;0

Gsþ1;q
θ;

bμuμ¼
hEq

pS
ðαÞ
p i0Is;0−Iq;0hEs

pS
ðαÞ
p i0

Gsþ1;q
DαþhEq

pS
ðβÞ
p i0Is;0−Iq;0hEs

pS
ðβÞ
p i0

Gsþ1;q
DβþhEq

pS
ðθÞ
p i0Is;0−Iq;0hEs

pS
ðθÞ
p i0

Gsþ1;q
θ;

bhλi ¼
1

3

hðΔμνpμpνÞEz
pV

ðαÞ
p i

0

Izþ2;1
∇λαþ

1

3

hðΔμνpμpνÞEz
pV

ðβÞ
p i

0

Izþ2;1
ð∇λβþβDuλÞ: ð91Þ
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Finally, combining the homogeneous solution found above with the particular solution derived in Eq. (89), we obtain the
complete first-order solution of the modified perturbative procedure introduced in this section. The solution can be
expressed as

ϕp ¼ S̃ðαÞ
p Dαþ S̃ðβÞ

p Dβ þ S̃ðθÞ
p θ þ ṼðαÞ

p phμi∇μαþ ṼðβÞ
p phμið∇μβ þ βDuμÞ þ T pphμpνiσμν; ð92Þ

where we define the momentum-dependent functions,

S̃ðα;β;θÞ
p ¼

X
n

X
m

½S−1�nmAðα;β;θÞ
m

�
Pð0Þ
n þ Iqþ1;0I

ð0Þ
sn − I ð0Þ

qn Isþ1;0

Gsþ1;q
þ I ð0Þ

qn Is;0 − Iq;0I
ð0Þ
sn

Gsþ1;q
Ep

�
;

Ṽðα;βÞ
p ¼

X
n

X
m

½V−1�nmBðα;βÞ
m

�
Pð1Þ
n −

I ð1Þ
zn

Izþ2;1

�
;

T p ¼
X
n

X
m

½T−1�nmCmP
ð2Þ
n : ð93Þ

Replacing the solution in (92) into the definition of the dissipative currents (12), we obtain the following constitutive
relations:

Π ¼ ζðαÞDα − ζðβÞ
Dβ

β
− ζðθÞθ; δn ¼ ξðαÞDα − ξðβÞ

Dβ

β
− ξðθÞθ; δε ¼ χðαÞDα − χðβÞ

Dβ

β
− χðθÞθ;

νμ ¼ κðαÞ∇μα − κðβÞ
�
1

β
∇μβ þDuμ

�
; hμ ¼ λðαÞ∇μα − λðβÞ

�
1

β
∇μβ þDuμ

�
;

πμν ¼ 2ησμν; ð94Þ

where the microscopic expressions for the fourteen transport parameters introduced above are given by

ζðαÞ ¼
X
n;m

½S−1�nmAðαÞ
m HðζÞ

n ; ζðβÞ ¼ −β
X
n;m

½S−1�nmAðβÞ
m HðζÞ

n ; ζðθÞ ¼ −
X
n;m

½S−1�nmAðθÞ
m HðζÞ

n ;

ξðαÞ ¼
X
n;m

½S−1�nmAðαÞ
m HðξÞ

n ; ξðβÞ ¼ −β
X
n;m

½S−1�nmAðβÞ
m HðξÞ

n ; ξðθÞ ¼ −
X
n;m

½S−1�nmAðθÞ
m HðξÞ

n ;

χðαÞ ¼
X
n;m

½S−1�nmAðαÞ
m HðχÞ

n ; χðβÞ ¼ −β
X
n;m

½S−1�nmAðβÞ
m HðχÞ

n ; χðθÞ ¼ −
X
n;m

½S−1�nmAðθÞ
m HðχÞ

n ;

κðαÞ ¼
X
n;m

½V−1�nmBðαÞ
m JðκÞn ; κðβÞ ¼ −β

X
n;m

½V−1�nmBðβÞ
m JðκÞn ;

λðαÞ ¼
X
n;m

½V−1�nmBðαÞ
m JðλÞn ; λðβÞ ¼ −β

X
n;m

½V−1�nmBðβÞ
m JðλÞn ;

η ¼
X
n;m

½T−1�nmCmI
ð2Þ
0n : ð95Þ

The functions Hðζ;ξ;χÞ; Jðκ;λÞ were already defined in
Eqs. (55). We further notice that the shear coefficient
has the same expression as in Chapman-Enskog and
Hilbert expansions. Furthermore, in the massless limit,
since δTμ

μ ¼ δε − 3Π ¼ 0, we have that 3ζðαÞ ¼ χðαÞ,
3ζðβÞ ¼ χðβÞ, and 3ζðθÞ ¼ χðθÞ. Also in this limit, since
Δλσpλpσ ¼−E2

p, we have that 3ξðθÞ ¼ ξðβÞ and 3χðθÞ ¼ χðβÞ,
even though they are in general not zero. This is in
contrast to what happened in the traditional Chapman-
Enskog expansion where ζ, ξ, and χ vanish identically in
the m → 0 limit. The constitutive relations (94), combined

with the conservation laws (1), lead to the BDNK
equations [28,33–36].
We alsonote that, as inNavier-Stokes theory [see Eq. (54)],

the majority of the coefficients are strongly dependent on the
parameters q and s that specify the matching conditions
employed. In fact, for Landau matching conditions,
ðq; s; zÞ ¼ ð1; 2; 1Þ, we have ξðα;β;θÞ ¼ χðα;β;θÞ ¼ λðα;βÞ ¼ 0,
while for Eckart matching conditions, ðq; s; zÞ ¼ ð1; 2; 0Þ,
one finds ξðα;β;θÞ ¼ χðα;β;θÞ ¼ λðα;βÞ ¼ 0. Furthermore, for
matching conditions that respect ðq; sÞ ¼ ð0; 2Þ we have
that ζðα;β;θÞ ¼ 0.
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The approach presented in this section provides a
systematic way to derive the BDNK equations from kinetic
theory at nonzero chemical potential. Early work in this
direction was presented in Refs. [33,35], but the latter did
not employ an irreducible basis nor gave explicit expres-
sions for all the transport parameters that are valid at zero
and nonzero chemical potential.
Furthermore, we point out that Navier-Stokes theory can

be obtained from the BDNK equations by replacing the
timelike derivatives of β, α, and uμ in the constitutive
relations (94) using a first-order truncation of the con-
servation laws. Performing this substitution, we find the
relation between the transport coefficients appearing in
BDNK theory and those of Navier-Stokes theory. The
result is

ζ ¼
�
∂P0

∂n0

�
ε0

βζðαÞ þ
�
∂P0

∂ε0

�
n0

ζðβÞ þ ζðθÞ; ð96aÞ

ξ ¼
�
∂P0

∂n0

�
ε0

βξðαÞ þ
�
∂P0

∂ε0

�
n0

ξðβÞ þ ξðθÞ; ð96bÞ

− χ ¼
�
∂P0

∂n0

�
ε0

βχðαÞ þ
�
∂P0

∂ε0

�
n0

χðβÞ þ χðθÞ; ð96cÞ

κ ¼ κðαÞ −
P0

ε0 þ P0

κðβÞ; ð96dÞ

λ ¼ −λðαÞ þ P0

ε0 þ P0

λðβÞ: ð96eÞ

This implies that, in general, ζ ≠ ζðθÞ and κ ≠ κðαÞ, for
example. This mapping between the coefficients was first
derived via hydrodynamic frame transformations in [34],
with the important difference that, in that reference, the
relation is between the Navier-Stokes coefficients in
Landau matching conditions [only in this particular match-
ing, ζ and κ coincide, respectively, with the matching-
invariant coefficients derived in Eqs. (56)] and the BDNK
matching-invariant coefficients,1

ζðiÞ þ
�
∂P0

∂n0

�
ε0

ξðiÞ þ
�
∂P0

∂ε0

�
n0

χðiÞ ¼
X
n≥2

X
m≥2

½Ŝ−1�nmAðiÞ
m Hn; i ¼ α; β; θ;

κðiÞ þ n0
ε0 þ P0

λðiÞ ¼
X
n≥1

X
m≥1

½V̂−1�nmBðiÞ
m J n i ¼ α; β; ð97Þ

where Hn and J n were defined in Eq. (57).
We would like to close this section with a brief comment

on previous works where a derivation of BDNK theory
from a microscopic description was investigated. As
mentioned above, the first derivation of BDNK theory
from kinetic theory was done in the original works [33,35].
After that, other approaches were pursued in [71,72].
Reference [71] discussed how BDNK may be derived
from holography, using the fluid/gravity correspondence
[73]. They also provided a derivation of BDNK from
kinetic theory using ideas from the Hilbert series.
Reference [72] focused on the effects of a momentum-
dependent relaxation time coefficient on the calculation of
transport coefficients.

V. TRANSPORT COEFFICIENTS IN THE
RELAXATION TIME APPROXIMATION

In order to provide some intuition on the constitutive
relations derived in the previous sections, we calculate all
transport coefficients using a simplified version of the
linearized collision term: the relaxation time approximation

(RTA). Here, since it is essential to consider unconventional
matching conditions (Landau or Eckart matching condi-
tions render the BDNK equations acausal), it is not possible
to employ the relaxation time approximation proposed by
Anderson and Witting [69]. In Ref. [53], a novel RTA for
the relativistic Boltzmann equation was proposed,

f0pL̂ϕp ≈ −
Ep

τR
feqp

8<
:ϕp −

ðϕp;
Ep

τR
Þ
0

ð1; Ep

τR
Þ0

−
ðϕp;

Ep

τR
P̃1Þ0

ðP̃1;
Ep

τR
P̃1Þ0

P̃1

−
ðϕp;

Ep

τR
phμiÞ

0

ð1; Ep

τR
Þ
1

phμi

9=
;; ð98Þ

where the first term on the right-hand side amounts to the
traditional RTA. The remaining terms are inserted so that
particle number, energy, and momentum are conserved
regardless of the matching condition or energy dependence
of the relaxation time employed.
The counterterms, in their turn, denote a projector in the

linear subspace of conserved quantities, which is spanned
by the orthogonal basis f1; P̃1; phνig. The polynomial P̃1 is
constructed so that it is orthogonal to 1,

1Some signs are different because of the difference in sign
conventions of definitions (94) and 2.4 of Ref. [34].
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�
P̃1;

Ep

τR

�
0

¼ 0; ð99Þ

where we defined the following scalar product:

ðϕ;ψÞl ¼ l!
ð2lþ 1Þ!!

Z
dP ðΔμνpμpνÞlϕpψpf0p: ð100Þ

In general, we consider that the relaxation time depends on
the microscopic energy through a power law,

τR ¼ tR

�
Ep

T

�
γ

; ð101Þ

which introduces the phenomenological parameter γ. In
Ref. [17], it was shown that this parameter significantly

affects the transient evolution of the dissipative currents
calculated using Israel-Stewart theory. Using the Ansatz
(98), the computation of transport coefficients is signifi-
cantly simplified and explicitly calculations are carried out
in the next subsection.

A. Transport coefficients: Massless gas
with constant relaxation time

Now we apply the relaxation time approximation,
Eq. (98), to compute the matrix elements that appear in
all perturbative schemes discussed so far; see Eqs. (46). In
the RTA, the scalar, vector, and tensor sector matrix
elements become

Srn ≡
Z

dPPð0Þ
r L̂½Pð0Þ

n �f0p ≈ −
�
Pð0Þ
r ; Pð0Þ

n
Ep

τR

�
0

þ
ðPð0Þ

r ; Ep

τR
Þ
0

ð1; Ep

τR
Þ
0

�
Pð0Þ
n ;

Ep

τR

�
0

þ
ðPð0Þ

r ; Ep

τR
P̃1Þ0

ðP̃1;
Ep

τR
P̃1Þ0

�
Pð0Þ
n ;

Ep

τR
P̃1

�
0

;

−
1

3
Vrn ≡ −

1

3

Z
dPPð1Þ

r phμiL̂½Pð1Þ
n phμi�f0p ≈ −

�
Pð1Þ
r ; Pð1Þ

n
Ep

τR

�
1

þ
ðPð1Þ

r ; Ep

τR
Þ
1

ð1; Ep

τR
Þ
1

�
Pð1Þ
n ;

Ep

τR

�
1

;

1

15
Trn ≡

1

15

Z
dPPð2Þ

r phμpνiL̂½Pð2Þ
n phμpνi�f0p ≈ −

�
Pð2Þ
r ; Pð2Þ

n
Ep

τR

�
2

: ð102Þ

As shown in the last section, the computation of transport coefficients requires the inversion of matrices of infinite
dimension. In practice this is performed by considering successive finite truncations of these matrices until the result
converges. In this case, the choice of basis plays an important role. Indeed, the existence of convergence and its speed may
depend on the choice of basis. In the present section, we use the set of functions,

PðlÞ
m ðxÞ ¼ xm−ml

ð1þ xÞN−nl
; m ¼ 1; � � �N; ð103Þ

as our basis in theNth truncation step. The parametersml and nl are judiciously chosen so that convergence is achieved. This
basis set is inspired by Refs. [74,75], where a similar set was used to perturbatively compute transport coefficients in gauge
theories at high temperature using an effective kinetic theory approach. In themassless limit, thematrix elements then become

Srn ¼ −
eα

2π2tRβ3

�
Fðrþ n − 2m0 þ 2 − γ; 2N − 2n0Þ −

Fðr −m0 þ 2 − γ; 2N − 2n0Þ
Γð3 − γÞ Fðn −m0 þ 2 − γ; 2N − 2n0Þ

−
½ð3 − γÞFðr −m0 þ 2 − γ; 2N − 2n0Þ − Fðrþ 3 − γ; 2N − 2n0Þ�

Γð4 − γÞ

×½ð3 − γÞFðn −m0 þ 2 − γ; 2N − 2n0Þ − Fðn −m0 þ 3 − γ; 2N − 2n0Þ�
�
;

Vrn ¼
eα

2π2tRβ5

�
Fðrþ n − 2m1 þ 4 − γ; 2N − 2n1Þ −

Fðr −m1 þ 4 − γ; 2N − 2n1Þ
Γð5 − γÞ Fðnþ 4 − γ; 2N − 2n1Þ

�
;

Trn ¼ −
eα

2π2tRβ7
Fðrþ n − 2m1 þ 6 − γ; 2N − 2n1Þ; ð104Þ

where we defined

FðM;NÞ ¼
Z

∞

0

dx
xM

ð1þ xÞN e−x ¼ ΓðM þ 1ÞUðN;N −M; 1Þ; ð105Þ
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withUða; b; zÞ denoting the confluent hypergeometric functionUða; b; zÞ ¼ ½1=ΓðaÞ� R∞
0 dt e−ztta−1ð1þ tÞb−a−1, and ΓðzÞ

the Gamma function [76]. Moreover, the source term integrals in Eqs. (88) are

AðαÞ
r ¼ eα

2π2β2
Fðr −m0 þ 2; N − n0Þ AðβÞ

r ¼ −
eα

2π2β3
Fðr −m0 þ 3; N − n0Þ

BðαÞ
r ¼ eα

2π2β4
Fðr −m1 þ 3; N − n1Þ BðβÞ

r ¼ eα

2π2β5
Fðr −m1 þ 3; N − n1Þ

Cr ¼
eα

2π2β5
Fðr −m2 þ 5; N − n2Þ; ð106Þ

where we note that AðθÞ
r ¼ ð1=3ÞAðβÞ

r in the massless limit.
For the sake of simplicity, we take a constant relaxation
time in the following calculations; i.e., we set the parameter
γ ¼ 0.
We compute the transport coefficients using two sets

of matching conditions in which the particle diffusion
4-current is set to zero. We shall refer to these types of
frames as exotic Eckart matching conditions [17]. In the
first type, we use Eqs. (17) and (18) imposing ðq; zÞ ¼
ð1; 0Þ and s ≠ 1, 2 so that νμ ≡ 0 and δn ≡ 0. The
corresponding results for the transport coefficients of the
BDNK equations can be seen in Table I, where we also
indicate the values of nl and ml chosen. In the second type
of matching conditions, we use ðq; zÞ ¼ ð2; 0Þ and s ≠ 1, 2,
so that νμ ≡ 0 and δε ≡ 0. The corresponding results for the
transport coefficients of the BDNK equations are listed in
Table II. In these tables, we see that the normalized shear
viscosity coefficient, η=ðP0τRÞ, which is matching inde-
pendent, converges steadily to 0.8. All other transport

coefficients seem to be exactly obtained at each order, as
long as an appropriate choice of basis is employed. The
reason for this behavior is clarified in Appendix C. It is also
clear that ξðα;βÞ and χðα;βÞ depend on the parameter s
employed to define the matching condition. The results
for ξðθÞ and χðθÞ are omitted due to the fact that, in the
massless limit, 3ξðθÞ ¼ ξðβÞ and 3χðθÞ ¼ χðβÞ. Finally, we
remark that the transport coefficients of Navier-Stokes
theory can be obtained from the results in Tables I and
II using relations (96).
The transport coefficients in Hilbert theory do not

depend on any matching conditions and are listed in
Table III. As already mentioned, the shear viscosity
coefficient is the same in both BDNK, Navier-Stokes,
and Hilbert formulations. We also remind the reader that
the coefficients ζH, ξH, χH all vanish in the massless limit.
Then, in this regime, the only new coefficients to be
computed are κH and λH, which converge to n0τR=3 and
−P0τR, respectively.

TABLE I. BDNK transport coefficients for exotic Eckart frames with ðq; zÞ ¼ ð1; 0Þ and γ ¼ 0. The numbers 1, 2, 3, 5, and 10 on each
column mean the first, second, third nontrivial truncation order, respectively.

Transp. coeff. / Trunc. ord. 1 2 3 5 10

η=ðP0τRÞ (m2 ¼ 0, n2 ¼ 1) 0.428571 0.741457 0.795862 0.799938 0.7999998
λðαÞ=ðP0τRÞ (m1 ¼ 2, n1 ¼ 1) 1.33333 1.33333 1.33333 1.33333 1.33333
λðβÞ=ðP0τRÞ (m1 ¼ 2, n1 ¼ 1) 4.00 4.00 4.00 4.00 4.00
χðαÞ=ðP0τRÞ (m0 ¼ −1, n0 ¼ 1,s ¼ 3) 1.50 1.50 1.50 1.50 1.50
χðβÞ=ðP0τRÞ (m0 ¼ −1, n0 ¼ 1, s ¼ 3) 7.50 7.50 7.50 7.50 7.50
χðαÞ=ðP0τRÞ (m0 ¼ −2, n0 ¼ 1, s ¼ 4) 1.00 1.00 1.00 1.00 1.00
χðβÞ=ðP0τRÞ (m0 ¼ −2, n0 ¼ 1, s ¼ 4) 6.00 6.00 6.00 6.00 6.00

TABLE II. BDNK transport coefficients for exotic Eckart frames with ðq; zÞ ¼ ð2; 0Þ and γ ¼ 0. The numbers 1, 2, 3, 5, and 10 on
each column mean the first, second, third nontrivial truncation order, respectively.

Transp. coeff. / Trunc. ord. 1 2 3 5 10

ξðαÞ=ðP0τRÞ (m0 ¼ −1, n0 ¼ 1, s ¼ 3) −1.00 −1.00 −1.00 −1.00 −1.00
ξðβÞ=ðP0τRÞ (m0 ¼ −1, n0 ¼ 1, s ¼ 3) −5.00 −5.00 −5.00 −5.00 −5.00
ξðαÞ=ðP0τRÞ (m0 ¼ −2, n0 ¼ 1, s ¼ 4) −0.50 −0.50 −0.50 −0.50 −0.50
ξðβÞ=ðP0τRÞ (m0 ¼ −2, n0 ¼ 1, s ¼ 4) −3.00 −3.00 −3.00 −3.00 −3.00
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VI. COMPARISON BETWEEN EQUATIONS OF
MOTION: EXOTIC ECKART FRAMES IN

BJORKEN FLOW

In this section we compare the solutions that emerge
from each perturbative scheme discussed in the previous
sections with solutions of Israel-Stewart theory and exact
solutions of the Boltzmann equation in the relaxation time
approximation. We assume that the system is composed of
massless classical particles with a constant relaxation time.
We shall further assume that the system undergoes a highly
symmetric flow configuration—Bjorken flow [44]. In this
case, we have a longitudinally boost-invariant expanding
fluid with a homogeneous transverse profile. In this setting,
it is convenient to work with hyperbolic coordinates, τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and η ¼ tanh−1ðz=tÞ. Then, the line element of

Minkowski space reads ds2 ¼ dτ2 − dx2 − dy2 − τ2dη2

and the only nonvanishing Christoffel symbols are
Γτ
ηη ¼ τ, Γη

τη ¼ Γη
ητ ¼ 1=τ. In this coordinate system, the

fluid 4-velocity becomes trivial, uμ ¼ ð1; 0; 0; 0Þ, and the
fluid-dynamical equations simplify considerably. One fur-
ther assumes that the system is invariant under reflections
around the z–axis and, thus, any spacelike vector such as
νμ, hμ, ∇μP0, and ∇μα vanishes identically. Finally, in
Bjorken flow the shear tensor, the shear-stress tensor, and
the expansion rate are expressed as

σμν ¼ diag

�
0;−

1

3τ
;−

1

3τ
;
2

3τ

�
;

πμν ¼ diag

�
0;−

π

2
;−

π

2
; π

�
;

θ ¼ 1

τ
: ð107Þ

A. Hilbert equations of motion

In Sec. IV B we derived the fluid-dynamical equations
that emerge from the first order truncation of the Hilbert
expansion. We found that the equilibrium fields n0, ε0, and
uμ satisfy the relativistic Euler equation (67), while the
dissipative currents obey the linear differential equa-
tions (73), with the constrains given by Eqs. (77). In the
massless limit the coefficients ξH and χH vanish and
constraint (77a) reduces to Πð1Þ ¼ ð1=3Þεð1Þ. Since all
irreducible first rank tensors vanish in Bjorken flow, the
remaining constraint (77b) is trivially satisfied. With this
information in mind and, using the notation δε ≡ εð1Þ, the
equations of motion obtained from the Hilbert series in
Bjorken flow are

_n0 þ
n0
τ̂
¼ 0; ð108aÞ

_δnþ δn
τ̂
¼ 0; ð108bÞ

_ε0 þ
4ε0
3τ̂

¼ 0; ð108cÞ

_δεþ 4δε

3τ̂
−
16ε0
45τ̂2

¼ 0; ð108dÞ

where we defined the normalized time coordinate,
τ̂ ¼ τ=τR, and denoted _A ¼ dA=dτ̂. The above equations
are solved by

n0ðτÞ ¼ n0ðτ0Þ
τ0
τ
; δnðτÞ ¼ δnðτ0Þ

τ0
τ
;

ε0ðτÞ ¼ ε0ðτ0Þ
�
τ0
τ

�
4=3

; δεðτÞ ¼
�
τ0
τ

�
4=3

�
δεðτ0Þ þ

16

45τ0
ε0ðτ0Þ

�
−
16ε0ðτ0Þτ̂4=30

45τ̂7=3
: ð109Þ

Hence, it can be seen that the ratio δn=n0 is time-independent, whereas the ratio δεðτÞ=ε0ðτÞ becomes constant
asymptotically, with a transient component that decays as 1=τ. This is quite different than what happens to solutions of
Navier-Stokes theory, which can also be solved analytically in this simplified scenario [4],

TABLE III. Hilbert theory transport coefficients for γ ¼ 0. The numbers 1, 2, 3, 5, and 10 on each column mean the first, second, third
nontrivial truncation order, respectively.

Transp. coeff. / Trunc. ord. 1 2 3 5 10

κH=ðn0τRÞ (m1 ¼ 2, n1 ¼ 1) 0.33333 0.33333 0.33333 0.33333 0.33333
λH=ðP0τRÞ (m1 ¼ 2, n1 ¼ 1,s ¼ 3) −1 −1 −1 −1 −1
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εNSðτÞ ¼ εNSðτ0Þ
�
τ0
τ

�
4=3

exp
�
−
16

45

�
1

τ
−

1

τ0

��
: ð110Þ

This leads to a qualitative difference in the 1=τ expansion
for the normalized total energy. Indeed, for the Navier-
Stokes solution, one finds the following terms when
τ̂ ≫ 1∶

εNSðτÞ
εNSðτ0Þ

¼
�
τ0
τ

�
4=3

exp

�
16

45τ̂0

��
1 −

16

45τ̂
þ � � �

�
: ð111Þ

On the other hand, from Eq. (108), we have for the Hilbert
solution,

ε0ðτÞþδεðτÞ
ε0ðτ0Þþδεðτ0Þ

¼
�
τ0
τ

�
4=3

�
1þ16

45

ε0ðτ0Þ
ε0ðτ0Þþδεðτ0Þ

�
1

τ̂0
−
1

τ̂

��
:

ð112Þ
Hence, the 1=τ̂ term of the Hilbert solution still displays a
dependence on the initial condition, something that is not
observed for the Navier-Stokes solution. This indicates that
there are no attractor solutions for δε=ε in Hilbert theory.
One may see this as a consequence of the infinite set of
conservation laws that appear in this formalism. Finally, we
note that for the Hilbert solution the series in square
brackets ends at first order in 1=τ̂, which is formally
different than the Navier-Stokes solution.

B. Israel-Stewart equations of motion

In this subsection, we write the Israel-Stewart equations
of motion for massless particles undergoing Bjorken flow
with a constant relaxation time. These equations were

recently derived using general matching conditions in
Ref. [17], and, for the sake of completeness, the derivation
procedure is summarized in Appendix A. In the following,
we consider two sets of matching conditions.

1. Exotic Eckart matching condition I:
δn= 0, δε ≠ 0 (q = 1, s ≠ 2)

In this case, the continuity equation related to particle
number conservation,

_n0 þ
n0
τ̂
¼ 0; ð113Þ

decouples from the rest of the equations of motion. The
remaining dynamical equations can be written as

_ε0 þ
4

3τ̂
ε0 − δε −

Γðsþ 4Þ
20Γðsþ 2Þ

π

τ̂
¼ 0;

_δεþ
�
1þ 4

3τ̂

�
δεþ

�
Γðsþ 4Þ
20Γðsþ 2Þ − 1

�
π

τ̂
¼ 0;

_π −
16

45τ̂
ðε0 þ δεÞ þ

�
1þ 38

21τ̂

�
π ¼ 0: ð114Þ

2. Exotic Eckart matching condition II: δn ≠ 0, δε = 0
(q = 2, s ≠ 1)

In this case, the equation of motion related to particle
number conservation does not decouple from the remaining
equations of motion. The dynamical equations can be
expressed in terms of the variables n0, ε0, δn, and π as
follows:

_n0 þ
n0
τ̂
− δn −

�
Γðsþ 4Þ

60Γðsþ 2Þ −
1

3Γðsþ 2Þ
� ðs − 1Þ
ðs − 2Þ

3n0
ε0

π

τ̂
¼ 0;

_δnþ
�
1þ 1

τ̂

�
δnþ

�
Γðsþ 4Þ

60Γðsþ 2Þ −
1

3Γðsþ 2Þ
� ðs − 1Þ
ðs − 2Þ

3n0
ε0

π

τ̂
¼ 0;

_ε0 þ
4

3τ̂
ε0 −

π

τ̂
¼ 0;

_π −
16

45τ̂
ðε0 þ δεÞ þ

�
1þ 38

21τ̂

�
π ¼ 0: ð115Þ

C. BDNK equations of motion

Now we proceed to write the BDNK equations of
motion, derived in Sec. VA, in Bjorken flow. As above,
this is done assuming a gas composed of massless particles
with a constant relaxation time and assuming two sets of
matching conditions. First with δn ¼ 0 and δε ≠ 0, then
δn ¼ 0 and δε ≠ 0. We also discuss the corresponding
attractor solutions of the BDNK equations.

1. Exotic Eckart matching condition I:
δn= 0, δε ≠ 0 (q = 1, s ≠ 2)

For this matching condition, the equation of motion for
the particle density decouples and is given by (113). The
remaining equations of motion are

_ε0 þ _δεþ 4

3τ̂
ðε0 þ δεÞ − 16ε0

45τ̂2
¼ 0; ð116aÞ
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_ε0 þ
4ε0
3τ̂

− δε ¼ 0: ð116bÞ

The first equation of motion corresponds to the con-
tinuity equation related to energy conservation (9b) while
the second equation of motion corresponds to the con-
stitutive relation (9). The latter was rewritten in terms of
time derivatives of ε0 using the equation of state and the
equation of motion for particle density. It is important to
notice that the equations of motion above do not depend
on the matching parameter s, even though the transport
coefficients themselves [cf. Eq. (C5)] do depend on s. This
happens due to a fortuitous cancellation in the last
two terms of Eq. (116b), where we used 1þ ðχðαÞ þ
χðθÞÞ=ð3χðαÞ − χðβÞÞ ¼ 4=3 and ε0=ð3χðαÞ − χðβÞÞ ¼ −1,
respectively.
The coupled ordinary first order differential equa-

tions (116a) and (116b) can be solved analytically for ε0

and δε. This task can be performed by first converting these
equations into a first order ordinary differential equation for
δ̃ε ≡ δε=ε0,

_̃δεþ δ̃ε2 þ δ̃ε −
16

45τ̂2
¼ 0; ð117Þ

which is a Ricatti differential equation [77] that can be
solved with the Ansatz δ̃ε ≡ _y=y, leading to

ÿþ _y −
16

45τ̂2
y ¼ 0; ð118Þ

whose general solution is yðτÞ ¼ τ1=2e−τ=2½aIνðτ=2Þþ
bKνðτ=2Þ�, where IνðxÞ and KνðxÞ are the modified
Bessel functions [76,78] and, in the present case,
ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

109=180
p

≈ 0.778175. Then, we have

δ̃εðτ̂Þ ¼ ð2 − 2τ̂ÞIνðτ̂2Þ þ τ̂Iνþ1ðτ̂2Þ þ τ̂Iν−1ðτ̂2Þ þ a½ð2 − 2τ̂ÞKνðτ̂2Þ − τ̂Kν−1ðτ̂2Þ − τ̂Kνþ1ðτ̂2Þ�
4τ̂½Iνðτ̂2Þ þ aKνðτ̂2Þ�

: ð119Þ

As τ̂ goes to infinity, Kνðτ̂Þ ∼
ffiffiffiffiffiffiffiffi
π=2

p
τ̂−1=2e−τ̂ and Iνðτ̂Þ ∼

ð2πÞ−1τ̂−1=2eτ̂ [78,79]. Hence, the terms of Eq. (119)
corresponding to the Iν’s dominate, and any information
about the initial condition is erased. The late time behavior
of the solution becomes

δ̃εatt ¼
ð2 − 2τ̂ÞIνðτ̂2Þ þ τ̂Iν−1ðτ̂2Þ þ τ̂Iνþ1ðτ̂2Þ

4τ̂Iνðτ̂2Þ
: ð120Þ

We note that this also corresponds to the solution of (117)
with a ¼ 0, and thus, it is referred to as an attractor
solution. On the other hand, as τ̂ approaches zero, Iνðτ̂Þ ∼
ð1=2ÞΓðνÞ−1ðτ̂=2Þν and Kνðτ̂=2Þ ∼ Γðνþ 1Þð2τ̂Þ−ν, the Kν

terms in Eqs. (119) dominate and, once more, any infor-
mation about any boundary condition is erased. Hence, the
early-time solution is also universal and becomes

δ̃εpb ¼
ð2 − 2τ̂ÞKνðτ̂2Þ − τ̂Kν−1ðτ̂2Þ − τ̂Kνþ1ðτ̂2Þ

4τ̂Kνðτ2Þ
: ð121Þ

This can be identified as the solution of (117) with a → ∞
and is referred to as a pullback attractor (see [80]). Results
for the evolution with various initial or boundary con-
ditions, compared to the corresponding attractor solutions,
can be seen in Fig. 1. There, we further normalize δε=ε0
with 1=τ.

FIG. 1. Comparison between various solutions of BDNK theory, Eq. (117), and the attractor solutions. (a) The black curves represent
solution (119) with a ¼ 1; 2; 4; 6; 8; 10; 14; 18; 22; 26; 30; 36; 42, 48, 54 and are shown in comparison with the hydrodynamic attractor
(120). (b) The black curves represent the solutions of (119) with a ¼ 1; 1=2; 1=3;…; 1=10 shown in comparison with the early time
attractor (121).
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2. Exotic Eckart matching condition II: δn ≠ 0, δε = 0
(q = 2, s ≠ 1)

For the presentmatching conditions it is convenient to use
n0 and δn as dynamical variables. The equations of motion
are obtained from Eqs. (9a) and (9b) assuming an equation
of state of a gas of massless particles, ε0 ¼ 3n0=β ¼
3eα=ðπ2β4Þ, and constitutive relations (C6). Then, we have

_n0 þ _δnþ 1

τ̂
ðn0 þ δnÞ ¼ 0; ð122aÞ

_n0 þ
n0
τ̂
−
ðs − 2Þ
ðs − 1Þ δn −

16n0
45τ̂2

¼ 0: ð122bÞ

In contrast to the previous class of matching conditions,
now the equations of motion depend explicitly on the
matching parameter s. In a direct analogy with the previous
case, we can derive an analytical solution for δ̃n ≡ δn=n0
that obeys

_̃δnþ ðs − 2Þ
ðs − 1Þ δ̃n

2 þ ðs − 2Þ
ðs − 1Þ δ̃nþ 16

45τ̂2
ðδ̃nþ 1Þ ¼ 0; ð123Þ

which is also a Ricatti differential equation. The latter can
be solved using the changes of variable δ̃n ≡ _y=ðAsyÞ and
z ≡ _yþ Asy, with As ≡ ðs − 2Þ=ðs − 1Þ, leading to the
simple differential equation for z,

_zþ 16

45τ̂2
z ¼ 0; ð124Þ

which is solved by zðτ̂Þ ¼ ae−As τ̂ þ be−As τ̂
R
τ̂
τ̂0
eAs τ̂þ 16

45τ̂dτ̂,
and thus,

δ̃n ¼ 1

As

eAs τ̂þ 16
45τ̂R

τ̂
τ̂0
eAs τ̂þ 16

45τ̂dτ̂ þ a0
− 1; ð125Þ

where the only independent integration constant a0 ¼ a=b
has been chosen. The nonanalytic behavior is evident, and
we can express the late-time attractor as

δ̃nat ¼
1

As

eAs τ̂þ 16
45τ̂R

τ̂
τ̂0
eAs τ̂þ 16

45τ̂dτ̂
− 1; ð126Þ

which corresponds to the solution with a0 ¼ 0 displayed in
Fig. 2, compared with solutions (125) for various initial
conditions, i.e., for several values of a0.

D. Matching condition influence on evolution

Now we are in position to compare the solutions of
BDNK’s and Israel-Stewart’s equations of motion and
the corresponding exact solutions from the Boltzmann
equation in Bjorken flow. Here, we also assess the effect
that matching conditions can have on such solutions. Due
to the fact that any spacelike 4-vector is identically zero in
Bjorken flow, this analysis will be limited to the parameters
q and s which define temperature and chemical
potential [cf. (17) and (18)]. In the present section, we
shall only use type I and type II exotic Eckart matching
conditions.

1. Exotic Eckart matching conditions I: δn= 0, δε ≠ 0
(q = 1, s ≠ 2)

In this subsection we plot solutions of fluid-dynamical
theories considering matching conditions in which δn ≡ 0,
but δε ≠ 0 (q ¼ 1, s ≠ 2). Unless stated otherwise,
we consider initial conditions in which the dynamical
variables are in local thermodynamic equilibrium (note
that, in BDNK theory, the shear-stress tensor is not an
independent dynamical variable and is determined by
constitutive relations). Figures 3 and 4 portray the evolution
of the (normalized) dissipative currents δε=ðε0 þ δεÞ and
3π=½4ðε0 þ δεÞ�. In Fig. 3, we employ s ¼ 3, while in
Fig. 4 we display results for s ¼ 4. The corresponding
solution obtained from the Boltzmann equation using the
method of moments [4] (see Appendix D for details)
is displayed in solid black lines, for the sake of
comparison.

FIG. 2. Comparison of hydrodynamic attractor solutions for different matching conditions, with matching parameter s ¼ 3 (a) and
s ¼ 4 (b).
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We find that at late times (τ̂ ≳ 3) all three solutions have
approximately the same evolution for the shear-stress
tensor. The difference observed among the solutions at
early times comes mostly from the fact that we imposed
equilibrium initial conditions for the solutions of Israel-
Stewart theory and the Boltzmann equation, something that
is not possible to implement for the shear-stress tensor in
BDNK theory. On the other hand, the evolution of δε is
very different in all three cases. The Israel-Stewart formal-
ism yields a negative sign for this quantity, which is in
qualitative agreement with the solution of the Boltzmann
equation for this variable. However, Israel-Stewart theory
clearly overpredicts the magnitude of this nonequilibrium
correction. As already pointed out in Ref. [17], in the Israel-
Stewart formalism, this happens due to the dominance of
the δε − π coupling coefficient [the last term in the second
equation of (114), see also Table IV], which yields a
negative contribution to δε, for s ¼ 3 or 4. In contrast, the

BDNK formalism yields a positive sign for δε, due to the
fact that it is driven by the shear term 16=ð45τ̂2Þ in
Eq. (116a). The matching condition has a significant effect
in solutions of the linearized Boltzmann equation and
Israel-Stewart theory, increasing the nonequilibrium cor-
rection as one goes from s ¼ 3 to s ¼ 4. We have already
demonstrated that, for this set of matching conditions, the
solutions of BDNK theory for the normalized nonequili-
brium energy density have no dependence on s.
We now consider solutions of Israel-Stewart, BDNK,

and the Boltzmann equation for several initial values of δε.
The remaining dynamical variables of each theory are still
set to their respective local equilibrium values. The idea is
to visualize the attractor dynamics that each formalism
displays. The results are shown in Fig. 5, where we
considered simulations with τ̂0δεðτ̂0Þ=εðτ̂0Þ ¼ 0, 0.2, and
0.4. As expected, we see that the solutions of each theory
display universal behavior at late times (τ̂ ≳ 5), indicating
the existence of late-time attractor solutions. We note that
such attractor solutions were already explicitly derived for
BDNK theory in Sec. VI C. We also note that the late time
solutions of Israel-Stewart theory and the Boltzmann
equation for δε are qualitatively similar, in particular when
it comes to the sign of the energy density nonequilibrium
correction. The quantitative agreement between these
solutions is not very good and worsens as one increases s.

TABLE IV. Couplings in units of τδε and τδε for s ¼ 3, 4 exotic
Eckart matching conditions.

s ¼ 3 s ¼ 4

λδεπ½τδε� 1=2 11=10
λδnπ ½τδn� 35=36 251=240

FIG. 3. Evolution of the nonequilibrium fraction of the energy density (right) and the normalized shear-stress tensor, π=ðε0 þ P0 þ
δεþ ΠÞ ¼ 3π=½4ðε0 þ δεÞ� (left), for the Boltzmann equation (RTA), Israel-Stewart (IS) and BDNK for type I exotic Eckart and s ¼ 3
and equilibrium initial conditions.

FIG. 4. Evolution of the nonequilibrium fraction of the energy density (left) and the normalized shear-stress tensor, π=ðε0 þ P0 þ
δεþ ΠÞ ¼ 3π=½4ðε0 þ δεÞ� (right), for the Boltzmann equation (RTA), Israel-Stewart (IS), and BDNK for type I exotic Eckart and s ¼ 4
and equilibrium initial conditions.
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The BDNK formalism, on the other hand, clearly has a
different attractor solution, which always displays a pos-
itive energy density nonequilibrium correction.

2. Exotic Eckart matching conditions II: δn ≠ 0, δε ≡ 0
(q = 2, s ≠ 1)

Now we investigate the solutions of fluid-dynamical
theories for the matching conditions where δn ≠ 0 but
δε ≡ 0 (q ¼ 2, s ≠ 1). In Figs. 6 and 7, we depict the
evolution of the dissipative currents assuming local

equilibrium initial conditions for the corresponding
dynamical variables of each framework. As it happened
in the last section, for late times (τ̂ ≳ 3) the shear-stress
tensor evolution coincides for all three formalisms.
However, for the evolution of the nonequilibrium compo-
nent of the particle number density, δn, we see that the three
formulations display rather different solutions.
In the present case, solutions of both Israel-Stewart and

BDNK theories are qualitatively similar, displaying neg-
ative values for δn. In Israel-Stewart theory, this happens

FIG. 6. Evolution of the nonequilibrium fraction of the particle density (left) and the normalized shear-stress tensor, π=ðε0 þ P0Þ ¼
3π=ð4ε0Þ (right), found by solving the RTA Boltzmann equation, Israel-Stewart (IS), and BDNK for type II exotic Eckart with s ¼ 3 and
equilibrium initial conditions.

FIG. 7. Evolution of the nonequilibrium fraction of the particle density (left) and the normalized shear-stress tensor, π=ðε0 þ P0Þ ¼
3π=ð4ε0Þ (right), found by solving the RTA Boltzmann equation, Israel-Stewart (IS), and BDNK for type II exotic Eckart with s ¼ 4 and
equilibrium initial conditions.

FIG. 5. Comparison between the time evolution (for various initial conditions) of the nonequilibrium correction for the energy density
found by solving the RTA Boltzmann equation, Israel-Stewart (IS), and BDNK using type I exotic Eckart for s ¼ 3 (left) and s ¼ 4
(right). The initial conditions are so that δεðτ̂0Þ=½ðε0 þ δεÞðτ̂0Þ� ¼ 0, 0.2, 0.4, and, when applicable, πðτ̂0Þ ¼ 0.
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because of the δn − π coupling term in the second equation
displayed in Eq. (115). In contrast to the previous matching
condition, the evolution of δn in the BDNK formalism also
yields negative values due to the dominance of the n0=τ
term in Eq. (122a). Finally, we note that solutions of the
Boltzmann equation for δn differ significantly and always
display positive values for this quantity.
We now consider solutions of Israel-Stewart, BDNK,

and the RTA Boltzmann equation for several initial values
of δn. The remaining dynamical variables of each theory
are still set to their respective local equilibrium values. As
in the previous subsection, the goal is to gain some intuition
on the attractor dynamics that each formalism may display.
The results are shown in Fig. 8, where we considered
simulations with δnðτ̂0Þ=½ðnþ δnÞðτ̂0Þ� ¼ 0, 0.2, and 0.4.
We see that the solutions of each theory display universal
behavior at late times (τ̂ ≳ 10), indicating the existence
of late-time attractor solutions. Again, we note that such
attractor solutions were already explicitly derived for
BDNK theory in Sec. VI C. For these matching conditions,
one sees that the late time solutions of Israel-Stewart theory
and BDNK theory for δn are qualitatively similar, even
though the quantitative agreement between these solutions
is not very good. Both fluid-dynamical frameworks appear
to be unable to describe the solutions for δn found in the
Boltzmann equation in the relaxation time approximation.

VII. FINAL REMARKS AND DISCUSSION

In this paper we discussed how relativistic fluid-dynami-
cal theories can be derived from the Boltzmann equation by
imposing different perturbative schemes. First, we showed
how the traditional Chapman-Enskog and Hilbert expan-
sions are used to obtain macroscopic solutions of the
Boltzmann equation for arbitrary matching conditions.
We then introduced a novel perturbative scheme to micro-
scopically derive the BDNK equations of fluid dynamics
from the Boltzmann equation, also considering arbitrary
matching conditions. The main difference between our

approach and the traditional Chapman-Enskog expansion
is to construct a perturbative scheme using moments of
the Boltzmann equation (for a given basis) instead of
the Boltzmann equation itself. With this prescription, the
compatibility conditions for the inversion of the linearized
collision operator are avoided, and one is not required to
replace timelike derivatives of the fluid-dynamical varia-
bles by spacelike ones—a feature of the traditional gradient
expansion that is not present and imposed in the BDNK
equations.
We obtained microscopic expressions for all the trans-

port coefficients of relativistic Navier-Stokes theory,
Hilbert theory, and the BDNK equations. As far as the
authors know, this is the first time such full expressions are
obtained for arbitrary matching conditions. We remark that
the transport coefficients were calculated assuming a
system composed of classical particles that only interact
through binary collisions. However, we note that our
approach can be generalized to compute the transport
coefficients in more realistic systems of phenomenological
interest, such as QCD effective kinetic theory [75]. We then
explicitly calculated these transport coefficients imposing
the relaxation time approximation for the linearized colli-
sion term and assuming that the particles are massless. This
was done using the transport coefficients calculated within
the relaxation time approximation, considering relaxation
times that are energy independent. In this setting, we were
able to obtain analytical solutions of Hilbert theory and the
BDNK equations. We further argued that there are no
attractor solutions of Hilbert theory for the normalized
nonequilibrium energy density fraction. On the hand, we
showed that the BDNK equations display attractor solu-
tions for this quantity.
We then investigated and compared the solutions of these

fluid-dynamical frameworks with exact solutions of the
Boltzmann equation for a gas of massless classical particles
undergoing Bjorken flow. One of our goals was to compare
solutions obtained with different matching conditions and
understand the effect of the latter on such rapidly expanding

FIG. 8. Comparison between time evolution of the nonequilibrium correction to the particle density found by solving the RTA
Boltzmann equation, Israel-Stewart (IS), and BDNK for type II exotic Eckart with s ¼ 3 (left) and s ¼ 4 (right) and various initial
conditions. The initial conditions are such that δnðτ̂0Þ=½ðnþ δnÞðτ̂0Þ� ¼ 0.0, 0.2, 0.4 and πðτ̂0Þ ¼ 0, when applicable.
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systems. Investigating the solutions of BDNK theory, we
found that the attractor structure is largely affected by the
matching conditions. Indeed, for matching conditions such
that δn ≡ 0 and δε ≠ 0, we found that both the late-time
(hydrodynamic) and early-time attractors can be analyti-
cally obtained. This class of matching conditions is
physically motivated by causality [35], and we have seen
that the evolution does not depend on the parameter s, and
neither do the attractors, which is a surprising feature. As
for matching conditions such that δn ≠ 0 and δε ≡ 0, there
is only a hydrodynamic attractor, and it depends on the
matching parameter s.
For the sake of completeness, we compare the evolution

and the attractor structure obtained by solving the BDNK
equations of motion with those found by solving Israel-
Stewart theory under general matching conditions and also
the full moment equations of the RTA Boltzmann equation.
The dynamics of the latter two equations of motion is also
affected by matching conditions, with the 19-moments
truncation explicitly depending on the parameter s and the
slight change of variables of the moment equations in the
RTA. At sufficiently late times, we found that the shear
tensor [which in Bjorken flow is reduced to only one
independent function πðτÞ] evolves similarly in BDNK,
Israel-Stewart, and the RTA moment equations. In contrast,
the time evolution profiles displayed by δε and δn are very
different among the three formulations.
The attractors are also quite different in the three

approaches. This is in contrast to other results obtained
using Landau matching conditions [43,52,81–84],
where the attractors of the hydrodynamic theory match
the one from kinetic theory. This suggests that the
truncation method employed in the alternative matching
conditions for the IS formalism has to be improved
beyond the moments approximation implemented
in Ref. [17]. Moreover, the attractor mismatch may
evidence that other implementations of the alternative
matching conditions may be more adequate to perform the
analysis.
In future works, it would be relevant to analyze

the effects from assuming momentum-dependent relaxa-
tion times into account. Furthermore, an obvious next
step is the calculation of BDNK transport coefficients for
massive particles and also other type of interactions.
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APPENDIX A: MOMENTS METHOD AND
ISRAEL-STEWART THEORY UNDER GENERAL

MATCHING CONDITIONS

In this appendix we summarize the truncation procedure
to obtain Israel-Stewart [12,22] equations of motion
under general matching conditions used in Sec. VI B
and proposed in Ref. [17]. In the Israel-Stewart formalism,
nonequilibrium dissipative currents are considered as
fields with independent dynamics. Thus, for general
matching conditions, none of the hydrodynamic fields
ðn0; δn; ε0; δε;Π; uμ; νμ; hμ; πμνÞ are zero and 19 equations
of motion are required to have a closed system in terms of
these variables. Five equations are given by the conserva-
tion laws (9). The remaining equations of motion are
obtained by truncating the exact equations for the irreduc-
ible moments (C2) of the Boltzmann equation, which can
be seen in Refs. [17,31].
To truncate this infinite system of partial differential

equations, in Ref. [17] we followed a generalization of the
ideas put forward by Grad [10,11] in the nonrelativistic
case, and later on by Israel and Stewart [22] under general
matching conditions. Then, we consider the expansion of
the deviation function ϕp ¼ ðfp − f0pÞ=f0p in an irreduc-
ible and orthogonal basis. This expansion is truncated by
consistently constraining the deviation function with the
definitions of the hydrodynamic fields (12) and the match-
ing conditions (17) and (18). Effectively, this implies
that all nonhydrodynamic moments ρμ1���μlr vanish for
l ≥ 3 and that the moments coefficients ρr, ρ

μ
r and ρμνr

are linear combinations of the hydrodynamic fields
ðδn; δε;Π; νμ; hμ; πμνÞ. This leads to a closed system of
coupled relaxation equations for the dissipative currents
that depend on the parameters q, s, and z. These equations
greatly simplify in the massless limit and in the case of
Bjorken flow.

1. Bjorken flow

For Bjorken flow, in the massless limit, and using exotic
Eckart matching conditions such that δn ≡ 0 and ρs ≡ 0, the
equations of motion, which include the conservation laws
and the relaxation equations, can be cast in the form,

0
B@

_ε0
_δε

_π

1
CAþ

0
BBB@

4
3τ − 1

τδε
−1

τ ðλδεπτδε
þ1Þ

0 4
3τþ 1

τδε
1
τ
λδεπ
τδε

− 16
45τ − 16

45τ
38
21τþ 1

τπ

1
CCCA
0
B@
ε0

δε

π

1
CA¼

0
B@
0

0

0

1
CA;

ðA1Þ

where τδε and τπ denote the relaxation times associated with
δε and πμν, respectively. For a constant relaxation time,
τδε ¼ τπ ¼ τR. We also have the matching-dependent
coupling constant λδεπ , which is expressed as
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λδεπ
τδε

¼ Γðsþ 4Þ
20Γðsþ 2Þ − 1; ðA2Þ

whereas for exotic Eckart matching conditions such that
δε ≡ 0 and ρs ≡ 0, the equations of motion are

0
BBBBB@

_n0
_δn

_ε0

_π

1
CCCCCA

þ

0
BBBBB@

1
τ − 1

τδn
0 − λδnπ

τ

0 1
τ þ 1

τδn
0 λδnπ

τ

0 0 4
3τ − 1

τ

0 0 − 16
45τ

38
21τþ 1

τπ

1
CCCCCA

0
BBB@

n0
δn

ε0

π

1
CCCA¼

0
BBB@

0

0

0

0

1
CCCA;

ðA3Þ

where we have the relaxation time τδn related to the
dissipative current δn. For a constant relaxation time
τδn ¼ τR. We also have the matching-dependent coupling,

λδnπ
τδn

¼ s − 1

ðs − 2ÞΓðsþ 2Þ
�
Γðsþ 4Þ

60
−
1

3

�
: ðA4Þ

In this particular background, the dynamics of n0 þ δn
and ε0 þ δε are matching invariant. Indeed, summing the
two first rows of Eqs. (114) and (115), the result does not
depend on the matching-dependent coefficients τδn, τδε,
λδnπ , and λδεπ. Values for the couplings can be seen in
Table IV for the values of s used in the main text.

APPENDIX B: BASIS WITH ZERO MODES

In this appendix, we show the procedure that can be
performed in order to compute transport coefficients in the
Chapman-Enskog expansion in a basis that contains zero
modes. We note that the methods outlined here can be
extended to the modified expansion used to derive BDNK

hydrodynamics. To this end, we use the basis,

PðlÞ
n ¼ En

p; n ¼ 0; 1;…: ðB1Þ

Once again, since the linearized collision term L̂ is a linear
operator, the particular solution ϕpart

p must have the general
form (42),

ϕpart
p ¼ Spθ þ Vpphμi∇μαþ T pphμpνiσμν: ðB2Þ

The next step is to replace the particular solution Eq. (42)
into Eq. (35), and then we obtain again Eq. (43), which is a
coupled integral equation for S, V, and T . We proceed by
multiplying this equation by Er

p, Er
pphμi and Er

pphμpνi and
integrating in over momentum. Then, after expanding Sp,
Vp, and T p as polynomials in Ep such that

Sp ¼
X
n≥0

snEn
p; Vp ¼

X
n≥0

vnEn
p; T p ¼

X
n≥0

tnEn
p;

ðB3Þ

we have the following systems of equations, which are
analogous to Eqs. (45):

X
n

S0rnsn ¼ A0
r; ðB4aÞ

X
n

V0
rnvn ¼ B0

r; ðB4bÞ

X
n

T 0
rntn ¼ C0

r; ðB4cÞ

where

S0rn ≡
Z

dPEr
pL̂½En

p�f0p; A0
r ¼

Z
dPEr

p

�
Ap −

β

3
Δλσpλpσ

�
f0p;

V 0
rn ≡

Z
dPEr

pphμiL̂½En
pphμi�f0p; B0

r ¼
Z

dPðΔμνpμpνÞEr
p

�
1 −

n0Ep

ε0 þ P0

�
f0p;

T 0
rn ≡

Z
dPEr

pphμpνiL̂½En
pphμpνi�f0p; C0

r ¼ −β
Z

dPðΔμνpμpνÞ2Er
pf0p: ðB5Þ

Equations (B4c) can be schematically inverted as

tn ¼
X
m

½T 0−1�nmC0
m: ðB6Þ

As for Eqs. (B4a) and (B4b), the inversion process is not so simple due to the presence of zero modes. In fact, these systems
of equations have the matrix forms,
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CCCCCA
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B2

..

.

1
CCCCCA
; ðB7Þ

where the vanishing of the first (the first and the second)
line(s) of the matrix V (S) stems from the self-adjoint
property (36). Additionally, A0 ¼ A1 ¼ B0 ¼ 0 due to
property (39).
Hence, to solve the related linear equations, it is

necessary to remove linear sub-spaces corresponding to
the zero-modes. Then, denoting the submatrices of S0 and
V 0 as Ŝ and V̂, respectively, we have as a result of the
schematic inversion,

vn ¼
X
m≥1

½V̂−1�nmBm; n ¼ 1; 2;…;

sn ¼
X
m≥2

½Ŝ−1�nmAm; n ¼ 2; 3;…: ðB8Þ

The coefficients related to the zero modes, s0, s1, and v0
cannot be obtained. Nevertheless, this is not a problem

since they can be incorporated into the homogeneous
solution by a redefinition of the a and bμ coefficients in
ϕhom
p . They are then obtained from the matching conditions

(17) and (18), which when substituted in Eq. (40) lead to
the conditions,

Iq;0aþ Iqþ1;0bμuμ ¼ −hEq
pSpiθ;

Is;0aþ Isþ1;0bμuμ ¼ −hEs
pSpiθ;

Izþ2;1bhμi ¼
1

3
hðΔμνpμpνÞEz

pVpi0∇μα; ðB9Þ

where it was used that pμ ¼ Epuμ þ phμi. These are solved
with

a ¼ Iqþ1;0hEs
pSpi0 − hEq

pSpi0Isþ1;0

Gsþ1;q
θ;

bμuμ ¼
hEq

pSpi0Is;0 − Iq;0hEs
pSpi0

Gsþ1;q
θ;

bhμi ¼
1

3

hðΔμνpμpνÞEz
pVpi0

Izþ2;1
∇μα: ðB10Þ

Finally, we have as the solution for the first order Chapman-
Enskog deviation function,

ϕp ¼ S̃pθ þ Ṽpphμi∇μαþ T pphμpνiσμν; ðB11Þ

with

S̃p ¼
X
n≥2

X
m≥2

½Ŝ−1�nmAm

�
En
p þ

Iqþ1;0Isþn;0 − Iqþn;0Is;0
Gsþ1;q

þ Iqþn;0Is;0 − Iq;0Isþn;0

Gsþ1;q
Ep

�
;

Ṽp ¼
X
n≥1

X
m≥1

½V̂−1�nmBm

�
En
p −

Izþnþ2;1

Izþ2;1

�
;

T p ¼
X
n≥0

X
m≥0

½T−1�nmCmEn
p: ðB12Þ

From this solution, constitutive relations for the nonequilibrium corrections can be obtained. Indeed, definitions (12) yield

Π ¼ −ζθ; δn ¼ −ξθ; δε ¼ χθ;

νμ ¼ κ∇μα; hμ ¼ −λ∇μα;

πμν ¼ 2ησμν; ðB13Þ

with transport coefficients given by
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ζ ¼
X
n≥2

X
m≥2

½Ŝ−1�nmAmH
ðζÞ
n ; ξ ¼

X
n≥2

X
m≥2

½Ŝ−1�nmAmH
ðξÞ
n ; χ ¼ −

X
n≥2

X
m≥2

½Ŝ−1�nmAmH
ðχÞ
n ;

κ ¼
X
n≥1

X
m≥1

½V̂−1�nmBmJ
ðκÞ
n ; λ ¼

X
n≥1

X
m≥1

½V̂−1�nmBmJ
ðλÞ
n ;

η ¼
X
n≥0

X
m≥0

½T−1�nmCmInþ4;2; ðB14Þ

where

HðζÞ
n ¼ Inþ2;1 − Iqþn;0

I2;1Isþ1;0 − Is;0I3;1
Gsþ1;q

þ Isþn;0
I2;1Iqþ1;0 − Iq;0I3;1

Gsþ1;q
;

HðξÞ
n ¼ Inþ1;0 − Iqþn;0

Gsþ1;1

Gsþ1;q
þ Isþn;0

Gqþ1;1

Gsþ1;q
;

HðχÞ
n ¼ −Inþ2;0 þ Iqþn;0

Gsþ1;2

Gsþ1;q
− Isþn;0

Gqþ1;2

Gsþ1;q
;

JðκÞn ¼ −Inþ2;1 þ
I2;1
Izþ2;1

Izþnþ2;1;

JðλÞn ¼ Inþ3;1 −
I3;1
Izþ2;1

Izþnþ2;1; ðB15Þ

where the conclusions of the end of Sec. IVA are also valid
here. The inversion procedure described here also has
consequences for the perturbative procedure outlined in
Sec. IV C. In that case, the zero modes must be explicitly
excluded from the expansion of the functions Sðα;β;θÞ,
Vðα;βÞ, and T .

APPENDIX C: CHOICE OF BASIS FOR THE
COMPUTATION OF TRANSPORT

COEFFICIENTS

In this appendix we show the reason for the specific
choice of the parameters ml and nl which define the bases
used to compute the transport coefficients in Tables I and II.
To this end, we digress to the exact derivation of transport
coefficients using the basis constructed using powers of
energy. In the particular case of RTA, Eq. (98), we employ

the basis so that Pð0Þ
n ¼ Enþ2

p , Pð1Þ
0 ¼ E−1

p , Pð1Þ
1 ¼ Ep,

Pð1Þ
2 ¼ E−1

p ;…, and Pð2Þ
n ¼ En−1

p so we have

DαIrþ1;0 −DβIrþ2;0 þ βIrþ2;1θ

¼ −
1

τR

�
ρrþ1 þ

Γðrþ 3Þ
βrΓð3Þ

�
ðr − 1Þδn − β

r
3
δε

��
;

r ¼ 2; 3; 4;…; ðC1aÞ

−∇μαIrþ2;1 þ ð∇μβ þ βDuμÞIrþ3;1

¼ −
1

τR

�
ραrþ1 −

1

βr
Γðrþ 5Þ
Γð5Þ hα

�
; r ¼ 1; 2; 3;…;

ðC1bÞ

−2βIrþ4;2σ
αβ ¼ −

1

τR
ραβrþ1; r ¼ 0; 1; 2;…; ðC1cÞ

where we defined the irreducible moments,

ρμ1���μlr ¼
Z

dPEr
pphμ1 � � �pμliϕpf0p: ðC2Þ

The hydrodynamic fields correspond to particular instances
of these general moments such that δn ¼ ρ1, δε ¼ ρ2,
νμ ¼ ρμ0, h

μ ¼ ρμ1, and πμν ¼ ρμν0 . The particular case of a
constant relaxation time allows us to express the collision
integrals solely in terms of a few integer moments. Thus, to
obtain the constitutive relations, one can simply use the
appropriate value of r in Eqs. (C1) and use the information
contained in the matching conditions. In terms of the
irreducible moments (C2), the matching conditions of
the type (18) are

ρq ¼ ρs ¼ 0; q ≠ s; ðC3aÞ

ρμz ¼ 0: ðC3bÞ

We start with the coefficients related to scalar hydro-
dynamic fields. In this case we use type I exotic Eckart,
q ¼ 1, s ≠ 2, to obtain the transport coefficients, we take
r ¼ s − 1 in Eq. (C1a), then we have

δε ¼ χðαÞDα − χðβÞ
�
Dβ

β
−
1

3
θ

�
; ðC4Þ

with
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χðαÞ ¼ τR
ðs − 1Þ ε0;

χðβÞ ¼ ðsþ 2ÞτR
ðs − 1Þ ε0; ðC5Þ

which is consistent with the results of Table I. Otherwise, if
we use type II exotic Eckart matching conditions, we have
q ¼ 2, s ≠ 1. Again, we take r ¼ s − 1 in Eq. (C1a) to
obtain

δn ¼ ξðαÞDα − ξðβÞ
�
Dβ

β
−
1

3
θ

�
; ðC6Þ

with

ξðαÞ ¼ −τR
n0

ðs − 2Þ ;

ξðβÞ ¼ −τR
n0ðsþ 2Þ
ðs − 2Þ ; ðC7Þ

which is consistent with the results of Table II. Now it is
possible to explain the behavior seen in Tables I and II: we
obtain the exact values from the matrix inversion procedure
because the power which was used in Eq. (C1a) to obtain
the transport coefficients, Es−1

p , can be exactly expanded as
the finite sum of basis elements. For instance, for s ¼ 3 we
have chosen the basis (103) with n0 ¼ −1 m0 ¼ 1, and in
this case,

x2 ¼ 1
x2

1þ x
þ 1

x3

1þ x
þ 0

x4

1þ x
;

x2 ¼ 1
x2

ð1þ xÞ3 þ 3
x3

ð1þ xÞ3 þ 3
x4

ð1þ xÞ3 þ 1
x5

ð1þ xÞ3 ;

ðC8Þ

for the second and fourth order truncation orders,
respectively.
Similarly, for the vector dissipative currents constitutive

relations, the transport coefficients depend explicitly on the
parameter z used to define the velocity 4-vector uμ. Indeed,
if we use Eckart matching conditions, νμ ¼ 0 (z ¼ 0), then,
we choose r ¼ −1 in Eq. (C1b), and we readily obtain the
constitutive relation for the energy diffusion vector,

hμ ¼ λðαÞ∇μα − λðβÞ
�
1

β
∇μβ þDuμ

�
; ðC9Þ

with

λðαÞ ¼ 4

9
τRε0; λðβÞ ¼ 4

3
τRε0: ðC10Þ

In the case where Landau matching conditions are used,
hμ ¼ 0 (z ¼ 1), then we choose again r ¼ −1 in Eq. (C1b),
and we readily obtain the constitutive relation for the
particle diffusion vector,

νμ ¼ κðαÞ∇μα − κðβÞ
�
1

β
∇μβ þDuμ

�
; ðC11Þ

where

κðαÞ ¼ n0
3
τR; κðβÞ ¼ n0τR: ðC12Þ

Once again, the power of Ep which was used to obtain the
transport coefficients from Eq. (C1b), E−1

p can be exactly
expanded as the finite sum of basis elements. Indeed,

1

x
¼ 1

1

xð1þ xÞ þ 1
1

1þ x
þ 0

x
1þ x

;

1

x
¼ 1

1

xð1þ xÞ3 þ 3
1

xð1þ xÞ3 þ 3
x

xð1þ xÞ3 þ 1
x2

xð1þ xÞ3 ;

ðC13Þ

for the second and fourth order truncation orders,
respectively.
The constitutive relations for the rank-two tensors can be

readily obtained, as they do not depend on matching
conditions and the RTA collision term is diagonal. In this
case, to obtain the constitutive relation for the shear-stress
tensor, we integrate Eq. (98) with E−1

p phμpνi. Then, we
have the familiar constitutive relation,

πμν ¼ 2ησμν; ðC14Þ

with

η ¼ βτRI2;2; ðC15Þ

which coincides with the expression for the shear viscosity
within the Chapman-Enskog expansion in RTA [53] and is
also consistent with the results of Table I.

APPENDIX D: BOLTZMANN’S MOMENT
EQUATIONS OF MOTION IN BJORKEN FLOW

In this appendix we discuss the set of moment equations
of the Boltzmann equation within the relaxation time
approximation (98) in Bjorken flow [4,48]. In curved
spacetime, the on-shell Boltzmann equation is expressed
as [85–87]

pμ
∂μfp þ Γα

μipαpμ
∂fp
∂pi

¼ C½fp�: ðD1Þ
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In Bjorken flow, the only nonvanishing components of the
Christoffel symbols are Γτ

ηη ¼ τΓη
τη ¼ 1=τ; hence,

pτ
∂τfp ¼ C½fp�: ðD2Þ

The Boltzmann equation can be reexpressed in terms of
an infinite set of coupled differential equations for the
irreducible moments of fp. The underlying symmetries of
Bjorken background imply that fp ¼ fðτ; pη; pτÞ and also
that it is possible to expand f in terms of Legendre
polynomials and powers of pτ. This motivates the use of
the moments,

ρn;m ¼
Z

dPðpτÞnþ1P2mðcosΘÞfp; ðD3Þ

to describe the dynamics. In the equation above,
P2mðcosΘÞ denotes the Legendre polynomial [76] in the
variable cosΘ ≡ pη=ðpττÞ. We further notice that parity
symmetry implies that moments constructed from
PnðcosΘÞ with odd n are zero. If the distribution is that
of particles in local equilibrium (13), then the moments
reduce to

ρð0Þn;m ¼
Z

dP ðpτÞnþ1P2mðcosΘÞf0p ¼ eα
Γðnþ 3Þ
2π2βnþ3

δm;0:

ðD4Þ

The relevant hydrodynamic variables can be expressed in
terms of the moments in Eqs. (D3) and (D4),

n0 ¼ ρð0Þ0;0 δn ¼ ρ0;0 − ρð0Þ0;0;

ε0 ¼ ρð0Þ1;0 δε ¼ ρ1;0 − ρð0Þ1;0;

π ¼ −
2

3
ρ1;1; ðD5Þ

where the latter identification can be performed from the
fact that π ≡ πηη can be written as

π ¼
Z

dP ðpτÞ2
��

pη

τpτ

�
2

−
1

3

�
fp: ðD6Þ

Thematching conditions (17) and (18) are expressed as [88]

ρq−1;0 ≡ ρð0Þq−1;0;

ρs−1;0 ≡ ρð0Þs−1;0: ðD7Þ

Then, after some algebraic steps, one obtains that the
equations of motion for the moments of (D3) in RTA for
constant relaxation time, γ ¼ 0, are

_ρn;mþ ρn;m
τ̂

þ 2mð2m− 1Þðnþ 2mþ 1Þ
16m2− 1

ρn;m−1

τ̂
þ 2mð2mþ 1Þþ ð8m2þ 4m− 1Þn

ð4m− 1Þð4mþ 3Þ
ρn;m
τ̂

þðn− 2mÞð2mþ 1Þð2mþ 2Þ
ð4mþ 1Þð4mþ 3Þ

ρn;mþ1

τ̂

¼−ðρn;m− ρð0Þn;mÞþΓðnþ 3Þ
Γð3Þβn ð1−nÞδnδm;0þ βn

Γðnþ 3Þ
βnΓð4Þ δεδm;0; n¼ 0;1;…; m¼ 0;1;…; ðD8Þ

where δn;m denotes the Kronecker delta. The equations
above form an infinite system of first-order coupled differ-
ential equations. The symmetry assumptions lead to the fact
that moments with different values of n decouple, and only
trios of consecutive moments couple for the Legendre
index m. For computation purposes this tower is truncated

at some high moment m ¼ Mtrun. In the computations of
the main text we chose Mtrun ¼ 25 (we checked that our
results are robust with respect to variations of this quantity).
It should also be noticed that the counterterms which are
characteristic of the novel RTA formulation only have an
effect for scalar (m ¼ 0) moments.
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