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We derive multicomponent relativistic second-order dissipative fluid dynamics from the Boltzmann
equations for a reactive mixture of N particle species with N, intrinsic quantum numbers (e.g., electric
charge, baryon number, and strangeness) using the method of moments. We obtain the continuity equations
for multiple conserved charges as well as the conservation equations for the total energy and momentum in
the single-fluid approximation. These 4 + N, conservation laws are closed by deriving the second-order
equations of motion for the dissipative quantities in the (10 4- 4N, )-moment approximation. The resulting
fluid-dynamical equations are formally similar to those of a single-component system, but feature different
thermodynamic relations and transport coefficients. We derive general relations for all transport coefficients

and compute them explicitly in the ultrarelativistic limit.
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I. INTRODUCTION

Determining properties of strong-interaction matter from
experimental data measured in high-energy heavy-ion
experiments at BNL-RHIC and CERN-LHC is largely
based on relativistic fluid-dynamical modeling, see, e.g.,
Refs. [1-5]. Consequently, relativistic fluid dynamics has
become an indispensable tool in the description of the
dynamical evolution of relativistic nuclear collisions.

The state of the art of fluid-dynamical modeling of
relativistic nuclear matter is based on the relativistic
second-order dissipative fluid-dynamical theory of Israel
and Stewart [6]. This theory and method is based on the
pioneering works of Grad [7] and Miiller [8] and was
originally formulated for a simple fluid, i.e., a fluid with a
single conserved charge. On the other hand, one of the
basic features of the fluid created in high-energy nuclear
collisions is its multicomponent nature. For example,
hadronic matter produced in nuclear collisions consists
of a multitude of different types of hadrons, where each
hadron species carries multiple intrinsic quantum numbers
like baryon number B, electric charge O, and strangeness S.
Therefore, a multicomponent extension of relativistic fluid-
dynamical theories that explicitly accounts for multiple
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conserved charges is required for a proper description of
heavy-ion collisions.

Previous attempts to derive second-order fluid-dynamical
equations of motion for relativistic multicomponent mix-
tures include the pioneering work by Prakash et al. [9], which
is an extension of Israel-Stewart theory to multicomponent
mixtures, and the works by Monnai and Hirano [10,11],
which generalize the equations of Ref. [9] by including
additional second-order terms as well as providing Onsager’s
reciprocity relations [12,13] for the transport coefficients.
More recent developments by Kikuchi et al. [14] apply the
renormalization-group method to rederive the second-order
equations of motion including additional second-order terms
in the dissipative quantities resulting from the nonlinear part
of the collision integral.

Furthermore it has been shown in Refs. [15-18] that
many features of multicomponent systems depend on the
detailed coupling between the diffusion currents associated
with different conserved charges. In addition, the mapping
between the state of the fluid and the corresponding
momentum distribution of particles plays an important
role [19,20].

In this work, we present a derivation of multicomponent
relativistic second-order dissipative fluid dynamics for a
reactive mixture of N species with N, conserved quantum
numbers by generalizing the method of moments established

© 2022 American Physical Society
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for single-component systems by Denicol et al. [21].
By summing the dynamical equations of motion describing
the individual particle species we obtain a reduced set of
equations corresponding to the so-called “single-fluid”
description of a multicomponent fluid. We derive the con-
tinuity equations for each conserved quantum charge as well
as the conservation laws for total energy and momentum in
this single-fluid approximation. These 4 + N, equations of
motion are closed by providing second-order equations
of motion in the (10 + 4N,)-moment approximation for
the dissipative quantities. The latter equations are formally
similar to the relaxation equations of a single-component
system but feature different transport coefficients, which
contain the microscopic interactions of all components.
Our approach reproduces the results of Ref. [21] for a
single-component fluid in the 14-moment approximation,
ie., for Npee = N, = 1.

This paper is organized as follows. In Sec. II, we
introduce the Boltzmann equation, thermodynamic quan-
tities in local equilibrium, as well as fluid-dynamical
quantities, both in and out of equilibrium. The definition
of the local rest frame, the matching conditions, and
the conservation equations are also given. In Sec. III we
derive the equations of motion for the irreducible
moments from the Boltzmann equation, linearize the
collision term, and discuss the Navier-Stokes limit and
the order-of-magnitude approximation. Finally, the sec-
ond-order dissipative fluid-dynamical equations of motion
in the (104 4N,)-moment approximation are derived
and discussed. We conclude this work with a summary in
the final section. Details of the calculations are delegated
to several appendixes. They also contain explicit expres-
sions for all second-order transport coefficients, as well
as an explicit calculation of the transport coefficients in
the ultrarelativistic limit.

Throughout this paper we adopt natural units, A = ¢ =
kg = 1, and work in flat Minkowski space-time with metric
tensor g, = diag(1,—1,—1,—1). The timelike fluid four-
velocity is denoted by u* = y(1,v)”, with normalization
w'u, = 1, where vis the three-velocity and y = (1 — v?)~1/2,
In the local rest (LR) frame of the fluid, ufy = (1,0)7. The
rank-two projection operator onto the three-space orthogonal
to u* is defined as A* = ¢* — u*u”. We define the projec-
tion of any four-vector A* onto the three-dimensional sub-
space orthogonal to u# as A%) = Al A. The generalization to
projection tensors of rank 2#, denoted by A}, is con-
structed using the elementary projection operator A}. The
irreducible symmetric, traceless, and orthogonal projec-
tion of a rank-Z tensor A¥"# is denoted as A% ) =
AN Aveve For example, the rank-four symmetric, trace-
less, and orthogonal projection operator is defined as
ALY =5 (AGAY + ALAL) — LA™ A g, hence AW) = ALZAP,

The four-momentum of a particle of species i is
denoted by K = (k%,k;)T, which is normalized to the

corresponding species rest mass squared, ki, = m?. The
energy of a particle of species i is defined as E; = k/ Uy,

and coincides with the on-shell energy k¥ = \/k? + m? in
the LR frame of the fluid. The orthogonal projection of the

four-momentum is k§” ) = APKY, and in the LR frame it
reduces to the three-momentum k;.

The comoving derivative D = u/‘aﬂ of any four-vector
A¥ = (A", A)T is denoted by A* = u*d,A* = DA*, while the
space-time four-gradientis V, A* = A%),A*. Note that in the
LR frame these relativistic space-time derivatives reduce to
the usual time and three-space derivatives, d,A* and V ® A.
Thus, the four-derivative is decomposed as 9, = u,D +V,
hence the relativistic Cauchy-Stokes decomposition reads
Oty = uyit, +Vu, = u,it, —l—%HA/“, +0,,+w,,. Here we
have defined the expansion scalar, 6 = V” ut, the shear
tensor o = VWy¥) =1 (Vru* + VPur) —1OA™, and the
vorticity @ =1 (V*u* — V*u*), such that " u,, = 0" u, =O0.

Moreover, we label the conserved charge types in the
system with the letter ¢, which will be treated as an index
running over B (baryon number), Q (electric charge), and S
(strangeness) for the case a strong-interaction system. For
notational convenience, we employ the following notation
for the sums over charge types:

{B.Q.5}

Y=Y

q=B,0.§

II. REACTIVE MIXTURES IN KINETIC THEORY
AND FLUID DYNAMICS

In this section we first introduce the Boltzmann equation
for a reactive mixture with special emphasis on the collision
term. Before we discuss fluid-dynamical quantities in local
equilibrium and out of equilibrium, we study thermody-
namic quantities in local equilibrium. This is followed by
a discussion of the matching conditions and the choices
for the local rest frame. Finally, we list the conservation
equations of second-order dissipative fluid dynamics for a
multicomponent fluid.

A. The Boltzmann equation for a reactive mixture

A mixture of N, different (elementary) particle species
(i.e., different chemical components) is characterized by
the single-particle distribution functions for each particle
species i, f(x,k;) = f;x, where we label the particle
species by a lower index i. The space-time evolution of
the distribution function of species i is determined by the
relativistic Boltzmann equation [22,23],

Nspec

Ko, fix = Ci(x, k;) :Zcij[f]’ (1)

Jj=1
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where we neglect any external forces and assume binary
collisions only for the sake of simplicity. For binary
inelastic, i.e., reactive collisions, the initial and final
particles species may be different, i + j - a + b, such
that the collision term reads

spec
! kk' 7 7
/ dKdP AP, (Wi " fapfop finSjx
ab 1

- Wﬁka—;ﬁp ft,kfj,k’}a,p}b,p’)v (2)

where fi = 1—a;f;x/g,» with a; = £1 for fermions/
bosons, and a; — 0 for classical particles, respectively.
Here, g; is the spin degeneracy of particle species i, while
the Lorentz-invariant integration measure is dK; = d’k;/
[(27)3KY]. Here, the factor 1/2 corrects for the double
counting when integrating over the momenta of particles in
the initial and final states [22].

The transition probabilities respect certain symmetry
properties under exchange of particles in the initial and

k' Kk p/
final states, WK ~PP — wXk=r'p

ijsab jimba > as well as the bilateral
normalization property of the microscopic processes [22],

spec
kk' —>pp’ (3)

ab—ij t]—>ab .

spec
/ dP,dP,WPP 7 — / dP,dP, W
a,b=1 a,b=1

In the absence of a reaction threshold, this relation is
pr ' s kk'

%
invariant under time reversal, W< 77 ab—ij

ij—ab
microscopic reversibility or detailed balance. In the case of
a binary process the transition probability is [24,25]

ie.,

(27)*

kik'—pp’
Wij—)aip = 16 |Mij—>ab(\/gv Q)|2
WK + K = pa = py), (4)

where [ M, (v/s. Q)]* is the Lorentz-invariant transition
probability averaged over incoming and summed over out-
going spin states. It only depends on the total center-

of-momentum (CM) energy squared, s = (K} + k/)* =
(ph + p!')?, and the solid angle © under which outgoing
particles are scattered with respect to the direction of the
incoming particles, while the &*-function ensures the

conservation of energy and momentum in each binary
collision. The differential cross section in the CM frame,

where k; + Kk =p, +pj, =0and k¥ + k’o—pa—l—p’o—\/—
is defined via the invariant transition probability as

1
647s

Pa
daij—mb(\/g’ Q) = p__l_?|Mij—>ab(\/§7 Q)|2d'Q" (5)
ij

where the incoming p;; and outgoing p,, momenta in the
CM frame are

pij = 2\/—\/ (m; 4+ m;)?)(s — (m; —m;)?). (6)
We note that in the elastic limit p;; = p,;,. We define the total
(integrated over angles) cross section as

! dgi 'ﬁab(\/‘;’ Q)
Oot,ij—ab = 27Y ab /1 d COS&]d—Q. (7)

Here, the symmetry factor y,, =1 —6,,/2 accounts for
the double counting when integrating over the momenta of
indistinguishable particles in the final state. In the case of
isotropic scattering the differential cross section is

d6j~a (V/5) isoropic Grotijab (V/5)
a0 drre

(8)

In the elastic limit the transition rates in Eq. (2) are defined
as [22]

W{(Jk;—;zp =7ij (5105jb + 51b5 )Wkk —pr' , (9)
where
wWopy  (2m)*
Wiy " =g M (Vs Q)RS (K k' = plf = pf).

(10)

Note that in the above expression, we have already intro-
duced the symmetry factor, even though we have not yet
integrated over the momentum. For later convenience, we
can use Egs. (5) and (8) to rewrite Eq. (9) in the case of
isotropic elastic scattering in terms of the total cross section
defined in Eq. (7),

Wi{,k_;;ip (51116][9 + 5lb5 )(2”) Z);;j
WK+ K1 = pi = p). (11)

B. Local equilibrium and associated
thermodynamic quantities

In general the single-particle distribution function f;
for every species i can be decomposed into an equilibrium

part, fl(ok) , and an out-of-equilibrium part, 6f’ ., as

Fix = F0+ 6fixs (12)

where the local-equilibrium distribution function of species
i is given by the Jiittner distribution function [26],

E.\. —u. -1
=g [CXP <%> + ai] : (13)
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Due to detailed balance, the collision integral vanishes
identically for the local-equilibrium distribution function
[22]. Here, T=1/p is the temperature and u; is the
chemical potential of species i as defined in the local rest
frame. The exact form of the nonequilibrium part of the
distribution function of; will be clarified later.

In various cases of interest such as in high-energy
particle physics or relativistic heavy-ion collisions there
are inelastic collisions where the particle number corre-
sponding to a given species is not conserved due to particle
creation and annihilation processes (i.e., various chemical
reactions). Such strong-interaction matter is therefore des-
cribed by a few conserved intrinsic quantum numbers, such
as electric charge, baryon number, and strangeness.

This means that in local equilibrium the chemical
potential y; of a given particle i may be expressed in terms
of N, chemical potentials of conserved quantum “charges,”

{B.0.5}

Z qitty =

where {y,} = {pup. g, ps}, with pp, pp, and pg being the
baryon, electric, and strangeness chemical potentials,
respectively, while B;, Q;, and S; are the baryon number,
electric charge, and strangeness of the respective particle
species 1.

Now, we introduce the ratio of chemical potential over
temperature corresponding to particle species i as a; = p; /T,
as well as the ratio of chemical potential over temperature for
the conserved quantum charges, @, = u,/T. Applying the
chain rule, we obtain from Eq. (14)

Hi({Hg}) Biug + Qipg + Sips,  (14)

B.0.S {B.0.S}

Z g;da,,
q

where the intrinsic quantum number of particle species i
can also be obtained as ¢; = da;({a, })/0da,. Note that the
infinitesimal change in any variable A, here denoted by dA,
can be interchangeably used for the comoving derivative,
DA, as well as the space-time four-gradient, V#A.

In local thermodynamic equilibrium, we define the
following rank-n tensor moments of given power r > 0
in energy E}) for any given particle species i as

ai({ag}) =

q

Iﬁlrﬂ” = /dKlElr’kkllll . kl‘nfl((iz <E£kﬂ] e k”n>i‘0’

(16)

where the angular brackets are the abbreviation of the
integrals,

(Yo = / aK(-)f Y. (17)

Following Ref. [6], we expand the equilibrium moments
(16) in terms of the flow velocity and the associated
orthogonal projection operator, which leads to the follow-
ing expression:

[n/2]

n!
Z":tl"'ﬂn — _1 m
Lr mZ:O( ) 2"m!(n —2m)!
x AWiH2 Lo AFam-tHom yHome "'u#n)1i$r+n,m’ (18)

where n and m are natural numbers, while [n/2] < n/2
denotes the largest integer divisible by two. The coefficient
n!/[2"m!(n —2m)!] counts the number of distinct terms
in the symmetrized tensor products A1#2 ... Aton-ikan x
ubst . y#n) | The coefficients [ i.r+n.m are thermodynamic
integrals which only depend on «; and f3,

="

Ii.nm(ai’ﬁ) = (2m + 1)

<E" 2’"(A JRIER)™) o (19)
where (2m + 1)!! = (2m + 1)!/(2™m!) is the double fac-
torial of an odd integer.

The total derivative of the thermodynamic integrals with
respect to the variables a; and S reads

ol; ol;
al; = i,nm da; + ( an> dap
( a0’[ >ﬂ aﬂ a;

= Ji,nmdai - Ji,n+1,mdﬁ7 (20)
where we have defined the auxiliary thermodynamic
integrals

aIi nm (_l)m
J: L P) = : =
i (@) < oo )ﬂ @m + 1)

X / dK,ERP" (A, K )’"f,kf (21)

An integration by parts with dflk/dE,k ﬂf, kfzk

leads to the following relation between the thermodynamic
integrals:

ﬁ']i,nm =

Furthermore, with Eq. (15) we obtain from Eq. (20) an
expression for the total derivative of the thermodynamic
integrals of species i in terms of the conserved quantum
charges,

Ii,n—l,m—l + (I’l - Zm)li,n—l.m' (22)

(’Ii‘]i.nmdaq - Ji.n-‘rl,mdﬁ? (23)
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from which follows

al;
() “gs
()aq P

For later use we define the thermodynamic integrals
summed over all particle species, which we denote by /,,,
and J,,,. Similarly, the thermodynamic integrals of con-
served quantum charges, 12, Ji.. as well as the auxiliary

thermodynamic quantities, I1,, Jam, are defined as follows:

N, Ny, Nipec o1
EZ lﬂm’ Vl EZ lﬂm Z( lnm) ’ 25)

i=1

spec spec

Inm—ZLL i,nm>s Jnm—qu inm — (%> ’ (26)
p

‘PEC ;pec a
IZZl:ZQ%znmv ngnzzquznm: =)
oy P

(27)

Now using Eq. (23) together with the above definitions, the
total differential of the thermodynamic integrals summed
over all particle species as well as that of the thermody-
namic integral of a specific conserved charge read

{B.0.5}

Z Jamday, —

{B.0.S}
Z ‘IZ%da f Jn+1 mdﬁ (29)

/

q

nm {aq} ﬂ n+l,mdﬂ’ (28)

dlim({ag}. p) =

In terms of physical quantities, we identify the thermody-
namic integral of particle species i with indices n = 1 and
m = 0 as the particle density, n; = I, |y, while that with
indices n = 2 and m = 0 is the energy density, ¢; = I, 5.
From Egs. (20) and (23), we then obtain the standard
thermodynamic relations

{B.0.S}
ani an,-
d”i5<aa_> dai+<aﬂ> dp= Z qid i 10day —J; 20dp,
i/ p a; q
(30)
{B.0.5}
de; de;
deiz<£> da +<a ﬂ) A=Y qiJizeda,—J;30dp.
i/ p q
(31)

From these results and Eqs. (25)-(27), or directly from
Eq. (29), we may express the total differential of the density
of conserved charge ¢ as

spec {BVQ.S}

=3 adn =3 tday + 508
{Bosy
Z i day — J5,dp
q
{B.0.5}
Z sqdag + (T71) dB, (32)
q

and the total differential of the energy density as

:pec BQS} a ae

de—Zde, 3 aeqdaq 5

/

808}
- Jgod(l ; — Jgodﬁ

!

©

S

{B.0.S}
= (T'l)oq/daq/ + (

!

S

T 1)oodp, (33)

X

where, we have defined the following inverse matrix:

=30 Jgo J2Q0 Jgo

de de
= = B
oy B R [
A G-I Bl BV AR
ap t)aq/
S SB N SS
_‘]20 JlO JIO JlO

(34)
Equations (32) and (33) can be solved for df and da,,

{B.0.S}
df =Tode + Y Topdny, (35)
q/
{B.0.5}
da, = Tde+ Y T, dng. (36)

q/

Note that the relations (32) and (33), or equivalently (35) and
(36), encode the thermodynamic response of the medium to
perturbations and contain information about the chemical
composition and/or the equation of state. These thermody-
namic relations will be used later in the equations of motion.

C. Equilibrium fluid-dynamical quantities
The equilibrium moments (16), for r = 0 and for the

tensor ranks £ = 1 and # = 2, define the partial particle
four-current and energy-momentum tensor,

N/il,O EI’;O = /dKik’ffﬁ) = (k") 0, (37)

Tl =T = [ ARk = (k). (39

036009-5
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The tensor decomposition (18) of these quantities with
respect to an arbitrary timelike normalized flow velocity u*
and the projection operator A* reads

NYo =1 ou* = nat, (39)

T":lé = Ii’zou”u” - Ii’21Alw = e,»u”u” - PiA”D. (40)

Tensor-projecting these quantities leads to the partial
particle density, energy density, and pressure of species i,

ni = Niou, = (Ex)io = Tiio=Ti). (41)
e; = Tiguuut, = (EQ) ;o = ling =T, (42)
R 1 H v
Pi=—3Tioluw = —5 (Buk'k);,
1
=1l = _3(’"[211‘.0 —Zia). (43)

The sum over all particle species i of the partial equilibrium
moments leads to the total particle four-current, the con-
served charge four-currents, and the energy-momentum
tensor of the mixture,

spec cpec

N”—ZN Znu"—nu"

(44)

spuu >p<,L

qO_Zq, lonqlnu =n,u,

spcc Nspu
Ty = E Ty = g e u’ — P,AM) = eutu” — PAM.

(45)

(46)

Note that in our case the conserved net-charge four-currents
are simply the electric, the baryon, and the strangeness four-
current. The primary thermodynamic quantities of the
mixture, i.e., the total number density, net-charge density,
total energy density, and total pressure, are obtained by
summing over all constituents

NS]’JC(, SPLL >pcc
n=D e M= e €=) e P
=1 i=1

(47)

The particle and net-charge number as well as the energy are
extensive thermodynamic quantities, while the total pressure
of the mixture follows Dalton’s law of partial pressures.1

'These relations hold for systems which can be described
by kinetic theory; however, they are violated once the
Stozahlansatz [22] does not apply, i.e., when long-range
interactions or multiparticle correlations become non-negligible.

An equation of state determines these thermodynamic
quantities as functions of temperature and chemical poten-
tials, ie., n,= nq(T,,uB,,uQ,ﬂS), e=¢e(T, ,UBa,uQv:“S)v
and P = P(T, pp. pg. is)-

Note that in local thermodynamic equilibrium the
individual particle four-currents, Nl(;,i = n;ut, as well as
the energy current of species i, Ty ;u, = e;u”, are parallel
to each other. Therefore, all of these currents lead to the
same local rest frame of the fluid. Out of equilibrium the
fluid-dynamical four-velocity can no longer be uniquely
defined. Nonetheless, without any loss of generality, a
common flow velocity tied to a chosen local rest frame can
still be defined. The difference of fluid-dynamical quantities
from their local-equilibrium form will be discussed next.

D. Out-of-equilibrium fluid-dynamical quantities
Out of equilibrium, the distribution function differs
from its local-equilibrium form by o6f;x = fix — fl(&).

Introducing a similar notation for the momentum integrals
as in Eq. (17),

(Vs = / AK (- )i f . (48)

and

()= / AK(Yifi = Do+ dg (49

cf. Refs. [21,27], we define the irreducible moments of
tensor-rank ¢ and energy-rank r of the deviation of the
single-particle distribution function from equilibrium for a
given particle species i,

= M [ ARGELKE Ko

= <El§k<ﬂ1 ..kﬂf>>l_’(s' (50)

Furthermore, we expand the distribution function f;y
around fﬁf’g as in Ref. [21],

5fix = Fuf i

o Ny
0) (0 - ¢
= 1(k)fz(k> Z Z A ﬂfk ki.ﬂf>Hz(',l()z1’

=0 n=0

(51)

where the irreducible tensors orthogonal to the four-flow are
MR = AT kY These tensors form a com-
plete and orthogonal basis in momentum space. The coef-

ficient Hgi)n is a polynomial in energy of order N, defined as
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_11,’ N¢ m
1O = VS0 SN0 pr L (52)

imr~ik*

In principle, the expansion in polynomials in energy is an
infinite series, i.e., N, — o0. However, we have already
introduced parameters N, < oo (foreach £ > 0) at this point

since we will truncate the series later on in order to derive a
fluid-dynamical theory. The coefficients al(iln are calculated
via the Gram-Schmidt orthogonalization procedure and can
be expressed in terms of thermodynamic integrals, see
Ref. [21] for more details.

Thus, similarly to the equilibrium moments we define
the out-of-equilibrium particle four-current and energy-
momentum tensor for particle species i as

N E/deﬂ(f +5fzk) N’il.0+plil,0

= (k)0 + (k)5 = (k) (53)
= [ AR + 3 = i+ ol
= (K)o + (K'K); 5 = (K'KY),, (54)

where N ;o and T were defined in Eqgs. (39) and (40),
respectively.

The tensor decompositions with respect to an arbitrary
timelike normalized flow velocity u¥, summed over all
particle species, lead to the total fluid-dynamical quantities
of the mixture,

spu N spec

N”—ZN” > (i + pi)u + VA

i=1

= (n+ én)u* 4 V¥, (55)
spec Nspec
Ny = Z qiN; = Z lqi(ni + pia)u + q; V7]
- (nq + ny)ut + V. (56)
Nspec

- Z[(Ei +pia)utut — (P +TL) A +2W ) + 7]
= (e +Se)u'u — (P +I1)A™ + 2Wly!) 4z, (57)

The net-particle density, the net-charge density, the energy
density, and the isotropic pressure of the out-of-equilibrium
mixture are

5pe<, spec

n+én = Ntu, Z -EZ n;+piy) (58)

i=1 i=1

spec speu

ng +én, = Nyu, —Zq, Ey); qu ni+pi1), (59)
e+oe=T"uu, = Z (E}); = Z (e; +pia), (60)

1
P4+Il=—-T+ A#U:—Zg(AW

spec

Z(P +11,),
(61)

with an equation of state relating the equilibrium quantities.
Note that the latter were defined in Eq. (47), while
the partial pressure appearing in the last equation was
defined in Eq. (43). Hence, it follows that the nonequili-
brium correction to the pressure, the so-called bulk viscous
pressure of particle species i, is

1
(A, kakﬁ> = g(m%pi,()_pil)- (62)

b-)l»—

The net-particle diffusion, the net-charge diffusion, and the
energy-momentum diffusion currents are

Nspec Nspec Nspec

Vi= ANY =S k), =S phe =S v (63)

i=1 i=1 i=1
spec apec. spe(,

= ALNY —Zq, Zq p,o—zqz (64)

N spec spec apec.

W= ATy = 3 (B, = Y= YW (69
i=1
Finally, the shear-stress tensor of the mixture is
N, spec

> )

i=1

N spec

Nipee
Z o=y . (66)

i=1

— AWV Tap
7 = AT =

Equations (58)—(66) represent the fluid-dynamical fields of
the mixture, which (similarly as in chemical solutions) is a
combination of multiple particle species and where the
number of particles of an individual species may or may not
be conserved. Originally, these fields constitute 14N,
variables (10 for each energy-momentum tensor 7%* and 4
for each particle current N%'). We assume that the mixture
can be treated as a single fluid such that its space-time
evolution can be entirely determined in terms of the total
energy-momentum tensor 7+ and the charge four-currents
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N%. This approach reduces the number of unknown fluid-
dynamlcal fields to 10 +4N,,.

Further, the out-of- equﬂlbnum part of the distribution
function 6f; was expanded in terms of an infinite set of
independent irreducible moments p%’, ", each of which
obeys an equation of motion derived from the relativistic
Boltzmann equation (1) (see Sec. III). The dissipative fluid-
dynamical fields, Egs. (62)—(66), are defined in terms of
(some of) these moments, and thus are solutions of these
equations of motion. The crucial step in the derivation of
fluid dynamics using the method of moments is to truncate
the infinite set of equations of motion for the irreducible
moments, and thus also the series in Eq. (51), in a well-
defined manner. To this end, the sums over tensor rank # and
over powers of energy n in Eq. (51) are truncated. The latter is
already implied by the truncation parameter N,, which
depends on the respective tensor rank # of the moment.
The lowest possible truncation in # and r is to account for the
lowest-order irreducible moments which explicitly appear in
the energy-momentum tensor (57) and the charge four-flow
(56), namely p; o, p; 1. pi2- ;o0 P 1> and pf . This leads to the
truncation £ < 2, and Ny =2, N; = 1, and N, = 0 in the
series in Eq. (51). This is the so-called (10 4- 4N, )-moment
approximation. As mentioned above, these moments, how-
ever, further depend on other moments, which may also be of
higher tensor rank (e.g., £ > 2). In Sec. III C we discuss how
to further truncate the set of equations of motion.

E. Matching conditions and local rest frames

In local equilibrium the thermodynamic state of matter is
completely determined by a few scalar fields, namely a
common temperature 7" and the chemical potentials of the
constituent particle species a;, which are in turn given by
the chemical potentials of the conserved charges a, via
Eq. (14). A common way to determine these thermody-
namic variables in an arbitrary state (which is not too far
from local equilibrium) is to demand that the net-charge
densities and the total energy density are the same as in
some fictitious local-equilibrium reference state. These are
the so-called Landau matching conditions [28],

Nspec
(NZ - N’;,O)uﬂ = Z%’(N’il - Nlil,o)uﬂ

*Note that, naively counting the number of unknowns,
there are actually 15 + 5N, degrees of freedom: 5 degrees of
freedom (d.o.f.s) for the N, charge four-currents (n,, én,, and 3
components of V%), and 4 scalar (e, e, P, II), 6 vector (u" and
WH), and 5 tensor d.o.f.s (#**) for the energy-momentum tensor.
However, one d.o.f. is reduced by the equation of state,
P = P(e,{n,}). Furthermore, 4 + N, additional d.o.f.s are
reduced by the matching conditions, see Sec. II E.

Nspec

(7 — T’év)uﬂuy = (" — T%)uﬂuy

(68)

Il
>
35}

1]

>
Q

Il

e

where (N¥ = Ng)u, = S35 (Nf = Nig)u, = S50 i =
on # 0, since the total number of particles is not necessarily
conserved. Furthermore, Landau’s matching condition for
the energy, Eq. (68), also leads to a simplification of the
bulk viscous pressure in Egs. (61) and (62),

N spec N spec

L S T
i—1 i=1

We note that using the matching conditions (67) and (68),
we can express some scalar moments by the others, and
thus reduce the number of scalar moments of the multi-
component mixture by N, + 1.

The number of independent unknowns is further reduced
once we choose a local rest frame, or equivalently a definition
for the fluid-dynamical flow velocity. The definition of
Landau and Lifshitz [28] leads to the so-called Landau
frame, or energy frame, and requires that the total energy-
momentum diffusion current of the mixture is zero,

=) wi=o. (70)

This directly implies that 7#Yu, = eu”, meaning that the
flow velocity u* is the timelike eigenvector of the energy-
momentum tensor with eigenvalue e. This choice reduces the
total number of unknowns by three and leads to additional
constraints between the remaining species-specific vector
fields W, i.e., there are only N spec — 1 independent energy-
momentum diffusion fluxes in the mixture of N, different
species. Note that Eq. (70) also implies that if the fluid
consists of a single component, i.e., Ny, = 1, there is no
energy-momentum diffusion present in this frame. Unless
stated otherwise, the Landau frame is our choice for the local
rest frame.

More traditionally, one may use Eckart’s definition [29]
to fix the local rest frame by demanding that the overall
diffusion of one of the conserved net charges, say that of
charge g*, in the mixture is zero,

spec :pec

vh :ZV Zq*V” (71)

where quantities in this particular g*-charge frame are
denoted by a tilde. However, in high-energy heavy-ion
collisions, where there are multiple conserved charges,
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which are not necessarily nonvanishing in all regions of
space-time, the definition of the rest frame according to
Eckart is less suitable.

Nevertheless, in case of a single nonvanishing conserved
charge ¢, the Landau and Eckart reference frames are
essentially equivalent, hence choosing one over the other is
a matter of taste. Namely, the energy-momentum diffusion
current in the Eckart frame can be related to the charge
diffusion current in the Landau frame via

W+ = —h, V4, (72)

where we introduced the enthalpy per charge, h, =
(e + P)/n,, see Appendix B for more details.

F. Conservation equations

Due to the fact that in binary collisions the net charges
as well as the energy and momentum of particles are
conserved, the equations of fluid dynamics of a mixture are
derived from the Boltzmann equation (1) as

N. spec N spec

9,Ng = ZqiaﬂN’; = Z% / dK,C; =0, (73)
i=1 i=l1

spec Nspec
9T =" / dK;k/C; =0,  (74)
i=1

N,
W —
0,T" =
i=1

where there are N, independent charge-conservation laws.
Note that due to inelastic collisions the number of particles
of species i is no longer conserved and the individual
particle species satisfy rate equations, 6ﬂN§‘ # 0. On the
other hand, for purely elastic collisions the numbers of
particles are conserved, and the momentum integral over
each partial collision term vanishes separately, d,N% = 0.

With Eq. (56) the N, charge-conservation equations (73)
assume the form

NSpeC NSpeC NSpeC
9,Ng= Z qiD(n;+piy)+ Z qi(ni+pi1)0+ Z qi0, V%
i=1 i=1 i=1
=Dn,+n,0+09,V;=0, (75)

where in the last step we used the first Landau matching
condition (67).

The conservation of energy of the mixture is obtained by
projecting Eq. (74) onto u, and inserting Eq. (57),

N, spec

Nspec
u,0,TH = ZD(ei +pia) + Z (ei +pin+ Pi +11;)0
i-1 i-1

Nspec Nspec spec
v
+Y oW = WiDu, -y o,
i=1 i=1 i=1
= De+ (e + P+11)0 — 76, = 0, (76)

where we have imposed the second Landau matching
condition (68) and also fixed the local rest frame according
to Landau’s convention, Eq. (70).

Using these conservation equations to replace dn, and
de in Eqgs. (35) and (36) leads to the comoving derivatives
of the inverse temperature and the charge chemical poten-
tials multiplied by the inverse temperature,

Dp = -Tyl(e + P+11)0 — 70,

{B.0.5)
_ Z Toglng0+9,Vh], (77)

/

q

Da, = =T yl(e + P + 1) — "o, ]

i
{B.0.5}
- Z qu/[nqlﬁ—i—aﬂvg,]. (78)

!

q

Finally, projecting Eq. (74) onto Aﬁ (which gives the
momentum conservation of the mixture), and using
Egs. (68) and (70) leads to

Nspec Nspec
N0 TP = " (e;+ P+ T1)Du' —=V* Y (P; +1I,)
i=1 i=1
Nspec

+ %0,y af
i—1
= (e+ P+ TI)Du* — V¥ (P +11) 4 Ajd,n = 0.
(79)
This leads to an expression for the acceleration Du* of the

fluid. Noting that in local equilibrium the Gibbs-Duhem
relation holds in the form

{B.0.5}
pdP = Y n,da, - (e+ P)dp. (80)

q

we obtain

1 {B.0.5}
e 2 "V

Dy = —lV"[f—f—
b 7

Py (MDu# — VAL + Afden™).  (81)

Let us recount the unknown variables and equations of
the mixture. There are N, conservation equations (75) for
n, and V4, representing 4N 4 variables. The conservation of
energy and momentum of the mixture provides the four
equations (76) and (79), entailing e, I1, u#, and #**, which
represent 10 variables in total, since the equation of state
already defines the pressure in terms of e and the n,’s.
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Thus, in a dissipative mixture of N, conserved charges we
have only 4 + N, conservation equations for a total of 10 +
4N, unknown fields. The additional equations for the
dissipative fields II, V%, and ##* will be derived from
the Boltzmann equation in the next section.

III. SECOND-ORDER DISSIPATIVE FLUID-
DYNAMICAL EQUATIONS OF MOTION

In this section, we first derive the equations of motion for
the irreducible tensor moments for particle species i. For a
single-component fluid, these equations were first given in
Ref. [21]. Here, we extend them towards multicomponent
fluids. Then, we linearize the collision term and discuss the
Navier-Stokes limit as well as the order-of-magnitude
approximation, which provides a simple, and yet effective
way to close the set of equations of motion. Finally, we
derive and discuss the second-order dissipative fluid-
dynamical equations of motion.

{B.0.5}

—alo- Y

/

q

Ci,r—l

Pir— (J irr1070g =

3

+ rp’i‘,r—lil/l - V/A;Olil,r—l + [(” - l)p/il_l;—2 + (Ji,r+l,OTOO -

{B.Q.S}

>

0
+3 |:m12(r = Dpira=(r+2)pi, -

A. Equations of motion for the irreducible moments

The equations of motion for the irreducible moments

P are obtained directly from the Boltzmann equa-

tion (1) by multiplying it with E7, k" - - - k! ‘) , integrating
over momentum space, and taklng the comoving deriva-
tive. Then, projecting onto AJ!l7, we obtain the equa-
tions of motion for the irreducible moments, i.e.,

an equation for the comoving derivative p<""""">

AU Dp! " The irreducible moments of the collision
term (2) are defined as

C(ﬂl He)

Aﬂl #f
i,r—1

Vyby

/dKE’ WSRO (82)

After some calculation the equation of motion for the
irreducible moments of tensor-rank zero reads

QiJi.rOqu’) (vy V’;’ - Vg’itﬂ)

{B.0.5}

SRS

{B.0.5}

Z CIiJi,rqu()) ﬂ’w} Oy
q

3( i,r+1, OTOO

(83)

This equation is different from Eq. (35) of Ref. [21], because thermodynamic relations are modified in mixtures with
multiple conserved charges as compared to a single-component fluid. Similarly, the transport coefficient a( ) has additional

contributions given by the sums Z,EB 25} \when compared to Eq. (42) of Ref. [21],

0 {B.0.5} {B.0.5}
a;, = [ i,r0 + trl + Z < tr+1,OTOq’ - Z Qi‘]i,rOqu’)nq’]
q
{B.0.5}
- (Ji,r+l,OTUO - Z CIiJi,rqu(J) (e + P). (84)
q

The equation of motion for the irreducible moments of tensor-rank one is very similar to Eq. (36) of Ref. [21], except for

V”a

the first-order gradient term Z{B 05t g ” q

) {B.0.5}
plr trl Z aquvya —|—}"

q

iy =3 VA

= Pire1) +of, VI

’ 1
— M(Tupte s+l 07) 3 2= Dy — (- 3)01, )0
1 .
+ 3 (mirp; = (r+3)pir = 3 it + p
1
=+ g [mlz(Zr - 2)/)i,r—2,u - (2" + 3):01 ru]o'ﬂ + (r - l)pl:r—ZGv}m (85)
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where the transport coefficients are

nq
p

Finally, the equation of motion for the irreducible moments of tensor-rank two is formally unchanged from Eq. (37) of
Ref. [21], only the species-specific index i is introduced here,

h
@i

o _ﬁ Ji,r+2.1

q = Qi‘li.rJrl,l +afl,r - e +P .

(86)

v 1 2
Pl = €l = 200 L mi (r = Dy = Q2r 4 3)mipi, + (r+ 4)pi sl
2 ] 12 12 2 14 12
+ 3 il [m%rﬂi,>r—1 - (r+ 5)pi,>r+1] 3 v<ﬂ(m12pi,>r—1 - Pi,>r+1)
+rplt iy — AV (r = 1P + 200 @)
1 v v 2 12
3} (r= Dol = (r+ )00 + S mP(2r = 2)p7 5 = (2r + 5)p} e} (87)

where the coefficient agi)

Eq. (44) of Ref. [21],

is also formally the same as in

) -

(r=0I 00+ 1 12, (88)

These are the equations of motion for the irreduci-
ble moments up to tensor-rank two for any particle
species i. One can show that in the case of a single-
component fluid they reduce to the equations found
in Ref. [21].

spea

kafZ

]ab 1

kk —),’)p/
1]—>ab

/dK’ dpP,dP,W

where the bilateral normalization condition holds and the equality f ik f f ap f by

0 0) #(0) %(0
B T T (b + Doy = ik = bixe)-

Furthermore, note that since the conserved quantities
in fluid dynamics contain no tensors of rank higher than
two, the higher-rank tensors, p//1"*" = 0 for # > 3, in the

equations of motion (85) and (87) will be neglected in the
following (see Sec. III C).

B. The linearized collision integral
Further progress requires the linearization of the colli-

sion integral (2) in the quantities ¢; ) = f;x/ [ff(;()ffolz]

such that it simplifies to

(89)

fapfb f kf k/ was used [22,23].

Using the linearized collision integral (89) one can show that the correspondmg irreducible moments (82) of the collision

integral can be expressed in terms of a linear combination of irreducible moments, p; .

"7 in a similar way as in Eq. (50) of

Ref. [21],
N‘PSC Ny o Nspec N/
R ) S SNV EEEED 3) D ARV 9
s=1 n=0 m=0 s=1 n=
Here, we have defined the following tensors:
spec i < >
(A’S m)”l rein =2 Z /dK dKldP dPl tj—»aip fz kfj k’fa pfbp Ezrklk e klil[
j a,b=1
m /i IYI>
[53,7'{Y ks e k" + 53,7‘[3 Wk kg
_ 5saHs,pnPs I -p?”’ _ 5sts,p’npS pyym>:|’ (91)
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where the polynomials HE,T;?” were defined in Eq. (52).
These tensors can be decomposed and projected, hence one
finally obtains the collision matrix

! ADI W (Ais.rn)ﬂl.:.'ﬂfa

@)
A‘ 2f+1 HiHe Vylg

is,rn (92)
cf. Eq. (A18) of Ref. [21]. Note that in the case of a
single-component system, i.e., Nge =1, the above

equation reduces to the diagonal components of .A,S e

Hence, the particle species labels i and s can be drop-
ped and we simply recover the result of Ref. [21],

Cfﬂrl_lﬂf)smglec lillmﬂf> _ —Z;V:/O A%)p/y‘llﬂf
The inverse of the collision matrix defines the so-called
relaxation-time matrix,

T = (A (93)
where the matrix elements are proportional to the inverse of
the mean free path between collisions Amfp Therefore,
multiplying both sides of Eq. (90) by the relaxation-time
matrix we obtain an important relation between the moments
of the linearized collision integral and the irreducible
moments,

Nspec Nf ipec
T( — 1 ﬂf
si,nr lr 1 - Slnr is',rn'Fs' n’'
i=1 r=0 i.s’=1r.n'=0

HiHe

= —Ps.n (94)

The infinite set of equations of motions for the irreduc-
ible moments contains infinitely many degrees of freedom.
In order to close the equations of motion for the mixture
treated as a single fluid, the number of degrees of freedom
must be reduced and infinite sums must be truncated at
some finite number.

One of the key features of transient fluid dynamics is that
the corresponding equations of motion have a single time
scale that controls the transient behavior, e.g., relaxation
towards equilibrium. On the other hand, the Boltzmann
equation has infinitely many such time scales. Even in a
single-component gas the modes corresponding to the same
tensor rank £ are coupled to each other and their dynamics
depends on these infinitely many scales. In the case of a
mixture the situation is even more complicated as the
modes corresponding to different particle species are also
coupled. The reason for this is that due to interactions
between particles of different species the corresponding
moments are correlated, see Refs. [30,31].

One possible way to reduce the number of degrees of
freedom would be to generalize the approach of Ref. [21]
developed for a single-component system, and diagonalize
the collision matrix to determine the slowest microscopic
timescales, i.e., the relaxation times that are relevant in our

approximation, and the corresponding modes that domi-
nate the long-time dynamics of the fluid in the transient
regime. This has the advantage that the relaxation times that
appear in the equations of motion could be explicitly
identified as real microscopic timescales. However, the
downside of this method is the appearance of terms that
are of second or higher order in gradients, denoted as O(Kn?)
in Ref. [21]. These terms can violate stability and causality of
the theory. In principle, this can be cured by introducing
further independent dynamical variables, cf. for instance
Ref. [32], but this is beyond the scope of the current work.
Instead, as discussed below, we will employ a slightly
simpler approach, where the problematic O(Kn?) terms
do not appear.

C. The Navier-Stokes limit and the
order-of-magnitude approximation

The explicit relation between the irreducible tensor of a
given rank and the corresponding fluid-dynamical gradients
can be derived by multiplying Egs. (83), (85), and (87) by the
corresponding relaxation-time matrices, rg'i),lr, and using
Eq. (94). In this way, the following equations of motion
for the irreducible moments of tensorrank £ = 0, 1, and 2 are
obtained,

Nipec Ny

Z Z 0 PirF Pon = —Cond + O(2), (95)
Ngee N {B.0.S}

DD Tiwhl T A= Y KV, + 0(2). (%)
i=1 r=0 q

N, c

N,
Z Z Sl nrpt r + p“l” - 2”9 ng/“’ + 0(2)’ (97)
r=0

i=1

where O(2) denote all remaining second- and higher-order
terms from the corresponding equations of motion for the
irreducible moments. These are terms which are at least of
quadratic order in the Knudsen number, O(Kn?), or in the
inverse Reynolds number, O(Rn~2), or of linear order in their
product, O(KnRn™!). Here, we have defined the species-
specific bulk-viscosity, diffusion, and shear-viscosity coef-
ficients as

NZ“ ZNO © 0

_ 0 0

és,n = Tsi.nrai,r ’
i=1 r=0

Ngpee N,

PP BEHTIFR

i=1 r=0

Ksng =

Nspec N,

S5, a2

i=1 r=0

Nsn =
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Note that the definition of the bulk-viscosity coefficient
differs by a factor of —m?/3 compared to Eq. (63)
of Ref. [21].

From here on, we will make the assumption that the

§f4r>’ and p{ﬂv>

irreducible moments p; ,, p . are of the same
order, irrespective of the particle species. This implies that
the sum over all species of these irreducible moments, i.e.,

o p? and p? are also of the same order as the species-

specific irreducible moments.

The so-called “order-of-magnitude approximation” is
based on the first-order solution of the moment equa-
tions (95)—(97), which is equivalent to the Navier-Stokes
limit. In this limit, the irreducible moments are algebrai-
cally related to terms of first order in Knudsen number, also
called thermodynamic forces, multiplied by the corre-
sponding transport coefficients,

= —Lond + 0(2), (101)
{B,0,S}
p/Sl,n = Z Ks,n.qvﬂaq + 0(2)’ (102)
q
s.l;'l = 27’]&”0'/4” + 0(2), (103)

while all tensor moments of rank higher than two are at
least of second order, pily " ~ O(2) for any ¢ > 2, see
Ref. [21] for details.

In principle, all irreducible moments are of first order in
inverse Reynolds number, O(Rn~!), and thus formally
independent of the power counting in Knudsen number.
The order-of-magnitude approximation, which is based on
the Navier-Stokes limit (101)-(103), assumes that the
irreducible moments are of first order in Knudsen number,
O(Kn), i.e., the regime where the Knudsen and the inverse
Reynolds numbers are of the same magnitude. This defines
a power-counting scheme, similar to the one described in
Ref. [21], which helps to assign a certain order to the
various terms in the equations of motion. Then, all O(2)
terms on the right-hand sides of Egs. (95)—(97), as well as
the comoving derivatives on the left-hand sides are of
second order in Knudsen number. The order-of-magnitude
approximation is very similar to the “order-of-magnitude
method” in nonrelativistic fluid dynamics [33].

Using the approximation (101)—(103) while summing
over all particle species, and for the moment omitting O(2)
terms, we obtain the Navier-Stokes relations for the
mixture. From Eq. (69) together with Eq. (101) the total
bulk viscous pressure of the mixture reads

— %yg %: A

Similarly, we obtain from Eq. (64) together with Eq. (102)
for the conserved charge currents

mv

(104)

apec {B Q S} Nspec,
Vﬂ_ZQSpYo_ Z qu sOq’vﬂa’
{B.0.5}

D>

!

q

Keq VHay. (105)

Finally, the shear-stress tensor of the mixture follows from
Eq. (66) together with Eq. (103),

apec. N spec

= Zps 0= Z 25, 00" = 2not.
=1

Note that the first-order thermodynamic forces are the same
for all particle species and for the mixture. Due to this fact,
we obtain the first-order transport coefficients of the
mixture: the bulk viscosity ¢, the diffusion coefficients
+, and the shear viscosity 7,

(106)

Kqq

<pcc spu N spec

Z Z.:_SO’ qu’—ZqKSOq’ WEZWS,O'

s=1

(107)

Therefore, using Egs. (101)—(103) together with the rela-
tivistic Navier-Stokes relations (104)—(106) we readily
obtain the following algebraic relations between the
species-specific irreducible moments and the primary
dissipative quantities of the mixture,

gs nH + O( ) (108)
{B.0.5}
pﬁtn - Z ’?.Ef]nvg + 0(2)’ (109)
q
Py = g + O(2) (110)

where we introduced the normalized transport coefficients
for each species,

¢ {B.Q.S}
> 5,1 - _
gs,n = I ’ Ksn = Ks,n,q’(K l)q’q’

(111)

Here, (x7'),, is the inverse of the diffusion-coefficient

matrix defined in Eq. (107). We will use Egs. (108)—(110)
to close the equations of motion (83)—(87) in the next section.

D. The equations of motion in (10 +4N,)-moment
approximation

In the (10 + 4N ,)-moment approximation, we truncate
the infinite set of moment equations (83), (85), and (87) in
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the following way. We first multiply these equations with the

corresponding relaxation-time matrices Tgl )m Equation (85)
is also multiplied by ¢,, and all equations are summed over
species. In what follows, we only consider the set of
equations for n = 0. In all terms, we then substitute p; ,,
!, and pi" by the dissipative quantities IT, V%, and 7** using
Eqgs. (108)—(110). Note that in this substitution the O(2)
terms in Egs. (108)—(110) become O(3) terms and can
be neglected together with other higher-order terms. In this
way, we finally obtain a closed set of equations of motion for

the dissipative quantities IT, V%, and ##. Further, as dis-
cussed in Sec. I D, the (10 + 4N, )-moment approximation
is the lowest-order truncation of the series in Eq. (51), where
£ <2,and Ny =2, N; = 1,and N, = 0. It should be noted
that, for £ < 2, such a truncation in powers of energy (i.e.,
N, < o) neglects infinitely many contributions of order
O(Kn) in Eq. (51). As shown in Ref. [21], however,
systematically increasing the parameters Ny, N, and N,
the values of the corresponding transport coefficients exhibit
rapid convergence.

The resulting equation of motion for the bulk viscous pressure is

{B.0.5} 0.5} {B.0.5}
il + 11 = —£0 — Sppl10 + Ao Z AR Z DV, — Z AEOVE a,, (112)
q
where, we have defined the relaxation time and the bulk-viscosity coefficient as
cpcc 0
SO W ER 113)
Nspec 2 Nspec 2 NO
m ntg 0 0
{=- ?C&,O = 3 TEi})ﬂf’,)- (114)
s=1 s, i=1 r=0
All second-order transport coefficients appearing in Eq. (112) are listed in Appendix C 1.
Similarly, the equations of motion for the charge diffusion currents read
{B.0.5} ) {B.0.5} {B.Q.5} {B.0s} {B.0.5}
ST VAV = N kg Vi = Y g Vet = D 8 Vhe - Z AV, o
q q q q
AIVHIL + £ AVl 4 d T — o) i,
{8osy {Bo.s}y
+ Y ALV, - Y ALY, (115)
q q
where the relaxation-time matrix and the diffusion-coefficient matrix are
speL
qus szOr lr’ (116)
s,i=1 r=0
spcc Nl
qué Tsi0r% qu’ (117)

s,i=1 r=0

and the second-order transport coefficients are listed in Appendix C 2.
The diffusion-coefficient matrix «,, has been evaluated for several hadronic and partonic systems in Refs. [16-18]. In

general, this matrix couples the diffusion current of a specific charge to all gradients of the charge chemical potentials via
V’;, ~ E,B’Q’S} kg4 V'a, + O(2). Due to this coupled diffusion, the density gradients in one charge could lead to the local

separation in another charge, as demonstrated in Ref. [16]. From the above equations of motion one can see that such a
coupling is also present in various second-order terms.
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The equation of motion for the shear-stress tensor follows in a similar manner,

T;r]:[<ﬂy> + ' = 27]0”” + 2Tﬂ”§,ﬂwy>/{ - 571'7‘!7[/“/9 - rmﬂMMGZ) + AJ‘:HHJMD

(.05
S° v +
q

where the relaxation time and the coefficient of the shear viscosity are given by

=

spec

Il
—-

=
I
=
%

1

Ji

{B,0.S} {B.0.S}
ST AV + Z A4y g g (118)
q
N,
El)()rr]lr’ (119)
r=0
Ny
T ar (120)

i
o

while the remaining second-order transport coefficients are given in Appendix C 3. The equations of motion (112), (115),
and (118) are of relaxation type and are identical to those found in Refs. [10,11,14]. For more details, we refer the reader to

the discussion in Appendix A.

As a simple example of a relativistic multicomponent
system, we discuss an ultrarelativistic, ideal gas with elastic,
isotropic hard-sphere interactions and multiple conserved
charges in Appendix F. While the transport coefficients
cannot be further reduced to simple and convenient forms,
one may easily prove that one obtains well-known results in
the single-component limit [21].

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the derivation of
relativistic second-order dissipative fluid dynamics for
multicomponent systems in the (104 4N,)-moment
approximation from the relativistic Boltzmann equation
using the method of moments. Starting from the relativistic
Boltzmann equation for a multicomponent system we have
obtained the equations of motion for the irreducible
moments for particle species i. In the single-fluid approxi-
mation for the mixture, the sum of the dynamical equations
of motion reduces to 4 + N, conservation equations that
are closed by providing 6 + 3N, relaxation-type equations
of motion for the dissipative quantities. In such a mixture,
where the constituents in general carry multiple quantum
charges (e.g., a proton carrying electric charge as well as
baryon number), the equation of state depends on multiple
chemical potentials and temperature. With the help of a new
approximation scheme, the so-called order-of-magnitude
approximation, we have derived a second-order dissipative
theory that does not contain terms of second order in
Knudsen number, which are known to render the equations
of motion parabolic and thus acausal [21]. Furthermore, the
irreducible moments of the deviation of the single-particle
distribution of each particle species from equilibrium are

directly proportional to the total bulk viscous pressure I1,
the conserved charge-diffusion currents V7, and the total
shear-stress tensor 7##* via Eqgs. (108)—(110).

Similar to other works which treat multicomponent
systems [10,11,14], in this theory the existence of multiple
conserved charges is manifest in the equations of motion
Egs. (112), (115), and (118). As expected we obtained
exactly the same equations of motion as found in earlier
works [10,11,14].

Further, the coupled charge transport becomes explicit in
the appearance of mixing terms in the equations of motions,
e.g., a dissipative current (TI, V%, ##*) is coupled to any other
gradient in chemical potential or diffusion current. As a
prominent example, instead of a diffusive Navier-Stokes
term with only one diffusion coefficient x as in a single-
component system, we obtain a Navier-Stokes term entailing
a matrix of diffusion coefficients «,,, which explicitly
couples every diffusion current to all gradients in chemical
potential. The appearance of a charge-coupled Navier-Stokes
term and potential implications for the transport of charge was
discussed in Ref. [16] in the case of relativistic nuclear matter.

The advantage of our derivation compared to other
theories is that it yields explicit expressions for the transport
coefficients in terms of the linearized collision term. Since the
mutual interactions of all particle species is contained in the
collision term, the multicomponent nature of the mixture is
naturally encoded in the transport coefficients.

In the future, this theory will be used to revisit the transport
of coupled charge in heavy-ion collisions initiated in Ref. [16]
in a more realistic manner. Especially, we expect that it will be
relevant for the discussion of physics of compressed baryonic
matter at the future FAIR and NICA facilities or for the
interpretation of recent results of the isobar run at RHIC. We
expect that the coupling of diffusion currents or the charge
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gradients to the bulk viscous pressure and the shear-stress
tensor may be important in future studies. Now that the
explicit expressions of the transport coefficients have been
derived, they can be evaluated for nuclear systems. To this
end, equations of state from lattice QCD for nonvanishing
chemical potentials may be used [34,35]. At the same time,
Eq. (51) provides an expression for the so-called §f-correc-
tion needed for the freeze-out of the system at the end of the
fluid-dynamical phase during the simulation of a heavy-ion
collision.
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APPENDIX A: COMPARISON TO
OTHER WORKS

In this appendix, we perform a comparison of the second-
order relaxation equations found in this paper, Eqs. (112),
(115), and (118), to earlier derivations of Monnai and Hirano
[10] and Kikuchi, Tsumura, and Kunihiro [14].

Our second-order relaxation equation (112) for the bulk
viscosity contains 8 terms in total, while Eq. (69) of
Ref. [10] contains 13 terms. Here, we recall this equation
noting that u% = u*, while J = g and K = ¢/,

T = ¥ty = e DI+ i TV, + 1, ¥
T MK c oyl d J
+ E Xty Vi vﬂ7+ E] K, ViDulg + EJ iy, VIV

1

1
+§ i HD +)(nnHD —CnigeD T

+ Zgn&l/ D + DHV} Vi VM

The difference between this equation and ours is due to the
difference in the thermodynamic forces and the way the
comoving derivatives and space-time four-gradients are
employed. In our derivation the comoving derivatives,
Dp = D% and Da, = D%, do not appear explicitly since
they were replaced using Eqs. (77) and (78), while the space-
time four-gradient of the inverse temperature, V#f3, is given by
Eq. (81). The terms that are expressed differently are in the
third line of the above equation (A1). Now, collecting these
various terms one can show that Eq. (A1) reduces to Eq. (112).

Similarly, we recall Eq. (77) of Ref. [14], which contains
11 terms,

(A1)

0
:—Ce—fna—n mev JA +KHHH9+KHIL' /)(7 po‘

+ bHHHl_I2 + Z bllg[ljg.l‘]p JBVp + anﬂﬂpgﬂpa
A,B=1

M M
Y kT Y A

A=1 A.B=1

AT, VP ” B (A2)

where, we note that V, =V, while A =g and B = ¢'.
From these the terms in the second line are of second order
in dissipative quantities, i.e., of second order in inverse
Reynolds number, originating from the nonlinear part of the
collision integral. Note that such second-order terms were
also obtained in Refs. [21,36], but are neglected in our
study. The remaining 2 terms are formally the same, which
can be seen using Eq. (81).

The relaxation equation (115) for the conserved charge
current contains 12 terms, while Eq. (70) of Ref. [10] listed
below contains 19 terms,

V_] = KVIV”/;{ + ZKVJVKV —_— TV AMDDVJ ZTVJVKA”DDV{/(

K#J

K#J

+ g Vv, ViV Ul + E J(V VKV”VDu’é—i- E ﬁ/JVKV%V”uf
X

+ D%;

1 1
+)(VJ”7I’”’V H(vnHV +§ v VKV”D”L+§ J(VJVKVKD + Ky,w (TDujg+VﬂT).

v"? A DU ] AV S I ’% 4, lDu; + 74,011

(A3)
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After closer inspection, we observe that the first line contains two sums that are equivalent to our sums over charges, while
the additional 4 terms in the last line can be incorporated into already existing terms. Furthermore, the last remaining term,
quw(ﬁDu" + V#B), may be expressed using Eq. (81), and hence is fully accounted for in our approach.

On the other hand, Eq. (78) of Ref. [14] contains 14 terms, of which the last 2 are of second order in inverse Reynolds

number, while the other terms are formally the same,

Jﬁ - Z}'AB_V”

0
ZTABAW) T~ O VAL = 64,0V 2,

DA 2)AB HB 1)AB 2)AB 3)AB
+ Kgl'} VAT + ZKSI-} HV"?—I— ZK” Jh0 + ZK(”) Jp 0" + KEJ) Jp y 0"

B=1

+ KJ;T ””pv T+ Z JﬂAB 'V, r + Z bt I + Z bJJ;rJB.p”W'

B=1

(A4)

B=1

The relaxation equation (118) for the shear-stress tensor contains 10 terms, while Eq. (71) of Ref. [10] contains 12 terms

=24Vt ”uE —7,Dr') + X5aN Jtly + y 2,7 av Uy +;(,[HHV<”

+ D{HV v¥Dul) + z‘/{ﬂv ViyY + Z;(,,V,v;’vv ) KK

1
E \)CIIV/VJ”VII + § \}Caj le +)(mr ”UD?

(AS)

Here the last 3 terms that are expressed using Df, Da,, and V¥#f3, may once again be incorporated into other terms.

Finally, Eq. (79) of Ref. [14] contains 13 terms. The last 3 are of second order in inverse Reynolds number, while the

remaining 10 terms are formally similar to ours,

v __ v vpo
" = 2notY — T, AP aﬂl,(,

+ kWm0 + kA e, + kB | + b T + Z PAB Y I 4 b i),

APPENDIX B: ECKART FRAME

In most textbooks and relevant publications the local rest
frame and the fluid four-velocity are chosen according to
Eckart [29], since this choice intuitively follows the non-
relativistic interpretation of physical quantities. On the other
hand, all our results are given relative to the local rest frame of
Landau. In this appendix, we will elaborate on the differences.

We may choose to define a different timelike normalized
flow vector, i##, and hence a local frame of reference different
from the previously chosen local rest frame (the Landau
frame) given by u*. The ii-frame is related to the u-frame by a
Lorentz transformation. If, we assume that the difference
between the frame vectors is small, #* — u* ~ O(1), we may
write

i = u +wh+ O(2). (B1)
Computing the normalization of #* up to order O(1),

Wi, = utu, + 2utw, +whw, =1+ 2u'w, + O(2), (B2)

M M
- £,V UT) 4 kanllo™ + > Ky

M

A 7y (2)BA (uxgw) MB
JeIT § JHrvn =2
A + Kpy YA T

A,B=1

(A6)
A.B=1

and demanding that #* is also normalized, we conclude that
w# must be orthogonal to u*, u*w, = 0. The projection
operator onto the three-space orthogonal to i#* is

A = g — g = A — 2ulin?)

= AW = 2uli?) 4 O(2).

— wHwY
(B3)

The tensor decomposition of the primary fluid-dynamical
quantities with respect to #* leads to results similar to

the tensor decompositions listed in Egs. (56)—(57),
N =it + Vi = i, (w' +w*) + Vi, (B4)
T = ettt — (P + M)A + 2 + 2Whit)
= eutu’ — (P +T1)A™ + 7 + 2(e + P)whu¥)
+2WhHyY) + O(2), (B5)

where we have explicitly applied Landau’s matching con-
ditions from Egs. (67), (68). We have also made use of
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Eq. (B1) and the fact that all dissipative quantities are ~O(1).
The physical quantities follow from similar projection
operations as in Egs. (58)—(66).

Furthermore, one can show that neglecting corrections of
order O(2), the net-particle density, conserved net-charge
density, energy density, equilibrium and bulk pressures, as
well the shear-stress components are equal in both local rest
frames,

ii,=n,, é=e, P=P, II=II, #=n". (B6)
Note that the quantities without tilde are taken in the
Landau frame and are not identical with the corresponding
quantities when the frame is not yet specified.

The choice of the local rest frame changes the diffusion
currents orthogonal to the flow velocity, i.e., the so-called
peculiar velocities. In Eckart’s definition of the local rest
frame, for one conserved charge ¢ it is required that

Ny =n,i* and Vi =0, (B7)
where n, = Njii, and Vi = N;A’J. This means that
according to the definition of Eckart, there is no net-charge
diffusion current of charge type ¢ in its own local rest
frame. Now, comparing this with the form of N% in the
Landau frame leads to

NG = ng(ut +w) = ngut + Vy. (BS)
Thus, for an observer in Landau’s local rest frame the
particles are diffusing with peculiar four-velocities propor-

tional to the net-charge diffusion current,

VM
wh =1
ng

(B9)

Since the dissipative quantity V% ~ O(1), this is consistent
with our assumption that w* ~ O(1). Up to terms of order
O(1), the energy-momentum tensor (B5) reads

T = eit*it — (P + ) A* + g + 2W W)
= eutu* — (P +TI) A" + 7 + 2(e + P)wWu")
+2WhHy), (B10)
|

Using this result together with Eq. (B9) and comparing it to
the energy-momentum tensor in the Landau frame,
" = ewu” — (P + 1) A + o, (B11)

leads to the total energy-momentum diffusion current
WH = AfT%uy; in the Eckart frame,

VV”=—€+P

Vi = —h, V4. (B12)

Ny

This relates the total energy-momentum flux seen in the
Eckart frame to the diffusion flux of charge ¢ observed in
the Landau frame.

Finally, we give the four-flow of the charges ¢, of which
the diffusion currents were not chosen to vanish by Eckart’s
choice (B7) (i.e., ¢’ # q). Using the fact that the charge
densities n, are equal in both frames, we obtain the
condition

q

N’;, :nq/(u”—l—w”)—I—V’;/;nq/u”—l—vg/. (B13)

Employing Eq. (BY), we arrive at an expression for the
diffusion currents as observed in the Eckart frame:

. ngy
wo_yn _ g
Vq/ i Vq/

"
. V.
q

(B14)

Note that for the case ¢ = ¢’, we again recover the
requirement by the Eckart frame definition for the charge
g, Eq. (B7).

APPENDIX C: TRANSPORT COEFFICIENTS

In this appendix, we list all second-order transport
coefficients in the equations of motion (112), (115),
and (118).

1. The coefficients in the bulk viscosity equation

The second-order transport coefficients in the equation
of motion (112) for the bulk viscous pressure are

Noee No i {B.0.5)
S = Z Z—TS, or M7 (r =)0 = (r+2)¢i = 3| Jivs10T 00 = z 41107 g0
s,i=1 r=0 q
Nspw Ny m aé’ {BQS}
* 212; 3 siar Z aaq ole+P)+ Z Toqnq
Negee Ny 2 Z {B.0.5}
ms (o az:i,r
+22?&whwm+2%MW :
s,i=1 r= q
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Nspcc NO m2 (0> {B,Q,S}
Aip = = Z Z?Afsi,Or (r=Ditiyz +Jirr107 00 = Z qidir0T g0+
s,i=1 r=0 q

W _ B o) () EoY
l’ﬂHqV == ?STSII,OV kiz—l + Ji,r+1,070q - Z q:'Ji,r,OTq/q )
~' ql

“ Ngpec Ny m2 - @ (q) 1 {B,0.S}
TI;IV = ?STSI Or er r—1 + ﬂ l/; + Ji,r+1,OTOq - Z qzji.r,OTq’q s
0 q

ii (0) Er)—l_l_ nq’ aKEr)— )
“Of day e+P 9P

s,i=1 r=0

2. The coefficients in the charge diffusion equations

The coefficients in the equations of motion (115) for the charge diffusion currents are

Ngpee N
, spec 1 1
ST = =D Y T g A = DR, = (r+ 3R]
s,i=1 r=0
Nspec N] (1) {B~Qs5} a,—c(tﬁ {B7Q*S}
—_ q{y Z Tsi.Or aa,,, |:Tq//0(€ + P) + Z Tq//q///nq///:|
s,i=1 r=0 q” q q///
Nspec N] (1) aK(q) {B QvS}
- q/s Tsior alﬁr |:T()0(6 + P) + Z TOq”nq”:| ’
s,i=1 r=0 q"
Nspec N
' 1
W == d Y o5 mA2r — 2RI, — (2r + 3R]
s,i=1 r=0
NSPEL N]
! 1
A= Y Dol [ 21 ~Ear) -
s,i=1 r=0
Nspec N,
1
l'ﬂg/qﬂ') - q/Y T‘E'i?()r(rll r—1 + a; r)’
s,i=1 r=0
Nspec Nl >
(q) _ / (1) 1 |: 2.7 % az.:tr 1 az:i,r-&-l
Tyn = ds Tyiory |MiTCirm1 = (r +3)Cirp1 — 3“ ,+mip -p )
2:21 ; 3 op op
NS ec
@) _ N2 RS ) Mir1
Tve =7 qszrszOr M1 +P—— op tai, )
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Nspec N] = = > >
' 1 i r ng 0,1\ OCiry1 Mg 0,4
PICR ) — ' M 2,2 %ir g %ir-t) _ Girt1 Mg Obirtl|
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3. The coefficients in the shear-stress equation
The coefficients in the equation of motion (118) for the shear-stress tensor are

1Nspec Nz )
Onn = _5 TE‘Z)OV[ 12(}" - l)r_li.r—Z - (r+4)ﬁi,r]
s,i=1 r=0
Nepec: Ny @ {B.0.5} oi; {B.0.5} 071 {B.0.5}
- ior) D au |Taole+P)+ D Togng | + o | Toole+P)+ > Togng| ¢ (Cl4)
s,i=1 r=0 q q q q
Ngpee N
2 spec 2
Tan = _5 TA("?)Or[ (2}’ - 2)ﬁi,r—2 - (21" + 5)ﬁi,r]» (ClS)
s,i=1 r=0
Nspec N2
2 . _ -
bt =D Yo mi(r= D = @r+ 3)mi, + (r 4+ i), (C16)
s,i=1 r=0
Ngpee N =(q) (@)
2 e _ oK; oK},
W =230 Sl R 4 R i Tt i) c1)
s,i=1 r=0
2Nspec Nz
£ = =520 2 o miEiL — K1), (C18)
5s,i=1 r=0 h ’ ’
Ngpee N =(q) (9) () (9)
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APPENDIX D: COMPARISON TO A SINGLE-COMPONENT FLUID

In previous works the transport coefficients in the equations of motion were calculated in a similar manner as explained in
this paper. In order to facilitate a comparison and for the sake of completeness, we recall the notational convention and
provide some basic relations.

For an arbitrary function of energy, F(E; ), the irreducible tensors satisfy the following orthogonality condition [22]:

T 1o
[P k) = 0 pnve [ AR Bk (D1)

Therefore, for a given species i, any irreducible moment of tensor rank £ of arbitrary order r < 0 may be expressed as a
linear combination of irreducible moments of the same tensor rank #, but with different power of energy n as

1 cHe Zpﬂl Mf]:'l e (Dz)

where for r, n > 0, F (_f,),n = §,,,. Therefore, for r - —r, we obtain

N,
p’lll—rW = Zplﬁz Mfzrn’ (D3)
=0

where using Eqgs. (21) and (52) we defined the following coefficient similar to Eq. (66) of Ref. [21]:

14 7! r al 0) 7(0
]:.E,i)r.n = (sz ) /dK ETkHz kn( aﬂki k{ )ffg,k)fz(k)
_ z : Z : l :Fr+m+2f 3 al n)na,(i)/m- (D4)
o —— Jines '

Therefore, using these results one can also show that the expansion coefficients are related as
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n/
J.
S 2 ) ) = S Sy >
J LunLnm e
= Jiser

which in the case of a single-component system is equivalent to the matrix equation provided in Appendix E of Ref. [21].
Truncating these expressions in the (10 + 4N, )-moment approximation, hence using Eq. (D3) with the summation limits
Nog=2, N, =1, N, =0 for the various tensor ranks, we obtain the following relations:

Ny
3 1
’Di’_rEZ'Di’”Fl(‘.OrnN Hf—zro—i_pll}-zrl_l_pl <m f—zr0+fzr2> (D6)
N,y
p;i‘,—rEZp/i‘,nj:g,lr Nv”flro—’_wﬂ}—trl’ (D7)
pél.yr Zpln i,r,n ﬂ}iw]:zro (DS)

Furthermore, using Egs. (D6)—-(D8) for irreducible moments with positive r we obtain similar relations by replac-
ing —r —r.

On the other hand, summing Eqgs. (D6)—(DS8) over species, the irreducible moments of the mixture also lead to the
expressions for a single-component fluid in the Landau frame,

:pec spec N, 0 3

p_ r—Zp, » Zzpzn Fou ™ = +oq), (DY)
i=1 n=
Nipec Nipee I, single
pﬂr_zpz —r ZZID):H‘}— r.n —g> Vﬂyr +O( ) (DIO)
i=1 n=
Nspee Noper Nz smgle (2)
p}iﬂr — Zp ZZ'D i,r,n U?’r + 0(1)’ (Dll)
i=1 n=

where the coefficients ygf) are listed in Ref. [21] for the case of a single-component fluid, i = Ny = 1.

Notice that moments with negative power of energy are expressed as a linear combination of moments with positive r
which represent the coupling between moments even for simple fluids with a single conserved charge. On the other hand in
mixtures the summations over all particle species lead to further couplings, which renders the above expressions rather
difficult to use. To circumvent this we have introduced the order-of-magnitude approximation in Sec. III C to express the
negative moments and their sums.

Furthermore, in order to compare the irreducible moments to Eqgs. (108)—(110), we have to demand

HEI.—r = H}/g())’ ﬂlw?/l,—r = ﬂﬂny’Z)a (D12)
and since we are dealing with a single charge, say ¢, then V4 = gV* and hence

ViR, = qvipt. (D13)

APPENDIX E: PERFORMING THE COLLISION INTEGRALS

In order to evaluate the transport coefficients first we need to calculate the irreducible moments (90) of the collision term
(2). These moments are related to the entries of the collision matrix defined in Eqgs. (91)—(92). For the sake of convenience
we define the following tensor, similarly as in Ref. [21]:

M1 HeV1Veym HiHeViVeym eV Veem
stjabr _L"sz]abr — Isijab.r ’ (El)

where the loss term is
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[:I;IIJHZ(’:’I Verm — / dKidK;fS,(i()fﬁ?lz/Eﬁlk?l . k”/( v l//’+m5 + k/l/l . .k/;mm5js) / dPadP’ fcjk_)—;Zp fa be o (EZ)
while the gain term is

sijab,r ij—ab

1 VL Ve m _/dK dK/f, kf k,Er_lkﬂl k/;t’ /dPadP;] W’fk'*l’l’"‘é%}cé?}))/( pafm Sus +p/U1 p/l/f+;n5 ) (E3)

Therefore, once we have evaluated the corresponding X-tensors, the elements of the collision matrix A7)
be obtained by calculating the following projections:

in Eq. (92) can

s, rn

f (f) a( spcc

H rn Z Z f' Zf _|: = Sn = Z ul/ﬂr] T Uer,,,Alljll:::g:(XYl]ab r)ﬂll :{f;rm (E4)

n =n m=0 ‘2ff

In order to evaluate the dP,dP), integrals of the loss term it is useful to choose the center-of-momentum (CM) frame to

kk' —)pp

perform the integration over the transition rate W, i—ab

. The total momentum involved in binary collisions, P} = kf 4 k",
defines the Mandelstam variable

s= (K +Kf)? = (P + py)* = PiPr,. (ES)

The CM frame is defined such that
Vs =k + k) = pi+ pp = PY, (E6)
0=k, +Kk,=p,+p, =P (E7)

In the following, we use the following substitutions:

dx |pld|p|
— 0 10
X = Pa + Pp > — 5 E8
b x  pIpy (E8)
and
1
Pl =57 =) (% = ), (E9)

where |p| = |p,| = |p}|. and my = (m, & m,)*. Therefore, the second integral in Eq. (E2) leads to

kk/_> S~ 0 ~ 0 1 m_
7Dab = /dPadPZWijaaip szl))fg,l),/ - 5 16( )2 |Ml/—>ab|2fa ffb \/‘\/< S+) (1 - T) ’ (EIO)

where, we introduced the notation
a;
exp (By/m? +5(1-"9)(1-") - ;) +a

Now using this result the remaining integral in Eq. (E2) can be calculated. For later use we define the angle-integrated
transition probability:

(E11)

Mian V3 = [ 00Myas (V5 Q)P =21 [ a95in My (5. 0 (E12)

0

where 9 is the scattering angle in the reaction plane defined as

(kﬂ - k/ﬂ)(pu - p//t) )

cosd = = k’ﬂ)2

(E13)
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The integral in Eq. (E3) is more tedious. Here, we restrict ourselves to isotropic scattering processes, hence all integrals

only depend on the normalized total momentum P4 = (k!
— P P% orthogonal to the total momentum, A%’ Py, = 0. Therefore, similarly to the thermodynamic

operator A%’ = g

u . . L
+ k)/+/s. We also introduce the corresponding projection

integrals in Eq. (18), we decompose the integrals in terms of the normalized total momentum and the associated orthogonal

projection operator,

[ZR2E7
(O

= / dpP,dP,W

[n/2] D-my|

m : (2
= A R L
Z( ) m!(n—2m)! "

m=0

where the coefficients are

(=1)" /
c,, =——_|[dpP,dP
T 0m + 1)1 b

(_l)m 1

kk —pp’
ij—ab fa bep

Un

*Pa

. A;zm,ll/zpn‘i);}m+l L. pl]/wn)ca’nm’ (E14)

kK —=pp’ 7(0) %(0 a a\n—2m

ij—ﬂl[b)p fg,%fg,s)/(AP-aﬁpapa) (PT aPa ) -

| M s"/2 m) (pom\
= @t e M- ol |15 (175
n=2m

(E15)

e[ (1-2) (-]

APPENDIX F: CLASSICAL,
ULTRARELATIVISTIC SYSTEM WITH
HARD-SPHERE INTERACTIONS IN
(10 +4N,)-MOMENT APPROXIMATION

In this appendix we evaluate the transport coefficients of
the theory in the (104 4N,)-moment approximation
(Ng=2, Ny =1, and N, =0) for a classical (a; — 0),
ultrarelativistic (m;/T — 0) multicomponent gas with elas-
tic hard-sphere interactions, for which the transition rate is
given by Eq. (11). Equivalently, in Eqs. (E10) and (E15) we
can just replace

1

16 ( )2 |M ]—>ab|

( ia jb + 5ib5ja)so-totv (Fl)

with 6 ;; = 0, = const. With this replacement, we obtain
for Egs. (E10) and (E15)

Pab = E (5za5]b + 5zb510)satot7 <F2)
1 (_1)m s(n+2)/2
Ca.nm = E (5ia5jb + 6ib5ja) (2m n 1)” on Oiot- <F3)

Furthermore, according to Eqs. (47), P = vaz"l P; is the
total pressure of the system, and it fulfills the ideal gas laws
e =3P and i’li:ﬂPl‘.

1. Collision matrix and its inverse

In the following we evaluate the collision matrix (E4) for
the vector and tensor moments. The scalar moments play no
role since their transport coefficients are proportional to
mass, and therefore vanish in the ultrarelativistic case. In
these calculations we make use of the ultrarelativistic limit
of Eq. (ES), leading to s = 2k; ,k";.

Furthermore, in the classical limit, we express the
thermodynamic integrals in terms of the partial pressure

of the respective species,

(m+1)! 1

1
Joo=1 = F4
nm ,nm 2 (2m + 1)!!/3"_2 ( )

where the thermodynamic integrals are related by

[i,n+2.m = mzz[i.nm + (21’!’! + 3)Ii,n+2,m+1' (FS)

Following Eq. (D5) the relevant expansion coefficients in
the (10 + 4N, )-moment approximation are

0 _

a‘p=1, ¥V £2>0, (F6)
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a. Tensor moments (£ =2)

The only relevant contraction of the X-tensor reads

NSPCC NS eC
4 P 2
AﬂlﬂZI/]I/ZXI;II;;Z[I;I:Z =g Cuwt Z {(25,'5 =8 )i rra0lj10 + 3 (85 + 5js>1i,r+3.01j,20:| , (F8)
j.a,b=1 j=1

and therefore the elements of the collision matrix (E4) for the tensor moments read in (10 + 4N, )-moment approximation
(note that N, = 0)

( ) spcc Nspcc

la a 0, 2

2 K OO K 00 A v
v lEs,)OO E : ﬂlﬂZVIDZXglljﬂazb 1(;/2 = E : (25i5 - 5]'5)11',4011',10 2
2 101 4, i 4245 3

(6is + 5js)li,301j,20:| . (F9)

Expressing this in terms of the pressure, we obtain

ﬁpec
Utotﬂ P,P] _ ) N
zs ()O ts ]s -

(45,,P = P;), (F10)
and in the single-component limit (Ng,e. — 1), where P; = Py = n,/f5, we reproduce the result from Ref. [21]:

11 00~ Aoo = %tno (F11)
Here, Eq. (F10) defines the entries of an N,..-dimensional rectangular, regular matrix. The elements of its inverse are

2 5 1
@
51,00 Gtotﬂ 12P2

(365;P + Py). (F12)

b. Vector moments (£ =1)
The relevant contractions of the X-tensor for the vector moments are

spec Nspec
1

Z Aﬂ,plxg;jyalb » = Ot Z (65— 8i5) (gli,r+1,01j,20 + 1i.r+2,01j,10>7 (F13)

j.a.b=1 j=1
SPC( NSPCC 6
I

Z Aﬂlv, uuzX’;;jalbzr = Oyot Z |:§ (25js - 51&)11 r+1 OIj 303 9 (513 + 515)11 r+2, OI] 20 T3 9 (5 - 25is)li,r+3.01j,10 s <F14)

j.a,b=1 j=1

thus the elements of the collision matrix (E4) read in the (10 + 4N q)—moment approximation (where N; = 1):
1 (1> apec.

a
’O s,n'm TR
_,E § § AH1 JPH T P
zs rO uvv MU1+m st/ab r

n'=0 m= 5‘21 ja.b=1

Npee
o
6It0;1 Z{(a\ 00“5 (;o + “( 1>oa< 1)0)( :s)( ir1.00j20 + 1ip20l;, 10>
s

6
+ afv ])Oafv |:§ (25js - 515)11 r+1 OI] 30 += 9 (5js + 515) i,r+2, OIj 20 += 9 (5 - 25ix)1i,r+3,01j,10:| }7 (FIS)

and
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1 g g Nopee
Afi)r _ __ s.11%s,1m U, ---u, AR AT e
s.rl 2 ,;) 31&2] et 2 1+m sijab,m
o Nspeg 1
0 1 1
ST Z{aﬁ.ﬁlaﬁ.&(éﬁ - 5i) (5 Liroljoo + 1i,r+z,01,»,m)
5,21 =
m 1 (2 4 6
+ag a1 9 (265 = 6 )i r 10030 + 9 (8j5 + 6i)1 ;i ri201 20 + 9 (8js = 26i )i r130lj10] ¢~ (F16)
After some calculations, the relevant matrix elements read in terms of pressure:
spec i J 4
,5 00 Gtotﬁz ]s - lS) = §6t0tﬂ(25isp - P,’), <F17)
W 1 E=pPp 1
Aisho = =500 )5~ (81 = 8s) =5 0(8iP = Py). (F18)
=1
(1 ISP L
Aisor = _Eatotﬁ Z 2 (6js +6is) = _Eatotﬂ (6isP + Py). (F19)
R
speL 1
,s 11 = Utotﬂz J (5 - ) = Eo-totﬂ(éi.vp - Pi)- (FZO)
Equations (F17)—(F20) are the elements of the four ) 9 1 1 0
Ngpec-dimensional rectangular block matrices of the = 4 cufPo\0 0) (F23)

(2Ngpec X 2N gpec )-matrix AW Tts single-component limit
(Ngpee = 1) 1s consistent with Ref. [21]:

( )—%amTﬂPO(g _oﬂ) (F21)

We observe that the .A(") matrix is singular even in the
single-component limit. This is due to the momentum-
conservation equation. In order to construct the inverse
matrix 7(1), we follow the steps presented in Appendix G by
introducing the reduced matrix A" (therefore effectively
removing the irreducible moment p’f_l), inverting it, and
adding zero elements corresponding to the originally
removed rows and columns to that inverse, yielding (1),
We illustrate this procedure in the single-component limit.
The reduced matrix and its inverse then just consist of one
entry,

1
Ag l).OO
1
“Ag 1),10

1
"42 1),01

A =
1
‘A(ll).ll

z(1) :2 !

and .
4 Gtotﬂ P 0

4
=34 GtotﬂPOv

A0
A 9

(F22)

Adding zero elements yields the final inverse

In the multicomponent case, we find the following entries
of the 2N, -dimensional rectangular inverse matrix:

(1)

T5i00 = W(%MP +9Py), (F24)
iy = ﬁ (G5i = Oy ) (F25)
o = T (1= 0, )P = 0aP). (F26)
T.(nl',>11 = ﬁ%‘(l = SN )- (F27)

We note that the elements Tgll-_)w are indeed constructed in a

way that they vanish in the cases n =1 and s = N, or
r=1and i = N, (i.e., the row and column which was
originally removed from .A(1)). We remind the reader that
adding these zeros simplifies our notation in this work.
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2. Transport coefficients

Now that the collision matrix has been determined,
we can proceed to calculate the transport coefficients
of the theory. We remark that the scalar moments
have not been discussed since the bulk viscous pressure
vanishes identically in the ultrarelativistic (massless) case,

M= ZS ry ”3’ ps0 = 0. The coefficients in the (10 + 4N ,)-
moment approximation (No =2, Ny =1, N, =0) have
been defined in Sec. III D and Appendix C. We evaluate
them in the ultrarelativistic scenario, where all mass terms
vanish. Since the transport coefficients are defined via the
coefficients listed in Egs. (98)—-(100), these have to be
evaluated first. For this, we introduce shorthand notations
for the charge concentration of type ¢, and the concen-
tration of the charge combination gg’ in the system,
respectively:

spec spec

q—ZqJ P and cqq’—ijq/ P

Further, the derivatives in temperature and chemical poten-
tial of the weighted partial pressures of a classical gas read

o (P; 0 (P; P;
0 d —[2) ="L(g: -
0ﬂ< > " G <P> pl0=co)

q

(F28)

(F29)

and from this the derivatives in the charge concentration
follow

Jc oc
-0 and —ZL=c¢

—_— / — /o F
op da, ~ Coa ~Cacs (F30)

respectively. The relevant expressions for the vector and
tensor moments are then obtained from Eqgs. (98)—(100) as

Ngpee N,

_ @ @ _4P 1
Nso = T =5 F31
° ZZ "3 o
NQECN
‘ 8 P .
(F32)
Npec N,
26 P
¢= u r tr 1- 5 ~)_S(qu_c .
(F33)

From this, the shear viscosity and the diffusion-coefficient
matrix immediately follow:

Nspec
4 1
N= D) Nso=5—>> (F34)
; " 30

NS eC
zp: °
K ==\ Cyuy —
qs 5,0,q 17O-tot q9

s=1

7
128 1

Keq =

cq/). (F35)

It should be noted that the derivative of the above diffusion
coefficients in inverse temperature, and therefore also from
its inverse, vanishes,

0 0

%K‘qql =0 and % (K_l)qqr =0.
We note that the result for the shear viscosity is the same as
in Ref. [21], while the diffusion coefficients are different
since they depend on the various charges in the system,
which are not taken into account in a single-component
approach. However, in the limit where there is only one
conserved particle species in the system (i.e., N, = 1 and
gs = 1 and therefore ¢, = ¢, = 1), the obtained expres-
sion is equivalent to the value derived in Ref. [21], x = 3/
(160,). We also remark that from the above equation we
read off that the diffusion-coefficient matrix is symmetric,
Kqq = Kgq as shown by the Onsager reciprocal relations
[12,13]. The relevant weighted base coefficients then read

(F36)

Nio Pi
=—=—, F37
7]10 n P ( )
— 2) — ﬁPl
i1 = ‘7:5,1),0’71',0 =5p° (F38)
@ {B.0.5}
fci% = Z Kiog (K )gq
q/
{B,0.S}
8 P, T
= ). —=\| g ———=c, |, F39
176 %: (x )qu (qz 128cq> (F39)
{B,0.5}
() _ 26 P
Kir = 1766 %: (x )q’qF(qg_cq’)(l_5iNspec>-
(F40)

For the relaxation times defined in Eqs. (116) and (119)
we get

5 1

_5 , F41
T 3P (F41)
{B,0.5}
9 (T84 4741
Tq’q :m %: (K >11”C] (Ecqnq/ —mcq”cq’)
snged 1 (F42)
4 foo P

We again note that also the relaxation-time matrix is
symmetric, 7,, = 7, It is further apparent that the shear
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relaxation time is equivalent to the value derived in Ref. [21].
In the case where only one conserved particle species is
present (see above), such an equivalence is also recovered
for the diffusive relaxation time, 7, = 27/ (64ﬂ6tzotpk‘) =

9/(4p0P), as indicated with the notation ¢ “ In the
following we will keep this notation, and continue Wlth the
second-order coefficients. For the coefficients in the shear-
stress tensor equation, defined in Appendix C 3, we get

4
bux =37 (F43)
10
Trn = = T (F44)
J
s _ L {BZQ’:S} () |40, 17551
K " —_— ,oy ———
W ot P " 791867 17 55488

1"

4 {BZQ:S} P {%S}(K_1> 196
Poiy dayr | 4 "4\ 289 €

{B.0.5}
52 1
Lﬂ(Q) — -1 , ,
V% Slﬂzdt ) ; (K )q q(c qNWC)
P i
Npee Single 0. (F45)
(q) 0 (q) qmgle
Ty = 4p % fﬂv 7fﬂv (F46)
@a) _ 9 o) P, (@) () single
A =— f “c,— f —2¢,0 —=0. F47
zV N + 4 tI 0ﬁ q v T ( )

For the coefficients in the vector equations of motion (see
Appendix C 2) we derive:

52 4P
289 (c ’on— Cq/cqu) ? (TOO +

Cq/cqm>‘|

B.0.§
)

1109
2312

1 & S} ﬂ {B.0.5} single
289 q aa ” _ q"q C g C /C ///) Tq”O + Z Z Tq//qu/cq/// —_— Tq, (F48)
a q
{B.0.5} '
(d".q) 9 1 2768 20879 single 3
A = o 0 n /" "o " -7, F49
YV T 6860, P ; (™), ‘1<765 Ca'd T 004000 ) T 5% (F49)
/ 9 single ﬂ
£ = > 55Ty F50
VT 800 P - 20 (F50)
/ 7\ single ﬂ
Ti/q;z) = "pg/q;z) — 5" (F51)
(d.q) _ 28 1 295 single ﬂ
/IVqJTq — g—dtmp (qu/ —mcch/ —_ 2—0’Z'q <F52)

Note that the coefficient z,,, from Denicol (2012) [21] was

single 1 (q")
defined as 7,, = 5 TV,[ , which then yields z,, = Sf’;)rq.
Therefore, in the single-component limit we retrieve the

same coefficients as in Ref. [21].

APPENDIX G: INVERTING THE COLLISION
MATRIX

For the calculation of the transport coefficients, the inverse

of the collision matrix A*) = (.Af J >m) from Eq. (90) must be
calculated. In the tradition of Ref. [21], we provide a detailed
discussion of the derivation of the linearized collision term
(see Appendix E) and its inverse. In this section, we show that
the collision matrix is singular in the cases £ = 0 and £ = 1

due to the conservation of energy-momentum and charge.

|
While in the single-component system the construction of
the inverse was immediately clear [21], in the case of a
multicomponent system such a construction is not obvious.

The conservation equations (73) for the various charges
imply that certain moments of the Boltzmann equation
vanish,

spec :pec

Z q:Cio = Z ai / dK K40, f;x = 0.

Similarly, projections of the conservation law (74) for energy
and momentum give

(G1)

spec spec

ZCH = Z/dKiEi,kk'{aufi.k =0,
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N. spec

S el =

i=1

spec

/de o,fix=0.  (G3)
These relations imply that a subset of row (or column) vectors
of the collision matrices A“) are linearly dependent. Since
the irreducible moments p//.** are in principle independent

of each other, Eq. (90) implies that the following linear
combinations of the elements of the collision matrix must
vanish:

spec

O_qu ls]n’ (G4)
Nspec

0= A (G9)
i=1
Nspec

0= 'Az('sl,)ln' (G6)

This means that the conservation laws render the collision

matrix for the scalar moments, .A(?), and the vector moments,
|

S
%
(=)
2
g:
X
=
Il

N1 N:pec N: ec

S Al -

n=0,#1 s=1 s=1

Azs rOp#O

First, we note that the term marked with (%) vanishes for
§ = Ngpec- Therefore, we can extend the last sum to run up
t0 5§ = Ngpec. In the last step of the above equation, we
introduced the matrix .,zl(l), which is a reduced version of
the matrix A" with the row corresponding to r = 1 and
i = Ngpee and the column corresponding to n =1 and
s =N specs respectively, removed, i.e., its elements read:

"zlgsl?rn = 'At(s1>rn forn 7& 1 and 'Azs rl — ‘Az(;)rl - Az('ll\’)spec,rl .
(G9)
Then, AV is an (Ngpec - Ny — 1)-dimensional, rectangular,

regular matrix.

An explicit example for the construction of the corrected
matrix is given in Appendix F in the case of an ultrarelativistic
gas mixture. We further note that, we are free to choose which
irreducible moment p; | we remove from the set of equations
of motion, and thus we could have chosen any line and
associated column (corresponding to that particular moment)
to be removed (e.g., o instead of py ).

AW, singular. We note that the tensor moments (£ = 2) are
not affected, and thus A is in principle regular. For a
meaningful fluid-dynamical theory, an equivalent description
of the above discussed collision matrices has to be found such
that they are rendered invertible, and at the same time their
microscopic information is not altered. The linear dependence
further implies that N, + 4 equations need to be removed
from the set (83), (85), and (87) of equations of motion, i.e.,
N, + 1 scalar moments p; . and one vector moment p’l’ , (three
equations). In the case of the vector moments, the choice of the
frame provides a relationship between the vector moments,
and it allows us to eliminate one of them from the equations of
motion entirely.
For the Landau frame, from Eq. (70) we have

Nspec_

1
p‘;]spec Zl p‘:l ’
i=

while in the Eckart frame we could impose via Eq. (B12)

qupec —h Z g P, 0 Zf\ipfc ! /!, As before, we
proceed in the Landau frame. With the help of Eq. (G7), we
can write:

(G7)

1 S ec
Z ‘Al('s.)r() Z AH rlps 1 + Azngec rl:D};Vgpec
s=1

-1

spec

zNW 1) Z Z Als rnPs n (G8)
X n=0 s—
|
Once the reduced collision matrix A" is obtained it can be

inverted. This yields the reduced inverse #!) of dimension
Ngpee - N1 — 1. In order to make the inverse 7(D equivalent to
the one of dimension N . - Ny introduced in Eq. (93), and in
order to keep a simple notation regarding the summations
over the indices r and s in all equations following that
definition [e.g., Egs. (95) ff.], we add zero-element row(s)
and column(s), which correspond to the ones originally
removed from the matrix A", For instance, in the case of the
vector moments this means that we add a zero row for r = 1
and i = N, and a zero column for n = 1 and 5 = N
Due to the zero-element row and column, the removed
irreducible moment p‘,’vgpwl, even though it formally still

appears in the equations following Eq. (95), effectively does
not contribute anymore.

The procedure is analogous for the removal of the N, + 1
scalar moments. The energy- and charge-conservation laws
provide N, + 1 relations for the linear dependence of the row
vectors of matrix A(). These are given by Eqgs. (G4) and
(GS5). In order to remove the corresponding moments, we
impose the Landau matching conditions,
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N spec N. spec

Zﬂi.z =0, and Z gipin = 0.
i=1 i=1

The corrected matrix A% is then an (Ngpec *No =N, = 1)-
dimensional, rectangular, regular matrix and its elements can
be written as:

(G10)

~(0 0 ds 40
Ags.)rl = Ags.)rl - a’AS/L)rl’

(G11)

A0 _ 40

is,rn is,rn

forn #1,2,

and AV — A —AE%Q,

is,r2 = Y ls, 2

where again i #A forr=1,2,and s #A forn =1, 2. It
should be noted that the N, charge-conservation laws and the
N, matching conditions associated to the net-charge den-
sities only allow for the removal of moments corresponding
to species A with nonvanishing charge of type ¢, ¢; # 0. This
can be understood by noting that the above relations (G11)
are not well defined when ¢; = 0. In order to simplify the
notation in this work, we construct the inverse 7(?) as an
(Ngpec - No)-dimensional, rectangular matrix, which is the
inverse of A*) and contains zero elements for the rows and
columns which were removed from A(©),
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