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We derive multicomponent relativistic second-order dissipative fluid dynamics from the Boltzmann
equations for a reactive mixture of Nspec particle species with Nq intrinsic quantum numbers (e.g., electric
charge, baryon number, and strangeness) using the method of moments. We obtain the continuity equations
for multiple conserved charges as well as the conservation equations for the total energy and momentum in
the single-fluid approximation. These 4þ Nq conservation laws are closed by deriving the second-order
equations of motion for the dissipative quantities in the ð10þ 4NqÞ-moment approximation. The resulting
fluid-dynamical equations are formally similar to those of a single-component system, but feature different
thermodynamic relations and transport coefficients. We derive general relations for all transport coefficients
and compute them explicitly in the ultrarelativistic limit.

DOI: 10.1103/PhysRevD.106.036009

I. INTRODUCTION

Determining properties of strong-interaction matter from
experimental data measured in high-energy heavy-ion
experiments at BNL-RHIC and CERN-LHC is largely
based on relativistic fluid-dynamical modeling, see, e.g.,
Refs. [1–5]. Consequently, relativistic fluid dynamics has
become an indispensable tool in the description of the
dynamical evolution of relativistic nuclear collisions.
The state of the art of fluid-dynamical modeling of

relativistic nuclear matter is based on the relativistic
second-order dissipative fluid-dynamical theory of Israel
and Stewart [6]. This theory and method is based on the
pioneering works of Grad [7] and Müller [8] and was
originally formulated for a simple fluid, i.e., a fluid with a
single conserved charge. On the other hand, one of the
basic features of the fluid created in high-energy nuclear
collisions is its multicomponent nature. For example,
hadronic matter produced in nuclear collisions consists
of a multitude of different types of hadrons, where each
hadron species carries multiple intrinsic quantum numbers
like baryon number B, electric chargeQ, and strangeness S.
Therefore, a multicomponent extension of relativistic fluid-
dynamical theories that explicitly accounts for multiple

conserved charges is required for a proper description of
heavy-ion collisions.
Previous attempts to derive second-order fluid-dynamical

equations of motion for relativistic multicomponent mix-
tures include the pioneeringwork byPrakash et al. [9], which
is an extension of Israel-Stewart theory to multicomponent
mixtures, and the works by Monnai and Hirano [10,11],
which generalize the equations of Ref. [9] by including
additional second-order terms aswell as providingOnsager’s
reciprocity relations [12,13] for the transport coefficients.
More recent developments by Kikuchi et al. [14] apply the
renormalization-group method to rederive the second-order
equations of motion including additional second-order terms
in the dissipative quantities resulting from the nonlinear part
of the collision integral.
Furthermore it has been shown in Refs. [15–18] that

many features of multicomponent systems depend on the
detailed coupling between the diffusion currents associated
with different conserved charges. In addition, the mapping
between the state of the fluid and the corresponding
momentum distribution of particles plays an important
role [19,20].
In this work, we present a derivation of multicomponent

relativistic second-order dissipative fluid dynamics for a
reactivemixture ofNspec specieswithNq conserved quantum
numbers by generalizing themethod of moments established*fotakis@itp.uni-frankfurt.de
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for single-component systems by Denicol et al. [21].
By summing the dynamical equations of motion describing
the individual particle species we obtain a reduced set of
equations corresponding to the so-called “single-fluid”
description of a multicomponent fluid. We derive the con-
tinuity equations for each conserved quantum charge as well
as the conservation laws for total energy and momentum in
this single-fluid approximation. These 4þ Nq equations of
motion are closed by providing second-order equations
of motion in the ð10þ 4NqÞ-moment approximation for
the dissipative quantities. The latter equations are formally
similar to the relaxation equations of a single-component
system but feature different transport coefficients, which
contain the microscopic interactions of all components.
Our approach reproduces the results of Ref. [21] for a
single-component fluid in the 14-moment approximation,
i.e., for Nspec ¼ Nq ¼ 1.
This paper is organized as follows. In Sec. II, we

introduce the Boltzmann equation, thermodynamic quan-
tities in local equilibrium, as well as fluid-dynamical
quantities, both in and out of equilibrium. The definition
of the local rest frame, the matching conditions, and
the conservation equations are also given. In Sec. III we
derive the equations of motion for the irreducible
moments from the Boltzmann equation, linearize the
collision term, and discuss the Navier-Stokes limit and
the order-of-magnitude approximation. Finally, the sec-
ond-order dissipative fluid-dynamical equations of motion
in the ð10þ 4NqÞ-moment approximation are derived
and discussed. We conclude this work with a summary in
the final section. Details of the calculations are delegated
to several appendixes. They also contain explicit expres-
sions for all second-order transport coefficients, as well
as an explicit calculation of the transport coefficients in
the ultrarelativistic limit.
Throughout this paper we adopt natural units, ℏ ¼ c ¼

kB ¼ 1, and work in flat Minkowski space-time with metric
tensor gμν ¼ diagð1;−1;−1;−1Þ. The timelike fluid four-
velocity is denoted by uμ ¼ γð1; vÞT, with normalization
uμuμ ≡ 1, where v is the three-velocity and γ ¼ ð1 − v2Þ−1=2.
In the local rest (LR) frame of the fluid, uμLR ¼ ð1; 0ÞT . The
rank-two projection operator onto the three-space orthogonal
to uμ is defined as Δμν ≡ gμν − uμuν. We define the projec-
tion of any four-vector Aμ onto the three-dimensional sub-
space orthogonal touμ asAhμi ≡ Δμ

νAν. The generalization to
projection tensors of rank 2l, denoted by Δμ1���μl

ν1���νl , is con-
structed using the elementary projection operator Δμ

ν. The
irreducible symmetric, traceless, and orthogonal projec-
tion of a rank-l tensor Aμ1���μl is denoted as Ahμ1���μli ≡
Δμ1���μl

ν1���νlA
ν1���νl . For example, the rank-four symmetric, trace-

less, and orthogonal projection operator is defined as
Δμν

αβ ≡ 1
2
ðΔμ

αΔν
β þΔμ

βΔν
αÞ− 1

3
ΔμνΔαβ, henceAhμνi ≡ Δμν

αβA
αβ.

The four-momentum of a particle of species i is
denoted by kμi ¼ ðk0i ;kiÞT, which is normalized to the

corresponding species rest mass squared, kμi ki;μ ¼ m2
i . The

energy of a particle of species i is defined as Ei;k ¼ kμi uμ,

and coincides with the on-shell energy k0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i þm2

i

p
in

the LR frame of the fluid. The orthogonal projection of the

four-momentum is khμii ≡ Δμ
νkνi , and in the LR frame it

reduces to the three-momentum ki.
The comoving derivative D≡ uμ∂μ of any four-vector

Aμ ¼ ðA0;AÞT is denoted by _Aμ ≡ uν∂νAμ ¼ DAμ, while the
space-time four-gradient is∇νAμ ≡ Δα

ν∂αAμ. Note that in the
LR frame these relativistic space-time derivatives reduce to
the usual time and three-space derivatives, ∂tAμ and ∇ ⊗ A.
Thus, the four-derivative is decomposed as ∂μ ≡ uμDþ∇μ,
hence the relativistic Cauchy-Stokes decomposition reads
∂μuν≡uμ _uνþ∇μuν¼uμ _uνþ 1

3
θΔμνþσμνþωμν. Here we

have defined the expansion scalar, θ≡∇μuμ, the shear
tensor σμν ≡∇hμuνi ¼ 1

2
ð∇μuν þ∇νuμÞ − 1

3
θΔμν, and the

vorticityωμν≡ 1
2
ð∇μuν−∇νuμÞ, such that σμνuν¼ωμνuν¼0.

Moreover, we label the conserved charge types in the
system with the letter q, which will be treated as an index
running over B (baryon number),Q (electric charge), and S
(strangeness) for the case a strong-interaction system. For
notational convenience, we employ the following notation
for the sums over charge types:

XfB;Q;Sg

q

≡ X
q¼B;Q;S

:

II. REACTIVE MIXTURES IN KINETIC THEORY
AND FLUID DYNAMICS

In this section we first introduce the Boltzmann equation
for a reactive mixture with special emphasis on the collision
term. Before we discuss fluid-dynamical quantities in local
equilibrium and out of equilibrium, we study thermody-
namic quantities in local equilibrium. This is followed by
a discussion of the matching conditions and the choices
for the local rest frame. Finally, we list the conservation
equations of second-order dissipative fluid dynamics for a
multicomponent fluid.

A. The Boltzmann equation for a reactive mixture

Amixture of Nspec different (elementary) particle species
(i.e., different chemical components) is characterized by
the single-particle distribution functions for each particle
species i, fðx; kiÞ≡ fi;k, where we label the particle
species by a lower index i. The space-time evolution of
the distribution function of species i is determined by the
relativistic Boltzmann equation [22,23],

kμi ∂μfi;k ≡ Ciðx; kiÞ ¼
XNspec

j¼1

Cij½f�; ð1Þ
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where we neglect any external forces and assume binary
collisions only for the sake of simplicity. For binary
inelastic, i.e., reactive collisions, the initial and final
particles species may be different, iþ j → aþ b, such
that the collision term reads

Cij½f� ¼
1

2

XNspec

a;b¼1

Z
dK0

jdPadP0
bðWpp0→kk0

ab→ij fa;pfb;p0 f̃i;kf̃j;k0

−Wkk0→pp0
ij→ab fi;kfj;k0 f̃a;pf̃b;p0 Þ; ð2Þ

where f̃i;k ¼ 1 − aifi;k=gi, with ai ¼ �1 for fermions/
bosons, and ai → 0 for classical particles, respectively.
Here, gi is the spin degeneracy of particle species i, while
the Lorentz-invariant integration measure is dKi ¼ d3ki=
½ð2πÞ3k0i �. Here, the factor 1=2 corrects for the double
counting when integrating over the momenta of particles in
the initial and final states [22].
The transition probabilities respect certain symmetry

properties under exchange of particles in the initial and

final states, Wkk0→pp0
ij→ab ¼ Wk0k→p0p

ji→ba , as well as the bilateral
normalization property of the microscopic processes [22],

XNspec

a;b¼1

Z
dPadP0

bW
pp0→kk0
ab→ij ¼

XNspec

a;b¼1

Z
dPadP0

bW
kk0→pp0
ij→ab : ð3Þ

In the absence of a reaction threshold, this relation is

invariant under time reversal, Wkk0→pp0
ij→ab ¼ Wpp0→kk0

ab→ij , i.e.,
microscopic reversibility or detailed balance. In the case of
a binary process the transition probability is [24,25]

Wkk0→pp0
ij→ab ¼ ð2πÞ4

16
jMij→abð

ffiffiffi
s

p
;ΩÞj2

× δð4Þðkμi þ k0μj − pμ
a − p0μ

b Þ; ð4Þ

where jMij→abð
ffiffiffi
s

p
;ΩÞj2 is the Lorentz-invariant transition

probability averaged over incoming and summed over out-
going spin states. It only depends on the total center-
of-momentum (CM) energy squared, s≡ ðkμi þ k0μj Þ2 ¼
ðpμ

a þ p0μ
b Þ2, and the solid angle Ω under which outgoing

particles are scattered with respect to the direction of the
incoming particles, while the δð4Þ-function ensures the
conservation of energy and momentum in each binary
collision. The differential cross section in the CM frame,
where ki þk0

j ¼ pa þp0
b ≡ 0 and k0i þk00j ¼p0

aþp00
b ≡

ffiffiffi
s

p
,

is defined via the invariant transition probability as

dσij→abð
ffiffiffi
s

p
;ΩÞ ¼ 1

64π2s
pab

pij
jMij→abð

ffiffiffi
s

p
;ΩÞj2dΩ; ð5Þ

where the incoming pij and outgoing pab momenta in the
CM frame are

pij ≡ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmi þmjÞ2Þðs − ðmi −mjÞ2Þ

q
: ð6Þ

Wenote that in the elastic limitpij ¼ pab.We define the total
(integrated over angles) cross section as

σtot;ij→ab ≡ 2πγab

Z
1

−1
d cosϑ

dσij→abð
ffiffiffi
s

p
;ΩÞ

dΩ
: ð7Þ

Here, the symmetry factor γab ≡ 1 − δab=2 accounts for
the double counting when integrating over the momenta of
indistinguishable particles in the final state. In the case of
isotropic scattering the differential cross section is

dσij→abð
ffiffiffi
s

p Þ
dΩ

¼isotropic σtot;ij→abð
ffiffiffi
s

p Þ
4πγab

: ð8Þ

In the elastic limit the transition rates in Eq. (2) are defined
as [22]

Wkk0→pp0
ij→ab ≡ γijðδiaδjb þ δibδjaÞWkk0→pp0

ij ; ð9Þ

where

Wkk0→pp0
ij ≡ð2πÞ4

16
jMij→ijð

ffiffiffi
s

p
;ΩÞj2δð4Þðkμi þk0μj −pμ

i −p0μ
j Þ:
ð10Þ

Note that in the above expression, we have already intro-
duced the symmetry factor, even though we have not yet
integrated over the momentum. For later convenience, we
can use Eqs. (5) and (8) to rewrite Eq. (9) in the case of
isotropic elastic scattering in terms of the total cross section
defined in Eq. (7),

Wkk0→pp0
ij→ab ≡ ðδiaδjb þ δibδjaÞð2πÞ6s

σtot;ij
4π

× δð4Þðkμi þ k0μj − pμ
i − p0μ

j Þ: ð11Þ

B. Local equilibrium and associated
thermodynamic quantities

In general the single-particle distribution function fi;k
for every species i can be decomposed into an equilibrium

part, fð0Þi;k, and an out-of-equilibrium part, δfi;k, as

fi;k ¼ fð0Þi;k þ δfi;k; ð12Þ

where the local-equilibrium distribution function of species
i is given by the Jüttner distribution function [26],

fð0Þi;k ¼ gi

�
exp

�
Ei;k − μi

T

�
þ ai

�
−1
: ð13Þ
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Due to detailed balance, the collision integral vanishes
identically for the local-equilibrium distribution function
[22]. Here, T ≡ 1=β is the temperature and μi is the
chemical potential of species i as defined in the local rest
frame. The exact form of the nonequilibrium part of the
distribution function δfi;k will be clarified later.
In various cases of interest such as in high-energy

particle physics or relativistic heavy-ion collisions there
are inelastic collisions where the particle number corre-
sponding to a given species is not conserved due to particle
creation and annihilation processes (i.e., various chemical
reactions). Such strong-interaction matter is therefore des-
cribed by a few conserved intrinsic quantum numbers, such
as electric charge, baryon number, and strangeness.
This means that in local equilibrium the chemical

potential μi of a given particle i may be expressed in terms
of Nq chemical potentials of conserved quantum “charges,”

μiðfμqgÞ≡
XfB;Q;Sg

q

qiμq ¼ BiμB þQiμQ þ SiμS; ð14Þ

where fμqg≡ fμB; μQ; μSg, with μB, μQ, and μS being the
baryon, electric, and strangeness chemical potentials,
respectively, while Bi, Qi, and Si are the baryon number,
electric charge, and strangeness of the respective particle
species i.
Now, we introduce the ratio of chemical potential over

temperature corresponding to particle species i asαi ≡ μi=T,
as well as the ratio of chemical potential over temperature for
the conserved quantum charges, αq ≡ μq=T. Applying the
chain rule, we obtain from Eq. (14)

dαiðfαqgÞ≡
XfB;Q;Sg

q

∂αi
∂αq

dαq ¼
XfB;Q;Sg

q

qidαq; ð15Þ

where the intrinsic quantum number of particle species i
can also be obtained as qi ≡ ∂αiðfαq0gÞ=∂αq. Note that the
infinitesimal change in any variable A, here denoted by dA,
can be interchangeably used for the comoving derivative,
DA, as well as the space-time four-gradient, ∇μA.
In local thermodynamic equilibrium, we define the

following rank-n tensor moments of given power r ≥ 0
in energy Er

i;k for any given particle species i as

Iμ1���μn
i;r ≡

Z
dKiEr

i;kk
μ1
i � � � kμni fð0Þi;k ¼ hEr

kk
μ1 � � � kμnii;0;

ð16Þ

where the angular brackets are the abbreviation of the
integrals,

h� � �ii;0 ≡
Z

dKið� � �Þifð0Þi;k: ð17Þ

Following Ref. [6], we expand the equilibrium moments
(16) in terms of the flow velocity and the associated
orthogonal projection operator, which leads to the follow-
ing expression:

Iμ1���μn
i;r ¼

X½n=2�
m¼0

ð−1Þm n!
2mm!ðn − 2mÞ!

× Δðμ1μ2 � � �Δμ2m−1μ2muμ2mþ1 � � � uμnÞIi;rþn;m; ð18Þ
where n and m are natural numbers, while ½n=2� ≤ n=2
denotes the largest integer divisible by two. The coefficient
n!=½2mm!ðn − 2mÞ!� counts the number of distinct terms
in the symmetrized tensor products Δðμ1μ2 � � �Δμ2m−1μ2m ×
uμ2mþ1 � � � uμnÞ. The coefficients Ii;rþn;m are thermodynamic
integrals which only depend on αi and β,

Ii;nmðαi; βÞ ¼
ð−1Þm

ð2mþ 1Þ!! hE
n−2m
k ðΔμνkμkνÞmii;0; ð19Þ

where ð2mþ 1Þ!!≡ ð2mþ 1Þ!=ð2mm!Þ is the double fac-
torial of an odd integer.
The total derivative of the thermodynamic integrals with

respect to the variables αi and β reads

dIi;nm ¼
�
∂Ii;nm
∂αi

�
β

dαi þ
�
∂Ii;nm
∂β

�
αi

dβ

≡ Ji;nmdαi − Ji;nþ1;mdβ; ð20Þ

where we have defined the auxiliary thermodynamic
integrals

Ji;nmðαi; βÞ≡
�
∂Ii;nm
∂αi

�
β

¼ ð−1Þm
ð2mþ 1Þ!!

×
Z

dKiEn−2m
i;k ðΔμνk

μ
i k

ν
i Þmfð0Þi;kf̃

ð0Þ
i;k: ð21Þ

An integration by parts with dfð0Þi;k=dEi;k ¼ −βfð0Þi;kf̃
ð0Þ
i;k

leads to the following relation between the thermodynamic
integrals:

βJi;nm ¼ Ii;n−1;m−1 þ ðn − 2mÞIi;n−1;m: ð22Þ
Furthermore, with Eq. (15) we obtain from Eq. (20) an
expression for the total derivative of the thermodynamic
integrals of species i in terms of the conserved quantum
charges,

dIi;nm ¼
XfB;Q;Sg

q

�
∂Ii;nm
∂αq

�
β

dαq þ
�
∂Ii;nm
∂β

�
fαqg

dβ

≡ XfB;Q;Sg

q

qiJi;nmdαq − Ji;nþ1;mdβ; ð23Þ
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from which follows�
∂Ii;nm
∂αq

�
β

¼ qiJi;nm: ð24Þ

For later use we define the thermodynamic integrals
summed over all particle species, which we denote by Inm
and Jnm. Similarly, the thermodynamic integrals of con-
served quantum charges, Iqnm, J

q
nm, as well as the auxiliary

thermodynamic quantities, Iqq
0

nm, J
qq0
nm, are defined as follows:

Inm ≡XNspec

i¼1

Ii;nm; Jnm ≡XNspec

i¼1

Ji;nm ¼
XNspec

i¼1

�
∂Ii;nm
∂αi

�
β

; ð25Þ

Iqnm ≡XNspec

i¼1

qiIi;nm; Jqnm ≡XNspec

i¼1

qiJi;nm ¼
�
∂Inm
∂αq

�
β

; ð26Þ

Iqq
0

nm ≡XNspec

i¼1

qiq0iIi;nm; Jqq
0

nm ≡XNspec

i¼1

qiq0iJi;nm ¼
�
∂Iqnm
∂αq0

�
β

:

ð27Þ

Now using Eq. (23) together with the above definitions, the
total differential of the thermodynamic integrals summed
over all particle species as well as that of the thermody-
namic integral of a specific conserved charge read

dInmðfαqg; βÞ ¼
XfB;Q;Sg

q

Jqnmdαq − Jnþ1;mdβ; ð28Þ

dIqnmðfαqg; βÞ ¼
XfB;Q;Sg

q0
Jqq

0
nmdαq0 − Jqnþ1;mdβ: ð29Þ

In terms of physical quantities, we identify the thermody-
namic integral of particle species i with indices n ¼ 1 and
m ¼ 0 as the particle density, ni ¼ Ii;10, while that with
indices n ¼ 2 and m ¼ 0 is the energy density, ei ¼ Ii;20.
From Eqs. (20) and (23), we then obtain the standard
thermodynamic relations

dni≡
�
∂ni
∂αi

�
β

dαiþ
�
∂ni
∂β

�
αi

dβ¼
XfB;Q;Sg

q

qiJi;10dαq−Ji;20dβ;

ð30Þ

dei≡
�
∂ei
∂αi

�
β

dαiþ
�
∂ei
∂β

�
αi

dβ¼
XfB;Q;Sg

q

qiJi;20dαq−Ji;30dβ:

ð31Þ

From these results and Eqs. (25)–(27), or directly from
Eq. (29), we may express the total differential of the density
of conserved charge q as

dnq ≡
XNspec

i¼1

qidni ¼
XfB;Q;Sg

q0

∂nq
∂αq0

dαq0 þ
∂nq
∂β

dβ

¼
XfB;Q;Sg

q0
Jqq

0
10 dαq0 − Jq20dβ

≡ XfB;Q;Sg

q0
ðT −1Þqq0dαq0 þ ðT −1Þq0dβ; ð32Þ

and the total differential of the energy density as

de≡XNspec

i¼1

dei ¼
XfB;Q;Sg

q0

∂e
∂αq0

dαq0 þ
∂e
∂β

dβ

¼
XfB;Q;Sg

q0
Jq

0
20dαq0 − J30dβ

≡ XfB;Q;Sg

q0
ðT −1Þ0q0dαq0 þ ðT −1Þ00dβ; ð33Þ

where, we have defined the following inverse matrix:

ðT −1Þqq0 ≡
0
B@

∂e
∂β

∂e
∂αq0

∂nq
∂β

∂nq
∂αq0

1
CA ¼

0
BBBBB@

−J30 JB20 JQ20 JS20

−JB20 JBB10 JBQ10 JBS10

−JQ20 JQB
10 JQQ

10 JQS
10

−JS20 JSB10 JSQ10 JSS10

1
CCCCCA:

ð34Þ
Equations (32) and (33) can be solved for dβ and dαq,

dβ ¼ T 00deþ
XfB;Q;Sg

q0
T 0q0dnq0 ; ð35Þ

dαq ¼ T q0deþ
XfB;Q;Sg

q0
T qq0dnq0 : ð36Þ

Note that the relations (32) and (33), or equivalently (35) and
(36), encode the thermodynamic response of the medium to
perturbations and contain information about the chemical
composition and/or the equation of state. These thermody-
namic relations will be used later in the equations of motion.

C. Equilibrium fluid-dynamical quantities

The equilibrium moments (16), for r ¼ 0 and for the
tensor ranks l ¼ 1 and l ¼ 2, define the partial particle
four-current and energy-momentum tensor,

Nμ
i;0 ≡ Iμ

i;0 ¼
Z

dKik
μ
i f

ð0Þ
i;k ≡ hkμii;0; ð37Þ

Tμν
i;0 ≡ Iμν

i;0 ¼
Z

dKik
μ
i k

ν
i f

ð0Þ
i;k ≡ hkμkνii;0: ð38Þ
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The tensor decomposition (18) of these quantities with
respect to an arbitrary timelike normalized flow velocity uμ

and the projection operator Δμν reads

Nμ
i;0 ≡ Ii;10uμ ¼ niuμ; ð39Þ

Tμν
i;0 ≡ Ii;20uμuν − Ii;21Δμν ¼ eiuμuν − PiΔμν: ð40Þ

Tensor-projecting these quantities leads to the partial
particle density, energy density, and pressure of species i,

ni ≡ Nμ
i;0uμ ¼ hEkii;0 ¼ Ii;10 ≡ I i;1; ð41Þ

ei ≡ Tμν
i;0uμuν ¼ hE2

kii;0 ¼ Ii;20 ≡ I i;2; ð42Þ

Pi ≡ −
1

3
Tμν
i;0Δμν ¼ −

1

3
hΔμνkμkνii;0

¼ Ii;21 ≡ −
1

3
ðm2

i I i;0 − I i;2Þ: ð43Þ

The sum over all particle species i of the partial equilibrium
moments leads to the total particle four-current, the con-
served charge four-currents, and the energy-momentum
tensor of the mixture,

Nμ
0 ≡

XNspec

i¼1

Nμ
i;0 ¼

XNspec

i¼1

niuμ ≡ nuμ; ð44Þ

Nμ
q;0 ≡

XNspec

i¼1

qiN
μ
i;0 ¼

XNspec

i¼1

qiniuμ ≡ nquμ; ð45Þ

Tμν
0 ≡XNspec

i¼1

Tμν
i;0 ¼

XNspec

i¼1

ðeiuμuν −PiΔμνÞ≡ euμuν −PΔμν:

ð46Þ
Note that in our case the conserved net-charge four-currents
are simply the electric, the baryon, and the strangeness four-
current. The primary thermodynamic quantities of the
mixture, i.e., the total number density, net-charge density,
total energy density, and total pressure, are obtained by
summing over all constituents

n ¼
XNspec

i¼1

ni; nq ¼
XNspec

i¼1

qini; e ¼
XNspec

i¼1

ei; P ¼
XNspec

i¼1

Pi:

ð47Þ
The particle and net-charge number as well as the energy are
extensive thermodynamic quantities, while the total pressure
of the mixture follows Dalton’s law of partial pressures.1

An equation of state determines these thermodynamic
quantities as functions of temperature and chemical poten-
tials, i.e., nq ¼ nqðT; μB; μQ; μSÞ, e ¼ eðT; μB; μQ; μSÞ,
and P ¼ PðT; μB; μQ; μSÞ.
Note that in local thermodynamic equilibrium the

individual particle four-currents, Nμ
0;i ¼ niuμ, as well as

the energy current of species i, Tμν
0;iuν ¼ eiuμ, are parallel

to each other. Therefore, all of these currents lead to the
same local rest frame of the fluid. Out of equilibrium the
fluid-dynamical four-velocity can no longer be uniquely
defined. Nonetheless, without any loss of generality, a
common flow velocity tied to a chosen local rest frame can
still be defined. The difference of fluid-dynamical quantities
from their local-equilibrium form will be discussed next.

D. Out-of-equilibrium fluid-dynamical quantities

Out of equilibrium, the distribution function differs

from its local-equilibrium form by δfi;k ¼ fi;k − fð0Þi;k.
Introducing a similar notation for the momentum integrals
as in Eq. (17),

h� � �ii;δ ≡
Z

dKið� � �Þiδfi;k; ð48Þ

and

h� � �ii ≡
Z

dKið� � �Þifi;k ¼ h� � �ii;0 þ h� � �ii;δ; ð49Þ

cf. Refs. [21,27], we define the irreducible moments of
tensor-rank l and energy-rank r of the deviation of the
single-particle distribution function from equilibrium for a
given particle species i,

ρμ1���μli;r ≡ Δμ1���μl
ν1���νl

Z
dKiEr

i;kk
μ1
i � � � kμli δfi;k

¼ hEr
kk

hμ1 � � � kμliii;δ: ð50Þ

Furthermore, we expand the distribution function fi;k
around fð0Þi;k as in Ref. [21],

δfi;k ≡ fð0Þi;kf̃
ð0Þ
i;kϕi;k

¼ fð0Þi;kf̃
ð0Þ
i;k

X∞
l¼0

XNl

n¼0

ρμ1���μli;n ki;hμ1 � � � ki;μliHðlÞ
i;kn; ð51Þ

where the irreducible tensors orthogonal to the four-flow are

khμ1i � � � kμlii ¼ Δμ1���μl
ν1���νl k

ν1
i � � � kνli . These tensors form a com-

plete and orthogonal basis in momentum space. The coef-

ficientHðlÞ
i;kn is a polynomial in energy of orderNl defined as

1These relations hold for systems which can be described
by kinetic theory; however, they are violated once the
Stoßzahlansatz [22] does not apply, i.e., when long-range
interactions or multiparticle correlations become non-negligible.
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HðlÞ
i;kn ¼

ð−1Þl
l!Ji;2l;l

XNl

m¼n

aðlÞi;mn

Xm
r¼0

aðlÞi;mrE
r
i;k: ð52Þ

In principle, the expansion in polynomials in energy is an
infinite series, i.e., Nl → ∞. However, we have already
introduced parametersNl < ∞ (for each l ≥ 0) at this point
since we will truncate the series later on in order to derive a

fluid-dynamical theory. The coefficients aðlÞi;mn are calculated
via the Gram-Schmidt orthogonalization procedure and can
be expressed in terms of thermodynamic integrals, see
Ref. [21] for more details.
Thus, similarly to the equilibrium moments we define

the out-of-equilibrium particle four-current and energy-
momentum tensor for particle species i as

Nμ
i ≡

Z
dKik

μ
i ðfð0Þi;k þ δfi;kÞ ¼ Nμ

i;0 þ ρμi;0

¼ hkμii;0 þ hkμii;δ ≡ hkμii; ð53Þ

Tμν
i ≡

Z
dKik

μ
i k

ν
i ðfð0Þi;k þ δfi;kÞ ¼ Tμν

i;0 þ ρμνi;0

¼ hkμkμii;0 þ hkμkνii;δ ≡ hkμkνii; ð54Þ
where Nμ

i;0 and Tμν
i;0 were defined in Eqs. (39) and (40),

respectively.
The tensor decompositions with respect to an arbitrary

timelike normalized flow velocity uμ, summed over all
particle species, lead to the total fluid-dynamical quantities
of the mixture,

Nμ ≡XNspec

i¼1

Nμ
i ¼

XNspec

i¼1

½ðni þ ρi;1Þuμ þ Vμ
i �

≡ ðnþ δnÞuμ þ Vμ; ð55Þ

Nμ
q ≡

XNspec

i¼1

qiN
μ
i ¼

XNspec

i¼1

½qiðni þ ρi;1Þuμ þ qiV
μ
i �

≡ ðnq þ δnqÞuμ þ Vμ
q; ð56Þ

Tμν ≡XNspec

i¼1

Tμν
i

¼
XNspec

i¼1

½ðei þ ρi;2Þuμuν − ðPi þΠiÞΔμν þ 2Wðμ
i u

νÞ þ πμνi �

≡ ðeþ δeÞuμuν − ðPþΠÞΔμν þ 2WðμuνÞ þ πμν: ð57Þ

The net-particle density, the net-charge density, the energy
density, and the isotropic pressure of the out-of-equilibrium
mixture are

nþ δn≡ Nμuμ ¼
XNspec

i¼1

hEkii ≡
XNspec

i¼1

ðni þ ρi;1Þ; ð58Þ

nq þ δnq ≡Nμ
quμ ¼

XNspec

i¼1

qihEkii ≡
XNspec

i¼1

qiðni þ ρi;1Þ; ð59Þ

eþ δe≡ Tμνuμuν ¼
XNspec

i¼1

hE2
kii ≡

XNspec

i¼1

ðei þ ρi;2Þ; ð60Þ

Pþ Π≡ −
1

3
TμνΔμν ¼ −

XNspec

i¼1

1

3
hΔμνkμkνii

¼
XNspec

i¼1

�
Pi −

1

3
ðm2

i ρi;0 − ρi;2Þ
�
≡XNspec

i¼1

ðPi þ ΠiÞ;

ð61Þ

with an equation of state relating the equilibrium quantities.
Note that the latter were defined in Eq. (47), while
the partial pressure appearing in the last equation was
defined in Eq. (43). Hence, it follows that the nonequili-
brium correction to the pressure, the so-called bulk viscous
pressure of particle species i, is

Πi ≡ −
1

3
hΔαβkαkβii;δ ¼ −

1

3
ðm2

i ρi;0 − ρi;2Þ: ð62Þ

The net-particle diffusion, the net-charge diffusion, and the
energy-momentum diffusion currents are

Vμ ≡ Δμ
νNν ¼

XNspec

i¼1

hkhμiii ¼
XNspec

i¼1

ρμi;0 ≡
XNspec

i¼1

Vμ
i ; ð63Þ

Vμ
q ≡Δμ

νNν
q ¼

XNspec

i¼1

qihkhμiii ¼
XNspec

i¼1

qiρ
μ
i;0 ≡

XNspec

i¼1

qiV
μ
i ; ð64Þ

Wμ ≡Δμ
αTαβuβ ¼

XNspec

i¼1

hEkkhμiii ¼
XNspec

i¼1

ρμi;1 ≡
XNspec

i¼1

Wμ
i : ð65Þ

Finally, the shear-stress tensor of the mixture is

πμν ≡ Δμν
αβT

αβ ¼
XNspec

i¼1

hkhμkνiii ¼
XNspec

i¼1

ρμνi;0 ≡
XNspec

i¼1

πμνi : ð66Þ

Equations (58)–(66) represent the fluid-dynamical fields of
the mixture, which (similarly as in chemical solutions) is a
combination of multiple particle species and where the
number of particles of an individual species may or may not
be conserved. Originally, these fields constitute 14Nspec

variables (10 for each energy-momentum tensor Tμν
i and 4

for each particle current Nμ
i ). We assume that the mixture

can be treated as a single fluid such that its space-time
evolution can be entirely determined in terms of the total
energy-momentum tensor Tμν and the charge four-currents
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Nμ
q. This approach reduces the number of unknown fluid-

dynamical fields to 10þ 4Nq.
2

Further, the out-of-equilibrium part of the distribution
function δfi;k was expanded in terms of an infinite set of
independent irreducible moments ρμ1���μli;n , each of which
obeys an equation of motion derived from the relativistic
Boltzmann equation (1) (see Sec. III). The dissipative fluid-
dynamical fields, Eqs. (62)–(66), are defined in terms of
(some of) these moments, and thus are solutions of these
equations of motion. The crucial step in the derivation of
fluid dynamics using the method of moments is to truncate
the infinite set of equations of motion for the irreducible
moments, and thus also the series in Eq. (51), in a well-
defined manner. To this end, the sums over tensor rank l and
over powers of energyn inEq. (51) are truncated. The latter is
already implied by the truncation parameter Nl, which
depends on the respective tensor rank l of the moment.
The lowest possible truncation inl and n is to account for the
lowest-order irreducible moments which explicitly appear in
the energy-momentum tensor (57) and the charge four-flow
(56), namely ρi;0, ρi;1, ρi;2, ρ

μ
i;0, ρ

μ
i;1, and ρ

μν
i;0. This leads to the

truncation l ≤ 2, and N0 ¼ 2, N1 ¼ 1, and N2 ¼ 0 in the
series in Eq. (51). This is the so-called ð10þ 4NqÞ-moment
approximation. As mentioned above, these moments, how-
ever, further depend on othermoments, whichmay also be of
higher tensor rank (e.g.,l > 2). In Sec. III Cwe discuss how
to further truncate the set of equations of motion.

E. Matching conditions and local rest frames

In local equilibrium the thermodynamic state of matter is
completely determined by a few scalar fields, namely a
common temperature T and the chemical potentials of the
constituent particle species αi, which are in turn given by
the chemical potentials of the conserved charges αq via
Eq. (14). A common way to determine these thermody-
namic variables in an arbitrary state (which is not too far
from local equilibrium) is to demand that the net-charge
densities and the total energy density are the same as in
some fictitious local-equilibrium reference state. These are
the so-called Landau matching conditions [28],

ðNμ
q − Nμ

q;0Þuμ ≡
XNspec

i¼1

qiðNμ
i − Nμ

i;0Þuμ

¼
XNspec

i¼1

qiρi;1 ≡ δnq ¼ 0; ð67Þ

ðTμν − Tμν
0 Þuμuν ≡

XNspec

i¼1

ðTμν
i − Tμν

i;0Þuμuν

¼
XNspec

i¼1

ρi;2 ≡ δe ¼ 0; ð68Þ

where ðNμ −Nμ
0Þuμ ≡

PNspec

i¼1 ðNμ
i −Nμ

i;0Þuμ ¼
PNspec

i¼1 ρi;1≡
δn ≠ 0, since the total number of particles is not necessarily
conserved. Furthermore, Landau’s matching condition for
the energy, Eq. (68), also leads to a simplification of the
bulk viscous pressure in Eqs. (61) and (62),

Π≡ −
1

3

XNspec

i¼1

m2
i ρi;0 ¼

XNspec

i¼1

Πi: ð69Þ

We note that using the matching conditions (67) and (68),
we can express some scalar moments by the others, and
thus reduce the number of scalar moments of the multi-
component mixture by Nq þ 1.
The number of independent unknowns is further reduced

oncewe choose a local rest frame, or equivalently a definition
for the fluid-dynamical flow velocity. The definition of
Landau and Lifshitz [28] leads to the so-called Landau
frame, or energy frame, and requires that the total energy-
momentum diffusion current of the mixture is zero,

Wμ ≡XNspec

i¼1

Wμ
i ¼ 0: ð70Þ

This directly implies that Tμνuν ¼ euμ, meaning that the
flow velocity uμ is the timelike eigenvector of the energy-
momentum tensorwith eigenvalue e. This choice reduces the
total number of unknowns by three and leads to additional
constraints between the remaining species-specific vector
fieldsWμ

i , i.e., there are only Nspec − 1 independent energy-
momentum diffusion fluxes in the mixture of Nspec different
species. Note that Eq. (70) also implies that if the fluid
consists of a single component, i.e., Nspec ¼ 1, there is no
energy-momentum diffusion present in this frame. Unless
stated otherwise, the Landau frame is our choice for the local
rest frame.
More traditionally, one may use Eckart’s definition [29]

to fix the local rest frame by demanding that the overall
diffusion of one of the conserved net charges, say that of
charge q⋆, in the mixture is zero,

Ṽμ
q⋆ ≡

XNspec

i¼1

Ṽμ
q⋆;i ¼

XNspec

i¼1

q⋆i Ṽ
μ
i ¼ 0; ð71Þ

where quantities in this particular q⋆-charge frame are
denoted by a tilde. However, in high-energy heavy-ion
collisions, where there are multiple conserved charges,

2Note that, naively counting the number of unknowns,
there are actually 15þ 5Nq degrees of freedom: 5 degrees of
freedom (d.o.f.s) for the Nq charge four-currents (nq, δnq, and 3
components of Vμ

q), and 4 scalar (e, δe, P, Π), 6 vector (uμ and
Wμ), and 5 tensor d.o.f.s (πμν) for the energy-momentum tensor.
However, one d.o.f. is reduced by the equation of state,
P ¼ Pðe; fnqgÞ. Furthermore, 4þ Nq additional d.o.f.s are
reduced by the matching conditions, see Sec. II E.
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which are not necessarily nonvanishing in all regions of
space-time, the definition of the rest frame according to
Eckart is less suitable.
Nevertheless, in case of a single nonvanishing conserved

charge q, the Landau and Eckart reference frames are
essentially equivalent, hence choosing one over the other is
a matter of taste. Namely, the energy-momentum diffusion
current in the Eckart frame can be related to the charge
diffusion current in the Landau frame via

W̃μ ≡ −hqV
μ
q; ð72Þ

where we introduced the enthalpy per charge, hq ¼
ðeþ PÞ=nq, see Appendix B for more details.

F. Conservation equations

Due to the fact that in binary collisions the net charges
as well as the energy and momentum of particles are
conserved, the equations of fluid dynamics of a mixture are
derived from the Boltzmann equation (1) as

∂μN
μ
q ≡

XNspec

i¼1

qi∂μN
μ
i ¼

XNspec

i¼1

qi

Z
dKiCi ¼ 0; ð73Þ

∂μTμν ≡XNspec

i¼1

∂μT
μν
i ¼

XNspec

i¼1

Z
dKikνi Ci ¼ 0; ð74Þ

where there are Nq independent charge-conservation laws.
Note that due to inelastic collisions the number of particles
of species i is no longer conserved and the individual
particle species satisfy rate equations, ∂μN

μ
i ≠ 0. On the

other hand, for purely elastic collisions the numbers of
particles are conserved, and the momentum integral over
each partial collision term vanishes separately, ∂μN

μ
i ¼ 0.

With Eq. (56) the Nq charge-conservation equations (73)
assume the form

∂μN
μ
q≡
XNspec

i¼1

qiDðniþρi;1Þþ
XNspec

i¼1

qiðniþρi;1Þθþ
XNspec

i¼1

qi∂μV
μ
i

¼Dnqþnqθþ∂μV
μ
q¼0; ð75Þ

where in the last step we used the first Landau matching
condition (67).
The conservation of energy of the mixture is obtained by

projecting Eq. (74) onto uν and inserting Eq. (57),

uν∂μTμν ≡XNspec

i¼1

Dðei þ ρi;2Þ þ
XNspec

i¼1

ðei þ ρi;2 þ Pi þ ΠiÞθ

þ
XNspec

i¼1

∂μW
μ
i −
XNspec

i¼1

Wμ
i Duμ −

XNspec

i¼1

πμνi σμν

¼ Deþ ðeþ Pþ ΠÞθ − πμνσμν ¼ 0; ð76Þ

where we have imposed the second Landau matching
condition (68) and also fixed the local rest frame according
to Landau’s convention, Eq. (70).
Using these conservation equations to replace dnq and

de in Eqs. (35) and (36) leads to the comoving derivatives
of the inverse temperature and the charge chemical poten-
tials multiplied by the inverse temperature,

Dβ ¼ −T 00½ðeþ Pþ ΠÞθ − πμνσμν�

−
XfB;Q;Sg

q0
T 0q0 ½nq0θ þ ∂μV

μ
q0 �; ð77Þ

Dαq ¼ −T q0½ðeþ Pþ ΠÞθ − πμνσμν�

−
XfB;Q;Sg

q0
T qq0 ½nq0θ þ ∂μV

μ
q0 �: ð78Þ

Finally, projecting Eq. (74) onto Δμ
β (which gives the

momentum conservation of the mixture), and using
Eqs. (68) and (70) leads to

Δμ
β∂αT

αβ ≡XNspec

i¼1

ðei þPi þΠiÞDuμ −∇μ
XNspec

i¼1

ðPi þΠiÞ

þΔμ
β∂α

XNspec

i¼1

παβi

¼ ðeþPþΠÞDuμ −∇μðPþΠÞ þΔμ
β∂απ

αβ ¼ 0:

ð79Þ

This leads to an expression for the acceleration Duμ of the
fluid. Noting that in local equilibrium the Gibbs-Duhem
relation holds in the form

βdP ¼
XfB;Q;Sg

q

nqdαq − ðeþ PÞdβ; ð80Þ

we obtain

Duμ ¼ −
1

β
∇μβ þ 1

βðeþ PÞ
XfB;Q;Sg

q

nq∇μαq

−
1

eþ P
ðΠDuμ −∇μΠþ Δμ

β∂απ
αβÞ: ð81Þ

Let us recount the unknown variables and equations of
the mixture. There are Nq conservation equations (75) for
nq and V

μ
q, representing 4Nq variables. The conservation of

energy and momentum of the mixture provides the four
equations (76) and (79), entailing e, Π, uμ, and πμν, which
represent 10 variables in total, since the equation of state
already defines the pressure in terms of e and the nq’s.
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Thus, in a dissipative mixture of Nq conserved charges we
have only 4þ Nq conservation equations for a total of 10þ
4Nq unknown fields. The additional equations for the
dissipative fields Π, Vμ

q, and πμν will be derived from
the Boltzmann equation in the next section.

III. SECOND-ORDER DISSIPATIVE FLUID-
DYNAMICAL EQUATIONS OF MOTION

In this section, we first derive the equations of motion for
the irreducible tensor moments for particle species i. For a
single-component fluid, these equations were first given in
Ref. [21]. Here, we extend them towards multicomponent
fluids. Then, we linearize the collision term and discuss the
Navier-Stokes limit as well as the order-of-magnitude
approximation, which provides a simple, and yet effective
way to close the set of equations of motion. Finally, we
derive and discuss the second-order dissipative fluid-
dynamical equations of motion.

A. Equations of motion for the irreducible moments

The equations of motion for the irreducible moments
ρμ1���μli;r are obtained directly from the Boltzmann equa-

tion (1) by multiplying it with Er
i;kk

hμ1
i � � � kμlii , integrating

over momentum space, and taking the comoving deriva-
tive. Then, projecting onto Δμ1���μl

ν1���νl , we obtain the equa-
tions of motion for the irreducible moments, i.e.,

an equation for the comoving derivative _ρhμ1���μlii;r ≡
Δμ1���μl

ν1���νlDρν1���νli;r . The irreducible moments of the collision
term (2) are defined as

Chμ1���μli
i;r−1 ≡ Δμ1���μl

ν1���νl
XNspec

j¼1

Z
dKiEr−1

i;k kν1i � � � kνli Cij½f�: ð82Þ

After some calculation the equation of motion for the
irreducible moments of tensor-rank zero reads

_ρi;r − Ci;r−1 ¼ αð0Þi;r θ −
XfB;Q;Sg

q0

�
Ji;rþ1;0T 0q0 −

XfB;Q;Sg

q

qiJi;r0T qq0

�
ð∇μV

μ
q0 − Vμ

q0 _uμÞ

þ θ

3

�
m2

i ðr − 1Þρi;r−2 − ðrþ 2Þρi;r − 3

�
Ji;rþ1;0T 00 −

XfB;Q;Sg

q

qiJi;r0T q0

�
Π
�

þ rρμi;r−1 _uμ −∇μρ
μ
i;r−1 þ

�
ðr − 1Þρμνi;r−2 þ

�
Ji;rþ1;0T 00 −

XfB;Q;Sg

q

qiJi;r0T q0

�
πμν
�
σμν: ð83Þ

This equation is different from Eq. (35) of Ref. [21], because thermodynamic relations are modified in mixtures with
multiple conserved charges as compared to a single-component fluid. Similarly, the transport coefficient αð0Þi;r has additional

contributions given by the sums
PfB;Q;Sg

q when compared to Eq. (42) of Ref. [21],

αð0Þi;r ¼ −
�
Ii;r0 þ ðr − 1ÞIi;r1 þ

XfB;Q;Sg

q0

�
Ji;rþ1;0T 0q0 −

XfB;Q;Sg

q

qiJi;r0T qq0

�
nq0
�

−
�
Ji;rþ1;0T 00 −

XfB;Q;Sg

q

qiJi;r0T q0

�
ðeþ PÞ: ð84Þ

The equation of motion for the irreducible moments of tensor-rank one is very similar to Eq. (36) of Ref. [21], except for

the first-order gradient term
PfB;Q;Sg

q αð1Þi;r;q∇μαq,

_ρhμii;r − Chμi
i;r−1 ¼

XfB;Q;Sg

q

αð1Þi;r;q∇μαq þ rρμνi;r−1 _uν −
1

3
∇μðm2

i ρi;r−1 − ρi;rþ1Þ þ αhi;r∇μΠ

− Δμ
λð∇νρ

λν
i;r−1 þ αhi;r∂νπ

νλÞ þ 1

3
½m2

i ðr − 1Þρμi;r−2 − ðrþ 3Þρμi;r�θ

þ 1

3
½m2

i rρi;r−1 − ðrþ 3Þρi;rþ1 − 3αhi;rΠ� _uμ þ ρi;r;νω
μν

þ 1

5
½m2

i ð2r − 2Þρi;r−2;ν − ð2rþ 3Þρi;r;ν�σμν þ ðr − 1Þρμνλi;r−2σνλ; ð85Þ
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where the transport coefficients are

αð1Þi;r;q ¼ qiJi;rþ1;1 þ αhi;r
nq
β
; αhi;r ¼ −β

Ji;rþ2;1

eþ P
: ð86Þ

Finally, the equation of motion for the irreducible moments of tensor-rank two is formally unchanged from Eq. (37) of
Ref. [21], only the species-specific index i is introduced here,

_ρhμνii;r − Chμνi
i;r−1 ¼ 2αð2Þi;r σ

μν þ 2

15
½m4

i ðr − 1Þρi;r−2 − ð2rþ 3Þm2
i ρi;r þ ðrþ 4Þρi;rþ2�σμν

þ 2

5
_uhμ½m2

i rρ
νi
i;r−1 − ðrþ 5Þρνii;rþ1� −

2

5
∇hμðm2

i ρ
νi
i;r−1 − ρνii;rþ1Þ

þ rρμνλi;r−1 _uλ − Δμν
αβ∇λρ

αβλ
i;r−1 þ ðr − 1Þρμνλκi;r−2σλκ þ 2ρλhμi;r ω

νi
λ

þ 1

3
½m2

i ðr − 1Þρμνi;r−2 − ðrþ 4Þρμνi;r�θ þ
2

7
½m2

i ð2r − 2Þρλhμi;r−2 − ð2rþ 5Þρλhμi;r �σνiλ ; ð87Þ

where the coefficient αð2Þi;r is also formally the same as in
Eq. (44) of Ref. [21],

αð2Þi;r ¼ ðr − 1ÞIi;rþ2;2 þ Ii;rþ2;1: ð88Þ

These are the equations of motion for the irreduci-
ble moments up to tensor-rank two for any particle
species i. One can show that in the case of a single-
component fluid they reduce to the equations found
in Ref. [21].

Furthermore, note that since the conserved quantities
in fluid dynamics contain no tensors of rank higher than
two, the higher-rank tensors, ρμ1���μli;r ¼ 0 for l ≥ 3, in the
equations of motion (85) and (87) will be neglected in the
following (see Sec. III C).

B. The linearized collision integral

Further progress requires the linearization of the colli-

sion integral (2) in the quantities ϕi;k ¼ δfi;k=½fð0Þi;kf̃
ð0Þ
i;k�,

such that it simplifies to

Ciðx; kÞ ≃
1

2

XNspec

j;a;b¼1

Z
dK0

jdPadP0
bW

kk0→pp0
ij→ab fð0Þi;kf

ð0Þ
j;k0 f̃

ð0Þ
a;pf̃

ð0Þ
b;p0 ðϕa;p þ ϕb;p0 − ϕi;k − ϕj;k0 Þ; ð89Þ

where the bilateral normalization condition holds and the equality fð0Þi;kf
ð0Þ
j;k0 f̃

ð0Þ
a;pf̃

ð0Þ
b;p0 ¼ fð0Þa;pf

ð0Þ
b;p0 f̃

ð0Þ
i;kf̃

ð0Þ
j;k0 was used [22,23].

Using the linearized collision integral (89) one can show that the corresponding irreducible moments (82) of the collision
integral can be expressed in terms of a linear combination of irreducible moments, ρν1���νli;r , in a similar way as in Eq. (50) of
Ref. [21],

Chμ1���μli
i;r−1 ≡ −

XNspec

s¼1

XNl

n¼0

X∞
m¼0

ðAis;rnÞμ1���μlν1���νmρ
ν1���νm
s;n ¼ −

XNspec

s¼1

XNl

n¼0

ðAðlÞ
is;rnÞρμ1���μls;n : ð90Þ

Here, we have defined the following tensors:

ðAis;rnÞμ1���μlν1���νm ¼ 1

2

XNspec

j;a;b¼1

Z
dKidK0

jdPadP0
bW

kk0→pp0
ij→ab fð0Þi;kf

ð0Þ
j;k0 f̃

ð0Þ
a;pf̃

ð0Þ
b;p0Er−1

i;k khμ1i � � � kμlii

× ½δsiHðmÞ
s;knk

hν1
s � � � kνmis þ δsjH

ðmÞ
s;k0nk

0hν1
s � � � k0νmis

− δsaH
ðmÞ
s;pnp

hν1
s � � �pνmi

s − δsbH
ðmÞ
s;p0np

0hν1
s � � �p0νmi

s �; ð91Þ
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where the polynomials HðmÞ
s;kn were defined in Eq. (52).

These tensors can be decomposed and projected, hence one
finally obtains the collision matrix

AðlÞ
is;rn ¼

1

2lþ 1
Δν1���νl

μ1���μlðAis;rnÞμ1���μlν1���νl ; ð92Þ

cf. Eq. (A18) of Ref. [21]. Note that in the case of a
single-component system, i.e., Nspec ¼ 1, the above

equation reduces to the diagonal components of AðlÞ
is;rn.

Hence, the particle species labels i and s can be drop-
ped and we simply recover the result of Ref. [21],

Chμ1���μli
i;r−1 !singleChμ1���μli

r−1 ¼ −
PNl

n¼0 A
ðlÞ
rn ρ

μ1���μl
n .

The inverse of the collision matrix defines the so-called
relaxation-time matrix,

τðlÞsi;nr ≡ ðA−1ÞðlÞsi;nr; ð93Þ

where the matrix elements are proportional to the inverse of
the mean free path between collisions λ−1mfp. Therefore,
multiplying both sides of Eq. (90) by the relaxation-time
matrix we obtain an important relation between themoments
of the linearized collision integral and the irreducible
moments,

XNspec

i¼1

XNl

r¼0

τðlÞsi;nrC
hμ1���μli
i;r−1 ≡ −

XNspec

i;s0¼1

XNl

r;n0¼0

τðlÞsi;nrA
ðlÞ
is0;rn0ρ

μ1���μl
s0;n0

¼ −ρμ1���μls;n : ð94Þ
The infinite set of equations of motions for the irreduc-

ible moments contains infinitely many degrees of freedom.
In order to close the equations of motion for the mixture
treated as a single fluid, the number of degrees of freedom
must be reduced and infinite sums must be truncated at
some finite number.
One of the key features of transient fluid dynamics is that

the corresponding equations of motion have a single time
scale that controls the transient behavior, e.g., relaxation
towards equilibrium. On the other hand, the Boltzmann
equation has infinitely many such time scales. Even in a
single-component gas the modes corresponding to the same
tensor rank l are coupled to each other and their dynamics
depends on these infinitely many scales. In the case of a
mixture the situation is even more complicated as the
modes corresponding to different particle species are also
coupled. The reason for this is that due to interactions
between particles of different species the corresponding
moments are correlated, see Refs. [30,31].
One possible way to reduce the number of degrees of

freedom would be to generalize the approach of Ref. [21]
developed for a single-component system, and diagonalize
the collision matrix to determine the slowest microscopic
timescales, i.e., the relaxation times that are relevant in our

approximation, and the corresponding modes that domi-
nate the long-time dynamics of the fluid in the transient
regime. This has the advantage that the relaxation times that
appear in the equations of motion could be explicitly
identified as real microscopic timescales. However, the
downside of this method is the appearance of terms that
are of second or higher order in gradients, denoted asOðKn2Þ
in Ref. [21]. These terms canviolate stability and causality of
the theory. In principle, this can be cured by introducing
further independent dynamical variables, cf. for instance
Ref. [32], but this is beyond the scope of the current work.
Instead, as discussed below, we will employ a slightly
simpler approach, where the problematic OðKn2Þ terms
do not appear.

C. The Navier-Stokes limit and the
order-of-magnitude approximation

The explicit relation between the irreducible tensor of a
given rank and the corresponding fluid-dynamical gradients
can be derived bymultiplying Eqs. (83), (85), and (87) by the

corresponding relaxation-time matrices, τðlÞsi;nr, and using
Eq. (94). In this way, the following equations of motion
for the irreduciblemoments of tensor rankl ¼ 0, 1, and 2 are
obtained,

XNspec

i¼1

XN0

r¼0

τð0Þsi;nr _ρi;r þ ρs;n ¼ −ζs;nθ þOð2Þ; ð95Þ

XNspec

i¼1

XN1

r¼0

τð1Þsi;nr _ρ
hμi
i;r þ ρμs;n ¼

XfB;Q;Sg

q

κs;n;q∇μαq þOð2Þ; ð96Þ

XNspec

i¼1

XN2

r¼0

τð2Þsi;nr _ρ
hμνi
i;r þ ρμνs;n ¼ 2ηs;nσ

μν þOð2Þ; ð97Þ

where Oð2Þ denote all remaining second- and higher-order
terms from the corresponding equations of motion for the
irreducible moments. These are terms which are at least of
quadratic order in the Knudsen number, OðKn2Þ, or in the
inverseReynolds number,OðRn−2Þ, or of linear order in their
product, OðKnRn−1Þ. Here, we have defined the species-
specific bulk-viscosity, diffusion, and shear-viscosity coef-
ficients as

ζs;n ≡ −
XNspec

i¼1

XN0

r¼0

τð0Þsi;nrα
ð0Þ
i;r ; ð98Þ

κs;n;q ≡
XNspec

i¼1

XN1

r¼0

τð1Þsi;nrα
ð1Þ
i;r;q; ð99Þ

ηs;n ≡
XNspec

i¼1

XN2

r¼0

τð2Þsi;nrα
ð2Þ
i;r : ð100Þ
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Note that the definition of the bulk-viscosity coefficient
differs by a factor of −m2

s=3 compared to Eq. (63)
of Ref. [21].
From here on, we will make the assumption that the

irreducible moments ρi;r, ρ
hμi
i;r , and ρhμνii;r are of the same

order, irrespective of the particle species. This implies that
the sum over all species of these irreducible moments, i.e.,

ρr, ρ
hμi
r , and ρhμνir are also of the same order as the species-

specific irreducible moments.
The so-called “order-of-magnitude approximation” is

based on the first-order solution of the moment equa-
tions (95)–(97), which is equivalent to the Navier-Stokes
limit. In this limit, the irreducible moments are algebrai-
cally related to terms of first order in Knudsen number, also
called thermodynamic forces, multiplied by the corre-
sponding transport coefficients,

ρs;n ¼ −ζs;nθ þOð2Þ; ð101Þ

ρμs;n ¼
XfB;Q;Sg

q

κs;n;q∇μαq þOð2Þ; ð102Þ

ρμνs;n ¼ 2ηs;nσ
μν þOð2Þ; ð103Þ

while all tensor moments of rank higher than two are at
least of second order, ρμ1���μls;n ∼Oð2Þ for any l > 2, see
Ref. [21] for details.
In principle, all irreducible moments are of first order in

inverse Reynolds number, OðRn−1Þ, and thus formally
independent of the power counting in Knudsen number.
The order-of-magnitude approximation, which is based on
the Navier-Stokes limit (101)–(103), assumes that the
irreducible moments are of first order in Knudsen number,
OðKnÞ, i.e., the regime where the Knudsen and the inverse
Reynolds numbers are of the same magnitude. This defines
a power-counting scheme, similar to the one described in
Ref. [21], which helps to assign a certain order to the
various terms in the equations of motion. Then, all Oð2Þ
terms on the right-hand sides of Eqs. (95)–(97), as well as
the comoving derivatives on the left-hand sides are of
second order in Knudsen number. The order-of-magnitude
approximation is very similar to the “order-of-magnitude
method” in nonrelativistic fluid dynamics [33].
Using the approximation (101)–(103) while summing

over all particle species, and for the moment omittingOð2Þ
terms, we obtain the Navier-Stokes relations for the
mixture. From Eq. (69) together with Eq. (101) the total
bulk viscous pressure of the mixture reads

Π≡ −
XNspec

s¼1

m2
s

3
ρs;0 ¼

XNspec

s¼1

m2
s

3
ζs;0θ≡ −ζθ: ð104Þ

Similarly, we obtain from Eq. (64) together with Eq. (102)
for the conserved charge currents

Vμ
q ≡

XNspec

s¼1

qsρ
μ
s;0 ¼

XfB;Q;Sg

q0

XNspec

s¼1

qsκs;0;q0∇μαq0

≡ XfB;Q;Sg

q0
κqq0∇μαq0 : ð105Þ

Finally, the shear-stress tensor of the mixture follows from
Eq. (66) together with Eq. (103),

πμν ≡XNspec

s¼1

ρμνs;0 ¼
XNspec

s¼1

2ηs;0σ
μν ≡ 2ησμν: ð106Þ

Note that the first-order thermodynamic forces are the same
for all particle species and for the mixture. Due to this fact,
we obtain the first-order transport coefficients of the
mixture: the bulk viscosity ζ, the diffusion coefficients
κqq0 , and the shear viscosity η,

ζ≡−
XNspec

s¼1

m2
s

3
ζs;0; κqq0 ≡

XNspec

s¼1

qsκs;0;q0 ; η≡XNspec

s¼1

ηs;0:

ð107Þ

Therefore, using Eqs. (101)–(103) together with the rela-
tivistic Navier-Stokes relations (104)–(106) we readily
obtain the following algebraic relations between the
species-specific irreducible moments and the primary
dissipative quantities of the mixture,

ρs;n ¼ ζs;nΠþOð2Þ; ð108Þ

ρμs;n ¼
XfB;Q;Sg

q

κ̄ðqÞs;nV
μ
q þOð2Þ; ð109Þ

ρμνs;n ¼ η̄s;nπ
μν þOð2Þ; ð110Þ

where we introduced the normalized transport coefficients
for each species,

ζ̄s;n ¼
ζs;n
ζ

; κ̄ðqÞs;n ¼
XfB;Q;Sg

q0
κs;n;q0 ðκ−1Þq0q; η̄s;n ¼

ηs;n
η

:

ð111Þ

Here, ðκ−1Þq0q is the inverse of the diffusion-coefficient
matrix defined in Eq. (107). We will use Eqs. (108)–(110)
to close the equations ofmotion (83)–(87) in the next section.

D. The equations of motion in ð10 + 4NqÞ-moment
approximation

In the ð10þ 4NqÞ-moment approximation, we truncate
the infinite set of moment equations (83), (85), and (87) in
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the following way.We first multiply these equations with the

corresponding relaxation-time matrices τðlÞsi;nr. Equation (85)
is also multiplied by qs, and all equations are summed over
species. In what follows, we only consider the set of
equations for n ¼ 0. In all terms, we then substitute ρi;r,
ρμi;r, and ρ

μν
i;r by the dissipative quantitiesΠ; V

μ
q, and πμν using

Eqs. (108)–(110). Note that in this substitution the Oð2Þ
terms in Eqs. (108)–(110) become Oð3Þ terms and can
be neglected together with other higher-order terms. In this
way, we finally obtain a closed set of equations of motion for

the dissipative quantities Π; Vμ
q, and πμν. Further, as dis-

cussed in Sec. II D, the ð10þ 4NqÞ-moment approximation
is the lowest-order truncation of the series in Eq. (51), where
l ≤ 2, andN0 ¼ 2, N1 ¼ 1, andN2 ¼ 0. It should be noted
that, for l ≤ 2, such a truncation in powers of energy (i.e.,
Nl < ∞) neglects infinitely many contributions of order
OðKnÞ in Eq. (51). As shown in Ref. [21], however,
systematically increasing the parameters N0, N1, and N2

the values of the corresponding transport coefficients exhibit
rapid convergence.

The resulting equation of motion for the bulk viscous pressure is

τΠ _Πþ Π ¼ −ζθ − δΠΠΠθ þ λΠππ
μνσμν −

XfB;Q;Sg

q

lðqÞ
ΠV∇μV

μ
q −

XfB;Q;Sg

q

τðqÞΠVV
μ
q _uμ −

XfB;Q;Sg

q;q0
λðq;q

0Þ
ΠV Vμ

q∇μαq0 ; ð112Þ

where, we have defined the relaxation time and the bulk-viscosity coefficient as

τΠ ¼ −
XNspec

s;i¼1

m2
s

3

XN0

r¼0

τð0Þsi;0rζ̄i;r; ð113Þ

ζ ¼ −
XNspec

s¼1

m2
s

3
ζs;0 ≡

XNspec

s;i¼1

m2
s

3

XN0

r¼0

τð0Þsi;0rα
ð0Þ
i;r : ð114Þ

All second-order transport coefficients appearing in Eq. (112) are listed in Appendix C 1.
Similarly, the equations of motion for the charge diffusion currents read

XfB;Q;Sg

q

τq0q _V
hμi
q þ Vμ

q0 ¼
XfB;Q;Sg

q

κq0q∇μαq −
XfB;Q;Sg

q

τq0qVq;νω
νμ −

XfB;Q;Sg

q

δðq
0;qÞ

VV Vμ
qθ −

XfB;Q;Sg

q

λðq
0;qÞ

VV Vq;νσ
μν

− lðq0Þ
VΠ∇μΠþ lðq0Þ

Vπ Δμν∇λπ
λ
ν þ τðq

0Þ
VΠΠ _uμ − τðq

0Þ
Vπ π

μν _uν

þ
XfB;Q;Sg

q

λðq
0;qÞ

VΠ Π∇μαq −
XfB;Q;Sg

q

λðq
0;qÞ

Vπ πμν∇ναq; ð115Þ

where the relaxation-time matrix and the diffusion-coefficient matrix are

τq0q ¼
XNspec

s;i¼1

XN1

r¼0

q0sτ
ð1Þ
si;0rκ̄

ðqÞ
i;r ; ð116Þ

κq0q ¼
XNspec

s;i¼1

XN1

r¼0

q0sτ
ð1Þ
si;0rα

ð1Þ
i;r;q; ð117Þ

and the second-order transport coefficients are listed in Appendix C 2.
The diffusion-coefficient matrix κqq0 has been evaluated for several hadronic and partonic systems in Refs. [16–18]. In

general, this matrix couples the diffusion current of a specific charge to all gradients of the charge chemical potentials via

Vμ
q0 ∼

PfB;Q;Sg
q κq0q∇μαq þOð2Þ. Due to this coupled diffusion, the density gradients in one charge could lead to the local

separation in another charge, as demonstrated in Ref. [16]. From the above equations of motion one can see that such a
coupling is also present in various second-order terms.
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The equation of motion for the shear-stress tensor follows in a similar manner,

τπ _π
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ þ λπΠΠσμν

−
XfB;Q;Sg

q

τðqÞπVV
hμ
q _uνi þ

XfB;Q;Sg

q

lðqÞ
πV∇hμVνi

q þ
XfB;Q;Sg

q;q0
λðq;q

0Þ
πV Vhμ

q ∇νiαq0 ; ð118Þ

where the relaxation time and the coefficient of the shear viscosity are given by

τπ ¼
XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0rη̄i;r; ð119Þ

η ¼
XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0rα
ð2Þ
i;r ; ð120Þ

while the remaining second-order transport coefficients are given in Appendix C 3. The equations of motion (112), (115),
and (118) are of relaxation type and are identical to those found in Refs. [10,11,14]. For more details, we refer the reader to
the discussion in Appendix A.

As a simple example of a relativistic multicomponent
system, we discuss an ultrarelativistic, ideal gas with elastic,
isotropic hard-sphere interactions and multiple conserved
charges in Appendix F. While the transport coefficients
cannot be further reduced to simple and convenient forms,
one may easily prove that one obtains well-known results in
the single-component limit [21].

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the derivation of
relativistic second-order dissipative fluid dynamics for
multicomponent systems in the ð10þ 4NqÞ-moment
approximation from the relativistic Boltzmann equation
using the method of moments. Starting from the relativistic
Boltzmann equation for a multicomponent system we have
obtained the equations of motion for the irreducible
moments for particle species i. In the single-fluid approxi-
mation for the mixture, the sum of the dynamical equations
of motion reduces to 4þ Nq conservation equations that
are closed by providing 6þ 3Nq relaxation-type equations
of motion for the dissipative quantities. In such a mixture,
where the constituents in general carry multiple quantum
charges (e.g., a proton carrying electric charge as well as
baryon number), the equation of state depends on multiple
chemical potentials and temperature. With the help of a new
approximation scheme, the so-called order-of-magnitude
approximation, we have derived a second-order dissipative
theory that does not contain terms of second order in
Knudsen number, which are known to render the equations
of motion parabolic and thus acausal [21]. Furthermore, the
irreducible moments of the deviation of the single-particle
distribution of each particle species from equilibrium are

directly proportional to the total bulk viscous pressure Π,
the conserved charge-diffusion currents Vμ

q, and the total
shear-stress tensor πμν via Eqs. (108)–(110).
Similar to other works which treat multicomponent

systems [10,11,14], in this theory the existence of multiple
conserved charges is manifest in the equations of motion
Eqs. (112), (115), and (118). As expected we obtained
exactly the same equations of motion as found in earlier
works [10,11,14].
Further, the coupled charge transport becomes explicit in

the appearance of mixing terms in the equations of motions,
e.g., a dissipative current (Π,Vμ

q, πμν) is coupled to any other
gradient in chemical potential or diffusion current. As a
prominent example, instead of a diffusive Navier-Stokes
term with only one diffusion coefficient κ as in a single-
component system, we obtain a Navier-Stokes term entailing
a matrix of diffusion coefficients κqq0 , which explicitly
couples every diffusion current to all gradients in chemical
potential. The appearance of a charge-coupled Navier-Stokes
termandpotential implications for the transport of chargewas
discussed in Ref. [16] in the case of relativistic nuclearmatter.
The advantage of our derivation compared to other

theories is that it yields explicit expressions for the transport
coefficients in termsof the linearized collision term. Since the
mutual interactions of all particle species is contained in the
collision term, the multicomponent nature of the mixture is
naturally encoded in the transport coefficients.
In the future, this theory will be used to revisit the transport

of coupled charge in heavy-ion collisions initiated inRef. [16]
in amore realisticmanner. Especially, we expect that it will be
relevant for the discussion of physics of compressed baryonic
matter at the future FAIR and NICA facilities or for the
interpretation of recent results of the isobar run at RHIC. We
expect that the coupling of diffusion currents or the charge
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gradients to the bulk viscous pressure and the shear-stress
tensor may be important in future studies. Now that the
explicit expressions of the transport coefficients have been
derived, they can be evaluated for nuclear systems. To this
end, equations of state from lattice QCD for nonvanishing
chemical potentials may be used [34,35]. At the same time,
Eq. (51) provides an expression for the so-called δf-correc-
tion needed for the freeze-out of the system at the end of the
fluid-dynamical phase during the simulation of a heavy-ion
collision.
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APPENDIX A: COMPARISON TO
OTHER WORKS

In this appendix, we perform a comparison of the second-
order relaxation equations found in this paper, Eqs. (112),
(115), and (118), to earlier derivations ofMonnai andHirano
[10] and Kikuchi, Tsumura, and Kunihiro [14].
Our second-order relaxation equation (112) for the bulk

viscosity contains 8 terms in total, while Eq. (69) of
Ref. [10] contains 13 terms. Here, we recall this equation
noting that uμE ¼ uμ, while J ¼ q and K ¼ q0,

Π¼ −ζ∇μu
μ
E − τΠDΠþ χcΠΠΠ∇μu

μ
E þ χΠππμν∇hμuνiE

þ
X
J;K

χaKΠVJ
VJ
μ∇μ μK

T
þ
X
J

χcΠVJ
VJ
μDuμE þ

X
J

χdΠVJ
∇μVJ

μ

þ
X
J

χaJΠΠΠD
μJ
T
þ χbΠΠΠD

1

T
− ζΠδeD

1

T

þ
X
J

ζΠδnJD
μJ
T
þ
X
J

χbΠVJ
VJ
μ∇μ 1

T
: ðA1Þ

The difference between this equation and ours is due to the
difference in the thermodynamic forces and the way the
comoving derivatives and space-time four-gradients are
employed. In our derivation the comoving derivatives,
Dβ ¼ D 1

T and Dαq ¼ D μJ
T , do not appear explicitly since

they were replaced using Eqs. (77) and (78), while the space-
time four-gradient of the inverse temperature,∇μβ, is givenby
Eq. (81). The terms that are expressed differently are in the
third line of the above equation (A1). Now, collecting these
various termsone can show thatEq. (A1) reduces toEq. (112).
Similarly, we recall Eq. (77) of Ref. [14], which contains

11 terms,

Π ¼ −ζθ − τΠ
∂

∂τ
Π −

XM
A¼1

lA
ΠJ∇ · JA þ κΠΠΠθ þ κΠππρσσ

ρσ

þ bΠΠΠΠ2 þ
XM
A;B¼1

bABΠJJJ
ρ
AJB;ρ þ bΠπππρσπρσ

þ
XM
A¼1

κð1ÞAΠJ JA;ρ∇ρT þ
XM
A;B¼1

κð2ÞBAΠJ JA;ρ∇ρ μB
T
; ðA2Þ

where, we note that VA ¼ Vq while A ¼ q and B ¼ q0.
From these the terms in the second line are of second order
in dissipative quantities, i.e., of second order in inverse
Reynolds number, originating from the nonlinear part of the
collision integral. Note that such second-order terms were
also obtained in Refs. [21,36], but are neglected in our
study. The remaining 2 terms are formally the same, which
can be seen using Eq. (81).
The relaxation equation (115) for the conserved charge

current contains 12 terms, while Eq. (70) of Ref. [10] listed
below contains 19 terms,

Vμ
J ¼ κVJ

∇μ μJ
T

þ
X
K≠J

κVJVK
∇μ μK

T
− τVJ

ΔμνDVJ
ν −
X
K≠J

τVJVK
ΔμνDVK

ν

þ
X
K

χcVJVK
Vμ
K∇νuνE þ

X
K

χdVJVK
Vν
K∇νu

μ
E þ

X
K

χeVJVK
Vν
K∇μuEν

þ
X
K

χaKVJπ
πμν∇ν

μK
T

þ χcVJπ
πμνDuEν þ χdVJπ

Δμν∇ρπνρ þ
X
K

χaKVJΠΠ∇μ μK
T

þ χcVJΠΠDuμE þ χdVJΠ∇μΠ

þ χbVJπ
πμν∇ν

1

T
þ χbVJΠΠ∇μ 1

T
þ
X
K;L

χaLVJVK
Vμ
KD

μL
T

þ
X
K

χbVJVK
Vμ
KD

1

T
þ κVJW

�
1

T
DuμE þ∇μ 1

T

�
: ðA3Þ
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After closer inspection, we observe that the first line contains two sums that are equivalent to our sums over charges, while
the additional 4 terms in the last line can be incorporated into already existing terms. Furthermore, the last remaining term,
κVqWðβDuμ þ∇μβÞ, may be expressed using Eq. (81), and hence is fully accounted for in our approach.

On the other hand, Eq. (78) of Ref. [14] contains 14 terms, of which the last 2 are of second order in inverse Reynolds
number, while the other terms are formally the same,

JμA ¼
XM
B¼1

λAB
T2

h2
∇μ μB

T
−
XM
B¼1

τABJ Δμρ ∂

∂τ
JB;ρ − lA

JΠ∇μΠ − lA
JπΔμρ∇νπ

ν
ρ

þ κð1ÞAJΠ Π∇μT þ
XM
B¼1

κð2ÞABJΠ Π∇μ μB
T

þ
XM
B¼1

κð1ÞABJJ JμBθ þ
XM
B¼1

κð2ÞABJJ JB;ρσμρ þ κð3ÞABJJ JB;ρωμρ

þ κð1ÞAJπ πμρ∇ρT þ
XM
B¼1

κð2ÞABJπ πμρ∇ρ
μB
T

þ
XM
B¼1

bABJΠJΠJ
μ
B þ

XM
B¼1

bABJJπJB;ρπ
ρμ: ðA4Þ

The relaxation equation (118) for the shear-stress tensor contains 10 terms, while Eq. (71) of Ref. [10] contains 12 terms

πμν ¼ 2η∇hμuνiE − τπDπhμνi þ χcπππ
μν∇ρu

ρ
E þ χdπππ

ρhμ∇ρu
νi
E þ χπΠΠ∇hμuνiE

þ
X
J

χcπVJ
Vhμ
J DuνiE þ

X
J

χdπVJ
∇hμVνi

J þ
X
J;K

χaJπVJ
Vhμ
J ∇νi μK

T

þ
X
J

χbπVJ
Vhμ
J ∇νi 1

T
þ
X
J

χaJπππ
μνD

μJ
T

þ χbπππ
μνD

1

T
: ðA5Þ

Here the last 3 terms that are expressed using Dβ, Dαq, and ∇μβ, may once again be incorporated into other terms.

Finally, Eq. (79) of Ref. [14] contains 13 terms. The last 3 are of second order in inverse Reynolds number, while the
remaining 10 terms are formally similar to ours,

πμν ¼ 2ησμν − τπΔμνρσ ∂

∂τ
πρσ −

XM
A¼1

lA
πJ∇hμJνiA þ κπΠΠσμν þ

XM
A¼1

κð1ÞAπJ JhμA ∇νiT þ
XM
A;B¼1

κð2ÞBAπJ JhμA ∇νi μB
T

þ κð1Þππ πμνθ þ κð2Þππ πλhμσνiλ þ κð3Þππ πλhμωνi
λ þ bπΠπΠπμν þ

XM
A;B¼1

bABπJJJ
hμ
A J

νi
B þ bππππλhμπνiλ: ðA6Þ

APPENDIX B: ECKART FRAME

In most textbooks and relevant publications the local rest
frame and the fluid four-velocity are chosen according to
Eckart [29], since this choice intuitively follows the non-
relativistic interpretation of physical quantities. On the other
hand, all our results are given relative to the local rest frame of
Landau. In this appendix,wewill elaborate on the differences.
We may choose to define a different timelike normalized

flow vector, ũμ, and hence a local frame of reference different
from the previously chosen local rest frame (the Landau
frame) given by uμ. The ũ-frame is related to the u-frame by a
Lorentz transformation. If, we assume that the difference
between the frame vectors is small, ũμ − uμ ∼Oð1Þ, we may
write

ũμ ¼ uμ þ wμ þOð2Þ: ðB1Þ
Computing the normalization of ũμ up to order Oð1Þ,
ũμũμ ¼ uμuμ þ 2uμwμ þwμwμ ¼ 1þ 2uμwμ þOð2Þ; ðB2Þ

and demanding that ũμ is also normalized, we conclude that
wμ must be orthogonal to uμ, uμwμ ¼ 0. The projection
operator onto the three-space orthogonal to ũμ is

Δ̃μν ≡ gμν − ũμũν ¼ Δμν − 2uðμwνÞ − wμwν

¼ Δμν − 2uðμwνÞ þOð2Þ: ðB3Þ
The tensor decomposition of the primary fluid-dynamical

quantities with respect to ũμ leads to results similar to
the tensor decompositions listed in Eqs. (56)–(57),

Nμ
q ≡ ñqũμ þ Ṽμ

q ¼ ñqðuμ þ wμÞ þ Ṽμ
q; ðB4Þ

Tμν ≡ ẽũμũν − ðP̃þ Π̃ÞΔ̃μν þ π̃μν þ 2W̃ðμũνÞ

¼ ẽuμuν − ðP̃þ Π̃ÞΔμν þ π̃μν þ 2ðẽþ P̃ÞwðμuνÞ

þ 2W̃ðμuνÞ þOð2Þ; ðB5Þ
where we have explicitly applied Landau’s matching con-
ditions from Eqs. (67), (68). We have also made use of
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Eq. (B1) and the fact that all dissipative quantities are∼Oð1Þ.
The physical quantities follow from similar projection
operations as in Eqs. (58)–(66).
Furthermore, one can show that neglecting corrections of

order Oð2Þ, the net-particle density, conserved net-charge
density, energy density, equilibrium and bulk pressures, as
well the shear-stress components are equal in both local rest
frames,

ñq¼nq; ẽ¼e; P̃¼P; Π̃¼Π; π̃μν¼πμν: ðB6Þ
Note that the quantities without tilde are taken in the
Landau frame and are not identical with the corresponding
quantities when the frame is not yet specified.
The choice of the local rest frame changes the diffusion

currents orthogonal to the flow velocity, i.e., the so-called
peculiar velocities. In Eckart’s definition of the local rest
frame, for one conserved charge q it is required that

Nμ
q ≡ nqũμ and Ṽμ

q ≡ 0; ðB7Þ
where nq ¼ Nμ

qũμ and Ṽμ
q ¼ Nν

qΔ̃
μ
ν . This means that

according to the definition of Eckart, there is no net-charge
diffusion current of charge type q in its own local rest
frame. Now, comparing this with the form of Nμ

q in the
Landau frame leads to

Nμ
q ≡ nqðuμ þ wμÞ ¼! nquμ þ Vμ

q: ðB8Þ

Thus, for an observer in Landau’s local rest frame the
particles are diffusing with peculiar four-velocities propor-
tional to the net-charge diffusion current,

wμ ¼ Vμ
q

nq
: ðB9Þ

Since the dissipative quantity Vμ
q ∼Oð1Þ, this is consistent

with our assumption that wμ ∼Oð1Þ. Up to terms of order
Oð1Þ, the energy-momentum tensor (B5) reads

Tμν ≡ eũμũν − ðPþ ΠÞΔ̃μν þ πμν þ 2W̃ðμũνÞ

¼ euμuν − ðPþ ΠÞΔμν þ πμν þ 2ðeþ PÞwðμuνÞ

þ 2W̃ðμuνÞ: ðB10Þ

Using this result together with Eq. (B9) and comparing it to
the energy-momentum tensor in the Landau frame,

Tμν ¼ euμuν − ðPþ ΠÞΔμν þ πμν; ðB11Þ

leads to the total energy-momentum diffusion current
W̃μ ¼ Δμ

αTαβuβ in the Eckart frame,

W̃μ ≡ −
eþ P
nq

Vμ
q ≡ −hqV

μ
q: ðB12Þ

This relates the total energy-momentum flux seen in the
Eckart frame to the diffusion flux of charge q observed in
the Landau frame.
Finally, we give the four-flow of the charges q0, of which

the diffusion currents were not chosen to vanish by Eckart’s
choice (B7) (i.e., q0 ≠ q). Using the fact that the charge
densities nq0 are equal in both frames, we obtain the
condition

Nμ
q0 ¼ nq0 ðuμ þ wμÞ þ Ṽμ

q0 ¼
!
nq0uμ þ Vμ

q0 : ðB13Þ

Employing Eq. (B9), we arrive at an expression for the
diffusion currents as observed in the Eckart frame:

Ṽμ
q0 ¼ Vμ

q0 −
nq0

nq
Vμ
q: ðB14Þ

Note that for the case q ¼ q0, we again recover the
requirement by the Eckart frame definition for the charge
q, Eq. (B7).

APPENDIX C: TRANSPORT COEFFICIENTS

In this appendix, we list all second-order transport
coefficients in the equations of motion (112), (115),
and (118).

1. The coefficients in the bulk viscosity equation

The second-order transport coefficients in the equation
of motion (112) for the bulk viscous pressure are

δΠΠ ¼
XNspec

s;i¼1

XN0

r¼0

m2
s

9
τð0Þsi;0r

"
m2

i ðr − 1Þζ̄i;r−2 − ðrþ 2Þζ̄i;r − 3

 
Ji;rþ1;0T 00 −

XfB;Q;Sg

q

qiJi;r;0T q0

!#

þ
XNspec

s;i¼1

XN0

r¼0

m2
s

3
τð0Þsi;nr

XfB;Q;Sg

q

∂ζ̄i;r
∂αq

"
T q0ðeþ PÞ þ

XfB;Q;Sg

q0
T qq0nq0

#

þ
XNspec

s;i¼1

XN0

r¼0

m2
s

3
τð0Þsi;nr

∂ζ̄i;r
∂β

"
T 00ðeþ PÞ þ

XfB;Q;Sg

q0
T 0q0nq0

#
; ðC1Þ
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λΠπ ¼ −
XNspec

s;i¼1

XN0

r¼0

m2
s

3
τð0Þsi;0r

"
ðr − 1Þη̄i;r−2 þ Ji;rþ1;0T 00 −

XfB;Q;Sg

q

qiJi;r;0T q0

#
; ðC2Þ

lðqÞ
ΠV ¼ −

XNspec

s;i¼1

XN0

r¼0

m2
s

3
τð0Þsi;0r

 
κ̄ðqÞi;r−1 þ Ji;rþ1;0T 0q −

XfB;Q;Sg

q0
q0iJi;r;0T q0q

!
; ðC3Þ

τðqÞΠV ¼
XNspec

s;i¼1

XN0

r¼0

m2
s

3
τð0Þsi;0r

 
rκ̄ðqÞi;r−1 þ β

∂κ̄ðqÞi;r−1

∂β
þ Ji;rþ1;0T 0q −

XfB;Q;Sg

q0
q0iJi;r;0T q0q

!
; ðC4Þ

λðq;q
0Þ

ΠV ¼ −
XNspec

s;i¼1

XN0

r¼0

m2
s

3
τð0Þsi;0r

�
∂κ̄ðqÞi;r−1

∂αq0
þ nq0

eþ P

∂κ̄ðqÞi;r−1

∂β

�
: ðC5Þ

2. The coefficients in the charge diffusion equations

The coefficients in the equations of motion (115) for the charge diffusion currents are

δðq
0;qÞ

VV ¼ −
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r
1

3
½m2

i ðr − 1Þκ̄ðqÞi;r−2 − ðrþ 3Þκ̄ðqÞi;r �

−
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r

XfB;Q;Sg

q00

∂κ̄ðqÞi;r

∂αq00

�
T q000ðeþ PÞ þ

XfB;Q;Sg

q000
T q00q000nq000

�

−
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r

∂κ̄ðqÞi;r

∂β

�
T 00ðeþ PÞ þ

XfB;Q;Sg

q00
T 0q00nq00

�
; ðC6Þ

λðq
0;qÞ

VV ¼ −
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r
1

5
½m2

i ð2r − 2Þκ̄ðqÞi;r−2 − ð2rþ 3Þκ̄ðqÞi;r �; ðC7Þ

lðq0Þ
VΠ ¼

XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r

�
1

3
ðm2

i ζ̄i;r−1 − ζ̄i;rþ1Þ − αhi;r

�
; ðC8Þ

lðq0Þ
Vπ ¼ −

XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0rðη̄i;r−1 þ αhi;rÞ; ðC9Þ

τðq
0Þ

VΠ ¼
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r
1

3

�
m2

i rζ̄i;r−1 − ðrþ 3Þζ̄i;rþ1 − 3αhi;r þm2
i β

∂ζ̄i;r−1
∂β

− β
∂ζ̄i;rþ1

∂β

�
; ðC10Þ

τðq
0Þ

Vπ ¼ −
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r

�
rη̄i;r−1 þ β

∂η̄i;r−1
∂β

þ αhi;r

�
; ðC11Þ

λðq
0;qÞ

VΠ ¼ −
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r
1

3

�
m2

i

�
∂ζ̄i;r−1
∂αq

þ nq
eþ P

∂ζ̄i;r−1
∂β

�
−
∂ζ̄i;rþ1

∂αq
−

nq
eþ P

∂ζ̄i;rþ1
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�
; ðC12Þ

λðq
0;qÞ

Vπ ¼
XNspec

s;i¼1

q0s
XN1

r¼0

τð1Þsi;0r

�
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∂αq

þ nq
eþ P

∂η̄i;r−1
∂β

�
: ðC13Þ
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3. The coefficients in the shear-stress equation

The coefficients in the equation of motion (118) for the shear-stress tensor are

δππ ¼ −
1

3

XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0r½m2
i ðr − 1Þη̄i;r−2 − ðrþ 4Þη̄i;r�

−
XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0r

( XfB;Q;Sg

q

∂η̄i;r
∂αq

"
T q0ðeþ PÞ þ

XfB;Q;Sg

q0
T qq0nq0

#
þ ∂η̄i;r

∂β

"
T 00ðeþ PÞ þ

XfB;Q;Sg

q0
T 0q0nq0

#)
; ðC14Þ

τππ ¼ −
2

7

XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0r½m2
i ð2r − 2Þη̄i;r−2 − ð2rþ 5Þη̄i;r�; ðC15Þ

λπΠ ¼
XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0r
2

15
½m4

i ðr − 1Þζ̄i;r−2 − ð2rþ 3Þm2
i ζ̄i;r þ ðrþ 4Þζ̄i;rþ2�; ðC16Þ

τðqÞπV ¼ −
2

5

XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0r

�
m2

i rκ̄
ðqÞ
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∂β
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�
; ðC17Þ

lðqÞ
πV ¼ −

2

5

XNspec

s;i¼1

XN2

r¼0

τð2Þsi;0rðm2
i κ̄

ðqÞ
i;r−1 − κ̄ðqÞi;rþ1Þ; ðC18Þ

λðq;q
0Þ

πV ¼ −
2

5

XNspec
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XN2

r¼0

τð2Þsi;0r

�
m2

i

�
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�
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�
: ðC19Þ

APPENDIX D: COMPARISON TO A SINGLE-COMPONENT FLUID

In previous works the transport coefficients in the equations of motion were calculated in a similar manner as explained in
this paper. In order to facilitate a comparison and for the sake of completeness, we recall the notational convention and
provide some basic relations.
For an arbitrary function of energy, FðEi;kÞ, the irreducible tensors satisfy the following orthogonality condition [22]:Z

dKiFðEi;kÞkhμ1i � � � kμlii khν1i � � � kνnii ¼ l!δln
ð2lþ 1Þ!!Δ

μ1���μlν1���νn
Z

dKiFðEi;kÞðΔαβkαi k
β
i Þl: ðD1Þ

Therefore, for a given species i, any irreducible moment of tensor rank l of arbitrary order r ≤ 0 may be expressed as a
linear combination of irreducible moments of the same tensor rank l, but with different power of energy n as

ρμ1���μli;r ¼
XNl

n¼0

ρμ1���μli;n F ðlÞ
i;−r;n; ðD2Þ

where for r, n ≥ 0, F ðlÞ
−r;n ¼ δrn. Therefore, for r → −r, we obtain

ρμ1���μli;−r ¼
XNl

n¼0

ρμ1���μli;n F ðlÞ
i;r;n; ðD3Þ

where using Eqs. (21) and (52) we defined the following coefficient similar to Eq. (66) of Ref. [21]:

F ðlÞ
i;�r;n ≡ l!

ð2lþ 1Þ!!
Z

dKiE
∓r
i;kH

ðlÞ
i;knðΔαβkαi k

β
i Þlfð0Þi;kf̃

ð0Þ
i;k

¼
XNl

n0¼n

Xn0
m¼0

Ji;∓rþmþ2l;l

Ji;2l;l
aðlÞi;n0na

ðlÞ
i;n0m: ðD4Þ

Therefore, using these results one can also show that the expansion coefficients are related as
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Xn0
m¼0

Ji;rþmþ2l;l

Ji;2l;l
aðlÞi;n0na

ðlÞ
i;n0m ¼ δrn0δrn; ðD5Þ

which in the case of a single-component system is equivalent to the matrix equation provided in Appendix E of Ref. [21].
Truncating these expressions in the ð10þ 4NqÞ-moment approximation, hence using Eq. (D3) with the summation limits

N0 ¼ 2, N1 ¼ 1, N2 ¼ 0 for the various tensor ranks, we obtain the following relations:

ρi;−r ≡
XN0

n¼0

ρi;nF
ð0Þ
i;r;n ≈ −

3

m2
i
ΠiF

ð0Þ
i;r;0 þ ρi;1F

ð0Þ
i;r;1 þ ρi;2

�
1

m2
i
F ð0Þ

i;r;0 þ F ð0Þ
i;r;2

�
; ðD6Þ

ρμi;−r ≡
XN1

n¼0

ρμi;nF
ð1Þ
i;r;n ≈ Vμ

iF
ð1Þ
i;r;0 þWμ

iF
ð1Þ
i;r;1; ðD7Þ

ρμνi;−r ≡
XN2

n¼0

ρμνi;nF
ð2Þ
i;r;n ≈ πμνi F ð2Þ

i;r;0: ðD8Þ

Furthermore, using Eqs. (D6)–(D8) for irreducible moments with positive r we obtain similar relations by replac-
ing −r → r.
On the other hand, summing Eqs. (D6)–(D8) over species, the irreducible moments of the mixture also lead to the

expressions for a single-component fluid in the Landau frame,

ρ−r ≡
XNspec

i¼1

ρi;−r ¼
XNspec

i¼1

XN0

n¼0

ρi;nF
ð0Þ
i;r;n !single− 3

m2
Πγð0Þr þOð1Þ; ðD9Þ

ρμ−r ≡
XNspec

i¼1

ρμi;−r ¼
XNspec

i¼1

XN1

n¼0

ρμi;nF
ð1Þ
i;r;n !singleVμγð1Þr þOð1Þ; ðD10Þ

ρμν−r ≡
XNspec

i¼1

ρμνi;−r ¼
XNspec

i¼1

XN2

n¼0

ρμνi;nF
ð2Þ
i;r;n !singleπμνγð2Þr þOð1Þ; ðD11Þ

where the coefficients γðlÞr are listed in Ref. [21] for the case of a single-component fluid, i ¼ Nspec ¼ 1.
Notice that moments with negative power of energy are expressed as a linear combination of moments with positive r

which represent the coupling between moments even for simple fluids with a single conserved charge. On the other hand in
mixtures the summations over all particle species lead to further couplings, which renders the above expressions rather
difficult to use. To circumvent this we have introduced the order-of-magnitude approximation in Sec. III C to express the
negative moments and their sums.
Furthermore, in order to compare the irreducible moments to Eqs. (108)–(110), we have to demand

Πζ̄1;−r ¼ Πγð0Þr ; πμνη̄1;−r ¼ πμνγð2Þr ; ðD12Þ
and since we are dealing with a single charge, say q, then Vμ

q ¼ qVμ and hence

Vμ
qκ̄

ðqÞ
1;−r ¼ qVμγð1Þr : ðD13Þ

APPENDIX E: PERFORMING THE COLLISION INTEGRALS

In order to evaluate the transport coefficients first we need to calculate the irreducible moments (90) of the collision term
(2). These moments are related to the entries of the collision matrix defined in Eqs. (91)–(92). For the sake of convenience
we define the following tensor, similarly as in Ref. [21]:

Xμ1���μlν1���νlþm
sijab;r ≡ Lμ1���μlν1���νlþm

sijab;r − Gμ1���μlν1���νlþm
sijab;r ; ðE1Þ

where the loss term is
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Lμ1���μlν1���νlþm
sijab;r ≡

Z
dKidK0

jf
ð0Þ
i;kf

ð0Þ
j;k0Er−1

i;k kμ1i � � �kμli ðkν1i � � �kνlþm
i δis þ k0ν1j � � �k0νlþm

j δjsÞ
Z

dPadP0
bW

kk0→pp0
ij→ab f̃ð0Þa;pf̃

ð0Þ
b;p0 ; ðE2Þ

while the gain term is

Gμ1���μlν1���νlþm
sijab;r ≡

Z
dKidK0

jf
ð0Þ
i;kf

ð0Þ
j;k0Er−1

i;k kμ1i � ��kμli
Z

dPadP0
bW

kk0→pp0
ij→ab f̃ð0Þa;pf̃

ð0Þ
b;p0 ðpν1

a � ��pνlþm
a δasþp0ν1

b � � �p0νlþm
b δbsÞ: ðE3Þ

Therefore, once we have evaluated the corresponding X -tensors, the elements of the collision matrix AðlÞ
is;rn in Eq. (92) can

be obtained by calculating the following projections:

AðlÞ
is;rn ¼

1

2

XNl

n0¼n

Xn0
m¼0

ð−1ÞlaðlÞs;n0na
ðlÞ
s;n0m

l!ð2lþ 1ÞJs;2l;l
XNspec

j;a;b¼1

uνlþ1
� � � uνlþm

Δμ1���μl
ν1���νl ðX sijab;rÞν1���νlþm

μ1���μl : ðE4Þ

In order to evaluate the dPadP0
b integrals of the loss term it is useful to choose the center-of-momentum (CM) frame to

perform the integration over the transition rateWkk0→pp0
ij→ab . The total momentum involved in binary collisions, Pμ

T ≡ kμi þ k0μj ,
defines the Mandelstam variable

s≡ ðkμi þ k0μj Þ2 ¼ ðpμ
a þ p0μ

b Þ2 ≡ Pμ
TPT;μ: ðE5Þ

The CM frame is defined such that ffiffiffi
s

p ≡ k0i þ k00j ¼ p0
a þ p00

b ≡ P0
T; ðE6Þ

0≡ ki þ k0
j ¼ pa þ p0

b ≡ PT: ðE7Þ
In the following, we use the following substitutions:

x≡ p0
a þ p00

b ;
dx
x

¼ jpjdjpj
p0
ap00

b

; ðE8Þ

and

jpj ¼ 1

2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 −mþÞðx2 −m−Þ

q
; ðE9Þ

where jpj ¼ jpaj ¼ jp0
bj, and m� ≡ ðma �mbÞ2. Therefore, the second integral in Eq. (E2) leads to

Pab ≡
Z

dPadP0
bW

kk0→pp0
ij→ab f̃ð0Þa;pf̃

ð0Þ
b;p0 ¼ 1

2

1

16ð2πÞ2 jM̄ij→abj2f̃ð0Þa;
ffiffi
s

p f̃ð0Þb;
ffiffi
s

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

mþ
s

��
1 −

m−

s

�s
; ðE10Þ

where, we introduced the notation

f̃ð0Þi;
ffiffi
s

p ≡ 1 −
ai

exp
�
β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ s
4
ð1 − mþ

s Þð1 − m−
s Þ

q
− αi

�
þ ai

: ðE11Þ

Now using this result the remaining integral in Eq. (E2) can be calculated. For later use we define the angle-integrated
transition probability:

jM̄ij→abð
ffiffiffi
s

p Þj2 ≡
Z
S2
dΩjMij→abð

ffiffiffi
s

p
;ΩÞj2 ¼ 2π

Z
π

0

dϑ sin ϑjMij→abð
ffiffiffi
s

p
; ϑÞj2; ðE12Þ

where ϑ is the scattering angle in the reaction plane defined as

cosϑ ¼ ðkμ − k0μÞðpμ − p0
μÞ

ðkμ − k0μÞ2 : ðE13Þ
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The integral in Eq. (E3) is more tedious. Here, we restrict ourselves to isotropic scattering processes, hence all integrals
only depend on the normalized total momentum P̃μ

T ≡ ðkμi þ k0μj Þ=
ffiffiffi
s

p
. We also introduce the corresponding projection

operator Δμν
P ¼ gμν − P̃μ

TP̃
ν
T orthogonal to the total momentum, Δμν

P P̃T;ν ¼ 0. Therefore, similarly to the thermodynamic
integrals in Eq. (18), we decompose the integrals in terms of the normalized total momentum and the associated orthogonal
projection operator,

Θν1���νn
a ≡

Z
dPadP0

bW
kk0→pp0
ij→ab f̃ð0Þa;pf̃

ð0Þ
b;p0p

ν1
a � � �pνn

a

¼
X½n=2�
m¼0

ð−1Þm 2−mn!
m!ðn − 2mÞ!Δ

ðν1ν2
P � � �Δν2m−1ν2m

P P̃ν2mþ1

T � � � P̃νnÞ
T Ca;nm; ðE14Þ

where the coefficients are

Ca;nm ≡ ð−1Þm
ð2mþ 1Þ!!

Z
dPadP0

bW
kk0→pp0
ij→ab f̃ð0Þa;pf̃

ð0Þ
b;p0 ðΔP;αβpα

ap
β
aÞmðP̃T;αpα

aÞn−2m

¼ ð−1Þm
ð2mþ 1Þ!!

1

16ð2πÞ2 jM̄ij→abj2f̃ð0Þa;
ffiffi
s

p f̃ð0Þb;
ffiffi
s

p sn=2

2nþ1

��
1 −

mþ
s

��
1 −

m−

s

��2mþ1
2

×

�
4m2

a

s
þ
�
1 −

mþ
s

��
1 −

m−

s

��n−2m
2

: ðE15Þ

APPENDIX F: CLASSICAL,
ULTRARELATIVISTIC SYSTEM WITH
HARD-SPHERE INTERACTIONS IN

ð10 + 4NqÞ-MOMENT APPROXIMATION

In this appendix we evaluate the transport coefficients of
the theory in the ð10þ 4NqÞ-moment approximation
(N0 ¼ 2, N1 ¼ 1, and N2 ¼ 0) for a classical (ai → 0),
ultrarelativistic (mi=T → 0) multicomponent gas with elas-
tic hard-sphere interactions, for which the transition rate is
given by Eq. (11). Equivalently, in Eqs. (E10) and (E15) we
can just replace

1

16ð2πÞ2 jM̄ij→abj2 ¼ ðδiaδjb þ δibδjaÞsσtot; ðF1Þ

with σtot;ij ≡ σtot ¼ const. With this replacement, we obtain
for Eqs. (E10) and (E15)

Pab ¼
1

2
ðδiaδjb þ δibδjaÞsσtot; ðF2Þ

Ca;nm ¼ 1

2
ðδiaδjb þ δibδjaÞ

ð−1Þm
ð2mþ 1Þ!!

sðnþ2Þ=2

2n
σtot: ðF3Þ

Furthermore, according to Eqs. (47), P ¼PNspec

i¼1 Pi is the
total pressure of the system, and it fulfills the ideal gas laws
e ¼ 3P and ni ¼ βPi.

1. Collision matrix and its inverse

In the following we evaluate the collision matrix (E4) for
the vector and tensor moments. The scalar moments play no
role since their transport coefficients are proportional to
mass, and therefore vanish in the ultrarelativistic case. In
these calculations we make use of the ultrarelativistic limit
of Eq. (E5), leading to s ¼ 2ki;μk0

μ
j .

Furthermore, in the classical limit, we express the
thermodynamic integrals in terms of the partial pressure
of the respective species,

Ji;nm ¼ Ii;nm ¼ 1

2

ðnþ 1Þ!
ð2mþ 1Þ!!

1

βn−2
Pi; ðF4Þ

where the thermodynamic integrals are related by

Ii;nþ2;m ¼ m2
i Ii;nm þ ð2mþ 3ÞIi;nþ2;mþ1: ðF5Þ

Following Eq. (D5) the relevant expansion coefficients in
the ð10þ 4NqÞ-moment approximation are

aðlÞi;00 ¼ 1; ∀ l ≥ 0; ðF6Þ

að1Þi;11 ¼
β

2
; að1Þi;10 ¼ −

4

β
að1Þi;11 ¼ −2: ðF7Þ
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a. Tensor moments (l = 2)

The only relevant contraction of the X -tensor reads

XNspec

j;a;b¼1

Δμ1μ2ν1ν2X
μ1μ2ν1ν2
sijab;r ¼ 4

9
σtot
XNspec

j¼1

�
ð2δis − δjsÞIi;rþ4;0Ij;10 þ

2

3
ðδis þ δjsÞIi;rþ3;0Ij;20

�
; ðF8Þ

and therefore the elements of the collision matrix (E4) for the tensor moments read in ð10þ 4NqÞ-moment approximation
(note that N2 ¼ 0)

Að2Þ
is;00 ¼

1

2

að2Þs;00a
ð2Þ
s;00

10Is;42

XNspec

j;a;b¼1

Δμ1μ2ν1ν2X
μ1μ2ν1ν2
sijab;0 ¼ σtot

45Is;42

XNspec

j¼1

�
ð2δis − δjsÞIi;40Ij;10 þ

2

3
ðδis þ δjsÞIi;30Ij;20

�
: ðF9Þ

Expressing this in terms of the pressure, we obtain

Að2Þ
is;00 ¼

σtotβ

5

XNspec

j¼1

PiPj

Ps
ð4δis − δjsÞ ¼

σtotβ

5
ð4δisP − PiÞ; ðF10Þ

and in the single-component limit (Nspec → 1), where Pi ≡ P0 ¼ n0=β, we reproduce the result from Ref. [21]:

Að2Þ
11;00 → Að2Þ

00 ¼ 3

5
σtotn0: ðF11Þ

Here, Eq. (F10) defines the entries of an Nspec-dimensional rectangular, regular matrix. The elements of its inverse are

τð2Þsi;00 ¼
5

σtotβ

1

12P2
ð3δsiPþ PsÞ: ðF12Þ

b. Vector moments (l= 1)

The relevant contractions of the X -tensor for the vector moments are

XNspec

j;a;b¼1

Δμ1ν1X
μ1ν1
sijab;r ¼ σtot

XNspec

j¼1

ðδjs − δisÞ
�
1

3
Ii;rþ1;0Ij;20 þ Ii;rþ2;0Ij;10

�
; ðF13Þ

XNspec

j;a;b¼1

Δμ1ν1uν2X
μ1ν1ν2
sijab;r ¼ σtot

XNspec

j¼1

�
2

9
ð2δjs − δisÞIi;rþ1;0Ij;30þ

4

9
ðδjs þ δisÞIi;rþ2;0Ij;20 þ

6

9
ðδjs − 2δisÞIi;rþ3;0Ij;10

�
; ðF14Þ

thus the elements of the collision matrix (E4) read in the ð10þ 4NqÞ-moment approximation (where N1 ¼ 1):

Að1Þ
is;r0 ¼ −

1

2

X1
n0¼0

Xn0
m¼0

að1Þs;n00a
ð1Þ
s;n0m

3Is;21

XNspec

j;a;b¼1

uν2 � � � uν1þm
Δμ1ν1Xμ1ν1���ν1þm

sijab;r

¼ −
σtot
6Is;21

XNspec

j¼1

	
ðað1Þs;00a

ð1Þ
s;00 þ að1Þs;10a

ð1Þ
s;10Þðδjs − δisÞ

�
1

3
Ii;rþ1;0Ij;20 þ Ii;rþ2;0Ij;10

�

þ að1Þs;10a
ð1Þ
s;11

�
2

9
ð2δjs − δisÞIi;rþ1;0Ij;30 þ

4

9
ðδjs þ δisÞIi;rþ2;0Ij;20 þ

6

9
ðδjs − 2δisÞIi;rþ3;0Ij;10

�

; ðF15Þ

and
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Að1Þ
is;r1 ¼ −

1

2

X1
m¼0

að1Þs;11a
ð1Þ
s;1m

3Is;21

XNspec

j;a;b¼1

uν2 � � � uν1þm
Δμ1ν1Xμ1ν1���ν1þm

sijab;m

¼ −
σtot
6Is;21

XNspec

j¼1

	
að1Þs;11a

ð1Þ
s;10ðδjs − δisÞ

�
1

3
Ii;rþ1;0Ij;20 þ Ii;rþ2;0Ij;10

�

þ að1Þs;11a
ð1Þ
s;11

�
2

9
ð2δjs − δisÞIi;rþ1;0Ij;30 þ

4

9
ðδjs þ δisÞIi;rþ2;0Ij;20 þ

6

9
ðδjs − 2δisÞIi;rþ3;0Ij;10

�

: ðF16Þ

After some calculations, the relevant matrix elements read in terms of pressure:

Að1Þ
is;00 ¼ −

4

9
σtotβ

XNspec

j¼1

PiPj

Ps
ðδjs − 2δisÞ ¼

4

9
σtotβð2δisP − PiÞ; ðF17Þ

Að1Þ
is;10 ¼ −

1

2
σtot
XNspec

j¼1

PiPj

Ps
ðδjs − δisÞ ¼

1

2
σtotðδisP − PiÞ; ðF18Þ

Að1Þ
is;01 ¼ −

1

18
σtotβ

2
XNspec

j¼1

PiPj

Ps
ðδjs þ δisÞ ¼ −

1

18
σtotβ

2ðδisPþ PiÞ; ðF19Þ

Að1Þ
is;11 ¼ −

1

2
σtotβ

XNspec

j¼1

PiPj

Ps
ðδjs − δisÞ ¼

1

2
σtotβðδisP − PiÞ: ðF20Þ

Equations (F17)–(F20) are the elements of the four
Nspec-dimensional rectangular block matrices of the
ð2Nspec × 2NspecÞ-matrix Að1Þ. Its single-component limit
(Nspec ¼ 1) is consistent with Ref. [21]:

Að1Þ ≡
 
Að1Þ

11;00 Að1Þ
11;01

Að1Þ
11;10 Að1Þ

11;11

!
¼ 1

9
σtotβP0

�
4 −β
0 0

�
: ðF21Þ

We observe that the Að1Þ matrix is singular even in the
single-component limit. This is due to the momentum-
conservation equation. In order to construct the inverse
matrix τð1Þ, we follow the steps presented in Appendix G by
introducing the reduced matrix Ãð1Þ (therefore effectively
removing the irreducible moment ρμ1;1), inverting it, and
adding zero elements corresponding to the originally
removed rows and columns to that inverse, yielding τð1Þ.
We illustrate this procedure in the single-component limit.
The reduced matrix and its inverse then just consist of one
entry,

Ãð1Þ ¼ 4

9
σtotβP0; and τ̃ð1Þ ¼ 9

4

1

σtotβP0

: ðF22Þ

Adding zero elements yields the final inverse

τð1Þ ¼ 9

4

1

σtotβP0

�
1 0

0 0

�
: ðF23Þ

In the multicomponent case, we find the following entries
of the 2Nspec-dimensional rectangular inverse matrix:

τð1Þsi;00 ¼
9

68βσtotP2
ð8δsiPþ 9PsÞ; ðF24Þ

τð1Þsi;01 ¼
2

17σtotP
ðδsi − δsNspec

Þ; ðF25Þ

τð1Þsi;10 ¼
18

17σtotβ
2P2

ð1 − δsNspec
ÞðPs − δsiPÞ; ðF26Þ

τð1Þsi;11 ¼
32

17σtotβP
δsið1 − δsNspec

Þ: ðF27Þ

We note that the elements τð1Þsi;nr are indeed constructed in a
way that they vanish in the cases n ¼ 1 and s ¼ Nspec, or
r ¼ 1 and i ¼ Nspec (i.e., the row and column which was
originally removed from Að1Þ). We remind the reader that
adding these zeros simplifies our notation in this work.
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2. Transport coefficients

Now that the collision matrix has been determined,
we can proceed to calculate the transport coefficients
of the theory. We remark that the scalar moments
have not been discussed since the bulk viscous pressure
vanishes identically in the ultrarelativistic (massless) case,

Π≡PNspec

s¼1
m2

s
3
ρs;0 ¼ 0. The coefficients in the ð10þ 4NqÞ-

moment approximation (N0 ¼ 2, N1 ¼ 1, N2 ¼ 0) have
been defined in Sec. III D and Appendix C. We evaluate
them in the ultrarelativistic scenario, where all mass terms
vanish. Since the transport coefficients are defined via the
coefficients listed in Eqs. (98)–(100), these have to be
evaluated first. For this, we introduce shorthand notations
for the charge concentration of type q, and the concen-
tration of the charge combination qq0 in the system,
respectively:

cq ≡
XNspec

j¼1

qj
Pj

P
; and cqq0 ≡

XNspec

j¼1

qjq0j
Pj

P
: ðF28Þ

Further, the derivatives in temperature and chemical poten-
tial of the weighted partial pressures of a classical gas read

∂

∂β

�
Pi

P

�
¼ 0 and

∂

∂αq

�
Pi

P

�
¼ Pi

P
ðqi − cqÞ; ðF29Þ

and from this the derivatives in the charge concentration
follow

∂cq
∂β

¼ 0 and
∂cq
∂αq0

¼ cqq0 − cqcq0 : ðF30Þ

respectively. The relevant expressions for the vector and
tensor moments are then obtained from Eqs. (98)–(100) as

ηs;0 ≡
XNspec

i¼1

XN2

r¼0

τð2Þsi;0rα
ð2Þ
s;r ¼ 4

3

Ps

P
1

σtotβ
; ðF31Þ

κs;0;q ≡
XNspec

i¼1

XN1

r¼0

τð1Þsi;0rα
ð1Þ
i;r;q ¼

8

17σtot

Ps

P

�
qs −

77

128
cq

�
;

ðF32Þ

κs;1;q≡
XNspec

i¼1

XN1

r¼0

τð1Þsi;1rα
ð1Þ
i;r;q¼

26

17σtotβ
ð1−δsNspec

ÞPs

P
ðqs−cqÞ:

ðF33Þ

From this, the shear viscosity and the diffusion-coefficient
matrix immediately follow:

η≡XNspec

s¼1

ηs;0 ¼
4

3

1

σtotβ
; ðF34Þ

κqq0 ≡
XNspec

s¼1

qsκs;0;q0 ¼
8

17σtot

�
cqq0 −

77

128
cqcq0

�
: ðF35Þ

It should be noted that the derivative of the above diffusion
coefficients in inverse temperature, and therefore also from
its inverse, vanishes,

∂

∂β
κqq0 ¼ 0 and

∂

∂β
ðκ−1Þqq0 ¼ 0: ðF36Þ

We note that the result for the shear viscosity is the same as
in Ref. [21], while the diffusion coefficients are different
since they depend on the various charges in the system,
which are not taken into account in a single-component
approach. However, in the limit where there is only one
conserved particle species in the system (i.e., Nq ¼ 1 and
qs ¼ 1 and therefore cq ¼ cqq0 ¼ 1), the obtained expres-
sion is equivalent to the value derived in Ref. [21], κ ¼ 3=
ð16σtotÞ. We also remark that from the above equation we
read off that the diffusion-coefficient matrix is symmetric,
κqq0 ¼ κq0q as shown by the Onsager reciprocal relations
[12,13]. The relevant weighted base coefficients then read

η̄i;0 ≡ ηi;0
η

¼ Pi

P
; ðF37Þ

η̄i;−1 ≡ F ð2Þ
i;1;0η̄i;0 ¼

β

5

Pi

P
; ðF38Þ

κ̄ðqÞi;0 ≡ XfB;Q;Sg

q0
κi;0;q0 ðκ−1Þq0q

¼ 8

17σtot

XfB;Q;Sg

q0
ðκ−1Þq0q

Pi

P

�
q0i −

77

128
cq0
�
; ðF39Þ

κ̄ðqÞi;1 ¼ 26

17βσtot

XfB;Q;Sg

q0
ðκ−1Þq0q

Pi

P
ðq0i − cq0 Þð1 − δiNspec

Þ:

ðF40Þ

For the relaxation times defined in Eqs. (116) and (119)
we get

τπ ¼
5

3

1

σtotβP
; ðF41Þ

τq0q ¼
9

68βσ2totP

XfB;Q;Sg

q00
ðκ−1Þq00q

�
784

153
cq00q0 −

4741

2448
cq00cq0

�

⟶
single 9

4

1

βσtotP
: ðF42Þ

We again note that also the relaxation-time matrix is
symmetric, τqq0 ¼ τq0q. It is further apparent that the shear

FOTAKIS, MOLNÁR, NIEMI, GREINER, and RISCHKE PHYS. REV. D 106, 036009 (2022)

036009-26



relaxation time is equivalent to the value derived in Ref. [21].
In the case where only one conserved particle species is
present (see above), such an equivalence is also recovered
for the diffusive relaxation time, τq ¼ 27=ð64βσ2totPκÞ ¼
9=ð4βσtotPÞ, as indicated with the notation “ !single”. In the
following we will keep this notation, and continue with the
second-order coefficients. For the coefficients in the shear-
stress tensor equation, defined in Appendix C 3, we get

δππ ¼
4

3
τπ; ðF43Þ

τππ ¼
10

7
τπ; ðF44Þ

lðqÞ
πV ¼ 52

51

1

β2σ2totP

XfB;Q;Sg

q0
ðκ−1Þq0qðcq0 − q0Nspec

Þ

×
PNspec

P
⟶
single

0; ðF45Þ

τðqÞπV ¼ 4β
∂

∂β
lðqÞ
πV − 7lðqÞ

πV ⟶
single

0; ðF46Þ

λðq;q
0Þ

πV ¼ ∂

∂αq0
lðqÞ
πV þ β

4
cq0

∂

∂β
lðqÞ
πV − 2cq0l

ðqÞ
πV ⟶

single
0: ðF47Þ

For the coefficients in the vector equations of motion (see
Appendix C 2) we derive:

δðq
0;qÞ

VV ¼ 1

βσ2totP

XfB;Q;Sg

q00
ðκ−1Þq00q

"
640

867
cq0q00 −

17551

55488
cq0cq00 þ

52

289
ðcq0q00 − cq0cq00 Þ

4P
β

 
T 00 þ

β

4

XfB;Q;Sg

q000
T 0q000cq000

!#

−
4

βσ2tot

XfB;Q;Sg

q00

(
∂

∂αq00

" XfB;Q;Sg

q000
ðκ−1Þq000q

�
196

289
cq0q000 −

1109

2312
cq0cq000

�#

þ 162

289
cq0

∂

∂αq00

" XfB;Q;Sg

q000
ðκ−1Þq000qðcq0q000 − cq0cq000 Þ

#) 
T q000 þ

β

4

XfB;Q;Sg

q000
T q00q000cq000

!
⟶
single

τq: ðF48Þ

λðq
0;qÞ

VV ¼ 9

68βσ2totP

XfB;Q;Sg

q00
ðκ−1Þq00q

�
2768

765
cq00q0 −

20879

12240
cq00cq0

�
⟶
single 3

5
τq; ðF49Þ

lðq0Þ
Vπ ¼ 9

80σtotP
cq0 ⟶

single β

20
τq; ðF50Þ

τðq
0Þ

Vπ ¼ lðq0Þ
Vπ ⟶

single β

20
τq; ðF51Þ

λðq
0;qÞ

Vπ ¼ 28

85

1

σtotP

�
cqq0 −

295

448
cqcq0

�
⟶
single β

20
τq: ðF52Þ

Note that the coefficient τnπ from Denicol (2012) [21] was

defined as τnπ ¼single 1
ϵþP τ

ðq0Þ
Vπ , which then yields τnπ ¼ β

80
τq.

Therefore, in the single-component limit we retrieve the
same coefficients as in Ref. [21].

APPENDIX G: INVERTING THE COLLISION
MATRIX

For the calculation of the transport coefficients, the inverse

of the collisionmatrixAðlÞ ≡ ðAðlÞ
ij;rnÞ fromEq. (90) must be

calculated. In the tradition of Ref. [21], we provide a detailed
discussion of the derivation of the linearized collision term
(seeAppendixE) and its inverse. In this section,we show that
the collision matrix is singular in the cases l ¼ 0 and l ¼ 1
due to the conservation of energy-momentum and charge.

While in the single-component system the construction of
the inverse was immediately clear [21], in the case of a
multicomponent system such a construction is not obvious.
The conservation equations (73) for the various charges

imply that certain moments of the Boltzmann equation
vanish,

XNspec

i¼1

qiCi;0 ¼
XNspec

i¼1

qi

Z
dKikνi ∂νfi;k ≡ 0: ðG1Þ

Similarly, projections of the conservation law (74) for energy
and momentum give

XNspec

i¼1

Ci;1 ¼
XNspec

i¼1

Z
dKiEi;kkνi ∂νfi;k ≡ 0; ðG2Þ
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XNspec

i¼1

Chμi
i;0 ¼

XNspec

i¼1

Z
dKik

hμi
i kνi ∂νfi;k ≡ 0: ðG3Þ

These relations imply that a subset of row (or column)vectors
of the collision matrices AðlÞ are linearly dependent. Since
the irreducible moments ρμ1���μli;r are in principle independent
of each other, Eq. (90) implies that the following linear
combinations of the elements of the collision matrix must
vanish:

0 ¼
XNspec

i¼1

qiA
ð0Þ
is;1n; ðG4Þ

0 ¼
XNspec

i¼1

Að0Þ
is;2n; ðG5Þ

0 ¼
XNspec

i¼1

Að1Þ
is;1n: ðG6Þ

This means that the conservation laws render the collision
matrix for the scalar moments,Að0Þ, and the vector moments,

Að1Þ, singular. We note that the tensor moments (l ¼ 2) are
not affected, and thus Að2Þ is in principle regular. For a
meaningful fluid-dynamical theory, an equivalent description
of the above discussed collision matrices has to be found such
that they are rendered invertible, and at the same time their
microscopic information is not altered. The linear dependence
further implies that Nq þ 4 equations need to be removed
from the set (83), (85), and (87) of equations of motion, i.e.,
Nq þ 1 scalar moments ρi;r and one vector moment ρμi;r (three
equations). In the case of thevectormoments, the choice of the
frame provides a relationship between the vector moments,
and it allows us to eliminate one of them from the equations of
motion entirely.
For the Landau frame, from Eq. (70) we have

ρμNspec;1
¼ −

XNspec−1

i¼1

ρμi;1; ðG7Þ

while in the Eckart frame we could impose via Eq. (B12)

ρμNspec;1
¼ −hq

PNspec

i¼1 qiρ
μ
i;0 −

PNspec−1
i¼1 ρμi;1. As before, we

proceed in the Landau frame. With the help of Eq. (G7), we
can write:

XNspec

s¼1

XN1

n¼0

Að1Þ
is;rnρ

μ
s;n ¼

XN1

n¼0;≠1

XNspec

s¼1

Að1Þ
is;r0ρ

μ
s;0 þ

XNspec−1

s¼1

Að1Þ
is;r1ρ

μ
s;1 þAð1Þ

iNspec;r1
ρμNspec;1

¼
XN1

n¼0;≠1

XNspec

s¼1

Að1Þ
is;r0ρ

μ
s;0 þ

XNspec−1

s¼1

ðAð1Þ
is;r1 −Að1Þ

iNspec;r1
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð⋆Þ

ρμs;1¼!
XN1

n¼0

XNspec

s¼1

Ãð1Þ
is;rnρ

μ
s;n: ðG8Þ

First, we note that the term marked with ð⋆Þ vanishes for
s ¼ Nspec. Therefore, we can extend the last sum to run up
to s ¼ Nspec. In the last step of the above equation, we

introduced the matrix Ãð1Þ, which is a reduced version of
the matrix Að1Þ with the row corresponding to r ¼ 1 and
i ¼ Nspec and the column corresponding to n ¼ 1 and
s ¼ Nspec, respectively, removed, i.e., its elements read:

Ãð1Þ
is;rn ¼Að1Þ

is;rn for n≠ 1; and Ãð1Þ
is;r1 ¼Að1Þ

is;r1−Að1Þ
iNspec;r1

:

ðG9Þ

Then, Ãð1Þ is an ðNspec · N1 − 1Þ-dimensional, rectangular,
regular matrix.
An explicit example for the construction of the corrected

matrix is given inAppendix F in the case of an ultrarelativistic
gasmixture.We further note that, we are free to choosewhich
irreducible moment ρμi;1 we remove from the set of equations
of motion, and thus we could have chosen any line and
associated column (corresponding to that particular moment)
to be removed (e.g., ρμλ;1 instead of ρμNspec;1

).

Once the reduced collisionmatrix Ãð1Þ is obtained it can be
inverted. This yields the reduced inverse τ̃ð1Þ of dimension
Nspec · N1 − 1. In order to make the inverse τð1Þ equivalent to
the one of dimensionNspec · N1 introduced inEq. (93), and in
order to keep a simple notation regarding the summations
over the indices r and s in all equations following that
definition [e.g., Eqs. (95) ff.], we add zero-element row(s)
and column(s), which correspond to the ones originally
removed from thematrix Ãð1Þ. For instance, in the case of the
vector moments this means that we add a zero row for r ¼ 1
and i ¼ Nspec, and a zero column for n ¼ 1 and s ¼ Nspec.
Due to the zero-element row and column, the removed
irreducible moment ρμNspec;1

, even though it formally still
appears in the equations following Eq. (95), effectively does
not contribute anymore.
The procedure is analogous for the removal of theNq þ 1

scalar moments. The energy- and charge-conservation laws
provideNq þ 1 relations for the linear dependence of the row
vectors of matrix Að0Þ. These are given by Eqs. (G4) and
(G5). In order to remove the corresponding moments, we
impose the Landau matching conditions,
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XNspec

i¼1

ρi;2 ¼ 0; and
XNspec

i¼1

qiρi;1 ¼ 0: ðG10Þ

The corrected matrix Ãð0Þ is then an ðNspec · N0 − Nq − 1Þ-
dimensional, rectangular, regular matrix and its elements can
be written as:

Ãð0Þ
is;rn ¼ Að0Þ

is;rn for n ≠ 1; 2; Ãð0Þ
is;r1 ¼ Að0Þ

is;r1 −
qs
qλ

Að0Þ
iλ;r1;

and Ãð0Þ
is;r2 ¼ Að0Þ

is;r2 −Að0Þ
iλ;r2; ðG11Þ

where again i ≠ λ for r ¼ 1, 2, and s ≠ λ for n ¼ 1, 2. It
should be noted that theNq charge-conservation laws and the
Nq matching conditions associated to the net-charge den-
sities only allow for the removal of moments corresponding
to species λwith nonvanishing charge of type q, qλ ≠ 0. This
can be understood by noting that the above relations (G11)
are not well defined when qλ ¼ 0. In order to simplify the
notation in this work, we construct the inverse τð0Þ as an
ðNspec · N0Þ-dimensional, rectangular matrix, which is the

inverse of Ãð0Þ and contains zero elements for the rows and
columns which were removed from Að0Þ.
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