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While the ground-state tensor (JPC ¼ 2þþ) mesons a2ð1320Þ, K�
2ð1430Þ, f2ð1270Þ, and f02ð1525Þ are

well known experimentally and form an almost ideal nonet of quark-antiquark states, their chiral partners,
the ground-states axial-tensor (JPC ¼ 2−−) mesons are poorly settled: only the kaonic memberK2ð1820Þ of
the nonet has been experimentally found, whereas the isovector state ρ2 and two isoscalar states ω2 and ϕ2

are still missing. Here, we study masses, strong, and radiative decays of tensor and axial-tensor mesons
within a chiral model that links them: the established tensor mesons are used to test the model and to
determine its parameters, and subsequently various predictions for their chiral partners, the axial-tensor
mesons, are obtained. The results are compared to current lattice QCD outcomes as well as to other
theoretical approaches and show that the ground-state axial-tensor mesons are expected to be quite broad,
the vector-pseudoscalar mode being the most prominent decay mode followed by the tensor-pseudoscalar
one. Nonetheless, their experimental finding seems to be possible in ongoing and/or future experiments.

DOI: 10.1103/PhysRevD.106.036008

I. INTRODUCTION

The classification of the observed mesonic resonances
into nonets of quark-antiquark (qq̄) states using flavor
symmetry (as well as chiral symmetry) is one of the greatest
achievements of modern high energy physics.
In the nonrelativistic spectroscopic notation, qq̄ nonets

are specified by the expression n2Sþ1LJ, with n being the
radial quantum number, and S, L and J being the spin,
spacial, and total angular momenta of the quark-antiquark
system, respectively. Upon restricting to the first radial
excitation n ¼ 1, the situation is summarized in Table I,
in which also the relativistic notation JPC [with parity
P ¼ ð−1ÞLþ1 and charge conjugation C ¼ ð−1ÞLþS] is
reported.
Examples of very well-known qq̄ mesonic nonets

include the pseudoscalar mesons with JPC ¼ 0−þ (spectro-
scopic notation: 1S0), the vector mesons with JPC ¼ 1−−

(3S1), and the axial-vector mesons with JPC ¼ 1þþ (3P1)
[1]. The above resonances are in good agreement with the
quark model of Ref. [3] and the Bethe-Salpeter approach of
Ref. [4]. The scalar mesons with JPC ¼ 0þþ (1S0) are in the
center of a long-standing debate, e.g., Ref. [5–12]: there is
no lack of candidates, on the contrary there are more states

than expected from qq̄ alone, in agreement with the
intrusion of four-quark states and the scalar glueball.
Summarizing, upon including the nonet of pseudovector
mesons with JPC ¼ 1þ− (1P1) and the orbitally excited
vector mesons with JPC ¼ 1−− (3D1), for all nonets with
n ¼ 1 and J < 2 there are corresponding resonances in the
PDG (with the interesting exception of the missing orbitally
excited vector state ϕð?Þ, with an expected mass at about
1.9 GeV, see Ref. [2]).
Moving to J ≥ 2, one recognizes the well-established

nonet of tensor mesons with JPC ¼ 2þþ (3P2), see e.g.,
Refs. [7,13,14], and the quite well-known nonet of pseu-
dotensor mesons with JPC ¼ 2−þ (1D2), even if, for the
latter, some questions are still open [15,16]. The nonet of
mesons with JPC ¼ 3−− (3D3) is also well known, as the
recent detailed report of Ref. [17] shows.
On the other hand, as it is visible from Table I, the nonet

of the so-called axial-tensor mesons with JPC ¼ 2−− (3D2)
is extremely poorly known. Only the kaonic member
K2ð1820Þ (with eventual mixing with K2ð1770Þ) is listed.
The isovector member ρ2 and the isotensor ones ω2 and ϕ2

were not yet discovered. One may actually regard this nonet
as a sort of “missing multiplet”. It is then evident that it
deserves further theoretical and experimental investigations.
One of the main goals of the present paper is a

phenomenological study of masses, strong, and radiative
decays of tensor and, most importantly, of axial-tensor
mesons. In the latter case, predictions for the missing states
are delivered. For our purposes, we shall use a well-defined
chiral model of QCD, called the extended linear sigma

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 036008 (2022)

2470-0010=2022=106(3)=036008(17) 036008-1 Published by the American Physical Society

https://orcid.org/0000-0002-4353-0760
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.036008&domain=pdf&date_stamp=2022-08-10
https://doi.org/10.1103/PhysRevD.106.036008
https://doi.org/10.1103/PhysRevD.106.036008
https://doi.org/10.1103/PhysRevD.106.036008
https://doi.org/10.1103/PhysRevD.106.036008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


model (eLSM), that was previously successfully applied to
pseudoscalar mesons and vector mesons and their chiral
partners, the scalar and the axial-vector mesons [18] (see the
first four entries of Table I). Within this context, the linear
realization of chiral symmetry, together with its explicit and
spontaneous breaking patterns, allows one to study chiral
partners (that is, qq̄mesons with the same J related by chiral
transformations) on the same footing. Applications of the
eLSM to the excited (pseudo)scalar mesons [19,20], to
pseudovector and orbitally excited vector mesons [21] and
more recently to hybrid mesons [22] were undertaken.
It then seems quite natural to apply the eLSM to the

tensor sector, thus describing in a chiral framework both
tensor and axial-tensor mesons. Since masses and decays of
the ground-state tensor mesons are well established, the
tensor mesons allow for the determination of the (addi-
tional) parameters of the model and for a test of its validity
in the energy range between 1 and 1.6 GeV. As we shall
see, the overall agreement of theory with experiments is
rather good and therefore confirms the predominant qq̄
nature of the ground-state tensor mesons. (For different
interpretations of tensor mesons and some other states
listed in Table I, see e.g., Refs. [23–25]).
Next, we move to the yet mostly unknown axial-tensor

mesons. The estimate of masses for the nonet members is
possible thanks to the tensor states and to the known axial-
tensor kaonic state K�

2ð1820Þ. The decays of axial-tensor
mesons into a vector-pseudoscalar pair turns out to be
quite large and dominant. Also the decays into tensor-
pseudoscalar and axial-vector-pseudoscalar are sizable
and represent interesting decay modes for the future
search of the missing states of this nonet.
Light mesons (both conventional and exotic) are in the

center of various experimental searches, such as the BESIII
[26,27], CLAS12 [28], COMPASS [29], GlueX [30–32]
experiments as well as the planned PANDA experiment
[33]. In particular, photoproduction of tensor mesons
represents an active experimental [34] and phenomeno-
logical [35–37] topic. It is well possible that the missing
axial-tensor mesons discussed in this work can be discov-
ered in the future.
This work is organized as follows: in Sec. II we

introduce the fields and the Lagrangian terms describing
masses and decays of (axial-)tensor states; in Sec. III we
show the corresponding results. Finally, in Sec. IV our
conclusions are outlined.

II. CHIRAL MODEL FOR SPIN-2 MESONS

In this section, we first recall the form of flavor and chiral
multiplets and then we present the novel chiral Lagrangian
terms that involve (axial-)tensor mesons.
For conventional qq̄ pairs, the spin S⃗ can take the value

S ∈ f0; 1g, while the angular momentum L⃗ any value
L ¼ 0; 1; 2;…. As a consequence, the parity eigenvalue
P ¼ ð−1ÞLþ1 and the charge conjugation eigenvalue

C ¼ ð−1ÞLþS follow. The spin and angular momentum
couple to the total angular momentum J⃗ ¼ L⃗þ S⃗.
For S ¼ 0, the qq̄ state reads jS ¼ 0i ¼

1ffiffi
2

p j↑q ↓q̄ − ↓q ↑q̄i, while for S ¼ 1 is jS ¼ 1i ¼ fj↑q↑q̄i;
1ffiffi
2

p j↑q ↓q̄ þ ↓q ↑q̄i; j↓q↓q̄ig. Thus, for S ¼ 0 the possible

quantum numbers for conventional qq̄ mesons are
JPC ∈ feven−þ; oddþ−g, while for S ¼ 1 they are JPC ∈
ff0; 1; 2;…gþþ; f1; 2;…g−−g. [Mesons with JPC ∈
fevenþ−; odd−þg as well as 0−− are considered exotic.]
In this work, we concentrate on (pseudo)scalar, (axial-)

vector, as well as (axial-)tensor multiplets. These fields
enter into appropriate chirally invariant Lagrangian terms
that describes the masses and the decays of (axial-)tensor
mesons.

A. Mesonic nonets

The ground-state pseudoscalar mesons with JPC ¼ 0−þ

(1S0) comprise 3 pions, four kaons, the ηð547Þ and the
η0ð958Þ. They can be collected into the following nonet
with light-quark elements Pij ≡ 2−1=2q̄jiγ5qi:

P ¼ 1ffiffiffi
2

p

0
BBB@

ηNþπ0ffiffi
2

p πþ Kþ

π− ηN−π0ffiffi
2

p K0

K− K̄0 ηS

1
CCCA; ð2:1Þ

where ηN ≡ ffiffiffiffiffiffiffiffi
1=2

p ðūuþ d̄dÞ stands for the purely non-
strange state and ηS ≡ s̄s for the purely strange one. The
isoscalar physical fields emerge upon mixing reported in
e.g., Ref. [38] as

�
ηð547Þ

η0 ≡ ηð958Þ

�
¼

�
cos βP sin βP
− sin βP cos βP

��
ηN

ηS

�
; ð2:2Þ

with a large mixing angle βP ¼ −43.4°. This sizable
admixture is a consequence of the so-called UAð1Þ axial
anomaly [39,40]. Namely, pseudoscalar mesons belong to a
so-called “heterochiral” multiplet [41], see below.
Scalar mesons with JPC ¼ 0þþ (following from

L ¼ S ¼ 1, thus 3P0) are the chiral partners of the pseu-
doscalar ones. The discussion about their assignment is still
ongoing and there is not yet a general agreement.
Nevertheless, the set of resonances fa0ð1450Þ; K�

0ð1430Þ;
f0ð1370Þ; f0ð1500Þ=f0ð1710Þg reported in Table I is
favored [here, also the scalar glueball is expected to enter
with f0ð1710Þ being a good candidate]. Having the quan-
tum numbers of the vacuum, the isoscalar members of this
nonet may condense, see Sec. II B. By introducing the
currents Sij ≡ 2−1=2q̄jqi, the nonet of scalar states can be
written as
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S ¼ 1ffiffiffi
2

p

0
BBB@

σNþa0
0ffiffi

2
p aþ0 K⋆þ

0

a−0
σN−a00ffiffi

2
p K⋆0

0

K⋆−
0 K̄⋆0

0 σS

1
CCCA: ð2:3Þ

The isoscalar sector cannot be described by a simple 2 × 2
mixing because (at least) the scalar glueball should be taken
into account, thus implying a more complicated 3 × 3
mixing pattern leading to the resonances f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ, e.g., Refs. [20,42–46]. Yet, these
fields do not appear as final states of decays of (axial-)tensor
mesons; therefore, its detailed treatment of the scalar-
isoscalar mixing is not required in this work.
The third entry in Table I refers to the JPC ¼ 1−− (3S1)

nonet with L ¼ 0 and S ¼ 1. These are the very well-
known vector states fρð770Þ; K�ð892Þ;ωð782Þ;ϕð1020Þg.
The matrix Vμ with elements Vμ

ij ¼ 2−1=2q̄jγμqi has the
form

Vμ ¼ 1ffiffiffi
2

p

0
BBB@

ωμ
Nþρ0μffiffi

2
p ρþμ K�þμ

ρ−μ
ωμ
N−ρ

0μffiffi
2

p K�0μ

K�−μ K̄�0μ ωμ
S

1
CCCA; ð2:4Þ

where ωN and ωS are purely nonstrange and strange,
respectively. Similar to the pseudoscalar case, the physical
fields arise upon mixing

�
ωð782Þ
ϕð1020Þ

�
¼

�
cos βV sin βV
− sin βV cos βV

��
ωN

ωS

�
; ð2:5Þ

where the small isoscalar-vector mixing angle βV ¼ −3.9°
is taken from the PDG [1]. Thus, the physical states ω and
ϕ are dominated by nonstrange and strange components,

respectively. This is in agreement with the so-called
“homochiral” nature of these states [41], see also below.
The chiral partners of the vector mesons [47] are realized

for the quantum numbers L ¼ S ¼ 1 (just as for the scalar
mesons discussed previously) coupled to JPC ¼ 1þþ (3P1):
this is the so-called axial-vector meson nonet A1, that arises
from the microscopic current Aμ

1;ij ≡ 2−1=2q̄jγ5γμqi:

Aμ
1 ¼

1ffiffiffi
2

p

0
BBB@

fμ
1;Nþa0μ

1ffiffi
2

p aþμ
1 Kþμ

1A

a−μ1
fμ
1;N−a

0μ
1ffiffi

2
p K0μ

1A

K−μ
1A K̄0μ

1A fμ1;S

1
CCCA: ð2:6Þ

The isoscalar sector reads

�
f1ð1285Þ
f1ð1420Þ

�
¼

�
cos βA1

sin βA1

− sin βA1
cos βA1

�� fμ1;N
fμ1;S

�
; ð2:7Þ

where the mixing angle βA1
is expected to be small because

of the homochiral nature of the multiplet [41], see also
Ref. [48]. Here, we shall set this angle to zero for simplicity.
An important digression is needed for the kaonic axial-

vector mesons. Since these states are not eigenstates of C,
the state K1;A belonging to the JPC ¼ 1þþ (3P1) axial-
vector nonet and K1;B belonging to the JPC ¼ 1þ− (1P1)
pseudovector nonet mix:

�
K1ð1270Þ
K1ð1400Þ

�
μ

¼
�

cosφK −isinφK

−isinφK cosφK

��
K1;A

K1;B

�μ

: ð2:8Þ

For a detailed study on the K1ð1270Þ=K1ð1400Þ system
using an approach similar to the one used in this work, see
Ref. [48]. The numerical value φK ¼ ð56.4� 4.3Þ° [47,48]
implies that K1ð1270Þ is predominantly K1;B andK1ð1400Þ

TABLE I. List of conventional qq̄ mesons following the quark model review of Ref. [1] up to J ¼ 3 and for the lowest radial
excitation. The columns refer to different values of the isospin I. The first eight nonets are grouped into four chiral partners. The kaonic
statesK1;A andK1;B mix and give rise toK1ð1270Þ andK1ð1400Þ. Note, the entries for which no assignment is proposed are the orbitally
excited vector ϕð???Þ [2] as well as three axial-tensor states ρ2ð???Þ≡ ρ2, ω2ð???Þ≡ ω2 and ϕ2ð???Þ≡ ϕ2, which represent one of the
main subjects of this work.

n2Sþ1LJ JPC I ¼ 1 ud̄, dū dd̄−uūffiffi
2

p I ¼ 1=2 us̄, ds̄ sd̄, sū I ¼ 0 ≈ uūþdd̄ffiffi
2

p I ¼ 0 ≈ss̄ Meson names Chiral partners

11S0 0−þ π K ηð547Þ η0ð958Þ Pseudoscalar J ¼ 0

13P0 0þþ a0ð1450Þ K⋆
0ð1430Þ f0ð1370Þ f0ð1500Þ=f0ð1710Þ Scalar

13S1 1−− ρð770Þ K⋆ð892Þ ωð782Þ ϕð1020Þ Vector J ¼ 1

13P1 1þþ a1ð1260Þ K1A f1ð1285Þ f01ð1420Þ Axial-vector
11P1 1þ− b1ð1235Þ K1B h1ð1170Þ h1ð1415Þ Pseudovector J ¼ 1⋆
13D1 1−− ρð1700Þ K⋆ð1680Þ ωð1650Þ ϕð???Þ Excited-vector
13P2 2þþ a2ð1320Þ K⋆

2ð1430Þ f2ð1270Þ f02ð1525Þ Tensor J ¼ 2

13D2 2−− ρ2ð???Þ K2ð1820Þ ω2ð???Þ ϕ2ð???Þ Axial-tensor
11D2 2−þ π2ð1670Þ K2ð1770Þ η2ð1645Þ η2ð1870Þ Pseudotensor
13D3 3−− ρ3ð1690Þ K⋆

3ð1780Þ ω3ð1670Þ ϕ3ð1850Þ J ¼ 3–tensor
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is predominantly K1;A (but the mixing is large). The study
of this mixing angle via semileptonic decays can be found
in e.g., Ref. [49].
The next (fifth and sixth) entries of Table I are the

pseudovector (from which the K1;B above stems) and their
chiral partners, the (orbitally) excited vector mesons. One
can build similar nonets (see Refs. [21,22]), yet they are not
part of the decay products of the (axial-)tensor mesons
studied in this paper; therefore, we omit them in the
following.
Finally, we present the two tensor (J ¼ 2) meson nonets

(seventh and eighth rows of Table I), which constitute the
main subject of this work.
The well-known JPC ¼ 2þþ (3P2) tensor states with

elements Tμν
ij ¼ 2−1=2q̄jðiγμ∂ν þ � � �Þqi form an almost

ideal nonet of quark-antiquark states:

Tμν ¼ 1ffiffiffi
2

p

0
BBBB@

fμν
2;Nþa0μν

2ffiffi
2

p aþμν
2 K�þμν

2

a−μν2

fμν
2;N−a

0μν
2ffiffi

2
p K�0μν

2

K�−μν
2 K̄�0μν

2 fμν2;S

1
CCCCA: ð2:9Þ

The physical isoscalar-tensor states are

�
f2ð1270Þ
f02ð1525Þ

�
¼

�
cos βT sin βT
− sin βT cos βT

��
f2;N
f2;S

�
; ð2:10Þ

where βT ≃ 5.7° is the small mixing angle reported in the
PDG, in agreement with the fact that tensor mesons belong
to a homochiral multiplet, just as (axial-)vector states. Later
on, we shall recalculate the mixing angle βT by a fit to data
on decays. The decays of tensor mesons were studied in
detail in Refs. [13,14] and references therein, and fit well
into the standard qq̄ picture [3]. This point is corroborated
by the results of this work, see the next section.
The axial-tensor nonet with JPC ¼ 2−− (3D2) with

currents 2−1=2q̄jðγ5γμ∂ν þ � � �Þqi, builds the chiral partners
of the previously introduced tensor mesons. This nonet is
however poorly known: at present, only the kaonic states
K2ð1820Þ and K2ð1770Þ have been measured, the heavier
one being considered as predominately axial-tensor and the
lighter mainly pseudotensor, see Table I (as for the axial-
vector and pseudovector kaons, mixing is possible, but at
present not calculable due to lack of experimental data). For
some recent theoretical works devoted to the vacuum
properties and thermal properties of these resonances,
see Refs. [50,51] and Refs. [52,53] respectively. The matrix
for this nonet reads

Aμν
2 ¼ 1ffiffiffi

2
p

0
BBBB@

ωμν
2;Nþρ0μν

2ffiffi
2

p ρþμν
2 Kþμν

2

ρ−μν2

ωμν
2;N−ρ

0μν
2ffiffi

2
p K0μν

2

K−μν
2 K̄0μν

2 ωμν
2;S

1
CCCCA: ð2:11Þ

The isoscalar mixing is expected to be small in view of the
homochiral nature of the corresponding chiral multiplet in
which this nonet is embedded [41] (see also below). Thus,
for the isoscalar members: ω2;N ≃ ω2 and ω2;S ≃ ϕ2.
The transformation rules under parity, charge conjuga-

tion, and flavor transformations for all the relevant nonets
of this work (P; S; V; A1; T; A2) are summarized in Table II.
Finally, we introduce the chiral multiplets which contain

chiral partners and have simple transformations under the
chiral group URð3Þ ×ULð3Þ.
The pseudoscalar and scalar nonets build the matrix

Φ ¼ Sþ iP; ð2:12Þ

whose “heterochiral” transformation can be found in
Table III. As a consequence, the strange-nonstrange mixing
angle can be large, as it is the case for the pseudoscalar
mesons (the scalar one is not easy to determine because one
has a three-state mixing problem) and possibly for the
pseudotesnor mesons [15,41].
Vector and axial-vector nonets and similarly tensor and

axial-tensor nonets build the following left-handed and
right-handed objects:

Lμ ≔ Vμ þ Aμ
1; Rμ ≔ Vμ − Aμ

1; ð2:13Þ

Lμν ≔ Tμν þ Aμν
2 ; Rμν ≔ Tμν − Aμν

2 : ð2:14Þ

Their homochiral transformations are also listed in
Table III. One expects small isoscalar mixing angles in
these four nonets [41].
The fields listed in Table III are the needed ingredients to

write down chiral Lagrangian terms, as we shall show in the
next subsection.

TABLE II. Mesonic nonet transformations under P, C, and
UVð3Þ.

Nonet Parity (P)
Charge

conjugation (C) Flavor ðUVð3ÞÞ
0−þ ¼ P −Pðt;−x⃗Þ Pt UPU†

0þþ ¼ S Sðt;−x⃗Þ St USU†

1−− ¼ Vμ Vμðt;−x⃗Þ −ðVμÞt UVμU†

1þþ ¼ Aμ
1 −A1μðt;−x⃗Þ ðAμ

1Þt UAμ
1U

†

2þþ ¼ Tμν Tμνðt;−x⃗Þ ðTμνÞt UTμνU†

2−− ¼ Aμν
2 −A2μνðt;−x⃗Þ −ðAμν

2 Þt UAμν
2 U†
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B. Chiral invariant Lagrangian terms

The standard eLSM Lagrangian is a function of (pseudo)
scalar and (axial-)vector mesons as well as a dilaton (or
scalar glueball) field G, see Refs. [18,20,22]:

LeLSM ¼ Ldil þ Tr½ðDμΦÞ†ðDμΦÞ� −m2
0

�
G
G0

�
2

Tr½Φ†Φ�

−
1

4
Tr½ðL2

μν þ R2
μνÞ�

þ Tr

��
m2

vecG2

2G2
0

þ Δ
�
ðL2

μ þ R2
μÞ
�
þ � � � ; ð2:15Þ

where Ldil is the dilaton Lagrangian for the fieldG [54,55]
and G0 is the corresponding vacuum expectation value
(v.e.v.). [Note, the dilaton field G will not be relevant but
is formally important for dilatation invariance, but will not
appear as a decay product.] The covariant derivative
entering in the previous equation reads DμΦ ≔ ∂μΦ − ig1
ðLμΦ −ΦRμÞ. The matrix Δ breaks flavor symmetry by
including a different mass for mesons carrying the strange
quark:

Δ¼

0
B@
δN 0 0

0 δN 0

0 0 δS

1
CA where δN ∼m2

u; δS ∼m2
s : ð2:16Þ

The eLSM is based on the proper treatment of dilatation
and chiral invariances and their explicit and spontaneous
breaking patterns. (For other chiral models that make use
of dilatation invariance, see e.g., Refs. [56,57] and refs.
therein). The results for masses and decays of (pseudo)
scalar and (axial-)vector mesons can be found in the afore
mentioned Refs. [18,20]. For our present work, we need to
recall some of its basic features.
(i) The scalar-isoscalar fields of the model acquire

nonzero v.e.v. The dilaton field G condenses to a certain
value G0 (whose numerical value is not needed here),
which is related to the breaking of dilatation invariance.
Similarly, qq̄ scalar-isoscalar fields develop a v.e.v. as a
consequence of spontaneous symmetry breaking (SSB),
which in simple terms is due to the Mexican hat form of the

effective potential when m2
0 < 0. As a consequence, shifts

are necessary:

G → Gþ G0; S → SþΦ0 with

Φ0 ≔
1ffiffiffi
2

p

0
BB@

ϕNffiffi
2

p 0 0

0 ϕNffiffi
2

p 0

0 0 ϕS

1
CCA; ð2:17Þ

where the numerical values are reported in Table IV.
(ii) The axial-vector matrix must be shifted because SSB

induces a mixing of scalar and axial-vector fields, which is

proportional to the parameter g1 ¼ ma1
Zπfπ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

Z2
π

q
≃ 5.8

[18,19]. This operation amounts to

A1μ → A1μ þ ∂μP;

P ≔
1ffiffiffi
2

p

0
BBB@

ZπwπðηNþπ0Þffiffi
2

p Zπwππ
þ ZKwKKþ

Zπwππ
− ZπwπðηN−π0Þffiffi

2
p ZKwKK0

ZKwKK− ZKwKK̄0 ZηSwηSηS

1
CCCA; ð2:18Þ

where the constant terms are also given in Table IV. The
matrix P contains the pseudoscalar fields, just as the matrix
P of Eq. (2.1), but proper renormalization factors have been
included. The shifts in Eqs. (2.17) and (2.18) shall also be
applied to the novel Lagrangian terms introduced below.
Next, we turn to the chirally invariant Lagrangian terms

that contain (axial-)tensor mesons. For convenience, we
shall split them into four distinct ones.
First, the chiral invariant Lagrangian that generates,

among other interactions, the masses of the spin-2 mesons
reads

TABLE III. Transformations of the chiral multiplets under P,C,
and URð3Þ × ULð3Þ.

Nonet Parity (P)
Charge

conjugation (C) URð3Þ ×ULð3Þ
Φðt; x⃗Þ Φ†ðt;−x⃗Þ Φtðt; x⃗Þ ULΦU†

R
Rμðt; x⃗Þ Lμðt;−x⃗Þ −ðLμðt; x⃗ÞÞt URRμU†

R
Lμðt; x⃗Þ Rμðt;−x⃗Þ −ðRμðt; x⃗ÞÞt ULLμU†

L
Rμνðt; x⃗Þ Lμνðt;−x⃗Þ ðLμνðt; x⃗ÞÞt URRμνU†

R
Lμνðt; x⃗Þ Rμνðt;−x⃗Þ ðRμνðt; x⃗ÞÞt ULLμνU†

L

TABLE IV. Numerical values of (scalar and axial-vector) shift-
related quantities needed in this work.

Parameters Expressions Numerical values [18]

Zπ ¼ ZηN
ma1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a1
−g2

1
ϕ2
S

p 1.709

wπ ¼ wηN
g1ϕN

m2
a1

0.683 GeV−1

ZK
2mK1Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
K1A

−g2
1
ðϕNþ

ffiffi
2

p
ϕSÞ2

p 1.604

wK g1ðϕNþ
ffiffi
2

p
ϕSÞ

2m2
K1;A

0.611 GeV−1

ZηS
mf1;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
f1;S

−2g2
1
ϕ2
S

p 1.539

wηS

ffiffi
2

p
g1ϕS

m2
f1;S

0.554 GeV−1

ϕN Zπfπ 0.158 GeV

ϕS
2ZKfK−ϕNffiffi

2
p 0.138 GeV

g1 ma1
Zπfπ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

Z2
π

q
5.8
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Lmass ¼ Tr

��
m2

tenG2

2G2
0

þ Δten

�
ðL2

μν þR2
μνÞ

�

þ hten1
2

Tr½Φ†Φ�Tr½LμνLμν þRμνRμν�
þ hten2 Tr½Φ†LμνLμνΦþΦRμνRμνΦ†�
þ 2hten3 Tr½ΦRμνΦ†Lμν�; ð2:19Þ

whereΔten ¼ diagfδtenN ; δtenN ; δtenS g; one may set the (anyhow
small) light-quark contribution δtenN ¼ 0, since a term
proportional to the identity matrix can be reabsorbed into
the term proportional to mten; the element δtenS is then
obtained from the mass relation δtenS ¼ m2

K2
−m2

a2 ≃
0.3 GeV2 using PDG values for the tensor mesons (details
in Sec. (2.18). Besides the term proportional to Δten, all the
other terms involve dimensionless coupling constants.
According to the large-Nc limit, the coupling constants

hten2 and hten3 scale as N−1
c , while hten1 as N−3

c , thus being
suppressed. The mass term mten is Nc independent [it is a
mass term that sets the mass scale of (axial-)tensor mesons],
while the condensate G0 scales as Nc. As a consequence,
the dimensionless coupling m2

ten=G2
0 scales as N−2

c .
We then turn to other interaction terms that generate the

decays of (axial-)tensor mesons. The first of such terms
involves solely left- and right-handed chiral fields:

Lgten
2
¼ gten2

2

�
Tr½LμνfLμ; Lνg� þ Tr½RμνfRμ; Rνg�

�
þ g0ten2

6
Tr½Lμν þRμν�Tr½fLμ; Lνg þ fRμ; Rνg�;

ð2:20Þ

whose coupling constants scale as gten2 ∝ N−1=2
c (dominant)

and g0ten2 ∝ N−3=2
c (suppressed). Further suppressed terms

are possible, but are not considered here. The coupling
constants have dimension (energy), thus the Lagrangian
can be made dilatation invariant by multiplying by G=G0.
(Upon condensation ofG, the term above is reobtained; this
is omitted here, since no relevant additional interactions
emerge.) The Lagrangian Lgten

2
enables us to compute the

following two types of decays:
(1) 2þþ → 0−þ þ 0−þ;
(2) 2−− → 0−þ þ 1−−.

Both decays are extremely relevant in this work, since
the pseudoscalar-pseudoscalar mode is the dominant one for
the tensor mesons, while the pseudoscalar-vector one is the
dominant channel for the axial-tensor states. Equation (2.20)
shows that they are related by chiral transformations, and
hence depend on the same coupling constant(s).
The next Lagrangian that couples left-handed and right-

handed fields involves derivatives:

Laten ¼
aten

2
Tr½LμνfLμ

β; L
νβg þRμνfRμ

β; R
νβg�

þ a0ten

6
Tr½Lμν þRμν�Tr½fLμ

β; L
νβg þ fRμ

β; R
νβg�;
ð2:21Þ

where Lμν ≔ ∂
μLν − ∂

νLμ and analogously for Rμν. The
large-Nc scaling behaviors are aten ∝ N−1=2

c (dominant) and
a0ten ∝ N−3=2

c (subdominant). This Lagrangian cannot be
made dilatation invariant1 because the coupling constants
have dimension (energy−1), thus it is expected to deliver
suppressed decays into mesons (as it turns out to be the
case). Yet, it is relevant because, after an appropriate
inclusion of the photon field via vector meson dominance
(VMD), it describes the decay of the tensor mesons to two
photons, one photon and one vector mesons, as well as
giving a subleading but important contribution to the decay
into two vector mesons.
The next chiral interaction term reads

Lcten ¼ cten1 Tr½∂μLναL̃μν∂αΦΦ† − ∂
μRναΦ†

∂αΦR̃μν

− ∂
μRναR̃μν∂αΦ†Φþ ∂

μLναΦ∂αΦ†L̃μν�
þ cten2 Tr½∂μLνα

∂αΦR̃μνΦ† − ∂
μRναΦ†L̃μν∂αΦ

− ∂
μRνα

∂αΦ†L̃μνΦþ ∂
μLναΦR̃μν∂αΦ†�; ð2:22Þ

where L̃μν ≔
εμνρσ
2

ð∂ρLσ − ∂
σLρÞ and similarly for R̃μν. This

Lagrangian breaks also dilatation invariance as it is typical
for terms involving the Levi-Civita tensor. Both constants
cten1 and cten2 scale as N−1=2

c . Large-Nc suppressed terms are
possible but are omitted here since present data do not
allow one to constrain them. The relevant decay terms are
(1) 2þþ → 0−þ þ 1−−;
(2) 2−− → 0−þ þ 1þþ.

These decay channels are related by chiral symmetry and
for tensor mesons they are quite relevant. Note, the
pseudoscalar meson as a decay product is a consequence
of the shift of Eq. (2.18).
The decay of a generic spin-2 state has the form

Γtl
T→AþB ¼

jk⃗a;bj
40πm2

t
× jMj2× κi×Θðmt−ma−mbÞ; ð2:23Þ

wheremt is the mass of the decaying (axial-)tensor particle,
ma and mb are the masses of the decay products, ΘðxÞ
denotes the Heaviside step function, and the modulus of the

1Note, formally one could multiply the Lagrangian of
Eq. (2.21) by G0=G, but that implies a nonanalytic point of
the interaction potential for G → 0; this is why only terms with
coupling constants with zero or positive dimension can be made
dilatation invariant.
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outgoing particles momentum has the following analytic
expression:

jk⃗a;bj ≔
1

2mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

t −m2
a −m2

bÞ2 − 4m2
am2

b

q
: ð2:24Þ

We obtain the (eventually dimensionful) factors κi entering
in Eq. (2.23) for the ith decay channel from the explicit
forms of the Lagrangian (the index i runs over the flavor
channels, see the following). The decay amplitudes jMj2,
derived via Feynman rules under the use of the polarization
vectors (tensors) and their corresponding completeness
relations, are listed in Table V. To this end, we recall that
one has to average over all incoming spin-polarizations,
sum up all possible outgoing ones, as well as considering
the following completeness relations (for further details see
e.g., [58]):

X3
λ¼1

ϵμðλ; k⃗Þϵνðλ; k⃗Þ ¼ −Gμν; ð2:25Þ

X5
λ¼1

ϵμνðλ; k⃗Þϵαβðλ; k⃗Þ ¼ −
GμνGαβ

3
þ GμαGνβ þ GμβGνα

2
;

ð2:26Þ

where

Gμν ≡ ημν −
kμkν
m2

; ημν ≡

0
BBBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCCA: ð2:27Þ

III. RESULTS

In this section we present the results for the (axial-)tensor
mesons. First, we discuss the masses of the well-established
tensor mesons and of their poorly known chiral partners,
the axial-tensor ones. Then, we turn to the decays, first
those of tensor mesons (that are well measured and serve as
a test of the approach and for parameter determination), and

then to the decays of the ground-state axial-tensor mesons
(that are mostly experimentally unknown). For the reader’s
convenience, in Table VI we summarize the parameters of
the eLSM related to the (axial-)tensor sector that will be
obtained via various fit procedures later on.

A. Masses of (axial-)tensor mesons

The expressions for the masses of tensor mesons are
obtained by expanding Eq. (2.19) and taking into account
the v.e.v.s and shifts of Eqs. (2.17) and (2.18):

m2
a2 ¼ ðm2

ten þ 2δtenN Þ þ hten3 ϕ2
N

2
þ hten2 ϕ2

N

2
þ hten1

2
ðϕ2

N þ ϕ2
SÞ;

ð3:1Þ

m2
K2

¼ ðm2
ten þ δtenN þ δtenS Þ þ hten1

2
ðϕ2

N þ ϕ2
SÞ

þ 1ffiffiffi
2

p hten3 ϕNϕS þ
hten2
4

ðϕ2
N þ 2ϕ2

SÞ; ð3:2Þ

m2
f2;N

¼ ðm2
ten þ 2δtenN Þþ hten3 ϕ2

N

2
þ hten1

2
ðϕ2

N þϕ2
SÞþ

hten2 ϕ2
N

2
;

ð3:3Þ

m2
f2;S

¼ ðm2
ten þ 2δtenS Þ þ hten1

2
ðϕ2

N þ ϕ2
SÞ þ hten3 ϕ2

S þ hten2 ϕ2
S:

ð3:4Þ

The analogous expressions for the axial-tensor mesons read

m2
ρ2 ¼ ðm2

ten þ 2δtenN Þ − hten3 ϕ2
N

2
þ hten2 ϕ2

N

2
þ hten1

2
ðϕ2

N þ ϕ2
SÞ;

ð3:5Þ

TABLE V. Decay amplitudes for different decay modes.

Decay mode 1
5
× jMj2

2þþ → 0−þ þ 0−þ
gten22 ×

2jk⃗
pð1Þ ;pð2Þ j4
15

2−− → 0−þ þ 1−− gten22 × jk⃗v;pj2
15

ð5þ 2jk⃗v;pj2
m2

v
Þ

2−− → 0−þ þ 2þþ 4hten2
3

45
ð45þ 4jk⃗t;pj4

m4
t

þ 30jk⃗t;pj2
m2

t
Þ

2þþ → 0−þ þ 1−− ðcten
1
þcten

2
Þ2m2

t jk⃗v;pj4
5

2−− → 0−þ þ 1þþ ðcten
1
−cten

2
Þ2m2

a2
jk⃗a1 ;pj4

5

TABLE VI. Parameters of the eLSM connected to the (axial-)
tensor mesons as determined by fits to known experimental data
(see the following for details). Note, the suffix “lat” in gten2lat
indicates that it was obtained via a comparison to lattice results.

Parameters Numerical values Fitting data

hten3 −41 Table VII
δtenS 0.3 GeV2 Table VII
gten2 ð1.392� 0.024Þ × 104 ðMeVÞ Table IX
g0ten2 ð0.024� 0.041Þ × 104 ðMeVÞ Table IX
gten2lat ð0.7� 0.4Þ × 104 ðMeVÞ Table XVI
cten ð4.8� 0.9Þ × 10−7 ðMeVÞ−3 Table X
aten ð−2.09� 0.06Þ × 10−2 ðMeVÞ−1 Table XII
a0ten ð3.5� 0.4Þ × 10−3 ðMeVÞ−1 Table XII
βT ð3.16� 0.81Þ° Table IX
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m2
K2A

¼ ðm2
ten þ δtenN þ δtenS Þ þ hten1

2
ðϕ2

N þ ϕ2
SÞ

−
1ffiffiffi
2

p hten3 ϕNϕS þ
hten2
4

ðϕ2
N þ 2ϕ2

SÞ; ð3:6Þ

m2
ω2;N

¼ ðm2
ten þ 2δtenN Þ− hten3 ϕ2

N

2
þ hten2 ϕ2

N

2
þ hten1

2
ðϕ2

N þϕ2
SÞ;

ð3:7Þ

m2
ω2;S

¼ ðm2
ten þ 2δtenS Þ − hten3 ϕ2

S þ hten2 ϕ2
S þ

hten1
2

ðϕ2
N þ ϕ2

SÞ:
ð3:8Þ

We observe that in each nonet the masses of the isovector
and the nonstrange isoscalar members are identical:

m2
ρ2 ¼ m2

ω2;N
and m2

a2 ¼ m2
f2;N

: ð3:9Þ

This degeneracy is broken by the (small) isoscalar mix-
ing angle.
The following three equations relate the masses of chiral

partners:

m2
ρ2 ¼ m2

a2 − hten3 ϕ2
N; ð3:10Þ

m2
K2A

¼ m2
K2

−
ffiffiffi
2

p
hten3 ϕNϕS; ð3:11Þ

m2
ω2;S

¼ m2
f2;S

− 2hten3 ϕ2
S; ð3:12Þ

out of which one obtains the following numerical estimate
[using K2ð1820Þ and K�

2ð1430Þ as inputs]:

hten3 ¼ m2
K2A

−m2
K2ffiffiffi

2
p

ϕNϕS

≃ −41: ð3:13Þ

Next, by using the PDG masses of the two tensor mesons
and considering δtenN ≃ 0 and ϕ2

N ≃ 2ϕ2
S, one gets

δtenS ¼ m2
K2

−m2
a2 ≃ 0.3 GeV2: ð3:14Þ

The following considerations are in order:
(1) The mass of the purely strange resonance ω2;S ≃ ϕ2

is predicted to be

m2
ϕ2

≃m2
ω2;S

¼ m2
a2 þ 2δtenS −

3

2
hten3 ϕ2

N; ð3:15Þ

which implies the numerical value for the missing
resonance ϕ2 ≃ ω2;S as

mϕ2
≈ 1971 MeV: ð3:16Þ

In other words, the missing state ϕ2ð???Þ of Table I
could appear as a novel resonance ϕ2ð1971Þ.

(2) Using the following relation between the masses of
chiral partners

m2
ρ2 ¼ m2

a2 − hten3 ϕ2
N;

we get the following prediction for the not-yet
discovered resonance ρ2:

mρ2 ¼ 1663 MeV: ð3:17Þ

Since we neglect the isoscalar mixing, we also
have mρ2 ≃ 1663 MeV. Thus, the new resonances
ρ2ð1663Þ and ω2ð1663Þ could possibly appear in the
mesonic spectrum.

(3) As a consistency check, the eLSM predicts the mass
of the purely strange isoscalar tensor meson as

m2
f2;S

¼ m2
ω2;S

þ 2hten3 ϕ2
S; ð3:18Þ

out of which mf2;S ≃ 1520 MeV, slightly lighter
than the physical value of the resonance f02ð1525Þ
that amounts to 1538 MeV. According to the
relation m2

a2 ¼ m2
f2;N

, one has mf2;N ¼ 1317 MeV,
to be compared with the mass of f2ð1270Þ of about
1297 MeV.
The small departures of the two isoscalar-tensor

states can be easily explained by introducing a small
isoscalar mixing angle. In our case, we shall study
this mixing angle in the context of two-pseudoscalar
and two-photon decay processes. When including
the isoscalar mixing in the tensor sector, Table VII
summarizes our results for the (axial-)tensor masses.

B. Decays of tensor mesons

In this subsection, we compare the predictions for the
strong and radiative decay of tensor mesons with available
PDG data.

1. T → Pð1Þ +Pð2Þ decay mode

The interaction Lagrangian describing the decay of spin-
2 tensor mesons to two pseudoscalar mesons follows from
the chiral Lagrangian of Eq. (2.20) by applying the shift of
Eq. (2.18):

TABLE VII. Masses of the mesons predicted by the eLSM.
Bold entries are the PDG values. The (small) mixing for the
tensor-isoscalar mesons has been taken into account.

Resonances Masses (in MeV) Resonances Masses (in MeV)

a2ð1320Þ 1317 ρ2ð?Þ 1663
K�

2ð1430Þ 1427 K2ð1820Þ 1819
f2ð1270Þ 1297 ω2;N 1663
f02ð1525Þ 1538 ω2;S 1971
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Ltpp ¼ gten2 Tr½Tμνfð∂μPÞ; ð∂νPÞg�

þ g0ten2

3
Tr½Tμν�Tr½fð∂μPÞ; ð∂νPÞg�: ð3:19Þ

The factor 1=3 in front of the second term is chosen in
such a way that for the singlet state the same normalization
occurs. Namely, by using the decomposition

ffiffiffi
2

p
T2;μν ¼P

8
a¼0 T

a
μν

λaffiffi
2

p together with λ0 ¼
ffiffi
2
3

q
1, it follows Tμν ¼

1ffiffi
6

p T0
μν1þ…. For the singlet state the Lagrangian reduces

to Ltpp ¼ ðgten2 þ g0ten2 ÞT0μνTr½fð∂μPÞ; ð∂νPÞg� þ…. This
convention (which of course does not affect the results) is
used in other terms as well.
The tree-level decay rate is

Γtl
T→Pð1ÞþPð2Þ ðmt;mpð1Þ ; mpð2Þ Þ

¼ κtpp;i
jk⃗pð1Þ;pð2Þ j5
60πm2

t
Θðmt −mpð1Þ −mpð2Þ Þ; ð3:20Þ

where the coefficients κtpp;i (with dimension [energy−2])
are listed in Table VIII.
We perform a fit to the PDG data of Table IX with three

parameters: two coupling constants, the large-Nc dominant
gten2 and the subdominant g0ten2 , as well as the mixing anlge
βT . The fit gives

gten2 ¼ ð1.392� 0.024Þ × 104 ðMeVÞ;
g0ten2 ¼ ð0.024� 0.041Þ × 104 ðMeVÞ;
βT ¼ ð3.16� 0.81Þ°: ð3:21Þ

As predicted by large-Nc arguments, the results confirm
that the coupling constant g0ten2 is much smaller than gten2 .
Due to the quite large error, it is also compatible with zero.
Yet, the phenomenology of large-Nc suppressed decay (as
e.g., the decays of the J=ψ [59]) shows that such terms,
even if small, do not vanish. Moreover, the following
prediction is obtained:

TABLE VIII. Coefficients for the decay channel T → Pð1Þ þ Pð2Þ.

Decay process κtpp;i

a2ð1320Þ → K̄K 2
�
gten
2
Z2
kw

2
k

2

�
2

a2ð1320Þ → πη
�
gten2 ZπZηNwπwηN cos βP

�
2

a2ð1320Þ → πη0
�
−gten2 ZπZηNwπwηN sin βP

�
2

K�
2ð1430Þ → πK̄ 3

�
gten
2
ZkwkZπwπ

2

�
2

f2ð1270Þ → K̄K 2
�
Z2
kw

2
kðð4g0ten2

þ3gten
2
Þ cos βTþ

ffiffi
2

p ð2g0ten
2

þ3gten
2
Þ sin βT Þ

6

�
2

f2ð1270Þ → ππ 6
�
Z2
πw2

πðð2g0ten2
þ3gten

2
Þ cos βTþ

ffiffi
2

p
g0ten
2

sin βT Þ
6

Þ2
f2ð1270Þ → ηη

2
�
Z2
ηN

w2
ηN

cos β2Pðð2g0ten2
þ3gten

2
Þ cos βTþ

ffiffi
2

p
g0ten
2

sin βT ÞþZ2
ηS
w2
ηS

sin β2Pð
ffiffi
2

p ðg0ten
2

þ3gten
2
Þ sin βTþ2g0ten

2
cos βT Þ

6

�
2

f02ð1525Þ → K̄K 2
�
Z2
kw

2
kð−ð4g0ten2

þ3gten
2
Þ sin βTþ

ffiffi
2

p ð2g0ten
2

þ3gten
2
Þ cos βT Þ

6

�
2

f02ð1525Þ → ππ 6
�
Z2
πw2

πð−ð2g0ten2
þ3gten

2
Þ sin βTþ

ffiffi
2

p
g0ten
2

cos βT Þ
6

�
2

f02ð1525Þ → ηη
2
�
Z2
ηN

w2
ηN

cos β2Pð−ð2g0ten2
þ3gten

2
Þ sin βTþ

ffiffi
2

p
g0ten
2

cos βT ÞþZ2
ηS
w2
ηS

sin β2Pð
ffiffi
2

p ðg0ten
2

þ3gten
2
Þ cos βT−2g0ten2

sin βT Þ
6

�
2

TABLE IX. Decay rates for T → Pð1Þ þ Pð2Þ.

Decay process (in model) eLSM (MeV) PDG (MeV)

a2ð1320Þ → K̄K 4.06� 0.14 7.0þ2.0
−1.5 ↔ ð4.9� 0.8Þ%

a2ð1320Þ → πη 25.37� 0.87 18.5� 3.0 ↔ ð14.5� 1.2Þ%
a2ð1320Þ → πη0ð958Þ 1.01� 0.03 0.58� 0.10 ↔ ð0.55� 0.09Þ%
K�

2ð1430Þ → πK̄ 44.82� 1.54 49.9� 1.9 ↔ ð49.9� 0.6Þ%
f2ð1270Þ → K̄K 3.54� 0.29 8.5� 0.8 ↔ ð4.6þ0.5

−0.4 Þ%
f2ð1270Þ → ππ 168.82� 3.89 157.2þ4.0

−1.1 ↔ ð84.2þ2.9
−0.9 Þ%

f2ð1270Þ → ηη 0.67� 0.03 0.75� 0.14 ↔ ð0.4� 0.08Þ%
f02ð1525Þ → K̄K 23.72� 0.60 75� 4 ↔ ð87.6� 2.2Þ%
f02ð1525Þ → ππ 0.67� 0.14 0.71� 0.14 ↔ ð0.83� 0.16Þ%
f02ð1525Þ → ηη 1.81� 0.05 9.9� 1.9 ↔ ð11.6� 2.2Þ%
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Th∶Γ
h
K�

2ð1430Þ → ηK̄
i
¼ ð1.13� 0.03Þ × 10−3 MeV;

PDG∶0.15þ0.34
−0.10 MeV: ð3:22Þ

which due to large uncertainties was excluded from the
fitting procedure.
Note, the isospin mixing angle βT ¼ 3.16° is close (albeit

not equal) to the value βT ¼ 5.7° of PDG calculated via the
following formula:

βT ¼ 35.3° − arctan

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K2
−m2

a2 − 3m2
f0
2

−4m2
K2

þm2
a2 þ 3m2

f2

vuut
1
CA: ð3:23Þ

In general, the results of Table IX show a good qualitative
agreement. Yet, some entries are at odds with experimental
ones, but one should recall that the experimental data are
quite precise and only three parameters were used. The
results could be improved by adding further large-Nc
suppressed terms as well as flavor-symmetry breaking
contributions. In this way a more accurate description of
the tensor decays could be possible. Such a precision study
of tensor states could be interesting on its own but is not the
main goal of this paper, thus it is left for the future.

2. T → V +P decay mode

The next experimentally well-known decay channel is
the one into a vector-pseudoscalar pair. Upon considering
the shift of Eq. (2.17), the chiral Lagrangian of Eq. (2.22)
contains the term

Ltvp ¼ ðcten1 þ cten2 ÞεμνρσTr
h
∂
μTναð∂ρVσð∂αPÞΦ0

−Φ0ð∂αP∂ρVσÞÞ
i
: ð3:24Þ

Defining cten ≔ cten1 þ cten2 , the tree-level decay rate for-
mula reads

Γtl
T→VþPðmt;mv;mpÞ ¼

cten2jk⃗v;pj5
40π

κtvp;iΘðmt −mv −mpÞ;
ð3:25Þ

where the factors κtvp;i of mass dimension 2 are reported in
Table X.
We obtain the value for the coupling cten by performing a

χ2 fit to the data of Table X (for a brief overview of this
procedure including the determination of the error of the
obtained parameter(s), see the Appendix of Ref. [2]):

cten ¼ ð4.8� 0.9Þ × 10−7 ðMeVÞ−3: ð3:26Þ
In the very same table the theoretical results are also
presented. The model results are in good agreement with
the experimental data. Moreover, a noteworthy prediction
concerning f02ð1525Þ → K̄�ð892ÞK þ c:c: is obtained.

C. Radiative decays

Radiative decays can be obtained via vector meson
dominance [60] by applying the additional shift

Vμν → Vμν þ
e
gρ

FμνQ; ð3:27Þ

where Vμν ≡ ∂μVν − ∂νVμ, Q ¼ diagf2=3;−1=3;−1=3g is
the quark charge matrix, Fμν ¼ ∂μAν − ∂νAμ is the electro-

magnetic field tensor, e ¼ ffiffiffiffiffiffiffiffi
4πα

p
is the electric coupling

constant, and gρ ≃ 5.5� 0.5 parametrizes the photon-
vector-meson transition. As a first application, we consider
T → γP by applying the VMD shift of Eq. (3.27) into
Eq. (3.24) that leads to the Lagrangian

Ltγp ¼ e
gρ

ctenTr½∂μTναðFμνQð∂αPÞΦ0 −Φ0ð∂αPFμνQÞ�;

ð3:28Þ
and to the corresponding decay rate

Γtl
T→γþPðmt;mpÞ ¼

cten2jk⃗γ;pj5
40π

κtγp;iΘðmt −mpÞ: ð3:29Þ

Taking into account cten in Eq. (3.26) as well as
gρ ¼ 5.5� 0.5, we use the following equation to calculate
the theoretical errors in Table XI:

TABLE X. Decay rates and coefficients for the decay channel T → Pþ V.

Decay process (in model) eLSM (MeV) PDG-2020 (MeV) κtvp;i

a2ð1320Þ → ρð770Þπ 71.0� 2.6 73.61� 3.35 ↔ ð70.1� 2.7Þ% 2
�
ϕN
4

�
2

K�
2ð1430Þ → K̄�ð892Þπ 27.9� 1.0 26.92� 2.14 ↔ ð24.7� 1.6Þ% 3

�
ϕN
8

�
2

K�
2ð1430Þ → ρð770ÞK 10.3� 0.4 9.48� 0.97 ↔ ð8.7� 0.8Þ% 3

� ffiffi
2

p
ϕS
8

�
2

K�
2ð1430Þ → ωð782ÞK̄ 3.5� 0.1 3.16� 0.88 ↔ ð2.9� 0.8Þ% �

−ϕS cos βVþϕN sin βV
4
ffiffi
2

p
�
2

f02ð1525Þ → K̄�ð892ÞK þ c:c: 19.89� 0.73 4
�
2ϕS cos βTþϕN sin βT

8

�
2
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δΓT→γPðmt;mpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂ΓT→γPðmt;mpÞ

∂cten
δcten

�
2

þ
�
∂ΓT→γPðmt;mpÞ

∂gρ
δgρ

�
2

s
: ð3:30Þ

Our results for the photon-vector decays are reported in
Table XI: they are somewhat larger but, in consideration of
the large errors, in qualitative agreement with the PDG
results.
Next, we describe the two-photon decays. We note that

the chiral Lagrangian of Eq. (2.21) delivers the following
TVV interaction term:

Ltvv ¼ atenTr½TμνfVμ
β; V

νβg� þ a0ten

3
Tr½Tμν�Tr½fVμ

β; V
νβg�:
ð3:31Þ

Then, through the VMD shift (3.27) for both vector fields,
we get the Lagrangian

Ltγγ ¼ aten
e2

g2ρ
Tr½TμνfQFμ

β; QFνβg�

þ a0ten

3

e2

g2ρ
Tr½Tμν�Tr½fQFμ

β; QFνβg�; ð3:32Þ

and the decay rate of the type

Γtl
T→γγ ¼

e4

g4ρ

2jk⃗j5
5πm2

t
κtγγ;i ¼

e4

g4ρ

m3
t

80π
κtγγ;i; ð3:33Þ

where mt ¼ 2jk⃗j was used.

By using the experimental values of Table XII, a
standard χ2 approach with two free parameters (the
coupling constants aten and a0ten, βT ¼ 3.16° kept fixed)
and three experimental data-points, gives

aten ¼ ð−2.09� 0.06Þ × 10−2 ðMeVÞ−1;
a0ten ¼ ð3.5� 0.4Þ × 10−3 ðMeVÞ−1 ð3:34Þ

The theoretical results are also listed in Table XII. Thus, in
this case the coupling constants are directly fitted to the
decay rates. The fact that all three data points are well
described confirm that the value the mixing angle βT ¼
3.16° is consistent with data. Moreover, the parameter a0ten
turns out to be much smaller than aten in agreement with the
large-Nc expectations. (Note: in the fit, we fixed gρ ¼ 5.5
and determined the coupling constant aten; actually, the
combination aten=g2ρ enters into the expressions. Yet,
allowing for a variation of gρ would not lead to any
significant changes here, since it could be reabsorbed by
a change of aten.)
These radiative decay channels also show that the

coupling with photons is sizable, thus the production of
these not-yet discovered states ρ2, ω2, and ϕ2 in photo-
production experiments is well upheld.
It is possible to use the two parameters presented in

Eq. (3.34) for the predictions of numerous photon-vector
decay mode by shifting only one vector field of the
Lagrangian of Eq. (3.31)

TABLE XII. Decay rates and coefficients for the decay channel T → γγ.

Decay process (in model) eLSM (keV) PDG-2020 (keV) κtγγ;i

a2ð1320Þ → γγ 1.01� 0.06 1.00� 0.06 aten2
36

f2ð1270Þ → γγ 1.95� 0.10 2.6� 0.5
�
ð5atenþ4a0tenÞ cos βTþ

ffiffi
2

p ðatenþ2a0tenÞ sin βT
18

�
2

f02ð1525Þ → γγ 0.083� 0.009 0.082� 0.009
�
−ð5atenþ4a0tenÞ sin βTþ

ffiffi
2

p ðatenþ2a0tenÞ cos βT
18

�
2

TABLE XI. Decay rates and coefficients for the decay channel T → γ þ P.

Decay process (in model) eLSM PDG-2020 κtγp;i

K�
2 ð1430Þ → γK� 1.12� 0.47 MeV 0.24� 0.05 MeV e2

g2ρ

�
ϕNþ2

ffiffi
2

p
ϕS

12

�
2

K0
2ð1430Þ → γK0 5.1� 2.2 keV <5.4 keV e2

g2ρ

�
ϕN−

ffiffi
2

p
ϕS

12

�
2

a�2 ð1320Þ → γπ� 1.01� 0.43 MeV 0.31� 0.03 MeV e2

g2ρ

�
ϕN
4

�
2
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LtγV ¼ 2aten
e
gρ

Tr½TμνfQFμ
β; V

νβg�

þ 2a0ten

3

e
gρ

Tr½Tμν�Tr½fQFμ
β; V

νβg�: ð3:35Þ

The vector-photon decay rates take the form

Γtl
T→γþVðmt;mvÞ ¼

κtγv;ie2

15πm2
t m2

vg2ρ
ð3jk⃗v;γj7 þ 5jk⃗v;γj3m2

v

þ 5jk⃗v;γj4m2
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗v;γj2 þm2

v

q
þ jk⃗v;γj5ð10m2

v − 3ðjk⃗v;γj2 þm2
vÞÞÞ:
ð3:36Þ

The corresponding coefficients are reported in Table XIII
and the numerical predictions for the not-yet measured
decay rates in Table XIV. The corresponding errors are
obtained by considering Eq. (3.34) together with gρ ¼
5.5� 0.5 (Note, the variation for gρ ¼ 5.5� 0.5 must be
taken into account for the evaluation of the errors since the
different ratio aten=gρ enters into the expressions.)
Additional sources of errors, such as the uncertainties of
masses, were neglected for simplicity. Thus, the actual
errors can be somewhat larger but of the same order of the
ones reported in Table XIV.

1. Vector-vector decay mode of tensor mesons

We conclude the present subsection by considering the
following PDG data:

PDG∶Γ½f2ð1270Þ → πþπ−2π0� ≈ 19.5 MeV;

PDG∶Γ½a2ð1320Þ → ωð782Þππ� ≈ 11.3 MeV;

PDG∶Γ½K⋆
2ð1430Þ → K⋆ð892Þππ� ¼ 13.5� 2.3 MeV:

It is natural to interpret these decays as vector-vector
decay modes [ρð770Þρð770Þ, ωð782Þρð770Þ, and K�ð892Þ
ρð770Þ], in which the ρð770Þ meson further decays into
two pions. In order to describe them, we introduce the
properly normalized “Sill” spectral function discussed in
Ref. [61] for the ρ-meson as

dρðyÞ ¼
2y
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4m2

π

p
Γ̃ρ

ðy2 −m2
ρÞ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4m2

π

p
Γ̃ρÞ2

Θðx − 2mπÞ;

×
Z

∞

0

dy dρðyÞ ¼ 1; ð3:37Þ

TABLE XIII. Coefficients for the decay channel T → γ þ V decays.

Decay process (in model) κtγv;i

a2ð1320Þ → ρð770Þγ ðaten
6
Þ2

a02ð1320Þ → ωð782Þγ ðaten cos βV
2

Þ2
a2ð1320Þ → ϕð1020Þγ ðaten sin βV

2
Þ2

K��
2 ð1430Þ → K̄��ð892Þγ ðaten

6
Þ2

K�0
2 ð1430Þ → K̄�0ð892Þγ ðaten

3
Þ2

f2ð1270Þ → ρð770Þγ �
ðatenþ2a0tenÞ cos βTþ

ffiffi
2

p
a0ten sin βT

2

�
2

f2ð1270Þ → ωð782Þγ �
cos βV ððatenþ2a0tenÞ cos βTþ

ffiffi
2

p
a0ten sin βT Þ−2 sin βV ððatenþa0tenÞ sin βTþ

ffiffi
2

p
a0ten cos βT Þ

6

�
2

f2ð1270Þ → ϕð1020Þγ �
sin βV ððatenþ2a0tenÞ cos βTþ

ffiffi
2

p
a0ten sin βT Þþ2 cos βV ððatenþa0tenÞ sin βTþ

ffiffi
2

p
a0ten cos βT Þ

6

�
2

f02ð1525Þ → ρð770Þγ �
−ðatenþ2a0tenÞ sin βTþ

ffiffi
2

p
a0ten cos βT

2

�
2

f02ð1525Þ → ωð782Þγ �
sin βT ð−ðatenþ2a0tenÞ cos βVþ2

ffiffi
2

p
a0ten sin βV Þþcos βT ð

ffiffi
2

p
a0ten cos βV−2ðatenþa0tenÞ sin βV Þ

6

�
2

f02ð1525Þ → ϕð1020Þγ �
cos βT ð−2ðatenþa0tenÞ cos βV−

ffiffi
2

p
a0ten sin βV Þþsin βT ð2

ffiffi
2

p
a0ten cos βVþðatenþ2a0tenÞ sin βV Þ

6

�
2

TABLE XIV. Predictions for T → γ þ V.

Decay process (in model) Decay width (MeV)

a2ð1320Þ → ρð770Þγ 0.22� 0.04
a02ð1320Þ → ωð782Þγ 1.94� 0.04
a2ð1320Þ → ϕð1020Þγ 0.0024� 0.0005
K��

2 ð1430Þ → K̄��ð892Þγ 0.23� 0.04
K�0

2 ð1430Þ → K̄�0ð892Þγ 0.94� 0.18
f2ð1270Þ → ρð770Þγ 0.70� 0.17
f2ð1270Þ → ωð782Þγ 0.068� 0.017
f2ð1270Þ → ϕð1020Þγ 0.007� 0.002
f02ð1525Þ → ρð770Þγ 0.32� 0.08
f02ð1525Þ → ωð782Þγ 0.012� 0.005
f02ð1525Þ → ϕð1020Þγ 0.61� 0.12
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where Γ̃ρ is defined as

Γ̃ρ ≡ Γρ→2πmρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − 4m2
π

q ; ð3:38Þ

in which Γρ→2π ¼ 149.1 MeV and mρ ¼ 775.11 MeV are
taken from the PDG (small errors omitted).
The Sill spectral function is useful because the normali-

zation is guaranteed also for broad states and because the
contribution of virtual particles (the pion-pion loop for the

ρ meson) has a vanishing real part, thus only the imaginary
part describing the decay width is sufficient [in other
words, no modification of the ρð770Þ-mass part of the
denominator appears], see details in Ref. [61].
There are two chiral invariant Lagrangians, Eq. (2.20)

and Eq. (2.21), that contribute to the coupling of tensor
mesons to two vector mesons. We present the following
approximate results by considering destructive interference
between the corresponding amplitudes (the constructive
case delivers too large decay rates):

Γf2→ρρ→4π ≃
Z

∞

0

dy1 dρðy1Þ
Z

∞

0

dy2 dρðy2ÞΓf2→ρρðmf2 ; y1; y2Þ ≈ 29.9 MeV; ð3:39Þ

Γa2→ωρ→ω2π ≃
Z

∞

0

dy1 dρðy1ÞΓa2→ρωðma2 ; mω1
; y1Þ ≈ 11.1 MeV; ð3:40Þ

ΓK2→K⋆ρ→K2π ≃
Z

∞

0

dy1 dρðy1ÞΓK2→ρωðmK2
; mK1

; y1Þ ≈ 6.6 MeV: ð3:41Þ

The results are in qualitative agreement with the exper-
imental ones: this is quite remarkable since no additional
parameter is requested. Moreover, this is a nontrivial
process that involves two distinct interaction terms (with
destructive interference) as well as the integral over the
spectral function of the ρ-meson.

D. Decays of axial-tensor mesons

The ground-state mesons with JPC ¼ 2−− are elusive. In
this section we use the eLSM to predict their decay rates
and compare with the available lattice QCD (LQCD) and
other theoretical results.

1. A2 → V +P decay mode

The chiral Lagrangian (2.20) contains the decay of axial-
vector states into a vector and pseudoscalar pair:

La2vp ¼ gten2 Tr½Aμν
2 fð∂μPÞ; Vνg�: ð3:42Þ

The tree-level decay rate takes the form

Γtl
A2→VþPðma2 ;mv;mpÞ ¼

gten22 jk⃗v;pj3
120πm2

a2

�
5þ 2jk⃗v;pj2

m2
v

�
κa2vp;i

×Θðma2 −mv −mpÞ; ð3:43Þ

where the κa2vp;i can be found in Table XV together with
the decay widths. We observe quite large decay rates for
this decay mode. Yet, our results can be considered
qualitative for various reasons:

(i) the interaction strength is determined solely by the
knowledge on tensor mesons: while this is in

agreement with chiral symmetry, no corrections to
it have been taken into account, but chiral symmetry
breaking effects are expected to be relevant between
1 and 2 GeV;

(ii) the result depends on quantities of the type ðZwÞ2 ∝
g41 (see Tables XV and IV), thus an even small
uncertainty in this parameter of the original eLSM
generates a quite large change of the results of the
decays of axial-tensor states;

(iii) the parameter g1 (as well as others, such as gten2 ) is
taken as a constant over a large range of energies, yet
it is reasonable to assume that it has a (soft) energy
dependence. One might expect that it becomes
smaller when the mass of the decaying particle
increases, thus embedding the effect of form factors
(and eventually corrections due to quantum fluctua-
tions). Also in this case, even a small change would
have a non-negligible consequence leading to the
left side of the quoted ranges in Table XV.

Summarizing, the used parameters (in particular g1)
imply a quite large and difficult to determine source of
uncertainty of our decays of axial-tensor states. In order to
be on the safe side, we thus estimate a quite large error of
about 50%, for the reported numbers in Table XV.
Experimental data is missing for the ρ2, ω2;N ≃ ω2, and

ω2;S ≃ ϕ2. In the kaonic sectors, the resonances K2ð1820Þ
and K2ð1770Þ are expected to emerge from the bare axial-
tensor and pseudotensor mesons which can mix in a way
that resembles the mixing of the axial-vector and pseudo-
vector mesons described in Eq. (2.8).
According to the assignment of Table I, K2A is closer to

K2ð1820Þ, (but this is not yet settled). The decay width for
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the K2A state described in our work is approximately twice
that of the experimentally measured decay of K2ð1820Þ.
This fact suggests that the left sides of the range of
Table XV for the K2A state is favored.
This interpretation can be extended to the other decay

rates by a comparison with the lattice QCD results reported
in Table XVI. Namely, our theoretical results for decays are
of the same order of magnitude but about 2–3 times larger
than the LQCD ones. Even though both approaches have

large uncertainties, this comparison (as well as the previous
arguments) signalizes that the low side of the range of each
decay mode of the eLSM should be preferred.
For completeness we also perform a parameter determi-

nation by directly using the LQCD results, that leads to
gten2lat ≃ ð0.7� 0.4Þ × 104 ðMeVÞ (assuming 50 percent
error in [62]).2 This value is within two sigma of the
previous determination in Eq. (3.21). In Table XVI, we
present the corresponding results. Quite interestingly, the
various entries are consistent with each other, thus showing
that any ratio of decays constructed with lattice results is in
agreement with the corresponding eLSM one.
In summary, the outcome of our theoretical study is

pretty clear: although the uncertainties are still large, the
axial-tensor states are expected to be broad even when
taking the low side of our results. This fact could eventually
explain the missing experimental observation of the puta-
tive states ρ2, ω2, and ϕ2 up to now.

2. A2 → A1 +P decay mode

The chiral Lagrangian of Eq. (2.22) contains the decay
into an axial-tensor and pseudoscalar pair:

La2a1p ¼ c0tenεμνρσTr½∂μAνα
2 ðð∂ρAσ

1Þð∂αPÞΦ0

−Φ0ð∂αPÞð∂ρAσ
1ÞÞ�; ð3:44Þ

where c0ten ≔ cten1 − cten2 . The corresponding decay is

TABLE XVI. Predictions for the A2 → V þ P based on LQCD
results.

Decay process (in model) eLSM (MeV) LQCD (MeV) [62]

ρ2ð?Þ → ρð770Þη ≈30
ρ2ð?Þ → K̄�ð892ÞK þ c:c: ≈27 36
ρ2ð?Þ → ωð782Þπ ≈122 125
ρ2ð?Þ → ϕð1020Þπ ≈0.3
K2;A → ρð770ÞK ≈53
K2;A → K̄�ð892Þπ ≈87
K2;A → K̄�ð892Þη ≈0.004
K2;A → ωð782ÞK̄ ≈13.8
K2;A → ϕð1020ÞK̄ ≈13.7
ω2;N → ρð770Þπ ≈363 365
ω2;N → K̄�ð892ÞK þ c:c: ≈25 36
ω2;N → ωð782Þη ≈27 17
ω2;N → ϕð1020Þη ≈0.02
ω2;S → K̄�ð892ÞK þ c:c: ≈100 148
ω2;S → ωð782Þη ≈0.2
ω2;S → ωð782Þη0ð958Þ ≈0.02
ω2;S → ϕð1020Þη ≈17 44

TABLE XV. Predictions and coefficients for the decay channel A2 → V þ P.

Decay process (in model) eLSM (MeV) κa2vp;i

ρ2ð?Þ → ρð770Þη ≈99� 50 ð−wηNZηN cos βPÞ2
ρ2ð?Þ → K̄�ð892ÞK þ c:c: ≈85� 43 4ðZKwK

2
Þ2

ρ2ð?Þ → ωð782Þπ ≈419� 210 ð−wπZπ cos βVÞ2
ρ2ð?Þ → ϕð1020Þπ ≈0.8 ðwπZπ sin βVÞ2
K2;A → ρð770ÞK ≈195� 98 3ðZKwK

2
Þ2

K2;A → K̄�ð892Þπ ≈316� 158 3ðZπwπ
2
Þ2

K2;A → K̄�ð892Þη ≈0.01 ð− 1
2
ð ffiffiffi

2
p

ZηSwηS sin βP þ ZηNwηN cos βPÞÞ2
K2;A → ωð782ÞK̄ ≈51� 26 ð− wKZK

2
ð ffiffiffi

2
p

sin βV þ cos βVÞÞ2
K2;A → ϕð1020ÞK̄ ≈50� 25 ðwKZK

2
ð− ffiffiffi

2
p

cos βV þ sin βVÞÞ2
ω2;N → ρð770Þπ ≈1314� 657 3ð−ZπwπÞ2
ω2;N → K̄�ð892ÞK þ c:c: ≈85� 43 4ð− ZKwK

2
Þ2

ω2;N → ωð782Þη ≈93� 47 ðZηNwηN cos βP cos βVÞ2
ω2;N → ϕð1020Þη ≈0.06 ðZηNwηN cos βP sin βVÞ2
ω2;S → K̄�ð892ÞK þ c:c: ≈510� 255 4ð− ZKwKffiffi

2
p Þ2

ω2;S → ωð782Þη ≈1.0� 0.5 ð− ffiffiffi
2

p
ZηSwηS sin βP sin βVÞ2

ω2;S → ωð782Þη0ð958Þ ≈0.3 ð− ffiffiffi
2

p
ZηSwηS cos βP sin βVÞ2

ω2;S → ϕð1020Þη ≈101� 51 ð− ffiffiffi
2

p
ZηSwηS cos βV sin βPÞ2

2Note that, in the SUð3Þ flavor symmetry based LQCD
calculation, the lightest pseudoscalar states have a mass of about
700 MeV.
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Γtl
A2→A1þPðma2 ; ma1 ; mpÞ ¼

c0ten2jk⃗a1;pj5
40π

κa2ap;i

× Θðma2 −ma1 −mpÞ: ð3:45Þ

The theoretical predictions (as well as the κa2ap;i values) for
each channel proportional to the factor c0ten

cten are presented
in Table XVII [we assume here, for simplicity, that
K1A ≈ K1ð1400Þ].
Thus, in this case the decay of the tensor mesons does

not fix the strength for the axial-tensor since two equivalent
terms are present in the original Lagrangian of Eq. (2.22),
and their sum/difference appears for tensors and axial-
tensors, respectively. Nevertheless, it is reasonable to
expect that c0ten is of the same order of cten. In general,
rather small decay widths are therefore expected. Within
this context, it is worth mentioning that our prediction for
the ρ2 → a1ð1260Þπ is quite similar to the prediction in
Ref. [50] for the case of c0ten

cten ≃ 1.

3. A2 → T +P decay mode

The last term of the Lagrangian (2.19) enables us to
make some predictions for the decay of the axial-tensor
mesons into a tensor and pseudoscalar pair. Namely, that
Lagrangian reduces to the following interaction:

La2tp ¼ 2ihten3 Tr½Aμν
2 ðPTμνΦ0 −Φ0TμνPÞ�; ð3:46Þ

which leads to the corresponding decay

Γtl
A2→TþPðma2 ; mt; mpÞ

¼ ðhten3 Þ2jk⃗t;pj
2m2

a2π

�
1þ 4jk⃗t;pj4

45m4
t
þ 2jk⃗t;pj2

3m2
t

�
κa2tp;i

× Θðma2 −mt −mpÞ: ð3:47Þ
The theoretical results are reported in Table XVIII. As it

is visible, quite sizable decays are obtained in some
channels, which are then promising for future investigations
of the axial-tensor states. Note, in [50] the decay rate of
ρ2ð?Þ → a2ð1320Þπ is calculated to be about 200 MeV.

In the end, it should be stressed that the sum of the
various decay rates for the axial-tensor mesons generates
quite large decay widths for these states, even by taking the
lowest side of the given ranges. Nevertheless, the discovery
of the missing axial-tensor states seems possible, especially
by looking into the decay channels described in this
subsection.

IV. CONCLUSIONS

In this work we have studied the well-known lightest
tensor mesons and their (still poorly known) chiral partners,
the axial-tensor mesons, in the framework of a chiral model
for low-energy QCD, the eLSM.
The masses as well as the strong and radiative decays

of the ground-state tensor nonet fit well into the quark-
antiquark picture, thus confirming the assignment of the
quark model review of the PDG. Thanks to chiral sym-
metry, the parameters determined in the tensor sector allow
one to make predictions for masses and decays for the
basically unknown ground-state axial-tensor resonances
[the states ρ2, ω2;N ≃ ω2, and ω2;S ≃ ϕ2 were not yet
seen in experiments; only the kaonic state K2ð1820Þ is
listed in the quark model review of the PDG]. Even though
the uncertainties are large—the widths are determined
solely by the chiral link of tensors to axial-tensors and
small changes in some key parameters generate quite
sizable variations—the emerging picture is quite clear:
the axial-tensor mesons are broad, the largest decay
channel is the one into vector-pseudoscalar, followed by
tensor-pseudoscalar and axial-vector-pseudoscalar pairs,
respectively. Large decay widths into vector-pseudoscalar
pairs are also obtained by LQCD and the corresponding
decay ratios from the lattice fit well with the ones
determined by our model calculations.
We may conclude that the states ρ2, ω2, and ϕ2 can be

discovered in ongoing and future experiments (see e.g.,
Refs. [26–37] and references therein), even if that shall not
be an easy task, due to the expected large decay widths.
The study of partial wave analysis [16,63] of the decays

of (axial-)tensor mesons represents an interesting direction
to further constrain models in the future. Moreover, a

TABLE XVII. Predictions and coefficients for the decay
channel A2 → A1 þ P.

Decay process
(in model) eLSM (MeV) κa2ap;i

ρ2ð?Þ → a1ð1260Þπ ≃13
�
c0ten
cten

�
2

2
�
ϕN
4

�
2

K2;A → a1ð1260ÞK ≃0.1
�
c0ten
cten

�
2

3
� ffiffi

2
p

ϕS
8

�
2

K2;A → K̄1;Aπ ≃11
�
c0ten
cten

�
2

3
�
ϕN
8

�
2

K2;A → f1ð1285ÞK̄ ≃0.2
�
c0ten
cten

�
2

� ffiffi
2

p
8
ðϕN sin βA1

− ϕS cos βA1
Þ
�
2

ω2;S → K̄1;AK þ c:c: ≃6
�
c0ten
cten

�
2

4
�
ϕS
4

�
2

TABLE XVIII. Predictions and coefficients for the decay
channel A2 → T þ P.

Decay process (in model) eLSM (MeV) κa2tp;i

ρ2ð?Þ → a2ð1320Þπ ≈88 2
�
ϕN
4

�
2

K2;A → K⋆
2ð1430Þπ ≈49 3

� ffiffi
2

p
ϕS
8

�
2

K2;A → a2ð1320ÞK ≈84 3
� ffiffi

2
p

ϕN
8

�
2

K2;A → f2ð1270ÞK ≈4
�
ϕN cos βT−2ϕS sin βT

8

�
2

ω2;S → K⋆
2ð1430ÞK þ c:c: ≈15 4

�
ϕS
8

�
2
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detailed investigation of the tensor glueball (whose LQCD
predicted mass is about 2.2 GeV [64]) in a chiral framework
is a promising outlook, since the topic of glueballs is a
relevant one in low-energy QCD and various tensor mesons
in the energy region at about 2 GeV exist.
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