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We provide a linear analysis on normal modes of the spin Boltzmann equation proposed by
Weickgenannt et al. [Phys. Rev. D 104, 016022 (2021)], where the nondiagonal or polarized part of
the transition rate is neglected to ensure the Hermitian property of a linearized collision operator. As an
instrumental element of spin kinetic theory, the conservation of total angular momentum is explicitly
considered; thus, our analysis is relevant to the recent investigation on the issue of local spin polarization.
By treating the linearized collision operator as an evolution operator, solving the normal modes turns out to
be a degenerate perturbation problem in quantummechanics. The dispersion relations of spinless modes are
in accordance with well-known calculations, while the frequencies of spin modes are also determined up to
second-order in wave vectors; the second-order expressions are only formal solutions to be further
determined. Moreover, the relaxation of spin density is related to our linear mode analysis, which shall play
a big role in investigating the issues of the local spin polarization in the relativistic heavy-ion collisions.
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I. INTRODUCTION

The community that studies heavy-ion collisions shows
great interest in the research on spin polarization inspired
by the recent measurements of the spin-related observables
of Λ hyperons [1,2]. Although satisfying agreements with
experiment data in global polarization are reported [3–11],
the “spin sign puzzle” has long bothered the scientists,
where the dependence of Λ polarization on the azimuthal
angle and transverse momentum [12,13] cannot be well
reproduced and even the opposite dependence is predicted
[14,15]. It is widely believed that the origin of the spin
sign problem may be the inappropriate application of the
equilibrium picture of spin extensively adopted in those
numerical calculations. To overcome it, the framework
needs to take nonequilibrium effects into consideration and
spin hydrodynamic theory is thought to be a promising one.
Compared to ordinary hydrodynamics, spin hydrodynam-
ics includes the conservation law of total angular momen-
tum and focus on the dissipation of spin density. On the
other hand, these direct experimental measurements of
quantum effects in relativistic heavy-ion collisions provide
the opportunity to study the evolution of spinful fluids and
stimulate related research on spin kinetic theory.

Many efforts are along the line of spin hydrodynamics
trying to get insight into the spin sign problem [16–26].
Though with great progress in investigating spinful fluids,
it is noted that the ultimate goal for us is to construct
a causal and numerically stable theory of spin hydro-
dynamics, which allows the numerical implementation
and simulation of the evolution of the fluid system and
eventually provides us with quantitative explanations for
the spin-related experimental phenomena. To that end, the
hydrodynamic equations and relevant transport coefficients
must be both obtained from the microscopic spin kinetic
theory, constructing a self-consistent theory. Therefore, it is
necessary to derive the quantum transport equations with
proper collision terms, which must incorporate spin as the
independent variable and account for the coupling between
spin and orbit. To note, the related developments in spin
transport can be found in [27–31]. Accounting for the
complexity and nonlinearity, these transport equations are
hard to solve and the linearization of related transport
equations are usually used as a procedure to get some
analytical results or spin hydrodynamics, from which the
low-energy effective theory of spinful fluids can be con-
structed on solid ground. Following this manner, a second-
order spin hydrodynamic theory [32] has been constructed
from the spin Boltzmann equation [27,28] recently, while
the causality and stability of resulting theory need further
investigation.
In this work, we want to give a detailed linear analysis on

normal modes appearing in spin hydrodynamic theory. To
achieve it, the framework constructed in [27] is adopted as
the starting point of our derivation. Although we are not
directly constructing the hydrodynamic theory throughout
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the paper, the theory of hydrodynamics can be completely
constructed from these normal modes. After the lineariza-
tion of the collision term, solving the linear integral
equation can be ascribed to the solution to the spectrum
of the linear collision operator, while the nonequilibrium
distribution can be expanded with corresponding eigen-
functions. However, the full spectrum is not yet solved even
for the local Boltzmann collision term. As will be shown
around Eq. (60), most modes decay rapidly except for the
zero modes protected by all conservation laws respected by
the collision term. Considering that the hydrodynamics
actually originates from the conservation laws, the normal
modes to be solved are equivalent to the description of spin
hydrodynamics in this way. This paper is organized as
follows. In Sec. II, we review the spin Boltzmann equation
[27]. In Sec. III, we linearize the nonlocal collision kernel
and neglect the polarized transition rate to get the Hermitian
collision operator. In Sec. IV, the dispersion relations of
normal modes are determined following the method of
degenerate perturbation theory [33,34]. In Sec. V, we relate
our results obtained in Sec. IV to the relaxation of
spin, which is relevant in the investigation of local spin
polarization and thus draws much attention. Discussion
and outlook are presented in Sec. VI. We use natural units
kB ¼ c ¼ ℏ ¼ 1. The metric tensor is defined as gμν≡
diagð1;−1;−1;−1Þ, while the projection tensor orthogonal
to fluid velocity uμ is given by Δμν ≡ gμν − uμuν.
In the following, the shorthand notations are used:

AðμνÞ ≡ ðAμν þ AνμÞ=2; ð1Þ
A½μν� ≡ ðAμν − AνμÞ=2; ð2Þ

Ahμνi ≡
�Δμ

αΔν
β þ Δν

αΔ
μ
β

2
−
ΔμνΔαβ

3

�
Aαβ; ð3Þ

and we decompose the derivative ∂ as

∂
μ ¼ uμDþ∇μ; D≡ uμ∂μ; ∇μ ≡ Δμν

∂ν: ð4Þ

II. REVIEW OF THE SPIN BOLTZMANN
EQUATION

In this section, we review the spin Boltzmann equation
derived in [27], which provides a description of the
evolution of the system composed of massive fermions,

p · ∂fðx; p; sÞ ¼ C½f� þ Cs½f�; ð5Þ

whereC½f� is the collision kernel inwhich particles involved
change their momentum and spin, while in Cs½f� particles
only exchange spin without momentum transfer,

C½f�≡
Z

dΓ1dΓ2dΓ0W½fðxþ Δ1; p1; s1Þfðxþ Δ2; p2; s2Þ

− fðxþ Δ; p; sÞfðxþ Δ0; p0; s0Þ�; ð6Þ

Cs½f�≡
Z

dΓ2dS1ðpÞDfðxþ Δ1; p; s1Þfðxþ Δ2; p2; s2Þ;

ð7Þ

with

dΓ≡ d4pδðp2 −m2ÞdSðpÞ; ð8Þ
Z

dSðpÞ≡
ffiffiffiffiffiffiffi
p2

3π2

s Z
d4sδðs · sþ 3Þδðp · sÞ: ð9Þ

Note that the phase space spanned by particle position x and
momentum p is now extended to include the variable s as a
classical description of spin [19,28,35–38]. Here the spatial
shift Δ is defined as

Δμ ≡ −
1

2mðp · t̂þmÞ ϵ
μναβpν t̂αsβ: ð10Þ

Additionally, the transition rates are shown by

W ≡ δð4Þðpþ p0 − p1 − p2Þ
1

8

X
s;r;s0;r0;s1;s2;r1;r2

hsrðp; sÞhs0r0 ðp0; s0Þhs1r1ðp1; s1Þhs2r2ðp2; s2Þ

× hp; p0; r; r0jtjp1; p2; s1; s2ihp1; p2; r1; r2jt†jp; p0; s; s0i;

D≡ πℏ
4m

X
s1;s2;r;r2

ϵμναβsμsν1p
αnβs1rðpÞhs2r2ðp2; s2Þhp; p2; r; r2jtþ t†jp; p2; s1; s2i; ð11Þ

with

nαsrðp; sÞ≡ 1

2m
ūsðpÞγ5γαurðpÞ; ð12Þ

hsrðp; sÞ≡ δsr þ
1

2m
ūsðpÞγ5s · γurðpÞ; ð13Þ
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where γ is the Dirac matrix, usðpÞ is the spinor, r and s are
spin indices, and the matrix element of t is defined as the
conventional scattering amplitude.
In the following derivation,we choose to neglectCs½f�. The

reason for neglecting the spin-exchange termcanbe arguedvia
an estimation of magnitude. When comparing Cs½f� with
C½f�, we find that the integration over s1 in Cs½f� is not zero
unless fðxþ Δ1; p; s1Þ can provide another s1 because
of

R
dSðpÞsμ¼0. The sources of s1 coming from fðxþ

Δ1;p;s1Þ consist of twocontributions.One isΔ1 accompanied
with a derivative ∂; the other isΣμν

s1 , whichwe expect to appear
withΩμν. In the following sections, our discussion is limited to
small Ω; thus Cs½f� is estimated as Oð∂Þ or OðΩÞ. While for
C½f�, there is no such a suppression factor.
Hereafter, we split W into unpolarized and polarized

parts. Note that, if we neglect the term linearized to spin s in
Eq. (13), the transition rate turns out to be the familiar
unpolarized form,

W̄ ≡ δð4Þðpþp0−p1−p2Þ
1

8

X
r;r0;r1;r2

hp;p0;r;r0jtjp1;p2;r1;r2i

×hp1;p2;r1;r2jt†jp;p0;r;r0i: ð14Þ
Equation (14) is nothing but our widely used local collision
term of two-body scattering.
As a reminder, we comment that the spatial shift Δ

captures the crucial nonlocality of collisions, where t̂μ is the
timelike unit vector which is (1,0) in the frame
where pμ is measured. To note, such an appealing structure
of the collision kernel originates from the nontrivial tensor
structure of particle fields or, equivalently, the nontrivial
dynamics introduced by spin degrees of freedom compared
to related discussions about the scalar field in [39].
It is widely known that it is hard to find a physical

decomposition for the total angular momentum tensor valid
for all possible systems and we can only choose one
specific pseudogauge appropriate for the physical system
of our interest [40]. When talking about dynamic spin
polarization, it is the mechanism of spin-orbit angular
momentum conversion that works. Consequently, we
expect the spin angular momentum itself (as internal
degrees of freedom) is conserved when interactions
are turned of, whereas it is not when interactions are
turned on. The pseudogauge proposed by Hilgevoord and
Wouthuysen (HW) exactly satisfies the requirement [41].
Thus, it is reasonable and natural to take the HW gauge for
our investigation of spin polarization in the present work.
With our choice, the relevant particle current, energy-
momentum tensor, and spin tensor are defined as

Nμ ≡
Z

dΓpμfðx; p; sÞ; ð15Þ

Tμν
HW ≡

Z
dΓpμpνfðx; p; sÞ; ð16Þ

Sλ;μνHW ≡
Z

dΓpλ

�
1

2
Σμν
s −

1

2m2
p½μ

∂
ν�
�
fðx; p; sÞ; ð17Þ

where the antisymmetric part of Eq. (16) is omitted because
it is at the second order of gradients Oð∂2Þ [41] and outside
the range of our following linear-order analysis. In the
following sections, when nothing confusing occurs, the
subscript HW will be omitted.
The above tensors can be conveniently decomposed as

Nμ ¼ nuμ þ Vμ; ð18Þ
Tμν ¼ euμuν − PΔμν þ πμν þ ΠΔμν; ð19Þ

Sλ;μν ¼ uλSμν þ δSλ;μν; ð20Þ

where n is the particle number density, e is the energy
density, P is the static pressure, and Sμν is the spin density.
The dissipative quantities Vμ; πμν, and Π are the diffusion
current, shear stress tensor, and bulk viscous pressure,
respectively, and Vμuμ ¼ πμνuμ ¼ 0. Note that we have
chosen the Landau choice of fluid velocity and imposed
Landau matching conditions by requiring

Tμνuν ¼ euμ; uμNμ ¼ uμN
μ
eq; uμTμνuν ¼ uμT

μν
equν:

ð21Þ
Also another Landau matching condition for unambigu-
ously defining Sμν is taken,

uλJλ;μν ¼ uλJ
λ;μν
eq ; ð22Þ

where the conserved tensor Jλ;μν ≡ Sλ;μν þ xμTλν − xνTμλ is
the total angular momentum tensor. In the present case, the
HW energy-momentum tensor takes only a symmetric
form, and the matching condition (22) degenerates into

uλSλ;μν ¼ uλS
λ;μν
eq : ð23Þ

III. LINEAR COLLISION OPERATOR

It is shown in [25,27,28] that the collision term (6)
is consistent with the local equilibrium distribution
function [16,42]

fleqðx; p; sÞ ¼
1

ð2πÞ3 exp
�
ξ − β · pþ ΩμνΣ

μν
s

4

�
; ð24Þ

where Ωμν denotes spin potential, the dipole moment Σμν
s is

defined as Σμν
s ≡ − 1

m ϵ
μναβpαsβ, and βμ ≡ uμ

T ; ξ≡ μ
T with the

temperature T, and the chemical potential μ. Without details,
we summarize the conditions for global equilibrium distri-
bution as

βμ ¼ aμ þ Ωμνxν; aμ ¼ const: ð25Þ
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Here we want to emphasize that such a conclusion relies on
the assumption of conservative total angular momentum Jμν,

Jμν ¼ 2Δ½μpν� þ 1

2
Σμν
s ; ð26Þ

because the collision term itself does not conserve total
angular momentum for lack of a similar delta function like
δð4Þðpþ p0 − p1 − p2Þ. From now on, we follow this neces-
sary assumption, and somemodification needs to be built into
Eqs. (11) and (14) based on phenomenological consideration.
Then Eq. (14) is substituted by

W̄ × F½p; p0; p1; p2; s; s0; s1; s2�; ð27Þ
where the dimensionless functionF is inserted respecting the
conservation for the total angularmomentumandwe leave the
detailed form of F unspecified. Aside from this constraint on
F, we require that F respect the symmetry of interchanging
the variables of initial states with that of final states, which is
not a severe constraint. One can naively treat F as a function
proportional to δð6ÞðJμν þ J0μν − Jμν1 − Jμν2 Þ with the super-
script reminding us of six degrees of freedom of Jμν. In
addition, such an insertionneeds also to bemade intoEq. (11).
In Appendix D, we prove that the linearized form of the
collision kernel is Hermitian and non-negative with the
unpolarized transition rate like Eq. (27). There are two points

that deserve special attention. One is that the unpolarized
transition rate respects the principle of detailed balance. The
other is that the non-negative property is important because it
selects kinetic modes protected by conservation laws, which
is reported in detail in Sec. V. Therefore, we concentrate only
on the non-negative Hermitian linearized collision operator
afterward.
After discussing the equilibrium state, we can linearize

the transport equation (5) around the global equilibrium
state fG. Before doing that, Eq. (5) can be explicitly
decomposed into

p · uDfðx; p; sÞ þ pν∇νfðx; p; sÞ ¼ C½f�; ð28Þ

and the distribution function is

f ≡ fGð1þ χðx; p; sÞÞ; ð29Þ

where fG is exactly the global equilibrium distribution,
equivalently, Eq. (24) satisfying Eq. (25). Insert Eq. (29)
into Eq. (28), and we get

pμuμDχðx; p; sÞ þ pμ∇μχðx; p; sÞ ¼ −L½χ�; ð30Þ

with the linearized collision operator defined as

L½ϕ�≡ 1

ð2πÞ3
�
1þΩμνΣ

μν
s

4

�
−1 Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expðξ − a · p0Þ

×

�
1

2
ΩμνðJμν þ J0μνÞðϕðx; p; sÞ þ ϕðx; p0; s0Þ − ϕðx; p1; s1Þ − ϕðx; p2; s2ÞÞ

þ ðϕðxþ Δ; p; sÞ þ ϕðxþ Δ0; p0; s0Þ − ϕðxþ Δ1; p1; s1Þ − ϕðxþ Δ2; p2; s2ÞÞ
�
: ð31Þ

For simplicity, the background profile is taken to be uμ ¼ ð1; 0; 0; 0Þ;Ωμν ¼ 0. Here we note as an aside that the background
profile can absolutely be chosen to be various. For example, a finite vorticity can survive in global equilibrium, then the β field
can possess coordination dependence. In the meantime, thermodynamic integrals determining the dispersion relations shown
in Appendix A are totally different and more complicated because t̂ does not equal u anymore. On the other hand, only the
spin-exchange collision term should be taken into account when Ω is finite. In order to compare with similar analysis on
hydrodynamicmodes in [20], the calibration should bemade ensuring the global equilibrium configurations are the same, i.e.,
uμ ¼ ð1; 0; 0; 0Þ;Ωμν ¼ 0. Thus, aμ ¼ βμ ¼ βuμ with β≡ 1

T and the linearized collision operator is greatly simplified.
Considering that ϕðxþ ΔÞ is actually the linear approximation to ϕðxÞ þ Δ · ∂ϕ [27], we return to its initial form and

naturally split the linearized collision term into a local one,

L1½ϕ�≡ 1

ð2πÞ3
Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expðξ − β · p0Þ

× ½ϕðx; p; sÞ þ ϕðx; p0; s0Þ − ϕðx; p1; s1Þ − ϕðx; p2; s2Þ�; ð32Þ
and a nonlocal one featured by the nonlocal shift Δ,

L2½ϕ�≡ 1

ð2πÞ3
Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expðξ − β · p0Þ

× ½Δ · ∂xϕðx; p; sÞ þ Δ0 · ∂xϕðx; p0; s0Þ − Δ1 · ∂xϕðx; p1; s1Þ − Δ2 · ∂xϕðx; p2; s2Þ�: ð33Þ
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As is exhibited in Appendix D, L1 is a Hermitian
operator, while L2 is not for the noncommutative property
of the derivative. With our proposed division, Eq. (30) is
transformed into

pμuμDχðx;p; sÞ þpμ∇μχðx;p; sÞ þL2½χ� ¼ −L1½χ�: ð34Þ

It is convenient to introduce the Fourier transformation
of χðx; p; sÞ,

χ̃ðk; p; sÞ ¼
Z

d4x expðik · xÞχðx; p; sÞ; ð35Þ

and cast Eq. (30) into

τωχ̃ þ p̂μκμχ̃ þ L2½χ̃� ¼ −iL1½χ̃�; ð36Þ

where the following notations are utilized:

τ≡ p · u
T

; ω≡ u · k
nσðTÞ ; p̂≡ p

T
; κα ≡ Δαβkβ

nσðTÞ ;

κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
−κ · κ

p
; lα ≡ κα

κ
; ð37Þ

and σðTÞ is an arbitrary constant with the dimension of total
cross sections. The dimensionless collision operator is

L1½ϕ�≡ expðξÞ
ð2πÞ3nσðTÞT

Z
dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expð−β · p0Þ

× ½ϕðk; p; sÞ þ ϕðk; p0; s0Þ − ϕðk; p1; s1Þ − ϕðk; p2; s2Þ�; ð38Þ

and meanwhile,

L2½ϕ�≡ expðξÞ
ð2πÞ3T

Z
dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expð−β · p0Þ

× ½Δ · κϕðk; p; sÞ þ Δ0 · κϕðk; p0; s0Þ − Δ1 · κϕðk; p1; s1Þ − Δ2 · κϕðk; p2; s2Þ�: ð39Þ

Here the inner product is the global equilibrium state
given by

ðB;CÞ ¼ 1

ð2πÞ3
Z

dΓ expðξ − β · pÞBðp; sÞCðp; sÞ: ð40Þ

To proceed, the adjoint operator of L2 is denoted by L
†
2 and

defined such that

ðL†
2½B�; CÞ ¼ ðB; L2½C�Þ: ð41Þ

By utilizing the Hermitian property of L1, one can show
that

ðB;L2½C�Þ ¼ nσðTÞðB;L1½Δ · κC�Þ ¼ nσðTÞðL1½B�;Δ · κCÞ
¼ nσðTÞðΔ · κL1½B�;CÞ: ð42Þ

Therefore, the adjoint operator L†
2 is identified with

nσðTÞΔ · κL1 and explicitly takes the following form:

L†
2½ϕ�≡ expðξÞ

ð2πÞ3T
Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expð−β · p0Þ

× Δ · κ½ϕðk; p; sÞ þ ϕðk; p0; s0Þ − ϕðk; p1; s1Þ − ϕðk; p2; s2Þ�; ð43Þ

with the same argument as in Appendix D, L2 is also
Hermitian. AlthoughL2 is not Hermitian, L2 turns out to be
a Hermitian operator for the replacement of the derivative
in Eq. (33) by κ in Eq. (39).

IV. DEGENERATE PERTURBATION THEORY
AND LINEAR MODE ANALYSIS

As was stressed previously, solving normal modes can be
treated in the fashion as used in quantummechanics. Herewe
regard thep · κ andL2 terms in Eq. (36) as a perturbationwith
respect to the linearized collision operator−iL1; equivalently,

we take the nonuniformity κ as a small quantity. Then the
unperturbed equation reduces to an eigenvalue problem,

−iL1χ̃
ð0Þ ¼ τωð0Þχ̃ð0Þ: ð44Þ

It is easy to show that 11 zero modes (or collision invariants)
1; pμ, and Jμν trivially solve the zeroth-order equation.
Compared to ordinary hydrodynamic theory, the six new
modes are related to the conservation of total angular
momentum in nonlocal collisions between particles.
Noting thatwe have exhausted the global symmetries relevant
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for present research, there should be no more conserved
currents and no more zero modes.
When it comes to the first-order perturbation of p · κ and

L2, we denote the nth-order contribution with a superscript

n and only focus on 11 zero modes, which are in tight
connection with fluid-dynamic variables. The eigenfunc-
tions set for 11-fold degenerate zeros can be readily
chosen as

ψ̃1 ¼
1ffiffiffiffiffiffiffiffi
V1;1

p ; ψ̃2 ¼ β
u · p − e

nffiffiffiffiffiffiffiffi
V2;2

p ; ψ̃3 ¼
βl · pffiffiffiffiffiffiffiffi
V3;3

p ; ψ̃4 ¼
βj · pffiffiffiffiffiffiffiffi
V3;3

p ; ψ̃5 ¼
βv · pffiffiffiffiffiffiffiffi
V3;3

p ;

ψ̃6 ¼
uμJμνlνffiffiffiffiffiffiffiffi

V6;6
p ; ψ̃7 ¼

uμJμνjνffiffiffiffiffiffiffiffi
V6;6

p ; ψ̃8 ¼
uμJμνvνffiffiffiffiffiffiffiffi

V6;6
p ; ψ̃9 ¼

lμJμνjνffiffiffiffiffiffiffiffi
V9;9

p ;

ψ̃10 ¼
lμJμνvνffiffiffiffiffiffiffiffi

V9;9
p ; ψ̃11 ¼

jμJμνvνffiffiffiffiffiffiffiffi
V9;9

p ; ð45Þ

where Schmidt orthogonalization is used and these eigen-
functions satisfy the orthonormal condition

ðψ̃α; τψ̃βÞ ¼ δαβ: ð46Þ

The definitions of two auxiliary vectors j and v and the
normalized factor Vi;j are all defined in Appendix B.
Taking into account the first-order perturbation, we

obtain the inhomogeneous integral equation for χ̃ð1Þ,

−iL1χ̃
ð1Þ
α ¼ τωð1Þ

α χ̃ð0Þα þ p̂μκμχ̃
ð0Þ
α ; ð47Þ

where the property of L2χ̃
ð0Þ
α ¼ 0 is used. According to

degenerate perturbation theory, the solubility condition is

ðψ̃α; τωð1Þχ̃ð0Þ þ pμκμχ̃
ð0ÞÞ ¼ 0; ð48Þ

where χ̃ð0Þ should be understood as the linear combination
of the eigenfunctions ψ̃β in Eq. (45). Therefore, the
frequency ω obeys the dispersion relation, i.e., the secular
equation,

������������������������������

ωð1Þ 0 H1;3 0 0 0 0 0 0 0 0

0 ωð1Þ H2;3 0 0 0 0 0 0 0 0

H1;3 H2;3 ωð1Þ 0 0 0 0 0 0 0 0

0 0 0 ωð1Þ 0 0 0 0 0 0 0

0 0 0 0 ωð1Þ 0 0 0 0 0 0

0 0 0 0 0 ωð1Þ 0 0 0 0 0

0 0 0 0 0 0 ωð1Þ 0 H7;9 0 0

0 0 0 0 0 0 0 ωð1Þ 0 H7;9 0

0 0 0 0 0 0 H7;9 0 ωð1Þ 0 0

0 0 0 0 0 0 0 H7;9 0 ωð1Þ 0

0 0 0 0 0 0 0 0 0 0 ωð1Þ

������������������������������

¼ 0; ð49Þ

where matrix elements Hi;j are given in Appendix C.
The solution to this equation is made up of the eigenvalues

ωð1Þ
1 ¼ −ωð1Þ

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2;3 þH2
1;3

q
; ωð1Þ

3 ¼ ωð1Þ
4 ¼ ωð1Þ

5 ¼ 0;

ωð1Þ
6 ¼ ωð1Þ

11 ¼ 0; ωð1Þ
7 ¼ ωð1Þ

8 ¼ H7;9; ωð1Þ
9 ¼ ωð1Þ

10 ¼ −H7;9 ð50Þ

and the eigenfunctions
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χ̃ð0Þ1 ¼ 1ffiffiffi
2

p
�
−

H1;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1;3þH2
2;3

q ψ̃1−
H2;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
1;3þH2

2;3

q ψ̃2þ ψ̃3

�
;

χ̃ð0Þ2 ¼ 1ffiffiffi
2

p
�

H1;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1;3þH2
2;3

q ψ̃1þ
H2;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
1;3þH2

2;3

q ψ̃2þ ψ̃3

�
;

χ̃ð0Þ3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2;3

H2
1;3
þ1

r
�
−
H2;3

H1;3
ψ̃1þ ψ̃2

�
; χ̃ð0Þ4 ¼ ψ̃4; χ̃ð0Þ5 ¼ ψ̃5; χ̃ð0Þ6 ¼ ψ̃6;

χ̃ð0Þ7 ¼ 1ffiffiffi
2

p ðψ̃7− ψ̃9Þ; χ̃ð0Þ8 ¼ 1ffiffiffi
2

p ðψ̃8− ψ̃10Þ; χ̃ð0Þ9 ¼ 1ffiffiffi
2

p ðψ̃7þ ψ̃9Þ; χ̃ð0Þ10 ¼ 1ffiffiffi
2

p ðψ̃8þ ψ̃10Þ; χ̃ð0Þ11 ¼ ψ̃11: ð51Þ

It is not hard to verify that the results of the first five modes
are exactly those in [43]. As a consistent check, we find the
eigenfunctions χ̃ð0Þα ; α ¼ 6;…; 11 indeed satisfy the solu-

bility condition (48) with ωð1Þ
α ¼ 0.

Likewise, we obtain again the solubility condition for the
second-order perturbation equation,

ðχ̃ð0Þα ; τωð1Þ
β χ̃ð1Þβ þ p̂μκμχ̃

ð1Þ
β þ τωð2Þ

β χ̃ð0Þβ Þ ¼ 0; ð52Þ

where we have used Eq. (41) to vanish the inner product of

χ̃ð0Þα and L2χ̃
ð1Þ
β . In order to form a comparison with related

results in [43], the second-order frequencies can be written
with the assistance of the bracket notation,

ωð2Þ
α ¼ i½χ̃ð1Þα ; χ̃ð1Þα �; ð53Þ

where χ̃ð1Þ should be obtained by solving the integral
equation (47) and the bracket notation is given by
½B;C�≡ ðL1½B�; CÞ. The second-order frequencies in the
form of the bracket notation is in accordance with [43].
As seen from the secular equation (49), the spin modes

and spinless modes decouple from each other; thus, the
dispersion relations for the spinless modes receive no
corrections from the spin effects and retain the same form
as that in the linear analysis of the ordinary hydrodynamics,
which is also confirmed in [20]. Therefore, the frequencies
of the spinless modes up to the second order in κ are already
available as follows [43]:

ω1 ¼
ffiffiffi
γ

ĥ

r
κ − i

nσ
2h

�
4

3
ηþ ζ þ ððγ − 1Þĥ − γÞ2

γĥ
λ

�
κ2;

ω2 ¼ −
ffiffiffi
γ

ĥ

r
κ − i

nσ
2h

�
4

3
ηþ ζ þ ððγ − 1Þĥ − γÞ2

γĥ
λ

�
κ2;

ω3 ¼ −i
γ − 1

γ
λσκ2; ω4 ¼ ω5 ¼ −i

nσ
h
ηκ2; ð54Þ

with the transport coefficients shear viscosity, bulk viscos-
ity, and diffusion coefficient denoted by η, ζ, and λ,

respectively, ĥ is the reduced enthalpy density ĥ≡ eþP
T ,

and γ denotes the ratio of the heat capacities at constant

pressure cp≡ð∂ðh=nÞ
∂T Þp and at constant volume cv≡ð∂ðe=nÞ

∂T Þv.
As a low-energy effective theory, the kinetic theory should
match the coarse-grained hydrodynamics in the limit of
long wavelengths. The one-to-one correspondence between
hydrodynamic modes and kinetic modes has a great
practical importance as the basis for a theory of transport
coefficients, which should be thought of from a more
“philosophical” view. A fluid system is a collection of
particles moving in a quite disordered manner; however, in
the limit of long wavelengths, the only possible modes of
motion of the fluid are ordered modes, such as a sound-
wave propagation, which originate from the dominant
effect of the collisions [33,34].
In a short summary, among the five spinless hydro-

dynamic modes there are two sound modes traveling with
opposite sound speed and the same damping rate, one
purely decaying heat mode, and two degenerate shear
modes. On the other hand, the frequencies for the other
six spin-related modes are

ω6 ¼ i½χ̃ð1Þ6 ; χ̃ð1Þ6 �; ω11 ¼ i½χ̃ð1Þ11 ; χ̃
ð1Þ
11 �;

ω8 ¼ ω7 ¼ H7;9 þ i½χ̃ð1Þ7 ; χ̃ð1Þ7 �;
ω10 ¼ ω9 ¼ −H7;9 þ i½χ̃ð1Þ9 ; χ̃ð1Þ9 �: ð55Þ

By a careful comparison, we find that these spin-related
dispersion relations cannot match with those in [20]. The
reason is that in that work the authors concentrate on the
nonconservative spin density, while our spin modes are
inherently protected by conservation laws. There are four
propagating transverse spin modes: two degenerate modes
with H7;9=κ as the propagating speed damp at the rate

−½χ̃ð1Þ7 ; χ̃ð1Þ7 �, while the other two propagate in the opposite

direction with a damping rate of −½χ̃ð1Þ9 ; χ̃ð1Þ9 �. On the other
hand, there are no propagating spin modes in [20]. In
addition, the longitudinal modes are purely decaying at
their respective damping rates. However, the bracket
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notation is rather abstract and not directly related to our
familiar physical quantities or formulalike spinless modes.
To put it less abstractly, first we notice that

ωð2Þ
α ¼−iðχ̃ð0Þα ðp̂μκμþ τωð1Þ

α Þ; L−1
1 ½ðp̂μκμþ τωð1Þ

α Þχ̃ð0Þα �Þ:
ð56Þ

If neglecting the nonuniformity (this term is an order of
magnitude smaller), Eq. (34) takes the form of the time
evolution

βτDχðt; p; sÞ ¼ −L1½χ�. ð57Þ

When choosing the rest configuration D ¼ ∂t without
losing the generality, the solution to the equation of
evolution is shown as

χðt; p; sÞ ¼ exp

�
−
L1

βτ
t

�
χðp; sÞ; ð58Þ

with χðt ¼ 0; p; sÞ ¼ χðp; sÞ. Therefore, Eq. (56) can be
cast into

ωð2Þ
α ¼ −iðχ̃ð0Þα ðp̂μκμ þ τωð1Þ

α Þ; L−1
1 ½ðp̂μκμ þ τωð1Þ

α Þχ̃ð0Þα �Þ

¼ −iκ2
�
χ̃ð0Þα

�
p̂μlμ þ τ

ωð1Þ
α

κ

�
; L−1

1

��
p̂μlμ þ τ

ωð1Þ
α

κ

�
χ̃ð0Þα

��

¼ i
1

βð2πÞ3
Z

dΓdt expðξ − β · pÞ 1
τ
gð0; p; sÞ exp

�
−
L1

βτ
t

�
gð0; p; sÞ

¼ i
1

βð2πÞ3
Z

dΓdt expðξ − β · pÞ 1
τ
gð0; p; sÞgðt; p; sÞ ¼ i

1

β

Z
∞

0

dthgð0; p; sÞgðt; p; sÞi0; ð59Þ

with the definition gðt ¼ 0; p; sÞ ¼ ðp̂μlμ þ τ ωð1Þ
α
κ Þχ̃ð0Þα and

the expectation value in equilibrium identified as
hAi0 ≡ 1

ð2πÞ3
R
dΓ expðξ − β · pÞ 1τ A.

From the Green-Kubo-like formula derived here, we can
find that the second-order frequencies can all be related to
the time correlation functions. It is widely believed that the
transport coefficients can be expressed by the Green-Kubo
formula, based on which the second-order dispersion
relations of spin modes are supposed to be used as
definitions for new transport coefficients or their combi-
nation. Since there is no well-calibrated spin hydrodynamic
theory relevant to the spin kinetic theory adopted here and
no corresponding definitions for our proposed novel trans-
port coefficients elsewhere, we have to content ourselves
with ending with Eq. (59).

V. THE RELAXATION OF SPIN

In this section, we show how to relate our linear analysis
with the relaxation of spin toward the equilibrium state. To
that end, first we note that the imaginary parts of spinless
hydrodynamic modes encode the information of the relax-
ation of conserved currents, e.g., the energy-momentum
tensor and the particle number current marked by the
hydrodynamic transport coefficients. Similarly, there is no
doubt that this conclusion can be generalized to new spin
modes, encoding related information of the relaxation of
total angular momentum. In the community of heavy-ion
collisions, the relaxation of spin density toward equilibrium

is important and interesting, stimulated by the experimental
research on local spin polarization. Whether the spin
density relaxes to their equilibrium value earlier than other
hydrodynamic variables or not is under debate. With the
spin equilibrated picture still undetermined, further numeri-
cal simulations or related modelings lack the stable basis.
Inspired by the enlightening discussions about the ordinary
hydrodynamic modes analysis, we start with Eq. (58), then
a general fluctuation i.e., the deviation function from the
equilibrium distribution, can be expanded with the orthogo-
nal normalized sets of the eigenfunctions of linearized
collision (evolution) operator,

χðt; p; sÞ ¼
X∞
α¼1

ψαðψα; χÞ ≈
X11
α¼1

ψαðψα; χÞ; ð60Þ

where ψα is the inverse Fourier transformation of ψ̃α [they
are actually the same because the thermodynamic param-
eters appearing in Eq. (45) are chosen to be independent of
the coordination x in global equilibrium] and the inner
product ðψα; χÞ represents the corresponding fluctuation
amplitude (for instance, if α is chosen to be 1, this inner
product denotes the fluctuation amplitude of the particle
number density). Here we truncate the summation to the
first 11 terms, for the first 11 zero modes are exactly the
slowestmodes,which are protected by the conversation laws.
Because of the non-negative property of the linearized
collision operator, other modes with positive eigenvalues
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are damped by the exponential factor as time evolves in
view of Eq. (58).
After singling out relevant zero modes from infinitely

many positive modes, it is our task to see how these zero
modes respond to the perturbation of nonuniformity, which
will give us dispersion laws as is exhibited in the previous
section. To that end, we move back to momentum space,
and the eigenfunctions used to expand the fluctuation
function χ̃ turn into χ̃α in Eq. (51),

χ̃ðk; p; sÞ ≈
X11
α¼1

χ̃αðχ̃α; χ̃Þ: ð61Þ

Analogous to the definition of the spin tensor (17), we
define a new fluctuation for spin density,

δSμνðx; p; sÞ ¼ uλ

Z
dΓ

ð2πÞ3 e
ξ−β·ppλ 1

2
Σμν
s χðx; p; sÞ; ð62Þ

where we have invoked that uλ
R
dΓpλ 1

2
Σμν
s feq is the spin

density in equilibrium compatible with the related defi-
nition in [20] and we neglect the derivative term belonging
to the smaller order in gradients. By analogy with δTμν or
δNμ, the natural interpretation for ðu·p

2
Σμν
s ; χÞ is the fluc-

tuation amplitude for spin density.
Considering the overlap of Σμν

s with the spinless eigenm-
odes (α ¼ 1, 2, 3, 4, 5) vanishes for

R
dSðpÞsμ ¼ 0, only

six spin-related fluctuation amplitudes ðχα; χÞ are respon-
sible for the relaxation of spin density,

�
u · p
2

Σμν
s ; χ̃

�
¼

X11
α¼6

�
u · p
2

Σμν
s ; χ̃α

�
ðχ̃α; χ̃Þ; ð63Þ

and these independent six modes decay at different relax-
ation times. Therefore, the relaxation time for spin density
fluctuation should be identified as the largest one, namely,

τs ¼ max

�
1

jωð2Þ
α j

; α ¼ 6;…; 11

	
; ð64Þ

where jAj denotes the amplitude of a complex A. Given
specific interaction and proper form for the constraint function
F in Eq. (31), solve the complicated integral equation (47) and
the relaxation times for ordinary hydrodynamic dissipative
quantities and spin density canbedetermined, constructing the
related hierarchy for the different relaxation times and
clarifying the relevant equilibrium picture.
Before ending this section, some comments about

any possible pseudogauge dependencies are presented
as follows. As is put forward in previous sections, the
energy-momentum tensor in distinct gauges take the same
symmetric form as far as only first-order gradients are
in consideration. The dispersion relations of spinless
modes do not change when taking distinct pseudogauges.

However, the variation of gauge will lead to the variation
of definition of spin density and alter the spin density
fluctuation (62), too. The variation should be of the form
∼
R
dSðpÞsχðx; p; sÞ with only the spin-related structure

displayed, which indicates that involved modes respon-
sible for spin relaxation are still unchanged and Eq. (64)
is formally identical. On the other hand, the precise
relaxation rates of these spin modes are also unchanged
given a fixed background profile on top of which the
linear analysis is carried out. In a summary, our results
presented before are independent of the choice of
pseudogauges.
Note that our formalism is based on neglecting the

antisymmetric part of the HW energy momentum, which
manifests that spin angular momentum and orbit angular
momentum are separately conserved. Though the present
framework is rather restrictive, it is reasonable as ∂μT ½μν�

is counted as Oð∂3Þ in the motion equation and thus is
negligible. Moreover, the spin Boltzmann equation
derived from Wigner formalism is limited to first order
in semiclassical expansion (or gradients expansion) and
does not encode the information of the antisymmetric part
of the HWenergy-momentum tensor by construction [44].
Therefore, the antisymmetric part of the HW energy-
momentum tensor cannot be expressed by distribution
function f or collision kernel C½f� presented here and the
discussion on it is beyond the application range of
the present framework. We comment that it is a more
straightforward way to formulate the retarded correlators
from underlying field theoretical calculation and then
systematically look for nonhydrodynamic modes related
to nonconserved spin density.

VI. SUMMARY AND OUTLOOK

We provide a discussion about normal modes of a
linearized collision operator based on the spin kinetic
theory for massive fermions [27] in this paper. By insisting
on Hermitian and non-negative properties of the linearized
operator, we neglect the nondiagonal part of the transition
rate and solve the dispersion relations for normal modes
according to the degenerate perturbation theory we fre-
quently see in quantum mechanics. With the conservation
of total angular momentum in a collision event phenom-
enologically considered, we find 11 zero modes that are
protected by conserved laws and thus are in relation to spin
hydrodynamic theory.
Following similar procedures that are used in quantum

mechanics, we obtain the dispersion relations of these
modes, among which the results of five spinless modes are
consistent with well-known conclusions. On the other
hand, the frequencies of the remaining spin-related modes
are also solved up to second order in wave vectors, though
the second-order corrections are only formal solutions,
which are proved to be in relation to the time correlation
functions. In other words, one can directly calculate the
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time correlation function without recourse to solving the
complicated integral equation. We also show that our
framework can be applied to investigate the relaxation of
spin density. Our findings manifest that the relaxation of
spin density has nothing to do with the spinless modes and
the relaxation time is identified as the largest one of the
reciprocals of damping rates for those spin-related modes.
Therefore, given specific interactions and reasonable para-
metrized form for the constraint function in Eq. (38), the
relaxation for both spin density and other dissipative
hydrodynamic quantities can be determined, which at least
provides a comparison for these typical timescales and
decides which one is the slow process. The clarification of
the hierarchy for relaxation times based on reliable quan-
tum kinetic theory is highly nontrivial in resolving the
problem of discovering the local spin polarization in the
experiments of relativistic heavy-ion collisions. Note that
the spin Boltzmann equation adopted here does not encode
the antisymmetric part of the HW energy-momentum
tensor; therefore, spin is approximately conserved and
spin-orbit conversion happens at the second order in
gradients expansion.
There is also one thing that deserves attention. Because

our discussion is limited to ignoring the polarized part in
the transition rate, the linearized collision operator is
Hermitian. Without this approximation, the unperturbed
operator is not Hermitian and the eigenvalues are not
necessarily real, while the eigenfunctions are not neces-
sarily orthogonal, which means that we cannot solve the
problem following the same fashion as used in quantum
mechanics. For the impact of the polarized transition rate
on the relaxation of spin density or other spin-related
variables, we leave the research work to the future.
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APPENDIX A: THERMODYNAMIC INTEGRAL

In this appendix, we calculate thermodynamic integrals
used in the main text. The first one is

Iα1���αn ≡ 2

Z
dP

ð2πÞ3 p
α1pα2 � � �pαneξ−β·p

¼ In0uα1 � � � uαn
þ In1ðΔα1α2uα3���αn þ permutationsÞ þ � � � ; ðA1Þ

where in the second equality we have employed the
analysis of the Lorentz covariance. By projecting uα and
Δαβ onto Eq. (A1), the scalar coefficients are defined as

Inq ≡ 2

ð2qþ 1Þ!!
Z

dP
ð2πÞ3 ðu · pÞn−2qðΔαβpαpβÞqeξ−β·p;

ðA2Þ

with KnðzÞ representing the modified Bessel functions of
the second kind

KnðzÞ≡
Z

∞

0

dx coshðnxÞe−z cosh x: ðA3Þ

Especially, we have I10 ¼ n, I20 ¼ e, I31 ¼ −h, and

I30ðzÞ ¼
T5z5

32π2
ðK5ðzÞ þ K3ðzÞ − 2K1ðzÞÞ; ðA4Þ

with z≡ m
T .

Additionally, the following similar formulas are also of
great use:

Lα1���αn ≡ 2

Z
dP

ð2πÞ3ðp0 þmÞp
α1pα2 � � �pαneξ−β·p

¼ Ln0uα1 � � � uαn þ Ln1ðΔα1α2uα3���αn þ permutationsÞ þ � � � ;

Nα1���αn ≡ 2

Z
dP

ð2πÞ3ðp0 þmÞ2 p
α1pα2 � � �pαneξ−β·p

¼ Nn0uα1 � � � uαn þ Nn1ðΔα1α2uα3���αn þ permutationsÞ þ � � � : ðA5Þ

Similarly, Lnq and Nnq are also obtained as in Eq. (A2). Generally speaking, these scalar integrals may not be analytically
worked by expressing them with the modified Bessel functions of the second kindKnðzÞ, due to an extra factor appearing in
the integrations, and we need to turn to numerical integration.
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APPENDIX B: NORMALIZED FACTORS

In the main text, we utilize two auxiliary unit vectors jμ and vμ, which form a triad with the vectors u and l,

u · l ¼ u · j ¼ u · v ¼ l · j ¼ l · v ¼ j · v ¼ 0;

l2 ¼ j2 ¼ v2 ¼ −1: ðB1Þ

Therefore, pμ and Jμν can be readily expanded as

pμ ¼ u · puμ þ l · plμ þ j · pjμ þ v · pvμ;

Jμν ¼ uμJμνlν − lμJμνuν þ uμJμνjν − jμJμνuν þ uμJμνvν − vμJμνuν

þ lμJμνjν − jμJμνlν þ lμJμνvν − vμJμνlν þ jμJμνvν − vμJμνjν: ðB2Þ

As the total angular momentum Jμν is antisymmetric, the effective basis set is ð1; u · p; l · p; j · p; v · p;
uμJμνlν; uμJμνjν; uμJμνvν; lμJμνjν; lμJμνvν; jμJμνvνÞ. Throughout the paper, they are ordered this way and are labeled
by the ith basis, respectively (i ¼ 1; 2;…; 11).
Then the normalized factors appearing in Eq. (45) are

V1;1 ¼ expðξÞ
Z

dΓ
ð2πÞ3

u · p
T

expð−β · pÞ ¼ n
T
;

V2;2 ¼ expðξÞ
Z

dΓ
ð2πÞ3

ðu · p − e
nÞ2ðu · pÞ
T3

expð−β · pÞ ¼ I30 − e2
n

T3
;

V3;3 ¼ V4;4 ¼ V5;5 ¼ expðξÞ
Z

dΓ
ð2πÞ3

ðu · pÞðl · pÞ2
T3

expð−β · pÞ ¼ h
T2

: ðB3Þ

When calculating the remaining normalized factors, recall the calibration settings mentioned after Eq. (31)
t̂ ¼ u ¼ ð1; 0; 0; 0Þ, and we obtain

V6;6 ¼ V7;7 ¼ V8;8 ¼ expðξÞ
Z

dΓ
ð2πÞ3

u · p
T

uμJμνlνuρJρσlσ expð−β · pÞ

¼ 1

2m2T
ð−I31 þ 2L41 − N51Þ;

V9;9 ¼ V10;10 ¼ V11;11 ¼ expðξÞ
Z

dΓ
ð2πÞ3 lμJ

μνjνðp · uÞlρJρσjσ expð−β · pÞ

¼ I30 þ I31 þ 4L41 þ 10N52

4m2T
; ðB4Þ

where Lnq and Nnq are defined in Appendix A and the factors V2;2; V6;6, and V9;9 are positive.

APPENDIX C: PERTURBATION MATRIX ELEMENTS

We compute the perturbation matrix elements used in Eq. (49). The matrix elements sandwiching the p · κ term are
written as

H1;3 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;1V3;3

p
T2

Z
dΓ

ð2πÞ3 κ · pl · p expð−β · pÞ ¼ Pκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;1V3;3

p
T2

;

H2;3 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2;2V3;3

p
T3

Z
dΓ

ð2πÞ3
�
u · p −

e
n

�
p · κðl · pÞ expð−β · pÞ ¼ Pκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2;2V3;3
p

T2
;

H7;9 ¼ H8;10 ¼
expðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V6;6V9;9

p
Z

dΓ
ð2πÞ3

p · κ
T

uμJμνjνlρJρσjσ expð−β · pÞ ¼
ð−I31 þ L41 − 5L42 þ 5N52Þκ

4m2T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V6;6V9;9

p : ðC1Þ
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Notice that the perturbation matrix owns a symmetry of transpositionHi;j ¼ Hj;i. Except for the above matrix elements and
their transpositions, the others are all zero.

APPENDIX D: PROOF OF HERMITICITY OF LINEARIZED COLLISION OPERATOR

First, we note the linearized collision operator to be proved is

L1½ϕ�≡ 1

ð2πÞ3
Z

dΓ0dΓ1dΓ2W̄F½p; p0; p1; p2; s; s0; s1; s2� expðξ − u · p0Þ

× ½ϕðx; p; sÞ þ ϕðx; p0; s0Þ − ϕðx; p1; s1Þ − ϕðx; p2; s2Þ�: ðD1Þ

In the sense of the definition of the inner product, Eq. (40), we obtain

ðL1½ϕ�;ψÞ ¼
1

ð2πÞ6
Z

dΓdΓ0dΓ1dΓ2W̄F½p;p0; p1;p2; s; s0; s1; s2� expð2ξ− u · ðpþp0ÞÞ

× ½ϕðx;p; sÞ þϕðx;p0; s0Þ−ϕðx;p1; s1Þ−ϕðx;p2; s2Þ�ψðx;p; sÞ

¼ 1

2ð2πÞ6
Z

dΓdΓ0dΓ1dΓ2W̄F½p;p0; p1; p2; s; s0; s1; s2� expð2ξ− u · ðpþp0ÞÞ

× ½ϕðx;p; sÞ þϕðx;p0; s0Þ−ϕðx;p1; s1Þ−ϕðx;p2; s2Þ�ðψðx;p; sÞ þ ψðx;p0; s0ÞÞ

¼ 1

4ð2πÞ6
Z

dΓdΓ0dΓ1dΓ2W̄F½p;p0; p1; p2; s; s0; s1; s2� expð2ξ− u · ðpþp0ÞÞ

× ½ðϕðx;p; sÞ þϕðx;p0; s0ÞÞðψðx;p; sÞ þ ψðx;p0; s0ÞÞ− 2ðϕðx;p1; s1Þ þϕðx;p2; s2ÞÞðψðx;p; sÞ þψðx;p0; s0ÞÞ
þ ðϕðx;p1; s1Þ þϕðx;p2; s2ÞÞðψðx;p1; s1Þ þψðx;p2; s2ÞÞ�: ðD2Þ

Only by neglecting the polarized part in the collision rate can the third step be implemented. To see this, when interchanging
ðp; sÞ with ðp1; s1Þ [for simplicity, we omit ðp0; s0Þ and ðp2; s2Þ because of duplication and other trivial factors] and taking
the full hsr into account,

W ¼
X

s;r;s1;r1

hsrðp; sÞhs1r1ðp1; s1Þhp; rjtjp1; s1ihp1; r1jt†jp; si; ðD3Þ

W½ðp; sÞ ↔ ðp1; s1Þ� ¼
X

s;r;s1;r1

hsrðp1; s1Þhs1r1ðp; sÞhp1; rjtjp; s1ihp; r1jt†jp1; si

¼
X

s;r;s1;r1

hsrðp; sÞhs1r1ðp1; s1Þhp1; r1jtjp; sihp; rjt†jp1; s1i: ðD4Þ

In general, Eq. (D3) is not equivalent to Eq. (D4) unless t is Hermitian. From Eq. (D2), we conclude that ðL1½ϕ�;ϕÞ ≥ 0 if
the transition rate respects this exchanging symmetry. From the above argument, we find the non-negative property of the
linearized collision operator lies in the negligence of the polarized part of collision rate W. When neglecting the polarized
vector nsr, the collision rate can be cast into the traditional form of cross section and thus is symmetric for exchanging the
momentums of initial and final states, which is called the principle of detailed balance.
Continuing the discussion following Eq. (D2) with the collision rate replaced by the reduced (unpolarized) one, we find

with assistance of the detailed balance,

ðL1½ϕ�;ψÞ ¼ ðL1½ψ �;ϕÞ ¼ ðϕ;L1½ψ �Þ: ðD5Þ

To prove this, interchanging ðp; sÞ; ðp0; s0Þ with ðp1; s1Þ; ðp2; s2Þ,

ðϕðx; p1; s1Þ þ ϕðx; p2; s2ÞÞðψðx; p; sÞ þ ψðx; p0; s0ÞÞ → ðψðx; p1; s1Þ þ ψðx; p2; s2ÞÞðϕðx; p; sÞ þ ϕðx; p0; s0ÞÞ; ðD6Þ
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the integral in Eq. (D2) over this term should be invariant.
Such property is employed for the second term within the
bracket of Eq. (D2), invoking the symmetry property of the
transition rate (the other terms have this exchange sym-
metry of ϕ and ψ already). Without detailed balance,

Eq. (D5) cannot hold, thus the polarized part of the
collision rate is also responsible for non-Hermiticity of
the linearized collision term. To conclude, we derive the
non-negative self-adjoint property for the unpolarized
linearized collision operator.
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