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The baryonic form factor of charged pions is studied in detail in the Nambu–Jona-Lasinio model with
constituent quarks, where the spontaneously broken chiral symmetry is the key dynamical ingredient
guaranteeing the would-be Goldstone boson nature of the pseudoscalar mesons octet. In general, this form
factor arises when the isospin symmetry is broken, which is the case if the u and d quark masses are split, as
in the real world, or if the electromagnetic effects were taken into account. We obtain estimates for this
basic property of the pion resulting from the quark mass splitting for a range of model parameters, and
importantly, for different pion masses, going up to the values used in lattice QCD. We find very stable
model results, with the mean square radius of πþ in the range ð0.05–0.07 fmÞ2. From charge conjugation,
the baryonic form factor of πþ and π− are equal and opposite. We also obtain the transverse-coordinate,
relativistically invariant baryonic density of the charged pion. In πþ, the inner region carries a negative, and
the outside—a positive baryon number density, both cancelling to zero, as obviously the pion carries no net
baryon charge. We also carry out an analogous analysis for the kaon, where the effect is much larger due to
the sizable s and u=d quark mass splitting. We discuss the prospects of lattice QCD measurements of the
baryonic form factors of charged pions and kaons.
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I. INTRODUCTION

As it is well known, by construction mesons carry no net
baryon charge. However, in a recent paper [1] we brought
up the largely overlooked fact that the baryonic form factor
of charged pions does not vanish when the isospin
symmetry is broken, as is the case when the u and d
quark masses are not equal, or when the electromagnetic
(EM) effects are taken into account. We carried out several
estimates of the effect based on very different approaches,
ranging from simple quark models to an extraction from the
available eþe− → πþπ− data (BABAR [2] and KLOE
[3–6]), made with the help of the vector meson dominance
(VMD) involving the ρ − ω mixing. Our data analysis [1]
yielded the following estimate for the baryonic mean
squared radius (msr) of πþ:

hr2iπþB ¼ ð0.041ð1Þ fmÞ2 ¼ 0.0017ð1Þ fm2: ð1Þ

As expected from the weak effect of isospin breaking, this is
small compared to the central value of the accurately known
EM radius hr2iπþQ ¼ ð0.659ð4Þ fmÞ2 ¼ 0.434ð5Þ fm2 [7],
and at the level of about one third of the quoted error.
The fact that the charged pion has yet another, hitherto

unexplored form factor corresponding to a conserved
current is fundamental and definitely worth further dedi-
cated studies. It has a very intuitive physical interpretation
in the coordinate space (in the Breit frame), or in the
transverse-coordinate space [8–10], where (1) implies that
in πþ the outer region has a net baryon density from the
excess of the lighter u quark, whereas the inner region has a
net antibaryon density from the heavier d̄ antiquark. Of
course, over the whole space the baryon and antibaryon
densities compensate each other such that the total baryon
number of the pion is zero. For π−, the described geometric
picture is opposite, with more antibaryon in the outer
region.
The presence of the baryonic form factor of charged

pions allows one for a natural interpretation of the VMD
modeling with ρ − ω mixing, where ω couples to the
baryon current [1]. The extraction from the data in the
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timelike region, where the mixing becomes most visible,
requires conventional model assumptions regarding the
shape of the higher resonance profiles. An extrapolation to
the spacelike region proceeds via a dispersion relation [1].
In this paper we focus entirely on the estimates of the

nonvanishing baryonic form factor of pseudoscalar mesons
(pions and kaons) based on a chiral quark model, namely
the Nambu–Jona-Lasinio (NJL) model with the Pauli-
Villars (PV) regularization (see [11] and references
therein). The model ensures that both pions and kaons
emerge as would-be pseudoscalar Goldstone bosons,
thanks to the spontaneous breakdown of the chiral sym-
metry. We note that this model has been used to obtain
successful phenomenology for a great variety of soft matrix
elements involving pseudo-Goldstone bosons, hence one
may hope it produces credible results for the baryonic form
factor as well. Moreover, in the model we can easily change
parameters. In particular, one can increase the pion mass up
to larger values, such as those employed in some lattice
QCD simulations, which of course could not be made in an
extraction from the experimental data. One can also
increase the u and d mass splitting, which augments the
effect up to the point where it can be easily observed on the
lattice.
The baryonic form factor of charged pions and kaons is

proportional to the splitting of the masses of the constitu-
ents that build up the meson. Compared to [1], in the
present work we analyze this splitting more thoroughly,
which augments the model estimate for the baryonic msr of
the pion. We derive analytic expressions, allowing for a
better comprehension of the dependence of the effect on the
kinematic and model parameters. The full details of our
calculations are given in the appendixes.
We also analyze the case of the neutral kaons, where (for

structureless quarks as in the NJL model at the leading-Nc
level) the baryonic form factor is, up to an overall sign,
equal to the EM form factor, for which experimental and
lattice data do exist. For the case of the pion, where
md −mu is tiny compared to other scales in the model, the
baryonic form factor can be evaluated to first order in
md −mu. For the kaon, however, all orders in ms −mu=d,
which are substantial, should be kept. Hence we carry out
the calculation exactly at the one-quark-loop level, which
within the NJL model corresponds to the leading-Nc
approximation.

II. SYMMETRIES AND BARYONIC FORM
FACTOR OF THE PION

We begin by reviewing some well-known basic facts, for
completeness and to establish our notation. We then
proceed to show that the symmetries do not preclude a
nonzero baryonic form factor of charged pions. We recall
that in QCD the vector currents corresponding to any flavor
f ¼ u, d, s, c, b, t, defined as

JμfðxÞ ¼ q̄fðxÞγμqfðxÞ; ð2Þ

are conserved:

∂μJ
μ
fðxÞ ¼ 0; ð3Þ

with qfðxÞ denoting a quark field with Nc ¼ 3 colors
(the summation over color is understood). One introduces
the baryon current and the third isospin component of the
isovector current as

JμB ¼ 1

Nc

X
f

Jμf; Jμ3 ¼
1

2
ðJμu − JμdÞ: ð4Þ

For the considered case of the pion, one can ignore the
strangeness and heavier flavor contributions to matrix
elements of JμB, as they are strongly suppressed by the
Okubo-Zweig-Iizuka (OZI) rule and subleading in the large-
Nc limit. Hence we take JμB ¼ ðJμu þ JμdÞ=Nc. The EM
current follows from the Gell-Mann–Nishijima formula,

JμQ ¼ Jμ3 þ
1

2
JμB: ð5Þ

The baryon, the (third component of) isospin, and the
electromagnetic form factors are defined viamatrix elements
of the corresponding currents in on-shell pion states of
isospin a ¼ 0;þ;−, namely

hπaðpþ qÞjJμB;3;Qð0ÞjπaðpÞi ¼ ð2pμ þ qμÞFa
B;3;QðtÞ; ð6Þ

withFa
QðtÞ ¼ Fa

3ðtÞ þ 1
2
Fa
BðtÞ, in linewith Eq. (5). Here and

in the following,p is themomentumof the initial pion,pþ q
of the final pion, and q2 ≡ t. We note the following scaling
with number of QCD colors: J3 ∼ 1 and JB ∼ 1=Nc.
Now we pass to symmetries. The currents JμB;3 are odd

under the charge conjugation C, whereas the neutral pion is
an eigenstate, Cjπ0i ¼ jπ0i, which immediately implies

Fπ0
B;3ðtÞ ¼ 0 ð7Þ

identically (at any t). On the other hand, since Cjπ�i ¼
jπ∓i, for the charged pions the C conjugation only yields
the condition

Fπþ
B;3;QðtÞ ¼ −Fπ−

B;3;QðtÞ; ð8Þ

and, of course, no vanishing follows.
In the case of an exact isospin symmetry, which holds

when the light current quark masses are equal, mu ¼ md,
and when the small EM effects are ignored, G-parity is also
a good symmetry. It is defined as the charge conjugation
followed with the rotation by π about the 2-axis in isospin
G ¼ eiπI2C. All the pions are eigenstates of G, namely
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Gjπai ¼ −jπai. SinceG involves a flip between u and d, J3
becomes even under G (yielding no constraints), whereas
the baryon current remains odd, implying for any a

Fπa
B ðtÞ ¼ 0 ðfor an exact isospin symmetryÞ: ð9Þ

The key point now is that the isospin is only an
approximate symmetry of Nature, broken with md ≠ mu
and with EM interactions. Consequently, G-parity is no
longer a good symmetry and the condition (9) need not, and
as we explicitly show in [1] and in the present paper, does
not hold for charged pions in a field theoretical model with
conserved baryon current.
Additional constraints for the form factors at vanishing t

follow from the additivity of charges. This feature holds in
any local field theory for charges associated with conserved
local currents. In particular, Fπþ

3 ðtÞ ¼ 1, which is a sum of
isospin charges of u and d̄, analogously Fπ−

3 ðtÞ ¼ −1, and

Fπ�
B ð0Þ ¼ 0; ð10Þ

which sums to zero the opposite baryon charges of a quark
and antiquark.
To summarize, Eqs. (7), (8) hold as long as C is a good

symmetry (strong and EM interactions), Eq. (10) is always
true on general field-theoretic grounds, whereas Eq. (9)
does not in general hold in the real world, where md > mu
and EM interactions are involved.
Although it may seem unusual at first glance, the fact

that neutral particles have a corresponding nonzero charge
form factor is not uncommon. The neutron carries no
electric charge, but has a nonzero electric form factor, with
msr equal to hr2inQ ¼ −0.1161ð22Þ fm2. As already men-
tioned at the end of Sec. I, the same is true for neutral
kaons. Even more unexpectedly, the nucleon possesses a
nonvanishing strangeness form factor, despite being
strangeless [12,13].
In this work, similarly as in [1], we only explore the

charge symmetry breaking (nomenclature borrowed from
nuclear physics, where mn > mp) in quark models, i.e., the
effects of md > mu. An analysis of EM effects would be
much more involved and extends beyond the scope of the
present work.

III. CHIRAL QUARK MODELS
AT THE ONE-QUARK-LOOP LEVEL

Wecarry out our calculationswithin theNJLmodel, where
the (point-like) four-quark interactions lead to dynamical
chiral symmetry breaking, amending quarks with large
constituent masses (see [11] for a review, and references
therein). At the leading-Nc level, various observable quan-
tities are evaluated using one-quark loop. We stress that
in this treatment the pion is described in a covariant,
fully relativistic manner in terms of the corresponding
Bethe-Salpeter equation. The model is designed for soft
physics, where the virtualities of quarks in the loop are small
and Euclidean,1 hence a regularization has to be used to cut
off the hard momenta. To preserve the Lorentz, gauge, and
chiral symmetries, care is needed here. A regularization
scheme that works, applied in this work, is based on the PV
regularizationwith two subtractions [11,15] (seeAppendixA
for details).
The approach has been used successfully for a great

variety of soft matrix elements, shedding light also onto such
quantities as the parton distribution functions [16], parton
distribution amplitudes [17], generalized parton distribution
functions [18], or the double parton distributions of the pion
[19,20] (see, e.g., [21] for a review). As the NJL model with
unequal quark masses is not so frequently used (see,
however, [22,23] for the model in the proper-time regulari-
zation), in Appendix B we provide a glossary of the NJL
model formulas used in our calculations. We also discuss
there the standard strategy of fixing the model parameters
such as the average current quark mass and the PV cut-off.
In the following, we use the short-hand notation for

current quark mass average and for the splitting,

m ¼ mu þmd

2
; δ ¼ md −mu; ð11Þ

and for the constituent quarks, correspondingly,

M ¼ Mu þMd

2
; Δ ¼ Md −Mu: ð12Þ

The one-loop Feynman diagrams used to evaluate the
form factors for currents Ju and Jd are presented in Fig. 1,
where we have chosen πþ for definiteness. The coupling of
the pion to the quarks carries the coupling constant gπþud̄
discussed in Appendix B. The expression for the matrix
elements corresponding to the two diagrams are

hπþðpÞjJμuð0Þjπþðpþ qÞi ¼ −ð
ffiffiffi
2

p
gπþud̄Þ2

Z
d4k
ð2πÞ4 Tr

�
γμ

i
=k −Mu

γ5
i

=k − p −Md
γ5

i
=kþ q −Mu

�
;

hπþðpÞjJμdð0Þjπþðpþ qÞi ¼ −ð
ffiffiffi
2

p
gπþud̄Þ2

Z
d4k
ð2πÞ4 Tr

�
γμ

i
=k − q −Md

γ5
i

=k − p −Mu
γ5

i
=k −Md

�
; ð13Þ

1Note a recent work [14] based on the Bethe-Salpeter equations in the Dyson-Schwinger formalism, where the pion charge form
factor is accessible also at physical momenta.
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with the þiϵ prescription in the propagators understood.
The trace involves color and Dirac spaces. In the adopted
convention, the

ffiffiffi
2

p
factors in the coupling follow from the

isospin Clebsch-Gordan coefficients. The F3;B form factors
are then evaluated according to Eq. (6) in a standard way.

Convenient algebraic Mathematica packages for this task
are FeynCalc [24,25] and Package-X [26], which is also
capable of evaluating the Passarino-Veltman (PaVe) one
loop functions [27] (see Appendix A) up to three propa-
gators. The result is

Fπþ
3 ðtÞ ¼ 2Ncπ

2g2
πþud̄

t − 4m2
π

½ð2Δ2 − 2m2
π þ tÞBΛ

0 ðt;M2
d;M

2
dÞ − 2ðΔ2 þm2

πÞBΛ
0 ðm2

π;M2
d;M

2
uÞ

þ 2ð−Δ3Md − ΔMuðΔ2 − 2m2
π þ tÞ þm4

πÞCΛ
0 ðt; m2

π; m2
π;M2

d;M
2
d;M

2
uÞ� þ ðu ↔ d;Δ → −ΔÞ; ð14Þ

Fπþ
B ðtÞ ¼ 4π2g2

πþud̄

t − 4m2
π
½−ð2Δ2 − 2m2

π þ tÞBΛ
0 ðt;M2

d;M
2
dÞ

−2ð−Δ3Md − ΔMuðΔ2 − 2m2
π þ tÞ þm4

πÞCΛ
0 ðt; m2

π; m2
π;M2

d;M
2
d;M

2
uÞ� − ðu ↔ d;Δ → −ΔÞ; ð15Þ

where BΛ
0 and CΛ

0 are the PaVe functions in the PV
regularization, see Appendix A. Their explicit forms for
general kinematics and quark masses are analytic, but
lengthy. These exact formulas are used to obtain the results
presented in the following sections.
On general symmetry grounds, as is also apparent from

the explicit expressions in Appendix B, the quantities m2
π

and g2
πþud̄ appearing in (14), (15) are even under the

exchange u ↔ d, hence are even functions of Δ.
Therefore Fπþ

3 (Fπþ
B ) is an even (odd) function of Δ and,

correspondingly, a series expansion of Fπþ
3 (Fπþ

B ) involves
only even (odd) powers of Δ.
Much simplified formulas for the form factors follow in

the chiral limit of m2
π ¼ 0 and in the leading order in Δ,

which we present for a better understanding of the
following estimates. To the leading order in Δ and in
the chiral limit the Goldberger-Treiman relation holds,

gπþud̄ ¼
M
f
; ð16Þ

where f ¼ 86 MeV is the value of the pion weak-decay
constant, Fπ , in the chiral limit. With these simplifications
we arrive at

Fπþ
3 ðtÞ ¼ 1þM2Nc

4π2f2

�
2 − σ log

�
σ þ 1

σ − 1

������
reg
; ð17Þ

Fπþ
B ðtÞ¼ ΔM3

2π2f2t

�
log2

�
σþ1

σ−1

�
−
2

σ
log

�
σþ1

σ−1

������
reg
; ð18Þ

where we have used the short-hand notation σ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=t

p
, and “reg” denotes the presence of regulari-

zation. Since f ∼ 1=
ffiffiffiffiffiffi
Nc

p
, we verify that F3 ∼ 1 and

FB ∼ 1=Nc, as stated earlier.
It is instructive to look at the low-t expansion of the

general formulas (14), (15) in the PV regularization, up to
order Δ and m2

π . In doing so, we also expand to this order
the coupling constant:

g2
πþud̄ ¼

M2

f2

�
1 −

NcΛ4m2
π

12π2fMðΛ2 þM2Þ2
�
; ð19Þ

where here and below the higher order terms are dropped.
The result is

+ +

u

k k + q

k−p
d

55

+ +

u

k k−q

k + p

d

55

FIG. 1. Feynman diagrams for the one-loop evaluation of form factors F3 and FB for a charged pion in chiral quark models.
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Fπþ
3 ðtÞ ¼ 1þ t

Nc

24π2f2

�
Λ4

ðΛ2 þM2Þ2 þ
Λ4ðΛ2 þ 3M2Þm2

π

5M2ðΛ2 þM2Þ3 −
NcΛ4m2

π

12π2f2ðΛ2 þM2Þ2
�

¼
Λ→∞

1þ t
Nc

24π2f2

�
1 −

2M2

Λ2
þ m2

π

5M2
−

Ncm2
π

12π2f2

�
: ð20Þ

Fπþ
B ðtÞ ¼ t

Δ
24π2f2M

�
Λ4ðΛ2 þ 3M2Þ
ðΛ2 þM2Þ3 þ 4Λ4ðΛ4 þ 6M4 þ 4Λ2M2Þm2

π

15M2ðΛ2 þM2Þ4 −
NcΛ4m2

π

12π2f2ðΛ2 þM2Þ2
�

¼
Λ→∞

t
Δ

24π2f2M

�
1 −

3M4

Λ4
þ 4m2

π

15M2
−

Ncm2
π

12π2f2

�
; ð21Þ

As typical constituent quark masses areM ∼ 300 MeV, we
infer from these formulas that the chiral corrections to the
slopes are positive and small, at a level of a few percent.2

Also, the results (20), (21) are not far from the infinite
cutoff limit, since Λ ∼ 800 MeV. The ratio of the ms
radii is

hr2iπþB
hr2iπþ3

¼ ΔðΛ2 þ 3M2Þ
NcMðΛ2 þM2Þ

�
1þ m2

πðΛ2 − 3M2Þ
15M2ðΛ2 þ 3M2Þ

�

¼
Λ→∞

Δ
NcM

�
1þ 2M2

Λ2
þ m2

π

15M2

�
: ð22Þ

We note that numerically, as follows from the fits shown
in the proceeding sections, Δ=M is at the level of a few
percent, and the higher-order terms in the expansion of FB,
starting at ðΔ=MÞ3, are completely negligible.

IV. QUARK MASS SPLITTING

The formulas of the previous section show the a priori
expected proportionality of FB to the constituent mass
splitting Δ. Clearly, to make numerical estimates we need
the “physical” value for Δ, which is not a trivial matter.
While for the current quark masses of all flavors, which are
QCD parameters, we have available information from
physical processes and perturbation theory, for the
constituent quarks we need to rely on models. This is
because the very notion of a constituent quark has a
meaning only within a specified model, such as the NJL
model in our case.
The first issue is the dependence of a constituent quark

massMf on the current quark massmf. In NJL, the relation
following from the self-consistent gap equation (see
Appendix B and Fig. 4) is nearly linear at low mf, namely
Mf ≃Mfðmf ¼ 0Þ þ αmf, with α ∼ 2. So there is no naive

additivity of the constituent and current quark masses3 (that
would mean α ¼ 1), which is a feedback effect from the
quark loop in the gap equation (see Appendix B).
The model value of m of Eq. (11) is obtained in the

model by fitting the physical mass of the pion,mπ , which in
the absence of EM effects is ∼135 MeV.4 Our result,
depending weakly on the adopted value of M, is
m ∼ 7–8 MeV. This value is about a factor of two larger
than the value quoted by the PDG [7] at the scale
μ ¼ 2 GeV in the MS renormalization scheme:

mðμ ¼ 2 GeVÞ ¼ 3.45þ0.55
−0.15 MeV: ð23Þ

The effect is due to the running of m with the scale. In
perturbative QCD, at leading order (LO) in αS, one has

mfðμÞ
mfðμ0Þ

¼
�
αSðμÞ
αSðμ0Þ

� 4
β0 ; ð24Þ

where with three flavors β0 ¼ 9, αS ¼ 4π=½β0 logðμ2=
Λ2
QCDÞ�, and ΛQCD ¼ 226 MeV. Let μ0 denote the quark-

model scale, where mðμ0Þ ¼ 7 MeV (model fit with
M ¼ 300 MeV) or 8 MeV (model fit with M ¼
350 MeV). Then, from Eq. (24) we can infer the value of
μ0, which becomes

μ0 ¼ 352þ68
−14 MeV ðfor mðμ0Þ ¼ 7 MeVÞ;

μ0 ¼ 314þ43
−10 MeV ðfor mðμ0Þ ¼ 8 MeVÞ; ð25Þ

where the errors reflect the uncertainty in Eq. (23). We thus
see that the quark model scale μ0 is very low.
Quite remarkably, the estimate of Eq. (25), especially for

the case of 8 MeV, is very close to the value obtained with
an altogether different method, i.e., by using the evolution
of the valence quark fraction in the momentum sum rule for

2Note, however, that our estimates are obtained from the one-
quark-loop evaluation. Inclusion of pion loops would introduce
effects relatively suppressed by 1=Nc, but chirally dominant, as is
the case of chiral perturbation theory.

3This is what was inaccurately assumed in [1], which lowered
the NJL estimates presented there.

4The splitting m2
πþ −m2

π0
is mainly induced by OðαQEDÞ EM

effects [28], while the quark mass splitting effect is negligible, as
it appears at Oðδ2Þ [29].
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the pion parton distribution function. There, one finds
μ0 ¼ 313þ20

−10 MeV [16,18]. One could of course argue here
that the use of perturbative evolution down to such low
scale is questionable at best, but the fact that the quark
model scale is very low touches upon the essence of
effective chiral quark models, where there are no explicit
gluon degrees of freedom.
Actually, what we need in the present task is not a precise

value of μ0, but only the fact that the MS evolution
prescription preserves the ratios of the current quark masses
of different flavor, which are independent of the scale:

mfðμÞ
mf0 ðμÞ

¼ mfðμ0Þ
mf0 ðμ0Þ

: ð26Þ

Therefore the ratio md=muðμ0Þ which we should use in
the model is exactly the same as the PDG [7] value at
μ ¼ 2 GeV:

mu

md
¼ 0.47þ0.06

−0.07 : ð27Þ

We canmake another independent estimate of the splitting
δ based on the difference of theK0 andKþ masses. First, one
needs to subtract the EM effects, which contribute 2.6 MeV
more to Kþ than to K0 [28]. We thus need to adjust in the
model the values of md and mu such that the resulting
splitting between K0 and Kþ masses is the physical value
plus the EM correction, 3.9þ 2.6 ¼ 6.5 ½MeV�. With m ¼
7 MeV andms ¼ 181 MeV (needed to fit the physical value
of mK) we get in the model mu=md ≃ 0.47, a value in the
center of (27), whereas with m ¼ 7 MeV we find
mu=md ≃ 0.52, within the error of (27). To summarize, in
our numerical studies presented below we will use the PDG
ratio (27) as a credible estimate.
Finally, speaking of the QCD evolution, we recall that

form factors corresponding to conserved currents are scale
independent. Therefore both the charge and the baryonic
form factors of the pion obtained at a given scale (here, at
the quark model scale), are universal. Yet, to carry out the
calculation, we need to know the pertinent quantities, such
as m or δ, at the scale where the calculation is made.

V. RESULTS FOR THE PION

The parameters used in our estimates for the pion are
collected in Table I. We study the dependence on mπ (the
first three rows of the table), from the chiral limit, through
the physical mass (without EM effects) of 135 MeV, up to a
large value of 400 MeV, typical in some lattice QCD
simulations. For the first three rows of Table I the value of
M is fixed at 300 MeV, while Λ and m are fitted to the
values of mπ and Fπ (for the case mπ ¼ 400 MeV we take
Fπ ¼ 110 MeV, which is in the ball park of the range given
in [30]).5 We note that the values of the baryonic msr are
very stable, which simply reflects the fact that Δ changes
very little. Rows 2, 4, and 5 compare the results at fixed
mπ ¼ 135 MeV, but for different values of M. Here we
note some weak dependence of the values of msr, attributed
to different values of Δ and M.
In Fig. 2, we show the dependence of the baryonic form

factor of πþ in the spacelike domain of t ≤ 0, evaluated
according to Eq. (15) with the parameters of Table I. To be
less sensitive to the value of Δ, we plot Fπþ

B ðtÞ=Δ. The left
panel shows the dependence on mπ and the right panel the
dependence onM. We note very stable results, in particular
at low −t. One should bear in mind that NJL is, by
construction, a low-energy model, hence the results at
−t > Λ2 need not be credible.
Having the form factor in the momentum space, one may

construct the transverse density [8–10] via a Fourier-Bessel
transformation,

2πbρπ
þ

B ðbÞ ¼
Z

∞

0

dQQbFπþ
B ð−Q2ÞJ0ðQbÞ: ð28Þ

This quantity is boost-invariant, hence free of ambiguities
[31,32] present in the popular Breit-frame density in the
radial coordinate. The result for πþ is shown in the left
panel of Fig. 3, solid line. We note the intuitive mechanistic
interpretation, announced in the introduction. In πþ, the
heavier d̄ quark has a more compact distribution than the

TABLE I. Parameters for the analysis of the pion baryonic form factor. The uncertainties in δ, Δ, and
ffiffiffiffiffiffiffiffiffiffiffiffi
hr2iπþB

q
follow from Eq. (27).

M [MeV] Λ [MeV] m [MeV] δ [MeV] Δ [MeV] mπ [MeV] Fπ [MeV]

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2iπþB

q
[fm]

300 732 0 5.0(9) 9(2) 0 86 0.062(5)
300 830 7.0 5.0(9) 11(2) 135 93 0.062(5)
300 960 41.0 5.0(9) 13(2) 400 111 0.066(6)
280 870 6.5 4.7(7) 11(2) 135 93 0.067(5)
350 770 7.9 5.7(1.0) 9(1) 135 93 0.052(4)

5One can also use here the NLO χPT that leads to similar

numbers: Fπ ¼ f½1 − 2μπ − μK þ 4m2
π

f2 ðLr
4 þ Lr

5Þ þ 8m2
K

f2 Lr
4�, with

μP ¼ m2
P=ð32π2f2Þ lnðm2

P=μ
2Þ and Lr

4ð5Þ ¼ −0.3ð1.4Þ × 10−3 at
μ ¼ 0.77 GeV.
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lighter u quark, hence at low b there is an excess of
antibaryon charge density. At large b the situation is
opposite, such that the constraint of the vanishing total
baryon number, or

R
dbbρπ

þ
B ðbÞ ¼ 0, is satisfied.

For π−, the corresponding plots of Figs. 2 and 3 are equal
and opposite.
Using the relations

hr2iπþ3 ¼ 1

2
hr2iπþu þ 1

2
hr2iπþ

d̄
;

hr2iπþB ¼ 1

3
hr2iπþu −

1

3
hr2iπþ

d̄
; ð29Þ

we find in our model, with the physical pion mass and
M ¼ 300 MeV, the following msr of the u and d̄ constitu-
ent quarks in πþ:

hr2iπþu ¼ 0.273ð1Þ fm2 ¼ ð0.523ð1Þ fmÞ2;
hr2iπþ

d̄
¼ 0.262ð1Þ fm2 ¼ ð0.511ð1Þ fmÞ2; ð30Þ

with the error reflecting the uncertainty in δ. This shows the
advocated mechanistic feature that the heavier d̄ quark has
a more compact distribution. In π−, the above numbers hold
with the replacement u → ū and d̄ → d

VI. RESULTS FOR THE KAON

The case of the kaon is obtained directly from the pion
with simple flavor substitutions. The case considered up to
now has been πþ ¼ ud̄. We can pass to Kþ ¼ us̄ replacing
d → s, and to K0 ¼ ds̄ replacing u → d and d̄ → s̄. All the

M = 300 MeV
(a)

m = 0

m = 135 MeV

m = 400 MeV
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FIG. 2. Baryonic form factor of πþ divided by Δ ¼ Md −Mu, obtained from the NJL model with PV regularization. Parameters of the
calculations are listed in Table I. Panel (a) compares the results for different values of mπ at a fixed constituent quark mass M, whereas
panel (b) compares the results for different values of M at a fixed mπ .
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FIG. 3. The transverse baryonic density (a) and the baryonic form factor (b) for πþ, K0, and Kþ, divided by, correspondingly,
Δ ¼ Md −Mu, Δ ¼ Ms −Md, and Δ ¼ Ms −Mu. The curves for K0 and Kþ nearly overlap.

BARYONIC FORM FACTORS OF THE PION AND KAON IN A … PHYS. REV. D 106, 036001 (2022)

036001-7



previously derived formulas then hold.6 The parameters
used here are those of the second row of Table I, supple-
mented with the current strange quark mass at the scale μ0
equal to ms ¼ 180 MeV, which fits the kaon mass. Note
that the scale-independent ratio obtained that way,
ms=m ¼ 25.7, is merely two standard deviations away from
the PDG [7] value of 27.3þ0.7

−1.3 . The model in the strange
sector is, however, not perfect, as the value of the kaon decay
constant is FK ¼ 100 MeV, with experiment giving 110
(1) MeV. The issue may be improved by introducing more
interaction terms in the NJL Lagrangian (see, e.g., [33–35]),
but for our present exploratory study this problem is not
critical.
The case of the baryonic form factor of the kaon is

compared to the pion in the right panel of Fig. 3. The form
factor in the figure is scaled withΔ ¼ Ms −Mu for the case
of Kþ and Δ ¼ Ms −Md for the case of K0, whereas for
the pion Δ ¼ Md −Mu. We note that the behavior of the
kaon is similar to the pion. The scaled curves forKþ andK0

practically coincide.
The left panel of Fig. 3 shows he corresponding transverse

densities. We note that the kaon curve is more compact,
crossing zero at lower b. Similarly to the pion case, this
feature is also in accordance to the “mechanistic” interpre-
tation mentioned in the Introduction, as the constituent mass
difference is larger in the kaon than in the pion.
The baryonic msr from the model are

hr2iKþ
B ¼ ð0.24ð1Þ fmÞ2 ¼ 0.056ð1Þ fm2;

hr2iK0

B ¼ ð0.23ð1Þ fmÞ2 ¼ 0.052ð1Þ fm2: ð31Þ

For structureless quarks, as in NJL in the large-Nc
approximation,

hr2iK0

B ¼ −hr2iK0

Q ; ð32Þ

because the baryon number and charge of the s and d quarks
are equal and opposite. PDG [7] quotes hr2iK0

Q ¼
−ð0.28ð2Þ fmÞ2 ¼ −0.077ð10Þ fm2, 2.5 standard deviations
larger than the value in (31). We note that the lattice QCD
simulations [36] yield hr2iK0

Q ¼ −0.055ð15Þ fm2, in agree-
ment with the estimate (31) via Eq. (32).
The msr of the constituent quarks, analogous to

Eq. (30), are

hr2iK0

d ¼ 0.283ð1Þ fm2 ¼ ð0.532ð1Þ fmÞ2;
hr2iK0

s̄ ¼ 0.127ð1Þ fm2 ¼ ð0.356ð1Þ fmÞ2;
hr2iKþ

u ¼ 0.295ð1Þ fm2 ¼ ð0.543ð1Þ fmÞ2;
hr2iKþ

s̄ ¼ 0.127ð1Þ fm2 ¼ ð0.356ð1Þ fmÞ2; ð33Þ

with same numbers holding for K̄0 and K− upon the
replacement of quarks into antiquarks. Again, we note the
mechanistic feature of the s̄ being significantly more
compact, and the distribution of d in K0 more compact
than the distribution of u in Kþ.

VII. CONCLUSIONS

As we can see from Table I, the NJL model predictions
for the baryonic msr of the pion are, taking into account
various model parameters,

hr2iπþB ¼ ð0.06ð1Þ fmÞ2 ¼ 0.004ð1Þ fm2: ð34Þ

This is about a factor of 2 higher than the value extracted
from the data, (1). Possible reasons for this discrepancy are
as follows:
First, the NJL calculation takes into account only the

one-quark-loop contribution, which is leading in Nc, but
does not include the formally suppressed but potentially
large chiral loops. For the case of the isospin msr of the
pion, chiral loops contribute about 20% of the total result
and are necessary to reproduce the data. In the present case
we may expect a similar order on the effect.
Second, the extraction from the data (1) includes EM

effects dressing the pion vertex (although the experimental
procedure gets rid of the EM interactions in the initial and
final states). These effects are not present in our calculation.
Finally, we comment on the lattice QCD prospects of

measuring the baryonicmsr of the pion and kaon.Comparing
our numbers to the accuracy of the recent lattice QCD
calculations of the charge form factor with physical quark
masses, hr2iπQ ¼ ð0.648ð15Þ fmÞ2 ¼ 0.42ð2Þ fm2 [37] and
hr2iπQ ¼ 0.430ð5Þð13Þ fm2 [38], we remark that our effect
(1) is an order ofmagnitude smaller, and the estimate (34)—a
factor of 5 smaller than the lattice accuracy quoted above.
However, on the lattice one may try to increase the value of
the quark mass splitting up to the point where the signal is
strong enough, and then extrapolate down to the physical
point. It would be very interesting to see if with the present
accuracy such a determination is possible.
For the case of the baryonic msr of the kaon (31),

discussed in Sec. VI, the baryonic msr of K0 may be
considered to have already been measured on the lattice
[36]. It satisfies identity (32), as no disconnected contri-
butions have been accounted for in the simulations, which
are estimated to be negligible.
Finally, we wish to underline that one may use different

models (all one needs is current conservation and the ability
to model the pion or kaon) to assess the size of the baryonic
form factor. It would certainly be very interesting to have
such independent estimates to confront them with the result
(1) extracted from the experiment.

6The symmetry arguments of Sec. II hold for the SU(3) case
with the replacement of the I-spin with U-spin or V-spin.
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APPENDIX A: REGULARIZED
ONE-LOOP FUNCTIONS

All our results involve one loop functions, for which we
use the Passarino-Veltman [27] convention (the þiε pre-
scription in the denominators is understood):

iπ2A0ðM1Þ ¼
Z

d4k
1

k2 −M2
1

;

iπ2B0ðp2;M1;M2Þ ¼
Z

d4k
1

½ðkþ pÞ2 −M2
1�½k2 −M2

2�
;

iπ2C0ðq2; p2; ðpþ qÞ2;M1;M2;M3Þ ¼
Z

d4k
1

½ðkþ pþ qÞ2 −M2
1�½ðkþ pÞ2 −M2

2�½k2 −M2
3�
: ðA1Þ

The A0 and B0 functions are divergent and require
regularization. The C0 function is convergent, however,
it still should be regularized to dispose of the high-
momentum contributions in the quark-loop, which should
not enter the low-energy model. The applied PV regulari-
zation prescription with two subtractions [11,15] amounts
to the replacement

FΛðfM2
i gÞ ¼ FðfM2

i gÞ − FðfM2
i þ Λ2gÞ

þ Λ2
dFðfM2

i þ Λ2gÞ
dΛ2

; ðA2Þ

where F is a the PaVe function (with arguments other than
the masses suppressed). The chosen regularization is
consistent with the symmetry requirements [11,15].
Explicitly

AΛ
0 ðMfÞ ¼ −

M2
f logð

M2
f

Λ2þM2
f
Þ þ Λ2

16π4
: ðA3Þ

Analytic but lengthy formulas for BΛ
0 and CΛ

0 can be
obtained.

APPENDIX B: BASICS OF THE
NAMBU–JONA-LASINIO MODEL

This Appendix presents for completeness the standard
NJL formulas in the adopted notation and for the general
case of unequal u and d quark masses, needed in our
analysis. For explanations and the physics discussion the
reader is referred to [11].
The gap equation for each flavor f has the form

Mf ¼ mf − 4π2GMfNcAΛ
0 ðMfÞ; ðB1Þ

where G is the NJL four-quark coupling constant (inde-
pendent of flavor or the value ofmf). The quark condensate
for a single flavor is

hq̄fqfi ¼ 4π2MfNcAΛ
0 ðMfÞ ¼ −

Mf −mf

G
: ðB2Þ

The mass of π�, denoted as m2
π , is a root in p2 of the

denominator of the pion propagator, following from the
Bethe-Salpeter equation,

4π2ðp2 −Δ2ÞNcBΛ
0 ðp2;Mu;MdÞ ¼

1

G

�
mu

Mu
þ md

Md

�
; ðB3Þ

The coupling constant of a charged pion to the u and d
quarks is obtained from the residue of the Bethe-Salpeter
amplitude at the pion pole,

1

g2
πþud̄

¼ 1

g2π−dū

¼ 4π2
d

dp2
½ðp2 − Δ2ÞNcBΛ

0 ðp2;Mu;MdÞ�
����
p2¼m2

π

:

ðB4Þ

The pion weak decay constant is

Fπ ¼
2π2gπþud̄Nc

m2
π

½2ðm2
π − Δ2ÞMBΛ

0 ðm2
π;Mu;MdÞ

−ΔðA0ðMuÞ − A0ðMdÞÞ�: ðB5Þ

In the limit of mu ¼ md ¼ 0 the Goldberger-Treiman
relation (16) holds.
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APPENDIX C: FIXING THE MODEL
PARAMETERS AND Δ

The model has four parameters:G,mu,md, and Λ, which
with the expressions from the previous Appendix can be
traded for M, Δ, mπ , and Fπ . Fitting mπ and Fπ to their
physical values leaves two parameters:M andΔ. As usual in
the NJL studies, we keepM free, whereasΔ can be related to
the splitting of the current quark masses, md −mu.
From the gap equation (B1), obviously, Mf is a function

of mf. We discuss this issue at a greater length, as it is not
covered in detail in the literature, while we need it for the
determination of the mass splitting Δ to be used in our
estimates. Using Eq. (B2) in Eq. (B1) we arrive at

MfðmfÞ ¼ Mfð0Þ
hq̄fqfiðmfÞ
hq̄fqfið0Þ

þmf: ðC1Þ

At small mf we may expand the quark condensate,

hq̄fqfiðmfÞ ¼ hq̄fqfið0Þ þ χfmf þOðm2
fÞ;

χf ¼ hq̄fqfi0; ðC2Þ

where χf is the quark mass (or scalar) susceptibility in the
chiral limit, and the prime denotes a derivative with respect
to mf at mf ¼ 0, Therefore

MfðmfÞ ¼ Mfð0Þ þ
�
1þMfð0Þ

χf
hq̄fqfi

�
mf þOðm2

fÞ

¼ Mfð0Þ þ αmf þOðm2
fÞ; ðC3Þ

and in general α ≠ 1, in contrast to what one might naively
assume. The above formula holds for a generic approach
with the gap equation.
Explicitly, in the NJL model with PV regularization we

find, by expanding Eq. (B1),

M0
fð0Þmf

¼mf−4π2GNc
d

dMf
MfAΛ

0 ðMfÞ
����
Mf¼Mfð0Þ

M0
fð0Þmfþ…;

ðC4Þ

from where we can evaluate M0
fð0Þ and obtain

MfðmfÞ
¼Mfð0Þþ

mf

1þ4π2GNc
d

dMf
MfAΛ

0 ðMfÞjMf¼Mfð0Þ
þOðm2

fÞ:

ðC5Þ

Eliminating G from Eq. (B1) at mf ¼ 0 we get

MfðmfÞ ¼ Mfð0Þ −
AΛ
0 ½Mfð0Þ�mf

Mf
d

dMf
AΛ
0 ðMfÞjMf¼Mfð0Þ

þOðm2
fÞ:

ðC6Þ

With the typically used parameters, the slope parameter
is α ∼ 2.
Figure 4 shows that the small-mf expansion works well

in the range of the light current quark masses, but not for
the higher values of the strange quark. Asymptotically, at
very largemf (and, therefore, largeMf) we have AΛ

0 ðMfÞ ∼
Λ4=ð32π4MfÞ2 and

Mf ¼ mf þ
GNcΛ4

8π2mf
þOð1=m2

fÞ: ðC7Þ

Thus, asymptotically, Mf=mf → 1.
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