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We discuss the gauge symmetry breaking of six-dimensional theories in flux compactification with a
magnetic flux background and a constant vacuum expectation value (VEV) for the scalar fields, which are
zero modes of extra spatial components of the gauge field. Although the effective potential for the scalar
fields are known not to be generated classically and radiatively in a magnetic flux background only,
the one-loop effective potential is shown to be generated by the effects of the nonzero constant VEV.
As illustrations, we calculate the one-loop effective potential in SU(2) and SU(3) Yang-Mills theories.
In both cases, we expect that the potential minimum is located at nonzero VEV and the gauge symmetry

breaking takes place.
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I. INTRODUCTION

Although the Standard Model (SM) has a successful
theory, it still has some problems. Many attractive scenarios
based on the higher-dimensional theory have been pro-
posed as physics beyond the SM. In particular, flux
compactification, which has been studied in string theory
[1,2], has many attractive aspects: explanation of the
generation number of the SM fermions [3,4] and compu-
tation of the Yukawa coupling [5-8].

Recently, it has been considered that the quantum
corrections to the masses of the zero mode of the scalar
field induced from extra components of a higher-
dimensional gauge field [called the Wilson-line (WL)
scalar field] are canceled [9-13] and are finite [14]. The
reason why the quantum corrections are canceled is that
the shift symmetry from translation in extra spaces forbids
the mass term of the scalar field since the zero mode of the
scalar field can be identified with the Nambu-Goldstone
(NG) boson of spontaneously broken translational sym-
metry (or with the pseudo-NG boson in [14]). This
cancellation mechanism may be applied to the hierarchy
problem in the SM, which is the problem that the quantum
corrections to the mass of the Higgs field are sensitive to the
square of the ultraviolet cutoff scale of the theory. If we
regard the Higgs field as the WL scalar field, which is an
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idea of gauge-Higgs unification [15-18], the quantum
corrections to the mass of the Higgs field is canceled as
mentioned above. In the gauge-Higgs unification, the finite
Higgs mass is generated by the quantum corrections [18-22]
controlled by the compactification scale. If the compactifi-
cation scale is increased by the absence of the new physics
discovery, the fine-tuning problem in the Higgs mass
parameter is reintroduced. In flux compactification, however,
if the translational symmetry in extra spaces is explicitly
broken around TeV scale independent of the compactifica-
tion scale, the light Higgs boson mass is radiatively
generated. This logic is also applied to the potential of
the WL scalar field.

In this paper, we investigate the gauge symmetry break-
ing in a higher-dimensional theory in flux compactification
with a magnetic flux background and a constant WL scalar
vacuum expectation value (VEV). First, we consider a six-
dimensional SU(2) Yang-Mills theory compactified on a
torus with a magnetic flux and a constant VEV. Calculating
the Kaluza-Klein (KK) mass spectrum in the presence of
both flux background and the constant VEV, we obtain the
one-loop effective potential for the WL scalar field.
Although the effective potential in the flux background
only is not radiatively generated, the effective potential in
both the flux background and the constant VEV is
generated at one loop, and the potential minimum at
nonvanishing constant VEV is expected. This concludes
that gauge symmetry SU(2) is completely broken.

Next, we consider a six-dimensional SU(3) Yang-Mills
theory compactified on a torus with a magnetic flux and a
constant VEV. In this case, we consider two types of
configurations where the flux background and the constant
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VEV are developed. One is that the flux background and
the constant VEV are in the eighth and first components of
SU(@3). The other is that the flux background and the
constant VEV are in the eighth and sixth components
of SU(3). Similarly calculating the one-loop effective
potential as is done in SU(2) Yang-Mills theory, we find
(expect) that the potential is minimized at nonvanishing
constant VEV in the former (latter) case. In the former
(latter) case, the gauge symmetry breaking SU(3) —
U(1) x U(1) [SU(3) = U(1)] is found, respectively.

This paper is organized as follows. We give a setup of a
six-dimensional SU(2) Yang-Mills theory with magnetic
flux compactification and introduce the constant VEV in
Sec. II. We furthermore consider a six-dimensional SU(3)
Yang-Mills theory with magnetic flux compactification in
Sec. III, where two types of configurations for the flux
background and the constant VEV are taken. In both
sections, the one-loop effective potential for the WL scalar
field is calculated and the gauge symmetry breaking is
discussed. The last section is devoted to our summary. In
the Appendix, the calculation of the KK mass spectrum at
second-order perturbation is summarized.

II. SU(2) YANG-MILLS THEORY

We consider a six-dimensional SU(2) Yang-Mills theory
with two nontrivial backgrounds: a constant magnetic flux
background and an ordinary constant vacuum expect-
ation value.

A. Setup

Six-dimensional spacetime is M* x T2, where M* is the
Minkowski spacetime and T2 is a two-dimensional square
torus. The Lagrangian of SU(2) Yang-Mills theory in six
dimensions is

1
L= —ZFXmFaMN
1 1 1

— _ Z F;lDFuyv _ 5 FZSFaﬂS _ EI;‘;l61_7'a;46 _ %FgﬁFa56,
(1)

where the field strength tensor and the covariant derivative
are defined by

Fiyy = oyAY — onAf — ig[Ay, Ax]?, (2)

Dy A% = DA = (890y + getbcAb)AS,
= Oy AY — iglAy, An]“. (3)

The spacetime indices are M,N =0,1,2,3,5,6, u,v =
0,1,2,3,m,n =15, 6, and the gauge indices are a, b, c = 1,
2, 3. The metric convention n,y = diag(—1,+1,...,+1) is
employed. €% is a totally antisymmetric tensor of SU(2).

We discuss how the two backgrounds are introduced in
our model. First, the constant magnetic flux is given by the
VEV of the fifth and sixth component of the gauge fields
Ag’ﬁ, which must satisfy their classical equation of motion:

D"(Ff,) = 0. (4)

Second, the ordinary constant background is generated by
the quantum correction in the sixth component of the gauge
field Aé, for simplicity.] In this section, we choose a
solution

1
<Aé> =0, <A§> = _Efxo,

(4 =3 fxs. and (A= (4) =0 (5)

(Als) introduces a magnetic field parametrized by a
constant f, namely, (F3,) = f. Note that the flux back-
ground spontaneously breaks a translational invariance on
the torus. The flux background breaks the gauge symmetry,
which is broken to U(1) in this case. The flux is also
associated with the degeneracy:

g g
ﬂ - dxsdx6<Fg6> B %sz =NE€e Z, (6)

where L? is an area of the torus. For simplicity, we set

L =1 from now on. It is useful to define 0 and the scalar
fields ¢“ as

§ = (Ag +iA9).

(7)

1
0=0,=05—i0g, ZEE(XH‘W@),

1
V2

In these complex coordinates, the VEVs of ¢p!% are given by

n__ v 3 _ Jz
and we expand ¢“ around the backgrounds
P = (9°) + 0", ©)

where ¢“ are quantum fluctuations.
The Lagrangian (1) can be rewritten by using the new
coordinates (7) as follows:

'In general, the constant background can be introduced by the
fifth component of the gauge field Al.
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1 : |
Lo= =7 FiF™ = 0,40 3 DAIDA™
i - _
= 75 (0u"0A™ — 9, oA
+ig(9, (A", §]* + " (A, $]°)

— (DB D+ V2l B (10)

where
{DdD“ = (D5 — iDg)®" = 00" — /24, D], (an
DO = (Ds + iDg)®* = a0 + \/2gp, @,

which express the covariant derivatives with respect to the
complex coordinates in the torus. ®“ denotes arbitrary
fields in the adjoint representation. We can remove the
mixing terms between the gauge and the scalar fields in the
second line of Eq. (10) by introducing the gauge-fixing
terms with a gauge parameter &:

1
Lymp= =3 (DAY +ED, A2

1 i _
— =D, A%D, A —T_(3§?[A,, AT~ (A, AV])

287 V2
5 ha _ T ha . ajAa HANAG
+5(Dj D )%\%(aﬂcp DAY - 3,9 0AW).

(12)
The new covariant derivatives D, D are defined by replac-
ing ¢, ¢* in D, D with the VEVs (), (¢*), respectively.

Because of the gauge fixing, we need to introduce the
Faddeev-Popov ghost fields, and their Lagrangian is

Lohost = —¢*(D,D* + D, D™)c. (13)
Then, the total Lagrangian is given by
1 a papy 1 au av Ja a
‘Ctotal:_ZF;wF _2_§D/4A Dz/A _a}ld) aud)
1 apyAa 9 ha a _ 3 pha a
—5DALDA ”—5(045 [y, A = 0p? A, A])
5 Ja N 1a . a 1la Ja a
2 (DD +igf0,0° 1A% B+ P, 1)
1, - - _
~4 (g +Dg + V24l 9))?
—&4(D, D" +&D,, D). (14)

For simplicity, we choose the Feynman gauge =1
throughout this paper.

B. The mass of the gauge fields Aj

We will discuss mass eigenstates and eigenvalues of the
fields Ay, @“, c?. In this subsection, we find mass eigen-
values and eigenstates of the gauge fields Aj. The mass
term of the gauge field corresponds to the background part
of —DA;}DA"" /2:

1 - 1 -
Ly = _EDA;DA“I‘ = —EA;[—DD]A“”. (15)
We would like to regard the background covariant deriv-

atives D, D as creation and annihilation operators, respec-
tively. In a matrix form, they are expressed as

0 igfz 0
D= |-igfz o0 igv]|,
| 0 —igv 0
[0 —igfz O
D= | igfz 0 —igv | . (16)
. O igv 0

Diagonalizing them, we obtain

[P = eel0 0 WFET R 0- 0/ TET ),
D = diag(d.0 — g7/ 72 + 17,0+ g/ + 7).

(17)
Their commutation relation is
[]_)diag ’ Ddiag] “
B 00 O
:gf2< S )01 0. (18)
\/fzzz+vz \/fzzz_H)z 00 i

which depends on extra space coordinates. Therefore,
D, D cannot be identified with creation and annihilation
operators.

Since the KK mass spectrum cannot be exactly solved by
using the creation and annihilation operators, we would like
to find them perturbatively by the expansion in v. In this
expansion, vL <1 or v <1 in the present case is
assumed. In other words, we consider the case where the
compactification scale is much larger than the constant
VEV v. From (16), we define the unperturbed parts D5, 7_33
and the perturbed part V as

0 igfz 0 0 —igfz 0
Dy=|—-igfz 0 0|, Di=ligfz o 0|, (19
0 0 a 0 0 0

and

035035-3



AKAMATSU, HIROSE, and MARU

PHYS. REV. D 106, 035035 (2022)

0 O 0
v=|0 0 igv|, (20)
0 —igv O

respectively. In these notations, the covariant derivatives
can be expressed as D = D5 + Vand D = D; + V. D; and
D; can be identified with creation and annihilation oper-
ators, which are diagonalized as follows:

{D3d1ag diag(d — gfz. 9 + gfZ.9), Q1)

D? Jdiag — dlag(a + ng a ng a)

Their diagonalizing umtary matrix Uz, which satisfies

U3 ]D3 U3 D3 diag and U3 D'; U'; DS.dlag’ 1S

1 i 0
0 1. (22)

Uy=—|i 1
0 0 V2

V2

The commutation relation between Dj gjp, and 7_)3,diag is

1 0 O
[iz—)&diagv iD3,diag]aC =29f{0 -1 0. (23)
0 0 O

The creation and annihilation operators are defined as
I -
D3,diagv
Va2

where @, = 2¢gf. The components of the creation and
annihilation operators are summarized as follows:

a= at = DS,diag’ (24)

ay=—=(0+9f2), 1=z (0-9/2).
azz%z(é—gfz), and E\/——(aJrng)’ (25)
g35%25, 35\/*a

We note that a3 and a§ have no flux effects and play no role
of creation or annihilation operators. aT and a, are creation
operators and a; and ag are annihilation operators: The
roles of the creation and annihilation operators for a, and
a, are inverted due to the commutation relation for the
2-direction [as, aj]
are determined by

= —1. The ground state mode functions

alfo,j =0, a;éo,j =0, (26)

where & ; are the functions of z (for details, see [5]), and j
labels the degeneracy of the ground state: j = 0, ..., |N| — 1.

Higher mode functions &, ; are constructed similar to the
harmonic oscillator case [7]:

1 \m,
gn],j - \/n_ll(al) fO,A],
_ 1 _
z.fnz,j = (612)”260,]' (I’ll’z (S Z, I’ll’z Z 0) (27)

Vina!

The functions £, ; satisfy the orthogonal conditions

/T2 dzxz:n,j én’,j’ = 5n,n’5j,j" (28)

To be operated by a or a’, we should define the states with the
gauge indices:

gnle 0
W},I,J’ = 0 1, W%z,j = fnz,j . (29)
0 0

Moreover, using the periodic boundary condition of a torus,
we define the eigenstates for the 3-direction

0

y/?”m = 0
)'Lm

(LmeZ), (30)

where 4,,, are the functions of x5 and x:
A = (x5, x6) = exp2mi(lxs + mxg)].  (31)
These functions 4;, also satisfy the orthogonal conditions
/ dzx;ll.m/l[',m’ = 61.[’6m,m“ (32)
T2

The eigenstates satisfy the following relations:

o 1
AW g = VWp -1

2 2
ay,, ;i =V + 1wy g and

2 .
ay/im = — /“aiz(l + lm)y/im,

aTl//l,,,j =vn + 1‘/’rlz,+1,j7
aTWﬁl.j = \/nZWiz—l.j’ (33)

2 .
a'yi, ==\ el —imy,.

For convenience, we unify the labels of the eigenstates:

W%”l} = l'llrlll*j’ W%’lz} = W%lz’j’ W?”s} = W?m (34)

Their products of eigenstates in the different directions
are zero
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(W‘{l,,a}>-rl//fn(} =0 (a#c). (35)

Then we define the unperturbed Hamiltonian H, and the
perturbation V{, V,:
—DD = U3[=D3 giag D3 ding + D3.diae U3 VU3
~U3'VU3Ds gigg + (U3'VU3)?U3!
= Us[Hy+ V) + V] + V5] U5
= U;HU;". (36)

From the previous discussion, Hy, is expressed as

arNny 0 0
HO = 0 O(Q(nz + 1) 0 s (37)
0 0 4 (1> + m?)

and its eigenstates of the gauge fields are defined by

AjUg = A= Ayt

{na}

(U3")w Ar = A =N AUyt (38)
{n)

The perturbations V| and V, are

0 0 0—gfz
vi=2%10 o0 i(0+grz) |,
V2 Jd —id 0
- 1 =i 0
v, :% i 1 0], (39)
0 O
respectively. As was seen from the unperturbed

Hamiltonian (37), we find that there are degeneracies:
wy, and i, w, ., ; and y; ;. Thus, we should be careful
when calculating their energies in perturbation.

For g ; and w73, the first-order perturbation energy

from V, 4+ V] + V5, Eﬁig) can be easily obtained

EE‘I% = g°v’. (40)

1
EE\.LI:O = g*v*/2,

Note that we have to solve the secular equation for 1//(1)‘ ;and
Wi_o o because there exists the degeneracy, and the
perturbation of 1;/13;&0.,”#0 can be obtained by V,. The
second-order perturbation energy EX()) for wi ; is shown
in the Appendix.

For y, ., ,ws (n>0) and w7, , the first-order pertur-

bation energy from V; + VI + V>, Egl) can be easily
obtained

= g%, (41)

where the mode functions in the new direction 1’ and 2’ are
defined as

Whi ;= (iph,, + W%,j)/\/i
W%I-H,j = (I/I;IH-L/' + il//%,j)/\/i' (42)

The second-order perturbation energies E?

Al EA,Z" and

Ef; are shown in the Appendix. Thus, we summarize the
mass of the gauge fields as

_ £ )
mzzx,nlzo = QZTL +E, 0

mi.l/ = az(n + 1) + E1(42>1/5 (43)
m2 o, = ay(n+ 1) + ¢ + EY,

mi 5 =47 (12 + m?) + g*v* + Efg,
and we find that all of the gauge fields have nonzero mass if
v # 0. Therefore, we conclude that the SU(2) gauge

symmetry is completely broken. The fact that nonzero
VEV v is realized will be seen in the potential analysis.

C. The mass of the scalar fields ¢*

The terms relevant to the scalar mass are

£ ~H{(Dp + Dg)? ~2V24(0(0) + g™ 71}
+ % (Dp — Dy)*
= —p(H + gf diag(1,-1,0))p, (44)

where

Pl Wiy (45)

Since the energy eigenvalues for y,, ; and y;, ; are degen-
erate, we must solve the secular equation. We find the first-

order perturbation energy from V; + VI +V, as
1 1
E((ﬂ,>1// = O, E( )// - 92/’}2, (46)

where the mode functions in new directions 1” and 2" are
defined as
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wi' = (iwh + w2 ;) V2,

w2o= (vl + i)/ V2, (47)

The second-order perturbation energies E(z)l,,, E(z)z,,, and
72 2

Ef;% are shown in the Appendix. Thus, the masses of the

scalar fields are obtained as

2
m(zp.l/r - az(n + %) + Ei{),)l”’
m(zpyz// = az(n + %) + 9202 + E((/)Z,)ZN’ (48)

m 3 = 4n>(I2 + m?) + P> + EV.

D. The mass of the ghost fields c*

The terms relevant to the ghost mass are

L > -c4(D,D")%ct  (m=5,6), (49)

1 _
=-U; [H ) (D5 diag» D5 diag]

—V =Vi+V+ vg)] U3!

= —U3[H0 + V2 + gfdlag(l, —1,0)
+V, + ViUsL. (50)

V5 and V, are defined as
1
V3 U3 VU3D3 Jdiag and V4 EE(VI + V3) (51)

Note that the first three terms in Eq. (50) are the same as
those of the scalar fields. As in the previous section, we
solve the secular equation and find the first-order pertur-
bation energy from V, + V, + Vi as

1 1
EY, =0, El) =g (52)

The second-order perturbation energies Eff/,, E?,, and

6,2”’
E£23) are summarized in the Appendix.
Thus, the masses of the ghost fields are obtained as

2
ngu = az(n + %) + Ei‘,}”’

+E?) (53)

2 1 29,2
mcqzu — az(l’l + E) + g v 2

m2y = 4n*(P + m?) + gv* + ES.

Note that the masses of the ghost fields are the same as that
of the scalar mass at first order in the Feynman gauge
& = 1. This fact greatly simplifies the potential analysis as
will be discussed later.

E. The analysis of the effective potential

Since the potential of the constant WL scalar fields is not
generated at tree level, we have to calculate the one-loop
effective potential by use of the KK mass spectrum
obtained in the previous subsections. We will show that
the constant WL scalar VEV can be nonzero, and the gauge
symmetry is broken.

In order to calculate the one-loop effective potential as
general as possible, we parametrize the KK mass spectrum
as follows:

mg = Ag*v?, m? = a(n + x) + Bg*v?,
’)+

mi, =4r* (1> + m*) + Cg*v?, (54)
where x is 0, 1, or 1/2 depending on the fields under
consideration. We suppose that A, B, and C are positive
constants. @ means a, or a3, which will be defined in the
next section. Then, the typical forms of the one-loop
effective potential can be written as

v(A) = / (3;; In[p? + Ag*v?], (55)

2In [p? + a(n + x) + Bg*v?],

an=i0/

(56)

p*+4n* (P +m?)+ Cgv?].

Vl,m /
Z*—oom——oo

Note that the second-order perturbations are neglected in
these potentials. For an obvious reason, v4(A), v, (a, B; x),
and v;,,(C) will be referred to as the one-loop effective
potential of zero-mode-type, with-flux-type, and without-
flux-type, respectively.

(57)

1. The zero-mode-type v,

First, we consider the effective potential of zero-mode-
type v,

d*p dt

A) = —
Lo(4) /(zzy‘/ N
1 /wdt
= — <5 — €
167% 0 &

e~ (P HAF V)

—Ag*v*t
’
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where Schwinger’s proper time integral is introduced in the
first line, and the momentum integral is performed in the
second line. Obviously, this integral diverges at t = 0, but
we can extract a finite value from it. We will propose the
idea later, and the regularized effective potential of zero-
mode-type vy is found as

Vreg,O (A> = (58)

(Agv?)? <9c<3> ) 1>,

57672 7

where {(3) is Apéry’s constant {(3) = 1.20205--- and
9¢(3)/7* =1 =0.0961381 - - -.

2. The with-flux-type v,

Next, we consider the effective potential of with-flux-

type v,,,
Z / / o~ (P Halntx) BRI

dt e—(x(erBgzvz/a— )t

- 1677/ rl e —1

a? /oo dy e—(x+Bgzvz/a—1))r
y! '

an

1622 -2 e -1 (59)

To calculate this, we try to apply the integral representation
of the Hurwitz { function [23]

a” a'” ~ By o
"2 +s—1+;(2k)!a (2

n 1 /md e~
. e
['(s) Jo y!

1 1 1
X
-1 y 2

where n is a non-negative integer, B,, is the Bernoulli number,
and (s), is the Pochhammer symbol. Equation (60) is
satisfied with the conditions

{(s,a)

(60)

“Len™)

Res>—-(2n+1) (n€Z,n>0), s#1, Rea>0. (61)

l/reg,n(a’ B;x) -

27 12

2 B 2,2 1 B 24,2

3

1 B 2 2 BZZ
+—<x+ g0 —1) ln<x+ g —1>

2 a a

Comparing the integral in (59) with the expression (60), we
need to consider a case where s = —2. Therefore, itis enough
to take n = 1 as follows:

—s 1—-s —s—1

a a sa
fsa)=7+i7t 3

1 o T 1 I 1 vy
— | dy—|———+—-=, 62
+F(s)/) Iy <ey—1 ) 12> (62)
where (s); =s and B, = 1/6 are used. The integral
which includes a term of 1/(e” — 1) corresponds to the

with-flux-type v,,. On the other hand, we know the form of
{(=2, a) with elementary functions:

13
{(=2,a) = —gzgsck&—kak

2 —2-1 + 12 (63)
and we find this to be equivalent to the first line of Eq. (62).

When we take s = ¢ —2(e = (4 —d)/2 <« 1), Eq. (63)
can be understood as the O(e’) terms of both sides of
Eq. (62). Therefore, the integral in the second line of (62) is
understood to be O(e). Extracting the O(e) terms from
Eq. (62), we obtain

© ew/ 1 1 1 vy
dy— [ —— 4y~ L
[o% Gmmiah)

1 a
Z 0y~ -
2[{ (=2,a) 12(21na—|—1)
2 3
—l—%lna—%(?)lna—l)], (64)
where we used the expansion of {(¢ — 2, a) in e:
((e=2.a) = ¢{(=2.a) + "0 (=2,a) + O(e?).  (65)

Although each integral of Eq. (64) diverges at y = 0, the
right-hand side of (64) is finite. In other words, we can
interpret that the last three terms of the left-hand side in (64)
work as the regulators which extract a finite quantity from
the divergent integral, and we are able to evaluate the
potential of with-flux-type v,. Then, we obtain the regu-
larized one-loop effective potential of with-flux-type v,

322
1>{21n<x—|— Iv +1}
a

2,2 3 2,2
J(HBQ” —1> {31n(x+Bg” —1>—1H. (66)
9 a a
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Note that the quantity @ = x + Bg*v?/a — 1 of Eq. (59)
is not always positive: If a is zero or negative, it does not
satisfy the condition (61). This situation occurs in the case
of x = 0 or 1/2. In that case, we separate the term of n = 0:

Ureg (@, Bsx < 1

)
4
— _/ d / dte (p*+ax+Bg*v?)t
t

n= 1/ /
__ / dy
e )y v E

az /oo dy e_(x“"Bgz”z/a)y

1622 Jo ¥y e -1

Although the first term in (67) is similarly divergent at
y = 0, it can be finite by using (64) as

1 / dt
- e
1672 0 l‘3
o? Bg?v*\2 (9¢(3)

—-1).
_)576772<x+ a ) <JT2 >

In this calculation, the terms, except for the third term of the
left-hand side in (64), work as the regulators. Thus, the
regularized one-loop effective potential of with-flux-type
I/reg’”(a, B;x < 1) can be obtained

e~ (PP +a(ntx)+Bgv?)t

—(x+Bg*v?/a)y

(67)

(ax+Bg*v*)t

Ureg (@, B;x < 1)

— _Lz |:C(1,0) <_2 )CJngsz)

3272 a

1 BZ2 BZZ
—— x4+ Jv 2In({x+ Jv +1

12 a a

1 B22 2 B22 9 3
+—|x+ Jv 9ln | x+ Jv —€(2)+1
18 a a V3

1 B223 BZZ

——(x—l— gv>{3ln<x+ gv)_l}]' (68)
9 a a

3. The without-flux-type v, ,,

Finally, we consider the one-loop effective potential of
without-flux-type v,

oodt d p [p +4n* (P4+m?)+Cg*v*]t

I/l,m(c)

l*—oom* —00

:_—ZZ d_;‘e—[4n2(12+mz)+Cg21)2]z
167 o
I.m

_ 1/°°
_1671'20

duue—ng vz/uze—4n2(lz+mz)/u .

Using the Poisson resummation formula

C l +v —ur? [4+2zirv
Z exp [— ] 1/47[ r;oe / (69)

with » = 0, we obtain

1

ol S

r=—00 §=—00

= ” duu®e™
eI |

Cav*(r* + s?)
4u

1 . e—Cg21:2t 1
— dt -,
* 64773/) I ( t)

where we note that a change of variable t = (r* + s%)/u is
performed in the second line of (70) except for the r =
s = 0 mode. For the first term of Eq. (70), we consider
applying the modified Bessel function of the second kind,

1/2\¥ [« 2
K,(z) = 3 (%) A dir'exp (—t - th)
_ 1 Z\ ™ © v—1 Zz

where a change of variable u = z?/4t is performed in
the second line. This is satisfied with the conditions
Rev > the first term of
Eq. (70) becomes

o Cqv*(r* +s?%)
2 ,—u 7/
6471'3z <r 2452 ) A duie GXP[ 4u

r,s#0
C32 4 1 32
= Z;O<r2+s2> K3(gv C(r2+s2)).
r.s

The second term of Eq. (70) is regularized by using
Eq. (64):

1 00 —ngvzt 1
L[ ()
64rn’ Jo t t

Therefore, the regularized one-loop effective potential of
the without-flux-type is obtained

l/l,m(c) =

X exp {—

(70)

(Ca)? <9c<3> ) 1>.

46087° *
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I Vreg,0(1) Vreg,n(a2,130)

— Vreg,n(a2:1 1)

— Vreg,/.m(1)

—0.05L-

FIG. 1. Anillustration of yee (1), Ureg n (@2, 150), Uyeg o (22, 13 1),

and l/reg,l,m(l)
(Cg%z)”Z( 1 )3/2
- 2 2
r,s#0 rets

Ureg,l,m(c) = a7

x K3 (gv C(r*+ s2)>

* (460871) <9€r(2) 1>' (72)

The types of one-loop potentials vyeg (1), Lreg n (@2, 1:0),
Vregn (@, 151), and v;eq,, (1) are shown in Fig. 1.

F. The one-loop effective potential of
SU(2) Yang-Mills theory

We now apply the above results obtained in the previous
subsections to SU(2) Yang-Mills theory. The effective
|

V= VregA

(g0 (92(3)
~ 61447 < >

—_

-5 (&) {o(Ew) )]

The one-loop effective potentials with N = 3 are shown
in Fig. 2. The cancellation of the potentials between the
scalar (blue line) and the ghost (green line) loop contribu-
tions can be explicitly verified. As can be seen from the
total potential (red line) in Fig. 2, we can conclude that
the origin of the potential is at least not a minimum, and the

?If one does not choose Feynman gauge £ = 1, the cancellation

Of Vieg o and Vi, , does not occur. See [12] for this implication.

3/2 < 1
PR
SN s

3N? g 1 (g°v
SN Lo, 907\ _ 1 (g
" 162 {C ( 23 N) 12 (4::1\7) {2 ln(

>3/2

2 1 2.2\ 2 2.2
U W O i S i
4z N 2 \4zN 4z N

potentials can be calculated by using the masses of the

gauge fields Ay, the scalar fields ¢, and the ghost fields ¢,
31
Va = 57 0(1/2) + v (1) + vl 1), (73)
1 1 .
Vo = 37 Un(D) + talas 1:1/2). (74
1 1 .
Vc - _5(277)2 (Vl,m(l) +Vn(a3’1’1/2)) = —V(/,. (75)

Since these effective potentials are divergent, we extract the
finite value from them. By using (58), (66), and (72), the
regularized effective potential is expressed as

31
Vreg,A = 5(2”)2 (Ureg,O(l/z) + Ureg,l,m(l) + I/reg.n(aZ’ 1; 1))7

(76)

1

1
Vreg,(p = 5 (271_)2 (Vreg.l.m(l) + I/reg,n(aS’ I; 1/2))’ (77)

1 1
Vreg,c = _EW (l/reg,l,m<1) +yreg,n (03, 1; 1/2)) = _Vreg,(p‘

(78)

Since V,, and V. cancel each other because of the same
KK mass spectrum in the Feynman gauge, we have only
to consider V.4 as the total effective potential
V=Vigat+ Viego + Vmg.c.2 In detail, the total effective
potential can be expressed as

(go/P 1 52) + L) H_Q

122887° < P

(79)

minimum of the effective potential is expected to locate at a
nonzero constant VEV v # 0, and the gauge symmetry
SU(2) is completely broken.

Here we should note that we cannot determine the
location of the minimum since the location is expected
to be beyond the range for which our perturbation is valid,
as is shown in Fig. 2. Even if the value of the minimum is
not determined, if we assume that the potential is bounded
below, the pattern of gauge symmetry breaking can be
confirmed from the gauge boson spectrum (43).
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— VandVy, — V, — V;

0.004 -

av

-0.004 -

FIG. 2. One-loop effective potentials of SU(2) Yang-Mills
theory. N =3 is taken for simplicity. The shaded region
represents a range where our perturbation analysis breaks down.

III. SU3) YANG-MILLS THEORY

In the context of gauge-Higgs unification, SU(3) gauge
symmetry is minimal to realize the zero mode of the WL
scalar as an SU(2) Higgs doublet. In our case, if SU(3) is
broken to SU(2) x U(1) by the VEV of the constant
magnetic flux, the SU(2) Higgs doublet would appear,

Jd 0 0 0
0 d igv 0
0 —igv 0 0
0 0 0 0
Dac = o
0 0 0 —Ligfz
0 O 0 0
0 0 0 —%igv
100 0 0
[0 0 0 0
0 o0 —igv 0
0 igv 0 0
0 0 0 0
f[)ac — )
0 0 0 Ligfz
0 0 0 0
0 O 0 %igv
L0 0 0 0

Diagonalizing them, we obtain

and the electroweak symmetry breaking can be discussed.
As a first step toward the discussion, we now consider a six-
dimensional SU(3) Yang-Mills theory. We consider two
cases of directions where we introduce the VEVs

(1) @)= and <¢8>:f—j§, (80)
@) @) =T and <¢8>=% (81)

where the superscripts of ¢ denote the gauge indices of
SU(3), and the structure constant is changed to that of
SU(3) accordingly. Note that the flux background breaks
the SU(3) gauge symmetry, which is broken SU(2) x U(1).
Case (1) is not included in SU(2) theory, because two kinds
of VEVs are both taken in the components of the unbroken
symmetry. Other cases of developing the VEVs are reduced
to the above two cases by the gauge rotations.

A. Case (1)

In this subsection, let us consider case (1) where the
background covariant derivatives D, D are expressed as

0 0 0 0
0 0 0 0
0 0 0 0
Bigfz 0 Lig. 0
b 82
0 —%igv 0 0 (82)
Ligo 9 Bigfz 0
0 -YLigrz o 0
0 0 0 9
0 0 0 0]
0 0 0 0
0 0 0 0
—@igfz 0 —Jigv 0
3 83
0 Tigv 0 0 ®3)
—Tigu 0 —\/gigfz 0
0 Bigfz 0 0
0 0 0 Pl
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{Ddiag = diag (0,0 - gv.0+ gv.0- S gv =L gr2.0- S g+ Lafz 0+ g0 - Fgrz.0+ Lgv + S gr2.0),

Dyiag = diag (a, d+

Their diagonalizing unitary matrix U is given by

2 0 0 0 0 0 0 07

0 V2 V2i 0 0 0 0 0

0 V2i v2 0 0 0 0 0

110 O 0 1 i -1 i O
=310 0 0 i 1 i1 ol ®

0 0 0 1 —i 1 i 0

0 0 0 -1 0

0 0 0 0 0 0 0 2l

The commutation relation of D and D becomes just a
constant matrix:

[iz—)diagﬂ iDdiag]aC =

where the creation and annihilation operators can be
given as

\/ggfdiag(0,0,0,1,—1,1,—1,0), (86)

a = —Ddiagv al =

@

Defining further

\/%—3Ddiag (0‘3 = \/§gf ) (87)

04,62\/%—3(54‘\?9]02)’ 01,62\/—0{—3<3—§9f2),
(88)
(89)

U a2(B 4 ),

3% =42 { B+ s + 19},
(mi)55:a3(n5+1>+1 02,

From the massless modes in (92), we find that the SU( ) X

gv.0—gu.d+igv+Lgfz.0+ g —Lgfz.0-Lgv+Lgfz.0-Lgv —@gfzﬁ)-

(84)

in the matrix form of the creation and annihilation
operators, the diagonalized part of Dy, and Dy, can
be expressed as

(lDdiag)44 = /Xa46 +5igv

(ﬂ_)diag)ss = /azasy +5igv

(i@diag)66 = \/07334,6 —351lgv and

(ﬂ_Ddiag)77 = /a5 7 éigv

(iDdiag)44 = \/073aj1.6 éigv

(iDaing)”® = /@305 5 = 3igo %0)
(iDdiag)66 = \/076126 + llgv

(lDdiag)77 = \/07351; 7 +1 Jiguv.

Note that the other components are just spatial derivatives
and do not play any role of creation or annihilation
operators.

1. The mass of the gauge fields A},

In the same way as the calculations in Sec. II B, we
obtain the gauge mass matrix

—Ddiag@diag = m/zp (91)
where the components are
(m3)2 = 4r>{ B + (my =492 |,
m ) :(13Vl4+l 2 2 (92)

a3n6+1 202,

= 47* (12 + m3).

A —~ o~
3

PSRN RN )
~=
||

U(1) gauge symmetry is broken into U(1) x U(1) if v # 0.

2. The mass of the scalar fields @“

The scalar masses are calculated from the terms

2 ( _Ddiag @diag ) “

—4igf(U~

1>a’af8a’c’ Uc’c = mg}’

(93)
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and the resulting KK mass spectra are found as

(m2)' = 47 (5 + m3), (m2)2 = 4z*{ B + (my - 22},

(m2)* = 4712{1% + (m3 + ﬂ)z}, (m2)* = a3(ny +3) + 3 g*0%, (94)
(m3)> = az(ns +3) + 1 9°0%, (m3)% = az(ng +3) + 3 9°v%,

(mg)"" = as(ng +3) + 39707, (mg)® = 42> (I + m3).

3. The mass of the ghost fields c*

The ghost masses are calculated from the terms
_Ddiangiag

and the resulting KK spectra are obtained

+ Bla.al) = m2, (95)

(m2)! = 4528 + mr3), (22 = 4x{ B+ (my — %},

(m2)% = 47r2{l§ + (m3 + ﬂ)z}, (m2)* = az(ny + %) + 1 0%, (96)
(m2)* = az(ns +3) + 3 5°0%, (m2)% = az(ng +3) + 3 4°0%,

(m2)"7 = a3(ng +3) + 39707, (mg)*® = 47°(Ig + mg).

4. The potential calculation

The effective potential can be calculated by using the
masses of the gauge fields A{, the scalar fields ¢, the ghost

fields ¢, and (56) and (57):
Vi = 3 s n0) + 12 (90/25) + {520
+2v, (a3, 1/4;0) + 2v, (a3, 1/4; 1)), (97)
v, = %(217)2 (20 (0) + v (go/27) + v_(gv/27)
+4v, (a3, 1/4;1/2)), (98)
Ve = =5 737 241n(0) + v g0/28) + v-(gv/22)
+4v,(a3,1/4;1/2)) = =V, (99)

where v (V) is defined as

ve(V)= /

l——oo m=—o0

cIn[p? + 472 { I + (m £ V)?}].
(100)

The terms which do not contain the constant VEV v, v, ,,,(0)
are irrelevant to determine the potential minimum.

We consider here new one-loop effective potentials of
without-flux-type v,

=2

x exp(—[p? —|—47z2{12
- 16”22/ —exp(—4n*{?+(m+V)}r)

+(m£V)}])

_1677; / duuZexp 471-2{12 (m:tV)z}/u)

Using the Poisson resummation formula (69), v, becomes

1 0 0

ve(V) = ~ e Z Z eiZm’VsA dunle—t(P+s2)/4

r=—00 §=—00
Since the term with s = 0 has no dependence on v, it may

be removed, and we obtain the regularized one-loop
effective potentials of without-flux-type v -,

g (V) = _# > Z emts A ® duile—n(r+5)/4
4.
=5 2 2y

oosl

scos (2zVs).  (101)
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— VandVy — V, —

-0.005

-0.010+

(a) The effective potential V.

FIG. 3.

Note that this periodic potential often appears in gauge-
Higgs unification [22,24].

By using (66), (68), (72), and (101), each regularized
effective potential is expressed as

3 1
reg, A — EW (zyreg,l,m (0) + 2l/reg,i (gU/ZE)
+ zyreg.n(ai'n 1/4’0) + 2Ureg,n(a37 1/4; 1))’ (102)
1 1
reg,p — EW (2Vreg,l,m (O) + 2Vregd: (gv/27[>
+4Vreg,n(a3’ 1/491/2))7 (103)
1 1
Vreg,c = - EW (Zyreg.l,m (0) + Zl/reg,i (gU/Zﬂ)
+ 4Vreg,n(a3v 1/4; 1/2)) = _Vreg.zp~ (104)
Because of Vo . = —Viyeg ,» We consider Vi, 4 as the total

effective potential V =V 4 + Viegy + Vieg - In detail,
the total one-loop effective potential can be expressed as

192;2 {C(LO)< z’sffj)jN)
2 2
12 <8\/—77,'N> 21n 8\/_71'N 1)
*36 <8\/_7rN2 { 9€(3)+1}

8\/_77.'N 27’
-5 (525m) ()
9 8\/_7rN 8\/§77.’N '

(105)

A picture of the effective potential V with N = 3 and its parts V,, V.

0.00275570

0.00275565

0.00275560

I
-0.02

(b) A close-up of the effective potential.

»» and V. (b) is a close-up of the effective potential (a).

In (105), the 20yey;,,(0) term was dropped because it is
irrelevant to finding the potential minimum.

The effective potential (105) of SU(3) Yang-Mills theory
with N = 3 is shown in Fig. 3. Note that V, and V. cancel
each other, and V4 itself becomes the total potential V. It
seems that there is a local minimum at gv = 0, but it is not
correct. The behavior of V around gv = 0 is shown in
Fig. 3(b), and we find that there are two local minima at
gv # 0. The reason why V becomes convex upward at gv =
0 is due to the existence of the term ¢?>v*In ¢g?v? in Vi It
becomes dominant as gv gets close to zero. Furthermore,
we emphasize that the logarithmic term is originated from
the potential of the with-flux-type. If the magnetic flux is
absent, we have no such contribution to the potential. Then,
the potential is a periodic one as seen in the gauge-
Higgs unification, where the origin of the potential
becomes convex downward, which implies the origin
can be a local minimum. The effects from the potential
of the with-flux-type are very crucial in our analysis of
gauge symmetry breaking. Thus, we find that the mini-
mum of the effective potential has a nonzero VEV v # (,
and the gauge symmetry SU(2) x U(1) is broken into
U(1) x U(1).

B. Case (2)

In this section, we consider case (2)

v

ﬁ’

fz

(#°) = N

(%) = (106)

In this case, the components of the VEV where the constant
WL scalar develops are in the broken generators under
SU(3) — SU(2) x U(1). This case is similar to Sec. II. In
this situation, the background covariant derivatives D, D
are expressed as
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r o 0 0
0 0 %igv
0 0 0
0 —5igv 0 7}
b= ligp. 0 0 -LBigsz
0 0 0 0
0 0 —Ligy 0
L 0 0 0 0
-0 0 0 0
0 0 0 —%igv
0 0 0 0
e 0 Jigv 0 0
~ligg 0 0 Ligfz
0 0 0 0
0 0 %lgv 0
L 0 0 0 0

If we diagonalize them, the eigenvalues are the same form
as (17). Therefore, we apply the perturbation theory as we
have seen in Sec. II B. Defining the unperturbed parts to be
Dg, Dy and the perturbation part V such as (19) and (20),
respectively, the covariant derivatives can be represented as
D = Dy + V and D = Dy + V. Diagonalizing Dy, Dy, we
obtain the eigenvalues (84) with v = 0. Their diagonalizing
unitary matrix is given by

V2 0 0 0 0 0 0 01
0 V2 0 0000 O
0 0 +v2 0000 0
110 0o 0 1 i 00 0
Ug = —— ’ . (109)
V20 0o o0 i 100 0
0 0 0 001 i 0
0 0 0 00 i 1 0
Lo 0 0 00 0 0 2.

which is different from U in Sec. III 1. We can apply the
discussion in Sec. II B by replacing U5 in Sec. II B with Ug.
According to (36), we define V, EDg’diagUgl‘/Ug and
V, = (Ug'VUg)?. In particular, we focus on V5:

—%igv 0 0 0 7
0 0 0 0
0 0 %igv 0
Bigfz 0 0 0
, (107)
0 0 0 0
0 0 Bigfz 0
0 —\/7§igf2 0 \/7§ng
0 0 —@igv 0
%igv 0 0 0 1
0 0 0 0
0 0 —%igv 0
?igfz 0 0 0
) (108)
0 0 0 0
0 o —Ligfz 0
0 */;igfz 0 —\/;igv
0 0 ‘/Tgigv 0o
|
10 0 000 0 0 7
01 0 000 O O
00 1 000 0 -3
22100 0 100 0 O
v, =2 (110)
4100 0 010 0 O
00 0 002 =2i 0
00 0 002 2 0
00 -v3 00 0 0 3

From (92) with v = 0 and V,, we find that the pairs l//im,
w}, andyS, | .y, ; are degenerate, and we must solve the
secular equations. As a result, the first-order perturbation
energy E(') has

EV =g2, (111)

(1)
Ey) =0, E\ =

() _ _
E/ —0, 6 —

E(l) _g21]2’ {

3

where the mode functions in new directions 3’ and 8’ are
defined as

v, = V33, + s, /2.
(112)

v = (=3, +V3ul,)/2,

WS = (S, vl ) /IV2 vl =Wl +iv] )/ V2.
(113)
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Thus, the masses of the gauge fields can be obtained as

~Diag Dtiag = M3 (114)
(m3)'" =4z (1 +mi) + 35707, (m3)? =4n* (15 +m3) + 1407,
(m3)*Y = 4z (B, + my) + %, (m3)* = azng + 507, (115)
(m124)55 = (X3(n5 + 1) + igzvzy (mi oo’ - %921}2(7% = 0), a3(l’l6! + 1) (n6r Z O)’
(mi)7/7/ — 03(717/ + ]) _|_921}2, (mi 88 _ 47[2(15, + mé)’

where we ignore the second-order perturbation energy.

In the previous discussion, the total one-loop effective
potential has been expressed by V = V, 4. From (115), we
have

_3 1
©2(2x2)?
+ Vreg,n((x}’ 1/4; 1) +Ureg,n(a3’ 1; 1) + Vreg,O(l/Z))'

(116)

(2Ureg,l,m(1/4) + l/reg.l.m(l) + Vregn ((,13, 1/4’ 0)

The effective potential of SU(3) Yang-Mills theory with
N =3 is shown in Fig. 4. The shape of the potential in
Fig. 4 is similar to that (the red line) in Fig. 2. The
minimum of the effective potential might have a non-
zero constant VEV v #0, and the gauge symmetry
SU(2) x U(1) is broken to U(1).

We should comment here again as was done in the SU(2)
case that we cannot determine the location of the minimum
since the location is expected to be beyond the range which
our perturbation is valid, as shown in Fig. 4. Even if the
value of the minimum is not determined, if we assume that
the potential is bounded below, the pattern of gauge
symmetry breaking can be confirmed from the gauge
boson spectrum (92).

1 : 1 gv
-5 0 5
FIG. 4. An illustration of the effective potential with N = 3.
The shaded region represents a range where our perturbation
analysis breaks down.

IV. SUMMARY

In this paper, we have studied six-dimensional Yang-
Mills theories compactified on a torus with a magnetic flux
and a constant VEV. Before constructing realistic models,
we have discussed simple models of SU(2) and SU(3)
Yang-Mills theories to understand the basic structures of
the gauge symmetry breaking.

We have first given a setup of the SU(2) model and
derived the KK masses in terms of perturbation theory in
quantum mechanics. By using the KK masses, we have
calculated the one-loop effective potential. In those com-
putations, we have focused on the integral representation of
the Hurwitz { function, and the regularized effective
potential has been obtained. From the obtained one-loop
effective potential and the mass of the gauge fields, we have
seen that the SU(2) gauge symmetry is completely broken
because of the flux background and the constant VEV.

Next, we have considered an SU(3) model where two
types of directions have been used to introduce the flux
background and the constant VEV. The extension to SU(3) is
necessary for WL scalar fields to be an SU(2) doublet in the
SM. In the case of Sec. III 1, the flux background and the
constant VEV have been introduced in the eighth and first
components of SU(3) gauge symmetry, respectively. The
one-loop effective potential has been calculated, and it has
been found that the potential has a nonzero VEV v # (,
which implies that the SU(3) gauge symmetry is broken to
U(1) x U(1) by the flux background and the constant VEV.
On the other hand, in the case of Sec. III2, the flux
background and the constant VEV have been introduced
in the eighth and sixth components of SU(3) gauge sym-
metry, respectively. The case corresponds to gauge-Higgs
unification in that the constant VEV is taken in one of the
components of the broken generators of the original sym-
metry SU(3)/(SU(2) x U(1)) in our model. The one-loop
effective potential has been found to expect a nonzero VEV
v # 0, and the SU(3) gauge symmetry is broken to U(1) by
the flux background and the constant VEV.

Although the results obtained in this paper are very
interesting, they are not realistic as they stand. If we
identify the WL scalar field with the SM SU(2) Higgs
doublet in our SU(3) model, the gauge symmetry breaking
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pattern SU(3) — SU(2) x U(1) — U(1) [or U(1) x U(1)]
is not a correct pattern of the electroweak symmetry
breaking SU(2) x U(1) - U(1). In order to realize such
an electroweak symmetry breaking, it would be interesting
to take into account fermion field contributions to the one-
loop effective potential.

In some of the models discussed in this paper, the location
of the potential minimum could not be determined in a
parameter region where our perturbation is valid. It would be
desirable to obtain the value of the potential minimum in a
perturbative region by extending our analysis to the models
with fermions. These issues are left for our future work.
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APPENDIX: THE SECOND-ORDER
PERTURBATION ENERGY

In this appendix, we represent the second-order pertur-
bation energy. Since V, has an order of O(g*v?), the
second-order perturbation energy from V, has an order of
O((¢°v*)?) and we neglect it.

1. The mass of the gauge field
The second-order perturbation energy from V| + VI for
o, 18

E(z) B | fTZ dzx(l//?.m)f(vl + V-Il-)‘//(l),j|2
A0 ™ z 4n* (P + m?)
(1,m)#(0,0)
2.2 2072 2 2
g*v [ Z 4z (I + m*) Pxi ]
=-- 22| [, X mo,
2 (l,m)#(0,0)4ﬂ (l +m ) T2
2.2
g
= Ty [ Z Cl.m.O,j|2:|' (Al)
(L.m)#(0.0)

We do not describe the integrals C;,, ; in detail.
The second order perturbatlon energy from V| + V for

‘/’n+1,p‘/’n+1,]7‘//z:o,m:0’ and ’l’zgeo,m;eo is

Z | fT7 d2 l//l m)T(Vl + V )l//nJrl _]|2

a2 (P +m?) —ap(n+1) (A2)

, (A3)

(2)/ _ _Z | fTZ dzx(y/?,m)'I'(Vl + VI)I//%[;IJIZ
2 472 (P +m?) —ap(n+1)

E(Z) — Z | fTZ de(W?m) (Vl +V )Wn+1]|2
A3,1=0,m=0 4”2(12+m)_a2<n+1)

Z | Jr2 dzx(’//?,m)T(Vl + VD‘//%/HJP
472 (P +m?) —ay(n+1)

’

(A4)

and

(2) g’
EA,3.[7’:0.m;éO T Z|C1 m,0, )|
J

n Z | e sz(‘l’?.m)T(Vl + VD‘”LL;"Z
472 (P + m?) —ay(n+ 1)

n,j

n Z|fr2 x(y7,,) (Vi + V) )l//nJrl]‘z
472 (P +m?) —ap(n+1)

(AS)

2. The mass of the scalar field

The second-order perturbation energy from V| + Vi,

Ef,,z) is
_ | [2 dPx( l//lm) (Vi+ VT)W;L”]F (A6)
1” 472 (P +m?) —ay(n+1/2)
E(z)// = _Z | sz dQX(W?,m)T(Vl + VT)W%N]lz (A7)
.2 o 47> (P 4+ m?) —ar(n+1/2)
and
£ _ Z | 7 dzx(‘/’?,m) (Vi+ VT)WnI,\z
3 42 (P 4+ m?) —ay(n + 1/2)
+Z|fT2 dz l//lm) (Vi+V, )W%;Hﬂz (A8)
4z (1> + m?

)—ay(n+1/2)

3. The mass of the ghost field
The second-order perturbation energy by V4 + VZ,

B | [ dx(wi,,) (V4+V4)1l/111”]|2
Eov ==

. (A9
47 (P +m?) —ay(n+1/2) (A9)
EZ == L &3ty ) (Va + Vowi, (A10)
€2 — A (P 4+ m?) —ay(n+1/2)
and
£ _ Z | Jr2 @x(y7,,)" (Va + V4)'//,11”,|2
c3 2(72 2\ _
24P (Pt m?) = arln +12)
dx(yi,) (Va+ Vi |?
Z|fT2 (wl,m) ( 4 )Wn/l . (All)

4r* (P 4+ m?) — ay(n +1/2)

n,j
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