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We study the feebly-interacting massive particle dark matter whose production processes are
significantly affected by the phase evolution and the complicated thermal corrections to the vector boson.
We calculate the freeze-in processes to obtain the correct dark matter relic density by enumerating all the
possible 1 ↔ 2 and 2 ↔ 2 processes. The predicted gravitational waves emitted by the first-order phase
transitions and the cosmic strings are evaluated.
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I. INTRODUCTION

Dark matter is considered to account for about 84% of
the matter in our Universe [1]. A natural way to explain the
relic abundance is to attribute the creation of the dark matter
particles to the thermal plasma in the early epoch of our
Universe. If the dark matter particles are initially assigned
to be in thermal equilibrium with the standard model (SM)
sectors, and then “freeze-out” from the plasma as the
Universe expands and cools down, such kind of dark
matter is usually called the weak interaction massive
particle (WIMP), (for a review, see Ref. [2]). For this case,
the dark matter freezes out roughly around the temperature
Tf ∼

mχ

26
, where mχ is the mass of the dark matter particle.

For this scenario, the usual methodology based upon zero-
temperature theories is a very good approximation to
calculate the relic abundance since the thermal corrections
to the dark matter production process are negligible.
Meanwhile, if the dark matter interacts feebly with the
early plasma and is created (or “freeze-in”) gradually from
a void initial condition, such kind of dark matter can be
called a feebly-interacting massive particle (FIMP) [3–8].
Since FIMPs are created much earlier when T

mχ
∼ 0.3–3 in a

relatively higher temperature, so the evolution of the phases

at the early Universe, including the phase transition
processes may affect the dark matter production processes
through two aspects: (1) the external leg’s effective masses
may vary significantly as both the vacuum expectation
values (VEVs) and the thermal corrections evolve, and (2)
the internal mediator’s propagators for the scattering
process can also change during this period. As a result,
the production processes of the dark matter particles can be
switched on and/or off due to the threshold effects, finally
altering the interaction rates evidently during the freeze-in
processes.
The FIMPs with vector bosons participating in the

dark matter’s production process are of particular interest
[9–19]. Thermal corrections to massive gauge bosons
might affect the yield of the relic density a lot.
References [14,16,19] considered the thermal effects espe-
cially on the longitudinal vector boson in the case that the
zero-temperature mass of the vector boson can be neglected
compared with the thermal corrections. Reference [15]
calculated the massive vector boson case with the estima-
tion that all the degrees of freedom take the universal
thermal mass. To obtain a more comprehensive and reliable
prediction of the relic density when the zero-temperature
mass of the vector boson becomes indispensable, one has to
include the thermal corrections to the massive gauge
bosons’ longitudinal, transverse, and Goldstone degrees
of freedom separately as the phase evolves [20]. In this
paper, we rely on a model including the fermionic dark
matter χ and a Uð1Þ0 gauge boson A0. The mass term of the
A0 originates from the spontaneously symmetry breaking of
theUð1Þ0 group induced by the first-order phase transitions.
In spite of the minimal model in which only one Higgs
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singlet Φs exists to interact with the A0 moderately, we
would rather introduce an additional Φw which couples
with the dark matter feebly inspired by the freeze-in
scenario. These setups are minimal for the dark matter
to interact straightforwardly with all the transverse, longi-
tudinal and Goldstone degrees of freedom of the vector
boson, allowing us to present a complete evaluation for
such hybrid interactions. Deleting Φw will shut down the
coupling between the dark matter and the Goldstone degree
of freedom, significantly simplifying the calculations,
however losing some generalities, which is not preferred
by us. The evolution of the VEVs of the Φs;w along with
phase transitions also affect the A0 masses. In this paper, we
consider both the thermal masses and the VEV-induced
masses of the A0, and evaluate their effects on the dark
matter production rate. The spontaneously symmetry
breaking of the local Uð1Þ0 symmetry can yield the
formation of cosmic strings for the scenario of
hΦwi ≫ hΦsi, which is essential for a considerable or
dominate contribution of the dark matter production rate
from the longitudinal vector boson [21]. These cosmic
strings then collide and self-interact to form loops, and the
loops finally disappear with the legacy of significant
gravitational waves formulated via cusp, kink, and kink-
kink collisions [24–26]. We estimate the possibility to
probe these gravitational waves emitted from the cosmic
strings. We also study the first-order phase transitions
associated with dark matter production, since which can
emit gravitational waves to be probed by the future space-
based gravitational wave interferometers e.g., LISA [27],
TianQin [28–30], Taiji [31,32], DECIGO [33,34], and
BBO [35,36]. For previous studies on the topic, see
Refs. [37–66].
This paper is organized as follows. Our model is

described in Sec. II and the methodology for the evaluation
of phase transition and gravitational waves are given in
Sec. III. We go into detail for our calculation of the freeze in
production process of the fermionic dark matter in Sec. IV.
We comment on the phenomenological constraints on the
model in Sec. V. Numerical results of the dark matter and
gravitational wave productions for some benchmarks are
given in Sec. VI and Sec. VII is devoted to the summary
and future prospects, and some details for the readers are
given in Appendixes A, B, C, and D.

II. MODEL DESCRIPTION

In this paper, besides the SM particles, we introduce two
dark Higgs singlets of Φs, Φw, and one Dirac fermionic χ
field that are all charged under the Uð1Þdark gauge group
with the corresponding gauge field A0

μ. χ contains twoWeyl
components, which should always appear in pair to elude
the anomaly. We impose a Z2 symmetry under which χ is
Z2-odd, while all the other particles are Z2-even. The
Uð1Þdark charge carried by χ is denoted by tχ, and the
Uð1Þdark charge carried by Φs, Φw is denoted by ts ¼ 1 and

tw. For the purpose of the freeze-in scenario, the feeble
interaction between the dark matter and the A0 requires
tχ ≪ 1 ¼ ts, so renormalizable Yukawa couplings between
χ andΦs are prohibited due to the unbalance of the charges.
Assigning tw ¼ 2tχ gives rise to the possible tenuous
Yukawa coupling between χ and Φw. After Φw acquires
the VEV, the two Weyl components of χ split, and the
lighter one becomes the dark matter candidate, with its
stability guaranteed by the Z2 symmetry. With the above
setups, the total Lagrangian corresponding to the dark
sector is written below,

L ⊃ Lkin þ Lχm þ LY − VðH;Φs;ΦwÞ; ð1Þ

where

Lkin ¼ −
1

4
F0
μνF0μν − ϵBμνF0

μν þDμΦsðDμΦsÞ†

þDμΦwðDμΦwÞ† þ iχ̄Dμγ
μχ;

Lχm ¼ mχ χ̄χ;

LY ¼
ffiffiffi
2

p
yχ
2

Φwχ̄χ
C þ H:c:: ð2Þ

Here, F0
μν ¼ ∂μA0

ν − ∂νA0
μ, Dμ ¼ ∂μ þ itgDA0

μ,yχ ≪ 1, and
gD is the dark gauge coupling constant. For simplicity, we
define gχ ¼ tχgD, and gw ¼ twgD ¼ 2tχgD, soDμχ ¼ ∂μχþ
igχA0

μχ and DμΦw ¼ ∂μΦw þ igwA0
μΦw. The ϵBμνF0

μν indu-
ces the kinematic mixing between the SM neutral vector
boson and the A0. The potential term is given by

VðH;Φs;ΦwÞ ¼ μ20ðH†HÞ þ λðH†HÞ2 þ λshðΦ�
sΦsH†HÞ

þ λwhðΦ�
wΦwH†HÞ þ μ2sΦ�

sΦs þ μ2wΦ�
wΦw

þ λsðΦ�
sΦsÞ2 þ λwðΦ�

wΦwÞ2
þ λswðΦ�

sΦsÞðΦ�
wΦwÞ; ð3Þ

where H is the SM Higgs doublet.
We expand the scalar fields around their classical back-

grounds as

H ¼
� Gþ þ G̃þ

hþiG0þh̃þG̃0ffiffi
2

p

�
;

Φs ¼ ϕs þ iϕsη þ
ϕ̃s þ iϕ̃sηffiffiffi

2
p ;

Φw ¼ ϕw þ iϕwη þ
ϕ̃w þ iϕ̃wηffiffiffi

2
p ; ð4Þ

where h, G0, Gþ, ϕs, ϕsη, ϕw, and ϕwη are background
fields, and the corresponding h̃, G̃0, G̃þ, ϕ̃s, ϕ̃sη, ϕ̃w, and
ϕ̃wη are particles. The Z2-odd χ can be decomposed into
two Weyl spinors
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χ ¼
�

χL

iσ2χ�R

�
; ð5Þ

and the mass term can be written by

L ⊃
1

2
½χTL χTR�

�
δm mχ

mχ δm

��
χL

χR

�
þ H:c:; ð6Þ

where δm ¼ ffiffiffi
2

p
yχϕw. Diagonalizing (6) with

χ̃1 ¼
iffiffiffi
2

p ðχL − χRÞ;

χ̃2 ¼
1ffiffiffi
2

p ðχL þ χRÞ; ð7Þ

gives rise to

L ⊃
1

2
½χ̃T1 χ̃T2 �

�
mχ − δm 0

0 mχ þ δm

��
χ1

χ2

�
þ H:c:: ð8Þ

It would be more convenient to define two four-
dimensional Majorana spinors

χ1 ¼
�

χ̃1

iσ2χ̃�1

�
; χ2 ¼

�
χ̃2

iσ2χ̃�2

�
; ð9Þ

and then we have

χ ¼ χ1 − iχ2ffiffiffi
2

p ;

χC ¼ χ1 þ iχ2ffiffiffi
2

p : ð10Þ

Therefore, the Yukawa and gauge interactions can be
reduced to

L ⊃
yχ
2
ð−χ̄1ϕ̃wχ1 þ χ̄2ϕ̃wχ2 þ χ̄1ϕ̃wηχ2 þ χ̄2ϕ̃wηχ1Þ

þ itχgDχ̄1=A0χ2: ð11Þ

We are interested in the phase transition and dark matter
freeze-in production process mainly around the TeV scale,
and we discuss the phase transition evaluations in two
scenarios. In Scenario I, vw ≈ vs ∼ TeV scale and both Φs
and Φw appear in the phase evaluation processes. In this
scenario, δm ≪ mχ so that χ1;2 can be treated as a pair of
pseudo-Dirac particles. Scenario II is where vw ≫ vs, as
well as μ2w ≫ μ2s . The cosmic string produced after the ϕw
acquires VEV and the spontaneously breakdown of the
Uð1Þdark, in which Φw decouple from our TeV-scale phase-
transition evaluations, except its Goldstone remains ϕwη

which contributes to the longitudinal polarization of A0.
In this scenario, ϕw changes little in the TeV-scale

temperature, then it can be regarded as a constant, and is
assigned a zero-temperature value vw. It is then convenient
to write Φw into the nonlinear form Φw ¼ vweiϕwη=vw . The
Yukawa term then becomes

LY ≈yχvweiϕwη=vw χ̄χCþH:c:

≈yχvwχ̄χCþ iyχ χ̄χCϕwη−
yχ
2vw

ϕ2
wηχ̄χ

Cϕ2
wηþH:c:: ð12Þ

We see clearly the χ-splitting mass term above, as well as
the higher-order 3- and 4-point effective vertices. The vw in
this scenario can become extraordinary large, thus amplify-
ing the δm to split χ1;2 into completely two Majorana
fermions. If yχvw is large enough to induce δm > mχ , an
additional minus sign in the first eigenvalue of (8) arises.
We are going to illustrate our manipulation of it in our later
discussions. The last thing we want to emphasize is that
there is also a tiny coupling between χ and ϕs induced by
the faint mixing (denoted by Vsw) between the ϕw and ϕs
sectors. We parametrize such an interaction with the
effective coupling

Lχχϕs
¼ yχVswϕsχ̄χ

C þ H:c:: ð13Þ

Other scenarios are possible. For an example, vw ≪ vs is
possible, however there is no substantial computational
difference between this and the Scenario I, and the phase
transition patterns are simpler. Therefore, we are not
interested in such cases.

III. FIRST ORDER PHASE TRANSITION AND THE
PRODUCTIONOF THEGRAVITATIONALWAVES

In this section, we write down the methodology for
calculations of phase transition and gravitational waves
produced during first-order phase transition process and
from the cosmic strings decay.

A. Finite temperature effective potential

For the study of the phase transition in Scenario I, with
the standard methodology, we adopt the thermal one-loop
effective potential [67],

Veffðh;ϕs;ϕw; TÞ ¼ V0ðh;ϕs;ϕwÞ þ VCWðh;ϕs;ϕwÞ
þ Vc:t

1 ðh;ϕs;ϕwÞ þ VT
1 ðh;ϕs;ϕw; TÞ

þ Vdaisy
1 ðh;ϕs;ϕw; TÞ: ð14Þ

The V0ðh;ϕs;ϕwÞ and VCWðh;ϕs;ϕwÞ are the tree-level
potential and the one-loop Coleman-Weinberg potential,
with Vc:t

1 ðh;ϕs;ϕwÞ to keep the zero temperature vacuum
from shifting. The finite temperature correction is described
by the term of VT

1 ðh;ϕs;ϕw; TÞ, and the daisy-correction
term Vdaisy

1 ðh;ϕs;ϕw; TÞ.
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Rotating the fields to expand along the ϕsη ¼ ϕwη ¼ 0

hyper plane, we obtain the tree-level potential,

V0ðh;ϕs;ϕwÞ ¼
λh4

4
þ 1

2
ðλshϕ2

s þ λwhϕ
2
w þ μ20Þh2 þ λsϕ

4
s

þ ðλswϕ2
s þ μ2wÞϕ2

w þ λwϕ
4
w þ μ2sϕ

2
s : ð15Þ

At zero temperature, considering the stationary point
conditions,

dV0ðh;ϕs;ϕwÞ
dh

����
h¼vh

¼ 0;
dV0ðh;ϕs;ϕwÞ

dϕs

����
ϕs¼vs

¼ 0;

dV0ðh;ϕs;ϕwÞ
dϕw

����
ϕw¼vw

¼ 0; ð16Þ

we get

μ20 ¼ −λv2h − λshv2s − λwhv2w;

μ2s ¼ −λshv2h=2 − 2λsv2s − λswv2w;

μ2w ¼ −λwhv2h=2 − λswv2s − 2λwv2w: ð17Þ

In this paper, we assign vh, vs, and vw as well as all the
other coupling constants as our input parameters, and
utilize Eq. (17) to evaluate μ20;s;w.
The Coleman-Weinberg contribution is given by [68]

VCWðh;ϕs;ϕwÞ ¼
X
i

gið−1ÞF
64π2

m4
i ðh;ϕs;ϕwÞ

×

�
Ln

�
m2

i ðh;ϕs;ϕwÞ
Λ2

�
− Ci

�
; ð18Þ

where F ¼ 0ð1Þ for bosons (fermions), Λ is the MS
renormalization scale, gi ¼ f1; 1; 1; 1; 1; 1; 2; 6; 3;−12g
for the fh; η;ϕs;ϕsη;ϕw;ϕwη; G�;W; Z; Tg in this model,
and Ci ¼ 5=6 for gauge bosons and Ci ¼ 3=2 for scalar
fields and fermions. Λ is a renormalization scale to be fixed
to Λ ¼ 3 TeV in this paper. The field-dependent Higgs
mass matrix is given by

M2 ¼

0
B@

3λh2 þ λshϕ
2
s þ λwhϕ

2
w þ μ20 2λshhϕs 2λwhhϕw

2λshhϕs λshh2 þ 2ð6λsϕ2
s þ μ2s þ λswϕ

2
wÞ 4λswϕsϕw

2λwhhϕw 4λswϕsϕw 2μ2w þ λwhh2 þ 2λswϕ
2
s þ 12λwϕ

2
w

1
CA: ð19Þ

The field dependent dark photon mass is given by

mA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg2Dϕ2

s þ g2wϕ2
wÞ

q
: ð20Þ

The slight shift of the tree-level VEVs induced by VCW is
canceled by the counterterms (CT) [69]

Vc:t
1 ¼ δλsϕ

4
s − δμ2sϕ

2
s − δμ2wϕ

2
w þ δλwϕ

4
w þ δλh4 − δμ20h

2

þ δλshh2ϕ2
s þ δλwhh2ϕ2

w þ δλswϕ
2
wϕ

2
s ; ð21Þ

with the relevant coefficients determined by

∂Vc:t
1

∂h
¼ −

∂VCW

∂h
;

∂
2Vc:t

1

∂h∂h
¼ −

∂
2VCW

∂h∂h
;

∂Vc:t
1

∂ϕsðwÞ
¼ −

∂VCW

∂ϕsðwÞ
;

∂
2Vc:t

1

∂ϕsðwÞ∂ϕsðwÞ
¼ −

∂
2VCW

∂ϕsðwÞ∂ϕsðwÞ
;

∂
2Vc:t

1

∂h∂ϕsðwÞ
¼ −

∂
2VCW

∂h∂ϕsðwÞ
;

∂
2Vc:t

1

∂ϕs∂ϕw
¼ −

∂
2VCW

∂ϕs∂ϕw
; ð22Þ

evaluated at the EW minimum of fh ¼ vh;ϕs ¼ vs;
ϕw ¼ vwg. The logarithmic ir divergences encountered in
(22) take the form [70–73]

∂m2
G

∂ϕi

∂m2
G

∂ϕj
ln
m2

G

Λ2
; ð23Þ

where ϕi can be any scalar field, and G is one Goldstone
mass term. We follow Ref. [69] to replace the Nambu-
Goldstone boson masses with ΛIR in (22). In this paper, we
adopt ΛIR ¼ 200 GeV.
The one-loop finite temperature corrections are given

by [74]

VT
1 ðh;ϕs;ϕw; TÞ ¼

T4

2π2
X
i

niJB;F

�
m2

i ðh;ϕs;ϕwÞ
T2

�
; ð24Þ

where the functions JB;F are

JB;FðyÞ ¼ �
Z

∞

0

dx x2 ln
h
1 ∓ exp ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y

q
Þ
i
; ð25Þ

with y≡m2
i ðh;ϕsÞ=T2, and the upper (lower) sign corre-

sponds to bosonic (fermionic) contributions, respectively.
The thermal integrals JB;F given by Eq. (25) can be
expressed as an infinite sum of modified Bessel functions
of the second kind KnðxÞ with n ¼ 2 [75],
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JB;FðyÞ ¼ lim
N→þ∞

∓XN
l¼1

ð�1Þly
l2

K2ð
ffiffiffi
y

p
lÞ: ð26Þ

The daisy term Vdaisy
1 ðh;ϕs;ϕw; TÞ is given by [76,77]

Vdaisy
1 ðh;ϕs;ϕw; TÞ ¼ −

T
12π

X
i¼bosons

ni
h
ðm2

i ðh;ϕs;ϕwÞ

þ ciðTÞÞ32 − ðm2
i ðh;ϕs;ϕwÞÞ32

i
; ð27Þ

where the finite temperature corrections are calculated as

chðTÞ ¼
1

48
T2ð9g2 þ 3g02 þ 4ð6λþ λsh þ λwhÞ þ 12y2t Þ;

ð28Þ

csðTÞ ¼
1

12
T2ð3g2D þ ð4λs þ 2λsh þ λswÞÞ; ð29Þ

cwðTÞ ¼
1

12
T2ðλsw þ 4λw þ 2λwhÞ; ð30Þ

cA0 ðTÞ ¼ 1

3
g2DT

2; ð31Þ

cBðTÞ ¼
11

6
g21T

2; ð32Þ

cWðTÞ ¼
11

6
g22T

2; ð33Þ

where g1 and g2 are the SM Uð1ÞY × SUð2ÞL gauge
couplings. The definitions of the m2

i ðh;ϕs;ϕwÞ þ ciðTÞ
in the mixing situation are the eigenvalues of (33), with the
diagonal elements added with the ciðTÞ defined in (33).
The details of the mixture of the vector bosons are
illustrated in Appendix. A.
For the studies of phase transition in the Scenario II, the

evaluation of temperature dependent effective potential is
actually similar with Eqs. (14)–(33) in Scenario I, with all
of the ϕw, λw;sw;wh terms removed. More explicitly, after
integrating out the ϕw, the ϕw-mediated processes also
converges into pointlike interactions. This eliminates the
ϕw involved terms, while shifting the λh;s;hs and μ20;s in (15)

into λ̃h;s;hs and μ̃20;s. For simplicity, we neglect the “tilde”
without confusion to write down the potential from the
aspect of effective theory,

V0;ϕw
ðh;ϕs;ϕwÞ ¼

λh4

4
þ 1

2
ðλshϕ2

s þ μ20Þh2 þ λsϕ
4
s þ μ2sϕ

2
s :

ð34Þ

Therefore, the third row and column in Eq. (35) also
disappears,

M2
0;ϕw ¼

 
3λh2 þ λshϕ

2
s þ λwhϕ

2
w þ μ20 2λshϕhϕs

2λshhϕs λshh2 þ 2ð6λsϕ2
s þ μ2s þ λswϕ

2
wÞ

!
: ð35Þ

For the field-dependent mass mA0 , (20) becomes

mA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg2Dϕ2

s þ g2wv2wÞ
q

: ð36Þ

Notice that although gw ≪ gD, the extremely large vw ≫ ϕs
might still contribute significantly to the gauge boson’s
mass.
Since the minimum of the effective potential ðh;ϕs;ϕwÞ

evolve as the temperature drops, it is necessary to study
the phase evolution and transition structures of the system.
We utilize both the CosmoTransitions [78] and
PhaseTracer [79] by making independent programs
to find out the phases as well as the transition processes
among them for the cross validation, and will only adopt
the data when the results from both programs are
consistent.

B. Bubble nucleation temperature Tn and the
percolation temperature Tp

For a study on first-order phase transition, one has to
compute the bubble nucleation temperature Tn, and the
percolation temperature Tp, that are usually somewhat
lower than the critical temperature Tc when two vacua
are degenerate. The bubble nucleation temperature Tn can
be estimated by [80]Z

tn

tc

dt
Γ
H3

¼
Z

Tc

Tn

dT
Γ

H4T
¼ 1; ð37Þ

which means that at temperatures lower than the critical
temperature, at least one bubble should be created inside
the per-unit Hubble volume at the bubble nucleation
temperature Tn. The bubble nucleation rate Γ is defined
by [81]

Γ ∼ T4

�
S
2π

�
4

e−S; ð38Þ
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where A is anOð1Þ constant, and S ¼ minfS4; S3=Tg is the
action of the bubble solution. Usually in our model around
Tc;n;p, S3=T < S4 so that we only display the S3 definition

S3 ¼ 4π

Z
∞

0

drr2
�
1

2

dϕi

dr
dϕi

dr
þ VeffðϕiTÞ

�
; ð39Þ

where ϕiðrÞ ¼ ðh;ϕs;ϕiÞ is the “bounce solution” acquired
from the equations of motion

d2ϕi

dr2
þ 2

r
dϕi

dr
¼ ∂Veff

∂ϕi
; ð40Þ

with the boundary conditions

dϕi

dr

����
r¼0

¼ ϕiphase 1;
dϕi

dr

����
r¼∞

¼ ϕiphase 2; ð41Þ

between the two phases ϕiphase 1 and ϕiphase 2 during the
transition.
The definition of the percolation time tp is given by

[82–84]

PðtÞ ≃ 0.71; ð42Þ

where

PðtÞ ¼ exp

�
−
4π

3

Z
t

tc

dt0Γðt0Þa3ðt0Þr3ðt; t0Þ
�
: ð43Þ

Here aðt0Þ is the scale factor of the Friedmann-Robertson-
Walker metric, rðt; t0Þ is the comoving radius of a bubble
given by

rðt; t0Þ ¼
Z

t

t0
dτ

vb
aðτÞ ; ð44Þ

where vb is the velocity of the bubble wall. After tp is
evaluated, one can solve the Tp through the equation

H2 ¼ 8π

3M2
pl

g⋆T4 ð45Þ

by replacing H with 1=ð2tpÞ during the radiation dominant
epoch. Here g⋆ is the effective degrees of freedom of the
plasma, which is approximated by g⋆ ≃ 106.

C. Gravitational waves from the first-order phase
transition

To evaluate the gravitational wave spectrum emitted
during the first-order phase transition, one has to acquire
the phase transition strength parameter of α, and the phase
transition duration parameter of β, which are defined to be

α ¼ ρvac
ρrad

;

β ¼ dS
dt

¼ HT
dS
dT

; ð46Þ

where ρrad ¼ π2g�T4=30 is the plasma energy density,
and [85]

ρvac ¼ Veffðϕphase1Þ − Veffðϕphase2Þ

− T
∂

∂T
½Veffðϕphase1Þ − Veffðϕphase2Þ� ð47Þ

is the released vacuum energy during the phase transition.
Both α and β can be calculated at the phase-transition
temperature of either T� ¼ Tn or T� ¼ Tp for slightly
different results. In this paper, we adopt T� ¼ Tp, however
we still use the symbol T�, as well as H� ¼ HðT�Þ in our
following displayed equations for the purpose of generality.
We then follow Ref. [81] to evaluate the gravitational

wave from the first-order phase transition by summing up
the contributions from bubble collision, sound wave and
turbulence,

ΩGW ¼ Ωco þΩsw þΩturb: ð48Þ

1. The bubble walls collision contributions

The bubble walls collision term Ωco from the “envelope
approximation” results is given by [86–89]

h2ΩcoðfÞ ≃ 1.67 × 10−5
�

β

H�

�
−2
�

κϕα

1þ α

�
2
�
100

g⋆

�
1=3

×
0.11vb

0.42þ v2b

3.8ðf=fcoÞ2.8
1þ 2.8ðf=fcoÞ3.8

: ð49Þ

For Jouguet detonations, we adopt the Chapman-Jouguet
condition of the wall velocity vb as below [93],

vb ¼
1=

ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2α=3

p
1þ α

; ð50Þ

with the peak frequency fco locating at

fco ≃ 1.65 × 10−5 Hz
β

H�

�
0.62

1.8 − 0.1vb þ v2b

�

×

�
T�

100 GeV

��
g�
100

�
1=6

: ð51Þ
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2. The sound wave contributions

The sound wave contribution Ωsw is given by

Ωh2swðfÞ ¼ 2.65 × 10−6ðH�τswÞ
�

β

H�

�
−1
vb

�
κνα

1þ α

�
2

×

�
g�
100

�
−1
3

�
f
fsw

�
3
�

7

4þ 3ðf=fswÞ2
�

7=2
; ð52Þ

with the peak frequency being [94–96],

fsw ¼ 1.9 × 10−5
β

H�

1

vb

T�
100

�
g�
100

�1
6

Hz: ð53Þ

In Eq. (52), the τsw shows the duration of the sound wave
from the phase transition [97], which is calculated as

τsw ¼ min

�
1

H�
;
R�
Ūf

�
; ð54Þ

where H�R� ¼ vbð8πÞ1=3ðβ=HÞ−1, and the root-mean-
square fluid velocity Ūf can be approximated as [96,98,99]

Ū2
f ≈

3

4

κνα

1þ α
: ð55Þ

The κν factor in (55) indicates the latent heat transferred
into the kinetic energy of plasma, which is given by [100]

κν ¼
ffiffiffi
α

p

0.135þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.98þ α

p : ð56Þ

3. The turbulence contributions

The magnetic hydrodynamic turbulence term Ωturb is
given by

Ωh2turbðfÞ ¼ 3.35 × 10−4
�

β

H�

�
−1
�
εκνα

1þ α

�3
2

�
g�
100

�
−1
3

vb

×
ðf=fturbÞ3ð1þ f=fturbÞ−11

3

½1þ 8πfa0=ða�H�Þ�
; ð57Þ

with the peak frequency [101]

ftur ¼ 2.7 × 10−5
β

h�

1

vb

T�
100

�
g�
100

�1
6

Hz: ð58Þ

The efficiency factor ε ≈ 0.1, redshift of the frequency is
obtained as

h� ¼ ð1.65 × 10−5 HzÞ
�

T�
100 GeV

��
g�
100

�
1=6

: ð59Þ

D. Cosmic strings and gravitational waves

In Scenario II, cosmic strings start to form after ϕw
begins to acquire its VEV. These strings collide and self-
interact into loops, and then shrinks to leave us the
gravitational waves formulated via cusp, kink and kink-
kink collisions. The spectrum can be expressed as

ΩGWðfÞh2 ¼
8πh2

3M2
PlH

2
0

Z
t0

0

dt

�
aðtÞ
aðt0Þ

�
3

×
Z

∞

0

dlnCSðl; tÞPGW

�
aðt0Þ
aðtÞ f;l

�
: ð60Þ

Particularlly, Ref. [26] transforms Eq. (60) from the
Nambu-Goto string Ref. [102] into Ref. [26,103]

ΩGWðfÞh2 ¼
8πh2

3M2
PlH

2
0

Gμ2f
X∞
n¼1

CnðfÞPn; ð61Þ

where n ¼ 1; 2;…, labels the radiation frequencies
ωn ¼ 2πn=ðl=2Þ. The dimensionless parameter Gμ is

Gμ ∼
2v2w
M2

Pl

; ð62Þ

where vw is the VEV of the Uð1Þdark scalar field which
spontaneously breaks down. Pn is the corresponding
average-loop power spectrum with its numerical results
adopted from Ref. [103], and Cn is given by

Cn ¼
2n
f2

Z
∞

0

dz
HðzÞð1þ zÞ6 nCS

�
2n

ð1þ zÞf ; tðzÞ
�
; ð63Þ

where the integration of the time parameter t has been
transformed to the redshift parameter z. To evaluate the
integration in Eq. (63), we need the cosmic time tðzÞ and
Hubble constant HðzÞ to be expressed from the redshift
parameter z to become

tðzÞ ¼
Z

∞

z

dz0

Hðz0Þð1þ z0Þ ;

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩrGðzÞð1þ zÞ4 þ Ωmð1þ zÞ3 þ ΩΛ

q
; ð64Þ

with the current abundances of the radiation, matter, and
dark energy given by [1]

Ωr ¼ 9.1476 × 10−5; Ωm ¼ 0.308;

ΩΛ ¼ 1 −Ωr −Ωm: ð65Þ

The function GðzÞ is given by
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GðzÞ ¼ g�ðtÞ
g�ðt0Þ

�
gSðt0Þ
gSðtÞ

�
4=3

≈

8<
:

1; z < 109;

0.83; 109 < z < 2× 1012;

0.39; z > 2× 1012;

ð66Þ

while the cosmic string number density for the loops
produced in radiation dominated era but survive until
matter domination is given by [104]

nCSðl; tÞ ¼

8>>><
>>>:

nrCSðl; tÞ ¼ 0.18
t3=2ðlþΓGμtÞ5=2 ; ðl ≤ 0.1tÞ;

nr;mCS ðl; tÞ ¼ 0.18t1=2eq

t2ðlþΓGμtÞ5=2 ðl ≤ 0.09teq − ΓGμtÞ;
nmCSðl; tÞ ¼ 0.27−0.45ðl=tÞ0.31

t2ðlþΓGμtÞ2 ; ðl ≤ 0.18tÞ;
ð67Þ

where Γ ¼ 50 [103], and teq ¼ 2.25 × 1036 GeV−1 which
is the matter-radiation equality time.

IV. FREEZE-IN PROCESSES

The dark matter particles can be produced through both
decay and annihilation processes. To calculate the relic
density, we rely on the Boltzmann equation. Assuming
that all the other particles except the χ1;2 are in equilibrium
with the plasma. This is guaranteed by the communication
between the SM Higgs sector and the exotic Higgs sectors
through the λðs=wÞhðΦ�

s=wΦs=wÞðH†HÞ portal coupling
terms. The thermal equilibrium is then cast from the
Higgs sector to the A0 components through the moderate
gauge couplings between A0 and the Φs fields. Extremely
small yχ and tχ ≪ 10−10 keeps the dark matter away from
the thermal equilibrium of the plasma all the time, so one
can ignoring the feedback of the dark matter particles
annihilating into the plasma due to the extreme smallness of
the χ1;2 abundances compared with their equilibrium
values, the Boltzmann equation is given by

sHx
dYχ

dx
¼ 2γtot; ð68Þ

where Yχ ¼ Yχ1 þ Yχ2 ¼
nχ1þnχ2

s is the total dark matter
particle number density normalized by the entropy density,

γtot is the summation over all the “rates”, and x ¼ jmχ1
j

T is the
dimensionless parameter measuring the evolution of time.
To calculate the γtot, we need to sum over all of the

1 ↔ 2 and 2 ↔ 2 processes taking into account the thermal
corrections on the external legs. When x ≪ 1, the Hubble
constant evolves asH ∝ T2 during the radiation-dominated
era. For the 1 ↔ 2 production rates Γ ∝ mp, where mp is
the thermally-corrected mass of the parent particle. HTL
results show that mp ∝ T at high-temperature limits. For
the 2 ↔ 2 processes, the production rates are thermally
averaged cross section times the particle’s number density
hσvin. At high-temperature limits n ∝ T3, however the
phase space integration of hσvi contributes to a 1

T2 factor in

the relativistic limit. Thus, roughly hσvin ∝ T. Both Γ and
hσvin arise slower than H as the temperature arises,
keeping the dark matter far away from the thermal
equilibrium at extremely high temperatures. The thermal
corrections to the dark sector particles χ1;2 are neglected.
Besides the VEV-dependent mass terms, all the other
particles receive thermal corrections on their dispersion
relations. These cause the complicated threshold effects,
and the production rates change significantly during the
freeze-in processes.
After the electroweak phase transition whenH acquires a

nonzero VEV, there will be intricate mixings of both the
gauge bosons and the Higgs bosons between the SM and
dark sectors. This is extremely hard to manipulate. Due to
our current limited theoretical and computational abilities,
in this paper we constrain our parameter space withinmχ ≫
100 GeV so the freeze-in processes basically cease when
x ¼ mχ

T ≳ 3, which is set well above the electroweak phase
transition temperature Tew ∼ 100 GeV for us to safely
neglect the dark matter production below the electroweak
phase transition.
For the gauge boson and the SM fermions, we adopt the

hard-thermal-loop (HTL) results to evaluate the phase
space of the final states. Goldstone equivalence gauge is
also utilized for the convenience to decompose the degrees
of freedom of the vector boson A0. The details of the HTL
corrections to the vector boson and the SM fermions are
illustrated in Appendix. B.
The Higgs bosonmasses are extracted from Eq. (14). Since

we only consider the processes above the electroweak phase
transition so that h ¼ 0, and there the mixings between the
SM Higgs doublet and the ϕs;w vanish. Therefore,

m2
H ¼ ∂

2Veff

∂h2
; ð69Þ

M2
s;w ¼ 1

2

0
B@

∂
2Veff
∂ϕ2

s

∂
2Veff

∂ϕs∂ϕw

∂
2Veff

∂ϕw∂ϕs

∂
2Veff
∂ϕ2

w

1
CA: ð70Þ
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Since before the electroweak phase transition, all the ele-
ments of the SM Higgs doublet are degenerate, so mH is the
mass for all of the SM Higgs bosons. Diagonalizing (70)
gives two mass eigenstates mixed from the ϕ̃s;w. We use ϕ1;2

to represent the two eigenstates, and m1;2 to denote the
corresponding masses. The mixing matrix elements are
assigned with

V ¼
�
V1s V1w

V2s V2w

�
; ð71Þ

so that

diag½m2
1; m

2
2� ¼ VM2

s;wV†: ð72Þ

When ϕs ≠ 0 and ϕw ≠ 0, the ∂
2Veff

∂ϕs∂ϕw
≠ 0, so we need to

diagonalize Eq. (70) and calculate the mass eigenvalues and
mixing matrix. In this case, the masses of ϕsη and ϕwη also
vanish. This is because besides the gauged Uð1Þdark group,
there is an additional global Uð1Þ symmetry which is also
broken to generate another Goldstone boson. The two
massless states recombine into

ϕA0η ¼
gDϕsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2Dϕ
2
s þ g2wϕ2

w

p ϕ̃sη þ
gwϕwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2Dϕ
2
s þ g2wϕ2

w

p ϕ̃wη;

ϕGη ¼ −
gwϕwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2Dϕ
2
s þ g2wϕ2

w

p ϕ̃sη þ
gDϕsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2Dϕ
2
s þ g2wϕ2

w

p ϕ̃wη; ð73Þ

or one can warp the coefficients by parametrizing them into
UðA0;GÞðs;wÞ,

ϕA0η ¼ UA0sϕ̃sη þ UA0wϕ̃wη;

ϕGη ¼ UGsϕ̃sη þUGwϕ̃wη: ð74Þ

Here ϕA0η connects with the A0, and will be partly eaten by
the longitudinal polarization of A0, as will be illustrated in
Appendix B. ϕGη is the Goldstone boson corresponding to
the global Uð1Þ symmetry. At zero temperature, it might
cause some phenomenology problems such as the Higgs
invisible decay. We will discuss these problems later in
this paper.
The assignment of the ϕA0η, ϕGη masses depends on the

VEV structures of ϕs;w. When ϕs;w are both nonzero, both
ϕA0η;Gη are massless, and if one or both of the ϕs;w become
zero, the counterpart of the nonzero VEV of ϕs;w is
massless, while the counterpart of the zero VEV shares
the same mass with the corresponding ϕs or ϕw.
For further usage, we list all the couplings in Table I, and

then we are ready to calculate the interaction rates γtot. This
involves evaluating the diagrams in Figs. 1–8 for all the
1 ↔ 2, non-SM product 2 ↔ 2 and SM product 2 ↔ 2
processes respectively. For brevity of this section, the
detailed formulas are given in Appendix D.

V. PHENOMENOLOGICAL CONSTRAINTS

The FIMP dark matter interacts so faintly with the SM
sector, so it typically lies far beyond the ability of all the
direct and indirect detection experiments. For our model
discussed in this paper, the dark Higgs sector and the A0 are
constrained by the experimental data.
In this model, there is always a massless Goldstone

boson ϕGη. The relic of such a particle behaves as a dark
radiation, and can contribute to the effective number of
neutrino species Neff . The SM neutrino-to-photon density
ratio is given by

ρν
ργ

¼ 7

8
Neff

�
4

11

�4
3

: ð75Þ

TABLE I. Couplings formalism and constants to be used.

Interactions Symbol Coupling constants

χ̄iχiϕj yij yχVjwðδ2i − δ1iÞ
χ̄1χ2ϕðA0;GÞη yðA0;GÞη yχUðA0;GÞw
½ð∂μϕiÞϕðA0;GÞη − ϕi∂μϕðA0;GÞη�Aμ giðA0;GÞ 2gwViwUðA0;GÞw þ 2gDVisUðA0;GÞs
A0
μA0μϕi GA0A0i 4g2DV1sϕs þ 4g2wV1wϕw

ϕ1ϕ1ϕ1 A111 24V3
1sϕsλs þ 12V1sV2

1wϕsλsw þ 12V2
1sV1wϕwλsw þ 24V3

1wλw
ϕ1ϕ1ϕ2 A112 24V2

1sV2sϕsλs þ 4V2sV2
1wϕsλsw þ 8V1sV1wV2wϕsλsw

þ8V1sV2sV1wϕwλsw þ 4V2
1sV2wϕwλsw þ 24 � V2

1wV2wϕwλw
ϕ1ϕ2ϕ2 A122 24V1sV2

2sϕsλs þ 8V2sV1wV2wϕsλsw þ 4V1sV2
2wϕsλsw

þ4V2
2sV1wϕwλsw þ 8V1sV2sV2wϕwλsw þ 24V1wV2

2wϕwλw
ϕ2ϕ2ϕ2 A222 24V3

2sϕsλs þ 12V2sV2
2wϕsλsw þ 12V2

2sV2wϕwλsw þ 24V3
swϕwλw

ϕiϕGηϕGη AiGG 8VisϕsU2
Gsλs þ 4ViwU2

Gsϕwλsw þ 4VisϕsU2
Gwλsw þ 8ViwϕwU2

Gwλw
ϕiϕGηϕA0η AiGA0 8VisϕsUA0sUGsλs þ 4ViwVA0sVGsϕwλsw þ 4VisϕsUA0wUGwλsw þ 8ViwϕwUA0wUGwλw
ϕiϕA0ηϕA0η AiA0A0 8VisϕsV2

A0sλs þ 4ViwV2
A0sϕwλsw þ 4VisϕsV2

A0wλsw þ 8ViwϕwV2
A0wλw
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FIG. 2. Pure vector elements of the A0A0 ↔ χiχi diagrams.

FIG. 1. 1 ↔ 2 diagrams for the production of dark matter. The decayed particle can be A0 with the accessory ϕA0η, ϕ1;2, and ϕsη;wη.

FIG. 3. ϕA0η;GηA0 ↔ χiχi diagrams. The Goldstone degree of freedom of A0A0 ↔ χiχi can also be indicated.

FIG. 4. ϕA0η;GηϕA0η;Gη ↔ χiχi diagrams. The Goldstone degree of freedom of A0A0 ↔ χiχi can also be indicated.
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If the dark radiation decouples with the thermal bath at
some temperature Tdr when the effective degree of freedom
is g�ðTdecÞ, its density respective to the photon density is
calculated to be

ρdr
ργ

¼ Ndr

�
2

g�ðTdecÞ
�4

3

: ð76Þ

If ϕGη is the dark radiation, Ndr ¼ 1, and its correction to
Neff is

FIG. 5. ϕ1;2A0 ↔ χ1χ2 diagrams.

FIG. 6. ϕA0η;Gηϕ1;2 ↔ χ1χ2 diagrams. The Goldstone degree of freedom of A0ϕ1;2 ↔ χ1χ2 can also be indicated.

FIG. 7. ϕ1;2ϕ1;2 ↔ χiχi diagrams.

FIG. 8. f̄f ↔ χ1χ2 (left panel) and HþH− ↔ χ1χ2 (right
panel) diagrams.
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δNeff ≈
7

8

�
11

2g�ðTdecÞ
�4

3

: ð77Þ

Since ϕGη only interacts with the Higgs sector and the dark
photon sector, which are massive and disappear from the
thermal plasma far above the temperature T > 10 GeV,
compelling ϕGη to decouple with the plasma when
g�ðTdecÞ ≈ 100. Therefore,

δNeff ≈ 0.02: ð78Þ

This is fairly safe within the Planck data [1,105,106].
The exotic Higgs bosons introduced in this model mix

with the SM Higgs boson, and might alter the SM-like
Higgs boson’s phenomenology. According to Ref. [107],
when the mixing angle between the SM-like Higgs boson
and the exotic Higgs boson X sin θhX ≲ 0.2, the SM-like
Higgs boson can fit all the experimental data safely, so we
set this criterion during our scanning processes. Another
stringent bound in the Higgs sector is the hSM → ϕGηϕGη,
which cannot be prohibited kinematically because of the
massless ϕGη. The width of the SM Higgs boson decaying
into an exotic massless scalar boson X can be estimated as

Γh→XX ¼ λ2hXv
2
h

32πmh
; ð79Þ

where λhX is the effective h-h-X-X coupling.We just estimate

the bounds
λ2hXv

2
h

32πmh
≲ ΓhSM ¼ 4.07 GeV [105,108–110]. This

requires λhX ≲ 0.02, which should be compatible with λs;wh
in order of magnitude, so we will set λs;wh < 0.01 during our
scanning process to avoid this constraint.
Finally, the A0 in our model might be produced at the

LHC through its mixing term (D48) with the SM Z=γ
bosons. Ref. [105] summarized the detector bounds on this
kind of vector bosons. For example, Ref. [111] constrained

the ½σ·B�Z0
½σ·B�Z < 10−5 ∼ 10−8 depending on different Z0 masses.

However, compared with the Z production channel, (D48)
at least introduces a ϵ2 suppression factor, not to mention
the suppression due to the large A0 masses we adopted
in this paper. As we will illustrate, we are going to fix
ϵ ¼ 10−4 in each of our benchmark points listed in Table II,
which is free from the Z0 bounds.

VI. NUMERICAL RESULTS

For all the 2 ↔ 2 processes described in Sec. IV, there
exists at least one s-channel diagram. Sometimes the

TABLE II. Benchmark points with their parameters. During our calculations, the mixing parameters between the dark vector boson
and the hypercharge boson in (D48) are set to be a universal ϵ ¼ 10−4, and the Vsw defined in (13) are assigned to be 3 × 10−5 vs

vw
among

all Scenario II benchmark points. The two benchmark points in Scenario I induce two-step phase transitions, thus both the Tp values are
listed.

Values

Parameters BP_S1_1 BP_S1_2 BP_S2_1 BP_S2_2

vs=GeV 1303.2 2612.7 4346.3 1418.9
vw=GeV 748.3 1744.2 2.667×103gD

2gχ
0.30638×103gD

2gχ

λsh 0.001341 0.0003910 0.006935 0.009652
λwh 0.006998 0.006582
λs 0.06752 0.06061 0.007278 0.02294
λw 1.1991 1.7614 0.6 0.6
λsw 0.4964 0.5354
gD 0.9688 0.9472 0.9118 1.1102
Tp=GeV 1725.1, 373.8 4089.4, 046.1 795.9 444.4

Values

Parameters BP_S1_1_1 BP_S1_1_2 BP_S1_1_3 BP_S1_2_1 BP_S1_2_2 BP_S1_2_3

mχ=GeV 2000 2000 2000 2000 2000 2000
gχ 6.76 × 10−12 6.09 × 10−12 1.34 × 10−12 5.33 × 10−12 3.41 × 10−12 4.42 × 10−13

yχ 0.1gχ gχ 10gχ 0.1gχ gχ 10gχ

Parameters BP_S2_1_1 BP_S2_1_3 BP_S2_2_1 BP_S2_2_2

mχ=GeV 2000 2000 2000 2000
mχ1=GeV 1853.8 −2385.6 1975.9 1759.5
gχ 5.00 × 10−12 3.64 × 10−13 5.64 × 10−12 4.03 × 10−12

yχ 0.1gχ 3gχ 0.1gχ gχ

LIGONG BIAN, YI-LEI TANG, and RUIYU ZHOU PHYS. REV. D 106, 035028 (2022)

035028-12



s-channel mediator becomes on-shell when it is above the
threshold to open up a corresponding 1 ↔ 2 process. The
rigorous manipulation requires to resum the one-loop
“string series” of the mediator’s self-energy diagrams.
This modifies its thermal propagators to avoid the infinity,
just similar to the familiar manipulation with the Breit-
Wigner propagators in the zero-temperature case. However,
due to the invalidation of the Lorentz invariance in the finite
temperature, the “imaginary parts” of the s-mediators are
no longer a constant for us to evaluate conveniently. Since
in the freeze-in case, if any 1 ↔ 2 processes appears to be
nonzero, the “off shell” part of the 2 ↔ 2 processes are
expected to be subdominant due to the extra couplings, and
the“on-shell” part of the corresponding s-mediator should
also be attributed to the 1 ↔ 2 processes, thus should be
removed to refrain from double counting. Therefore, an
2 ↔ 2 process is counted only when its corresponding 1 ↔
2 processes disappear.
As the temperature drops, the VEVs of our scalar fields

varies. In both Scenarios I and II, first-order phase
transition might occur at Tp ∼ 1 TeV scale and emit
gravitational waves. We scan randomly through the param-
eter space vs ∈ ½50; 5000� GeV, vw ∈ ½100; 15000� GeV,
λsh ∈ ½0; 0.01�, λwh ∈ ½0; 0.01�, λs ∈ ½0; π�, λw ∈ ½0; π�,
λsw ∈ ½0; π�, gD ∈ ½0.8; 1.2� for Scenario I, and
vs ∈ ½50; 5000� GeV, λsh ∈ ½0; 0.01�, λs ∈ ½0; π�,
gD ∈ ½0.8; 1.2�, vwtw ∈ ½1; 10000� GeV for Scenario II
for the calculations of the α and β defined in Eq. (46)
which are calculated at T� ¼ Tp, to estimate the gravita-
tional wave produced from the first-order phase transition.
In both scenarios, the lightest non-SM-like Higgs boson
is constrained above 180 GeV to prevent the strong
mixing between the exotic Higgs boson and the SM-like
Higgs boson. Here the λsh; λwh < 0.01 criterion are
enough to confine the SM-like Higgs boson within the

phenomenological constraints, and bounded from below
criterion can be checked numerically by both the
CosmoTransitions and PhaseTracer. We plot
our results in Fig. 9. Among them we adopt two benchmark
points for each scenario, which are called BP_S1_1,
BP_S1_2, BP_S2_1, BP_S2_2, with their location in the
α − β plain marked in Fig. 9, and their parameter values
assigned according to Table II.
In Scenario II, vw ≫ vs, and the spontaneously sym-

metry breaking around the vw-scale can create the cosmic
strings, ensuing the gravitational waves relics. Notice that
around the vs-scale, theΦw sectors had been integrated out,
and the only remained contribution is the ywvw within the
A0 mass term from (36). Since yw and vw do not separate in
all of the processes during the vs-scale phase transitions,
one can regard them as a whole. Therefore, in the first table
of Table II, vw remained undetermined, and for each
BP_S2_1 and BP_S2_2, the vs-scale phase transition-
induced gravitational waves still remain unchanged as gχ
varies, because the product ywvw has been fixed for each
of them.
For further comparison, we also plot the TeV-scale phase

evolutions for all of our benchmark points in Fig. 11
However, the cosmic strings induced gravitational wave

spectrum shift as vw moves. In this paper, we adopt three
sub-benchmark points BP_SX_Y_(1,2,3) for each of the
BP_SX_Y, corresponding to the yχ ¼ 0.1gχ , yχ ¼ 1gχ , and
yχ ¼ 10gχ conditions respectively. The exact values
assigned to them are selected so that the dark matter relic
density ΩDM ≈ 0.12 [1], and are displayed in the second
table of Table II. (We will explain later why BP_S2_1_2
and BP_S2_2_3 are missing, and why the yχ is replaced
with 3gχ rather than 10gχ in BP_S2_1_2.) In Scenario I,
this does not affect the predicted gravitational wave
spectrum due to the ignorable cosmic string contributions;

FIG. 9. The scanned points plotted in the α versus β=HðTpÞ space for Scenario I (left panel) and Scenario II (right panel). The color bar
indicates the percolation temperature Tp. If more than one step of first-order phase transition occur, we only adopt the one that generates
the largest peak value of the gravitational wave relics ΩGW;1PTðfÞh2 contributed from the first-order phase transition. The contour is the
reference peak value of the ΩGW;1 PTðfÞh2 evaluated at Tp ¼ 500 GeV.
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FIG. 11. Phase evolution figures for BP_S1_1 (top left), BP_S1_2 (top right), BP_S1_2 (bottom left), and BP_S1_2 (bottom right).
Each of the phase evolution figure is marked with the percolation temperature Tp. The BP_S1_1 and BP_S1_2 (top right) undergo two-
step phase transitions, so Tp1, Tp2 are remarked.

FIG. 10. Predicted gravitational wave spectrum for each of the (sub-)benchmark points in Scenario I (left panel) and Scenario II
(right panel). In the right panel, the gravitational wave spectrum induced by the vs-scale phase transitions are also plotted in the dashed-
dotted lines.
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however, in Scenario II, this will alter the values of vw to
change the Gμ in (62). Therefore, we show the predicted
gravitational wave spectrum for each of these sub-bench-
mark points as well as the sensitivities of the proposed
gravitational wave experiments in Fig. 10.
With the percolation temperature Tp obtained before, we

can calculate the evolution of the number density of the
dark matter particles. We adopt the approximation that the
phase changes all in the sudden before and after tp. In
scenario I, δm ¼ yχvw is tiny compared with mχ , so mχ is a
very good approximation of the dark matter mass.
However, in scenario II, evident δm ¼ yχvw could even
cause mχ1 ¼ mχ − δm < 0. This contradicts with the
common acknowledgement that masses are always pos-
itive. However, for the fermions, the standard manipulation
is to rotate the phase of χ1 in Eq. (8) to eliminate this minus
sign in the mass terms, with the price of the accumulated
evaluation complexity by casting these additional phases to
the coupling constants listed in Table I. in this paper, we
adopt a simpler but equivalent method to keep all the minus
signs of the fermionic mass parameters intact in all of our
evaluations. It is easy to prove that this does not affect the
final results, since in the phase space integrations, mχ1

always appears in its squared values m2
χ1 to eliminate the

minus sign, and in the squared amplitudes, the minus sign
in mχ1 is equivalent with collecting up all the additional
phase factors that makes mχ1 positive.
In this paper, due to our limited computational resources,

we start our calculation when x ¼ 0.05. This is sufficient
because the relic density evolution is not so sensitive to the
starting point of x if it is sufficiently small, since the critical
freeze-in temperature usually ranges within 0.1≲ x≲ 3.
Typically when x≳ 5, the freeze-in processes gradually
cease, and this is also confirmed by our practical calcu-
lations. Therefore, we need to iterate (68) until at least
x > 5. However, as we have stated, we find it difficult to
manipulate the intricate mixings between the various
Goldstone bosons after the electroweak phase transition,

so we terminate our calculation before T ¼ 200 GeV to
elude the electroweak phase transition. The consistence
of these two conditions removes the BP_S2_2_3, in which
we estimated that its corresponding mχ1 ≈ −400 GeV,
and also the BP_S2_1_2, with its corresponding mχ1≈
−540 GeV.
In Figs. 12 and 14, we plot the evolutions of the dark

matter relic abundance for each of the sub-benchmark
points in Scenario I and Scenario II respectively. Figs. 13
and 15 are the corresponding evolution of the dark matter
generation rates contributing to the right-handed side of
(68). We list the meanings of the channel abbreviations of
the γ in Table III.
In Figs. 13 and 15 one can clearly see the alternation of

the decay and annihilation channels that dominate the total
γ as the temperature evolves. This is due to the complicated
threshold effects as the masses of the vector and scalar
boson evolves. During the first-order phase transition, the
production rate might jump discontinuously due to the
sudden change of the phase space integration as eigenstates
and masses of the initial/final particles jump as the VEVs
transit before/after the phase transitions. We marked each
of the xpð1;2Þ corresponding to the percolation temperatures
Tpð1;2Þ in all panels of Figs. 13 and 15 for comparing with
the phase evolution displayed in Fig. 11. Practically, when
we look into the details of the annihilation channels, we
found that usually χ1χ2 → A0� → ϕ1ϕA0η or χ1χ2 → A0� →
ϕ1A0

L dominate the annihilation channels, because of the
larger A0 − ϕ1 − ϕA0 coupling constants.

VII. SUMMARY AND FUTURE PROSPECTS

In this paper, we construct a model where the fermionic
dark matter particles feebly interact with the visible sector
through the exotic vector boson. In both the dark matter
production scenarios under study, it is difficult for the
near-future experiments such as LISA, TianQin, and Taiji
to detect the gravitational wave signal produced by the

FIG. 12. The evolution of the dark matter relic in Scenario I.
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TeV-scale phase transition. Meanwhile, in the scenario
with the spontaneously breakdown of the dark U(1)
symmetry by an extremely high scale vw, a significant
gravitational wave signal is produced through the cosmic
strings decay. This is well within the ability of these
experimental proposals.
We enumerated and calculated all the possible 1 ↔ 2

and 2 ↔ 2 channels to produce the dark matter. The vector

boson dispersion relations receive significant and compli-
cated thermal corrections. In place of the rough estimation
to treat them as something with a fixed mass for all
momentum values, we applied sleeker methodology to
separate the transverse, longitudinal and the partly revived
Goldstone degree of freedom with different on-shell
dispersion relations. The threshold effects induced by the
evolution of thermal corrections as temperature drops also

FIG. 13. Generation rates γ as time evolves in Scenario I. Different channels and the total values are plotted.
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significantly alter the dark matter production rates. We
calculate these influences and show the results for some
benchmark points.
In our paper, we consider the relatively heavy TeV-scale

dark matter, and avoid the troublesome mixture between
the vector and Goldstone boson sectors for easier

evaluation. This is valid in all our benchmark point
selections, however for lighter FIMP dark matter with
the mass ≲0.5 TeV, or the FIMP dark matter interacting
directly with the SM SUð2ÞL ×Uð1ÞY gauge bosons, such
effect might be inevitable. We will address this situation
and do further studies on it in the future.

FIG. 14. The evolution of the dark matter relic in Scenario II.

FIG. 15. Generation rates γ as time evolves in Scenario II. Different channels and the total values are plotted.
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APPENDIX A: THERMAL MASSES FOR SM
GAUGE BOSONS

When evaluating the effective potential, one has to turn
to the imaginary time formalism. The transverse and
longitudinal degrees of freedom receives different correc-
tions [76],

ΠL
W� ¼ 11

6
g2T2; ΠT

W� ¼ 0;

ΠL
W3 ¼ 11

6
g2T2; ΠT

W3 ¼ 0;

ΠL
B ¼ 11

6
g02T2; ðA1Þ

where the script L (T) denotes the longitudinal (transversal)
mode, and W and B denote the SUð2ÞL triplet and
hypercharge gauge bosons respectively.
Summed with the VEV-induced terms, them together,

the longitudinally polarized W boson’s correction is

M2
W�

L
¼ 1

4
g2h2 þ 11

6
g2T2: ðA2Þ

To determine the masses of the longitudinal Z and A one
should diagonalize the matrix

1

4
ðh2Þ

�
g2 −gg0

−gg0 g02

�
þ
� 11

6
g2T2 0

0 11
6
g02T2

�
; ðA3Þ

and adopt the eigenvalues to substitute the m2
i ðh;ϕs;ϕwÞ þ

ciðTÞ terms in Eq. (27).

APPENDIX B: PROPAGATORS AND ON SHELL
BEHAVIORS OF THE VECTOR BOSON AND

THE SM FERMIONS

In this paper, we adopt the Goldstone equivalence gauge
to calculate the interaction rates. In this gauge, the polari-
zation vector is extended from four-dimensions to five-
dimensions by adding up a Goldstone degree of freedom.
Here we useM;N… to denote the five-dimensional indices.
The previous four numbers M;N;… ¼ 0, 1, 2, 3 indicate
the usual Lorentz time and space indices, and the last
M;N;… ¼ 4 represents the Goldstone degree of freedom.
The full propagator can also be extended into a 5 × 5matrix.
For a particular momentum k ¼ ðk0; k⃗Þ, let us define the
corresponding 5 × 5 project matrix PT , PL,

P00
T ¼ P0i

T ¼ Pi0
T ¼ P40

T ¼ P04
T ¼ P4i

T ¼ Pi4
T ¼ 0;

Pij
T ¼ δij −

kikj

jk⃗j2
; ði; j ¼ 1; 2; 3Þ

PL ¼

0
B@

k2

ðn·kÞ2 n
μnν i mA0

n·k n
μ

−i mA0
n·k n

ν m2

A0
k2þiϵ

1
CA; ðB1Þ

where

nμ ¼
ffiffiffiffiffi
k2

p
ϵμLUðkÞ − kμ

jk⃗j − k0
; ðB2Þ

and ϵLUðkÞ ¼ ðjk⃗j; k0 k⃗
jk⃗jÞ=

ffiffiffiffiffi
k2

p
is the longitudinal polariza-

tion vector in the Rξ gauge. In fact, PT and PL are the
transverse and longitudinal polarization project matrix, and
satisfy

TABLE III. Meanings of the abbreviations of the different channels to generate the dark matter.

Channel Abbreviations Meaning

D_T Dark matter decayed from the transverse vector boson.
D_L Dark matter decayed from the longitudinal vector boson.
D_(R1R2IIG) Dark matter decayed from the scalar bosons.
A_VV Dark matter annihilated from two vector bosons.
A_V(RIIG) Dark matter annihilated from one vector boson and one scalar boson.
A_(RIIG)(RIIG) Dark matter annihilated from two scalar bosons.
A_SMSM Dark matter annihilated from two SM particles.
allRates Summation over all contributions.
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PMN
T ¼

X
s¼�

ϵM�
s ϵNs ;

PMN
L ¼ ϵM�

L ϵNL ; ðB3Þ

where ϵM� and ϵML are the transverse and longitudinal
polarization vectors respectively. Here

ϵML ðkÞ ¼
 
−
ffiffiffiffi
k2

p
n·k n

μ

i mA0ffiffiffiffi
k2

p ;

!
ðB4Þ

and in the special frame set of k ¼ ðk0; 0; 0; k3Þ along the
z-axis, ϵM� ðkÞ ¼ 1ffiffi

2
p ð0; 1;�i; 0; 0Þ.

In the zero temperature, the Goldstone equivalence
gauge propagator of the A0 is given by

DMN
F ðkÞ ¼ i

k2 −m2
A0 þ iϵ

�
PT þ PL þ k2 −m2

A0 þ iϵ

k2 þ iϵ

×

�
04×4 04×1

01×4 1

��
: ðB5Þ

In the thermal plasma, adopting the “σ ¼ β
2
-gauge” and

consider the one-loop self-energy diagrams, the full propa-
gator is given by

Dfull;MN
ab ðkÞ¼UacðkÞ

 
Dfull;MN

0 ðkÞ 0

0 Dfull�;MN
0 ðkÞ

!
cd

UdbðkÞ;

ðB6Þ

where a; b;… ¼ 1, 2,

UðkÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ nBðk0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

nBðk0Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nBðk0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nBðk0Þ

p
!
; ðB7Þ

and

Dfull;MN
0 ðkÞ ¼ i

k2 −m2
A0 − ΠTðkÞ þ iϵ

PT

þ i
k2 −m2

A0 − ΠLðkÞ þ iϵ
PL

þ 1

1 − ΠUðkÞ
m2

A

i
k2 þ iϵ

�
04×4 04×1

01×4 1

�
: ðB8Þ

ΠT;L;U are the factors extracted from the one-loop self-
energy corrections. In the HTL approximation, they are
calculated to be

ΠLðkÞ ¼ −cA0 ðTÞ k
2

k⃗2

�
1 −

k0

jk⃗j
Q0

�
k0

jk⃗j

�
;

ΠTðkÞ ¼
1

2
ð2cA0 ðTÞ − ΠLðkÞÞ

�
; ðB9Þ

where

Q0ðxÞ ¼
1

2
ln
xþ 1

x − 1
: ðB10Þ

Expanded around the minima of the effective potential,
ΠUð0Þ ¼ 0 should be satisfied. Therefore, we can use
ΠUð0Þ to estimate ΠUðkÞ, so that ΠUðkÞ ¼ 0.
From (B8) one can immediately write down the shifted

on shell equation of both transverse and longitudinal A0,

k2 −m2
A0 − ΠT;LðkÞ ¼ 0: ðB11Þ

Each external leg of both transverse and longitudinal vector
bosons should be multiplied with the “renormalization
factor”

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT;LðkÞ

p
, with their definitions given by

ZT;LðkÞ ¼
2k0

2k0 −
∂ΠT;LðkÞ

∂k0

: ðB12Þ

A fraction of Goldstone degree of freedom has also been
spewed out by the longitudinal polarization vector boson.
Calculating Dfull;44

0 ðkÞ from (B8), one acquires

ΔF
GSðkÞ ¼

k2 − ΠLðkÞ þ iϵ
k2 −m2

A0 − ΠLðkÞ þ iϵ
i

k2 þ iϵ
: ðB13Þ

Besides the k2 −m2
A0 − ΠLðkÞ pole corresponding to the

longitudinal polarization vector boson, (B13) includes a
branch cut along k0 ∈ ð−k⃗; k⃗Þ axis. The imaginary part of
ΔF

GSðkÞ peaks near k0 ¼ �k⃗, so as an approximation we can
regard these two peaks as two massless Goldstone frac-
tions. Their “renormalization factor” is given by

ZGS ¼ −
2Rðγ; αÞ

π
; ðB14Þ

where

Rðγ; αÞ ¼
Z jk⃗jþδ

0

−jk⃗jIm½iΔF
GSðk0; k⃗Þ�dk0; ðB15Þ

and γ ¼ cA0 ðTÞ
k⃗2

, α ¼ m2

A0
k⃗2
.

For the leptons and quarks, we only consider the
processes above the electroweak phase transition critical
temperature, so the thermal corrected dispersion relation of
a fermion is given by
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Δ−1
�fðkÞ ¼

�
k0 ∓ jk⃗1j−

m2
f

2jk⃗1j

��
1 ∓ k0

jk⃗j

�
ln
k0 þ jk⃗j
k0 − jk⃗j

� 2

��

¼ 0; ðB16Þ

where f indicates any left- or right-handed leptons and
quarks, so

meL;νeL;μL;νμL;τL;ντL ¼ g21 þ 3g22
32

T2;

meR;μR;τR ¼ g21T
2

8
;

muL;cL;tL;dL;sL;bL ¼ ðg1=3Þ2 þ 3g22
32

T2 þ g2sT2

6
;

muR;cR;tR ¼ ð2g1=3Þ2T2

8
þ g2sT2

6
;

mdR;sR;bR ¼ ðg1=3Þ2T2

8
þ g2sT2

6
: ðB17Þ

There are four solutions of the equations in (B16),
indicating one particle, one hole, and one antiparticle as
well as one antihole. The renormalization factors become

ZfðkÞ ¼
ðk0Þ2 − k⃗2

2m2
f

: ðB18Þ

APPENDIX C: FROM SELF-ENERGY
DIAGRAMS TO 1 ↔ 2, 2 ↔ 2 INTERACTION

RATES

In the literature, the evaluation of the changing rate of
some particle number density in the finite temperature
environment relies on the imaginary part of the self-energy
diagrams. In this paper, for the sake of intuitiveness we
depend on the tree-level diagrams, just as everybody
learned from the quantum field theory textbooks in the
zero-temperature case. This appendix section aims to
illustrate the equivalence between these two methods.
It is now convenient to rely on the σ ¼ 0 gauge to

calculate the imaginary part of the self-energy diagrams.
Following the usual literature, let us denote 1 and 2 as the
two types of vertices. The production rate of one of the dark
matter particle, e.g., χ1 is extracted from Π<ðkÞ. This is
calculated from the self-energy diagrams in which the
leftmost vertex is in type 2 and the rightmost vertex is in
type 1. Since both the χ1 and χ2 are far from thermal
equilibrium with the plasma, it is convenient to appoint
T ¼ 0 in all the χ1;2 propagators only, while keeping all the
other temperature terms normal in other particle propaga-
tors. Therefore,

DF
χi11

ðkÞ ¼ DF�
χi22

ðkÞ ¼ ið=kþmχiÞ
k2 −m2

χi þ iϵ
;

DF
χi12

ðkÞ ¼ θð−k0Þ2πδðk2 −m2Þ;
DF

χi21
ðkÞ ¼ θðk0Þ2πδðk2 −m2Þ: ðC1Þ

The 1 ↔ 2 processes are extracted from the one-loop
diagrams. One of the example is listed in Fig. 16. The DF

21

propagators connecting the type-1 and type-2 vertices are
finally reduced to the on shell phase-space integrals.
Therefore, the one loop self-energy diagram in Fig. 16 is
cut into the tree-level 1 ↔ 2 diagrams which is compatible
with our previous evaluations.
The 2 ↔ 2 processes arise from the two-loop diagrams.

We show two examples in Fig. 17. Cutting the propagators
between the type-1 and type-2 vertices induce the 2 ↔ 2
diagrams. The left panel entails the s-channel process, and
the right panel gives the t-channel processes.
Other arrangements of the vertex types are possible.

In other cases, the two-loop diagrams can be cut into more
than one processes. For example, Fig. 18 results in four parts
if we cut all the connections between the type-1 and type-2
vertices, indicating successive real processes. However,
when all the propagators connecting the type-1 and type-2
vertices become on shell, the one-loop induced 1 ↔ 2
contributions will also arise with dominate result due to
the lower perturbative orders. Therefore, we can safely omit
all high-order two-loop processes when there exist nonzero
one-loop contributions inducing the 1 ↔ 2 processes. This is
actually what we did in our previous operations.

APPENDIX D: DETAILED FORMULAS
EVALUATING THE FREEZE IN PROCESSES

1. 1 ↔ 2 Processes

The 1 ↔ 2 processes include the A0 ↔ χ1χ2 and the
ϕ1;2 ↔ χiχi (i ¼ 1; 2) processes. The longitudinal polari-
zation of A0 involves the accessory ϕA0η ↔ χ1χ2 terms.
Before ϕs;w acquire the VEVs, ϕsη;wη become massive and
might decay into χ1χ2. All the possible diagrams are listed
in Fig. 1.
Let us calculate the A0 ↔ χ1χ2 processes at first. In

the practical evaluation, without loss of generality we
rotate to the coordination that the A0 momentum pμ

A0 ¼
ðEA0 ; 0; 0; pA0 Þ. The polarization vectors are extended to
five-dimensional vectors, with the additional element

FIG. 16. One-loop self-energy diagram inducing the 1 ↔ 2
contributions to the production rates.
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assigned to the Goldstone degree of freedom, as illustrated
in Appendix B. The transverse polarization vector
ϵM� ðkÞ ¼ ðϵμ�; 0Þ, and ϵμ�ðkÞ ¼ ð0; 1;�i; 0Þ. The inward
longitudinal polarization vector ϵML ðkÞ is given by (B4).
The four-dimensional vector part of the matrix element is

given by

iMμ
r;s;V ¼ tχgDðpA0 Þūrðpχ1Þγμvsðpχ2Þ: ðD1Þ

The Goldstone part of the matrix element is

iM4
r;s;V ¼ iyA0ηūrðpχ1Þvsðpχ2Þ: ðD2Þ

Here, pχ1;χ2 are the momentum of the dark matter particles
χ1;2 which satisfy the energy-momentum conservation laws
pχ1 þ pχ2 ¼ pA0 . Considering the statistic and renormali-
zation factors, the summed squared matrix elements for a
particular polarization vector ϵMt ðpA0 Þ where t ¼ �; L are
given by

AA0;t ¼
X
r;s;m;n

MM
r;s;VM

�N
r;s;VϵtMðpA0 Þ�ϵtNðpA0 ÞfB

�
p0
A0

T

�
Zt;

ðD3Þ

where the index t does not undergo an Einstein summation.
The definition of Zt is given by Eq. (B12), where T in
Eq. (B12) indicates both “þ” and “−”. Besides the fB
appeared above, we give both the definitions of the
fermionic and bosonic statistic factors fF;B,

fFðxÞ ¼
1

ex þ 1
;

fBðxÞ ¼
1

ex − 1
: ðD4Þ

The thermally-averaged interaction rate can be the
expressed as

γA0;t

¼
Z

d3p⃗A0d3p⃗χ1d
3p⃗χ2

ð2πÞ9ð2p0
A0 Þð2p0

χ1Þð2p0
χ2Þ

AA0;tð2πÞ4δ4ðpA0 −pχ1 −pχ2Þ

¼
Z

d3p⃗A0d3p⃗χ1

ð2πÞ9ð2p0
A0 Þð2p0

χ1Þð2p0
χ2Þ

AA0;tð2πÞ4δðp0
A0 −p0

χ1 −p0
χ2Þ:

ðD5Þ

Notice that the p0
A0 appeared in (D5) can be extracted from

solving the dispersion equations

p2
A0 −m2

A0 − ΠT;LðpA0 Þ ¼ 0; ðD6Þ

where ΠT;L are given by (B9), and one should adopt ΠT for
t ¼ �, ΠL for t ¼ L.
To integrate out the d3p⃗χ1 , one can boost into the frame

where A0 is at rest. Define β ¼ jp⃗A0 j
p0

A0
, γ ¼ 1ffiffiffiffiffiffiffiffi

1−β2
p , we have

p0
χ1A0 ¼ γðp0

χ1 − βjp⃗χ1 j cos θχ1Þ; ðD7Þ

jp⃗χ1A0 j cos θχ1A0 ¼ γðjp⃗χ1 j cos θχ1 − βp0
χ1Þ; ðD8Þ

jp⃗χ1A0 j sin θχ1A0 ¼jp⃗χ1 j sin θχ1 ; ðD9Þ

where θχ1 is the angle between p⃗χ1 and p⃗A0 , pχ1A0 ¼
ðp0

χ1A0 ; p⃗χ1A0 Þ is the χ1 momentum in the A0’s rest frame,
and θχ1A0 is the corresponding direction after the boost.
Since we ignore the thermal corrections on χ1;2, so their
dispersion relations are not corrected, then

Z
d3p⃗χ1

ð2πÞ6ð2p0
χ1Þð2p0

χ2Þ
ð2πÞ4δðp0

A0 − p0
χ1 − p0

χ2Þ

¼
Z

sin θχ1A0dθχ1A0dϕχ1

4π

2jp⃗χ1A0 jffiffiffiffiffiffiffi
p2
A0

q ; ðD10Þ

where ϕχ1 is the azimuth angle of p⃗χ1 relative to the p⃗A0

vector direction, and this angle remains unchanged after
the boost.
Substituting Eq. (D10) into Eq. (D5), we can collect all

the elements to calculate the γA0;t.
In the finite temperature case, the remained “free”

Goldstone degree of freedom, which corresponds to the
tachyonic branching cut in the A0 propagator, can be

FIG. 17. Two-loop self-energy diagram inducing the 2 ↔ 2 contributions to the production rates.

FIG. 18. Two-loop self-energy diagram inducing the 2 ↔ 2
contributions to the production rates.
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approximated to be a massless particle-like object. The
direct production of χ1χ2 from an “on-shell” Goldstone
fraction is kinematically forbidden, so we do not need to
calculate this channel.
ϕ1;2 can also decay into a pair of χ1χ1 or χ2χ2. The

dispersion relation of a scalar particle is simpler than the
vector boson, and can be straightforwardly written as

p2
ϕi
¼ m2

i ; ðD11Þ

where mi are the masses of the two scalar eigenstates
defined in (72). The matrix element is given by

iMϕi;χj ¼ iyjiūrðpχj1Þvsðpχj2Þ; ðD12Þ

where i, j ¼ 1, 2, pχj1;2 are the momenta of the first and
second χj particle. Then the summed squared matrix
elements are given by

Aϕ1;χj ¼
1

2

X
r;s

Mϕi;χjM
�
ϕi;χj

fB

�
p0
ϕi

T

�
: ðD13Þ

The additional 1
2
is the interchanging factor of the identical

particles.
The phase space integral can be performed with numeri-

cal algorithms, however, just as when we calculate the dark
matter freeze-out processes, applying the Maxwell distri-

bution e−
pϕi
T to estimate the fBð

p0
ϕi
T Þ can significantly

simplify the phase space integral,

γϕi;χj ¼
Z d3p⃗ϕi

d3p⃗χj1d
3p⃗χj2

ð2πÞ9ð2p0
ϕi
Þð2p0

χj1
Þð2p0

χj2
ÞAϕiχjð2πÞ4δ4

× ðpϕi
− pχj1 − pχj2Þ

≈
T3

2π2
z2ϕi

K1ðzϕi
ÞΓϕi;χj ; ðD14Þ

where zϕi
¼ mi

T , K1 is a Bessel function, and

Γϕi; χj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i
4
−m2

χj

q
8πm2

i
Aϕ1;χj : ðD15Þ

When all of the ϕs;w ¼ 0, both ϕsη;wη can become
massive to open the ϕsη;wη → χ1χ2 channel. The evaluations
of the corresponding γϕsη;wη

are very similar to γϕi;χj , so we
do not show the details here.

2. 2 ↔ 2 processes without the SM external states

The 2 ↔ 2 processes without the SM external states
include A0A0↔χiχi, A0ϕA0η;Gη↔ χiχi, ϕA0η;GηϕA0η;Gη↔ χiχi,
ϕ1;2ϕ1;2 ↔ χiχi, ϕ1;2A0 ↔ χ1χ2, and ϕ1;2ϕA0η;Gη ↔ χ1χ2

channels. We will enumerate their contributions to the
production rate of the dark matter.
For the A0A0 ↔ χ1χ2 channel, the Feynmann diagrams

are listed in Figs. 2–4. The pure vector part of the matrix
elements are given by

iMMN
A0A0;χirs

¼ iMMN
A0A0;s;χirs

þ iMMN
A0A0;t;χirs

þ iMMN
A0A0;u;χirs

;

ðD16Þ

where

iMμν
A0A0;s;χirs

¼−gμνūrðpχi1Þvsðpχi2Þ
X
j¼1;2

iyijGA0A0j

ðpχi1þpχi2Þ2−m2
ϕj

;

ðD17Þ

iMμν
A0A0;t;χirs

¼ −ūrðpχi1Þγμ
g2χi

=pχi1 − =pA01 −mχð3−iÞ
γνvsðpχi2Þ;

ðD18Þ

iMμν
A0A0;u;χirs

¼ −ūrðpχi1Þγν
g2χi

=pχi1 − =pA02 −mχð3−iÞ
γμvsðpχi2Þ:

ðD19Þ

Here, of course pA0ð1;2Þ and pχið1;2Þ are the momentum of
the external particles respectively, and they satisfy pA01þ
pA02 ¼ pχi1 þ pχi2.
The Goldstone-vector part of the matrix element char-

acterized by Fig. 3 is given by

iM4μ
A0A0;χirs

¼ iM4μ
A0A0;s;χirs

þ iM4μ
A0A0;t;χirs

þ iM4μ
A0A0;u;χirs

;

ðD20Þ

where

iM4μ
A0A0;s;χirs

¼ ðpχi1 þ pχi2 þ pA01Þμūrðpχi1Þvsðpχi2Þ
×
X
j¼1;2

yijgjA0

ðpχi1 þ pχi2Þ2 −m2
ϕj

; ðD21Þ

iM4μ
A0A0;t;χirs

¼ ðδ1i − δ2iÞūrðpχi1Þ
×

gχyA0

=pχi1 − =pA01 −mχð3−iÞ
γμvsðpχi2Þ; ðD22Þ

iM4μ
A0A0;u;χirs

¼ −ðδ1i − δ2iÞūrðpχi1Þγμ

×
gχyA0

=pχi1 − =pA02 −mχð3−iÞ
vsðpχi2Þ: ðD23Þ

The evaluation of iMμ4
A0A0;χirs

is similar to iM4μ
A0A0;χirs

,
except the interchanging between pA01 and pA02.
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The Goldstone-Goldstone part of the matrix element
characterized by Fig. 4 is given by

iM44
A0A0;χirs

¼ iM44
A0A0;s;χirs

þ iM44
A0A0;t;χirs

þ iM44
A0A0;u;χirs

;

ðD24Þ

where

iM44
A0A0;s;χirs

¼ −ūrðpχi1Þvsðpχi2Þ
X
j¼1;2

iyjAjA0A0

ðpχi1 þ pχi2Þ2 −m2
ϕj

;

ðD25Þ

iM44
A0A0;t;χirs

¼ −ūrðpχi1Þ
y2A0 i

=pχi1 − =pA01 −mχð3−iÞ
vsðpχi2Þ;

ðD26Þ

iM44
A0A0;u;χirs

¼ −ūrðpχi1Þ
y2A0 i

=pχi1 − =pA02 −mχð3−iÞ
vsðpχi2Þ:

ðD27Þ

Therefore, the summed squared matrix elements are

AA0A0→χiχi;t1t2 ¼
1

2

X
r;s;M;N;O;P

ϵ�t1MðpA01Þϵ�t2NðpA02Þϵt1O

× ðpA01Þϵt2PðpA02ÞMMN
A0A0;χirs

MOP�
A0A0;χirs

× fB

�
p0
A01
T

�
fB

�
p0
A02
T

�
Zt1Zt2 ; ðD28Þ

where t1, t2 ¼ �; L denote the polarization of the vector
bosons. Then the corresponding production rates are
given by

γA0A0;it1t2¼
Z

d3p⃗A01d3p⃗A02d3p⃗χ1d
3p⃗χ2

ð2πÞ12ð2p0
A01Þð2p0

A02Þð2p0
χi1
Þð2p0

χi2
ÞAA0A0→χiχi;t1t2

×ð2πÞ4δ4ðpA01þpA02−pχi1−pχi2Þ: ðD29Þ

The A0ϕA0η ↔ χ1χ2 processes involve the Figs. 3 and 4.
Here, ϕA0 is the fraction of Goldstone boson vomited out by
the longitudinal polarization of A0. Rigorously speaking
this is a “branch cut” rather than a “particle”. However, as
illustrated in Appendix. B, it can be estimated as a massless
particle. The matrix elements are given by

iMM
A0ϕA0η;χirs

¼ iMM
A0ϕA0η;s;χirs

þ iMM
A0ϕA0η;t;χirs

þ iMM
A0ϕA0η;u;χirs

;

ðD30Þ

where

iMμ
A0ϕA0η;s;χirs

¼ ðpχi1 þ pχi2 þ pϕA0 Þμūrðpχi1Þvsðpχi2Þ

×
X
j¼1;2

yijgjA0

ðpχi1 þ pχi2Þ2 −m2
ϕj

; ðD31Þ

iMμ
A0ϕA0η;t;χirs

¼ ðδ1i − δ2iÞūrðpχi1Þ

×
gχyA0

=pχi1 − =pϕA0η −mχð3−iÞ
γμvsðpχi2Þ; ðD32Þ

iMμ
A0ϕA0η;u;χirs

¼ −ðδ1i − δ2iÞūrðpχi1Þγμ

×
gχyA0

=pχi1 − =pA0 −mχð3−iÞ
vsðpχi2Þ; ðD33Þ

and

iM4
A0ϕA0η;s;χirs

¼−ūrðpχi1Þvsðpχi2Þ
X
j¼1;2

yjAjA0A0 i

ðpχi1þpχi2Þ2−m2
ϕj

;

ðD34Þ

iM4
A0ϕA0η;t;χirs

¼ −ūrðpχi1Þ
y2A0i

=pχi1 − =pϕA0η −mχð3−iÞ
vsðpχi2Þ;

ðD35Þ

iM4
A0ϕA0η;u;χirs

¼ −ūrðpχi1Þ
y2A0i

=pχi1 − =pA0η −mχð3−iÞ
vsðpχi2Þ:

ðD36Þ

Here, pχið1;2Þ, pA0 , and pϕA0η are the momentum of the

corresponding particles, and notice we adopt the estimation
of p2

ϕA0η
¼ 0. The summed-squared matrix elements are

therefore

AA0ϕA0η→χiχi;t1t2 ¼
1

2

X
r;s;M;N

ϵ�t1MðpA0 Þϵt1NðpA0 ÞMM
A0ϕA0η;χirs

×MN�
A0ϕA0ηχirs

fB

�
p0
A0

T

�
fB

�p0
ϕA0η

T

�
ZtZGS:

ðD37Þ

The definition of ZGS is given by (B14). The production
rates then becomes

γA0ϕA0η;it ¼
Z d3p⃗ϕA0ηd

3p⃗A0d3p⃗χ1d
3p⃗χ2

ð2πÞ12ð2p0
ϕA0η

Þð2p0
A0 Þð2p0

χi1
Þð2p0

χi2
ÞAA0ϕA0η→χiχi;t

× ð2πÞ4δ4ðpϕA0η þ pA0 − pχi1 − pχi2Þ: ðD38Þ

The ϕA0ηϕA0η ↔ χiχi only corresponds to Fig. 4. The
matrix elements are given by
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iMϕA0ηϕA0η;χirs ¼ iMϕA0ηϕA0η;s;χirs þ iMϕA0ηϕA0η;t;χirs

þ iMϕA0ηϕA0η;u;χirs; ðD39Þ

where

iMϕA0ηϕA0η;s;χirs ¼ −ūrðpχi1Þvsðpχi2Þ

×
X
j¼1;2

iyjAjA0A0

ðpχi1 þ pχi2Þ2 −m2
ϕj

; ðD40Þ

iMϕA0ηϕA0η;t;χirs ¼ −ūrðpχi1Þ
y2A0ηi

=pχi1 − =pϕA0η1 −mχð3−iÞ
vsðpχi2Þ;

ðD41Þ

iMϕA0ηϕA0η;u;χirs ¼ −ūrðpχi1Þ
y2A0ηi

=pχi1 − =pϕA0η2 −mχð3−iÞ
vsðpχi2Þ:

ðD42Þ

The squared matrix elements are

AϕA0ηϕA0η→χiχi;t1t2 ¼
1

2

X
r;s

MA0ϕA0η;χirsM
�
A0ϕA0ηχirs

fB

�
p0
A0

T

�

× fB

�p0
ϕA0

T

�
ZGSðpϕA0η1ÞZGSðpϕA0η2Þ;

ðD43Þ

so the production rates are expressed as

γϕA0ηϕA0η;i ¼
Z d3p⃗ϕA0η1d

3p⃗ϕA0η2d
3p⃗χ1d

3p⃗χ2

ð2πÞ12ð2p0
ϕA0η1

Þð2p0
ϕA0η2

Þð2p0
χi1
Þð2p0

χi2
Þ

×AϕA0ηϕA0η→χiχi

× ð2πÞ4δ4ðpϕA0η1þpϕA0η2−pχi1−pχi2Þ: ðD44Þ

Figures 3 and 4 also stand for the A0ϕGη ↔ χiχi,
ϕA0ηϕGη ↔ χiχi and ϕGηϕGη ↔ χiχi channels. The basic
steps are exactly the same with those in (D30)–(D44) to
calculate the γA0ϕGη;it, γϕA0ηϕGη;i, and γϕGηϕGη;i except that one
needs to modify the momentum symbols, the coupling
constants, and abolish the ZGS when a ϕGη is replacing
the ϕA0η.
The processes ϕ1;2A0 ↔ χ1χ2, ϕA0η;Gηϕ1;2 ↔ χ1χ2, and

ϕ1;2ϕ1;2 ↔ χiχi, as indicated in Figs. 5–7 also contribute to
the production rates γϕiA0;t, γGηA0;t and γϕiϕj;k, and the
evaluation processes are very similar to the previous
channels we discussed, except that one needs to select
the appropriate couplings from Table I, and to manipulate

the renormalization factors properly. In the X ↔ χ1χ2
processes, the identical particle factor 1

2
is also discarded.

We are not going to enumerate all of the detailed processes
in this paper, however, we would like to point out that the
second diagrams in both Figs. 5 and 6 are special, since the
intermediate s-channel particle is the mixed propagators
(B8) among ϕA0η and A0. As an example, we calculate the
corresponding matrix elements of ϕ1;2A0 ↔ χ1χ2 to show
the detailed evaluation processes.
The matrix elements of this diagram is denoted as

iMM
A0ϕi;sV;rs

, where subscript “sV”means “the vector boson
mediated s-channel”. The vector part of it is given by

iMμ
A0ϕi;sV;rs

¼ igχGA0A0iūrðpχ1Þγνvsðpχ2ÞDfull
0;νλðpχ1 þpχ2Þgλμ

þgχgiA0 ūrðpχ1Þγνvsðpχ2ÞDfull
0;ν4ðpχ1þpχ2Þðpχ1þpχ2þpϕi

Þμ
−yA0ηGA0A0iūrðpχ1Þvsðpχ2ÞDfull

0;4λðpχ1 þpχ2Þgλμ
þ iyA0ηgiA0 ūrðpχ1Þvsðpχ2ÞDfull

0;44ðpχ1þpχ2Þðpϕi
þpχ1þpχ2Þμ:

ðD45Þ

The Goldstone part of them is given by

iM4
A0ϕi;sV;rs

¼ igχ ūrðpχ1Þγνvsðpχ2ÞDfull
0;ν4ðpχ1 þ pχ2ÞAiGA0

− yA0ηūrðpχ1Þvsðpχ2ÞDfull
0;44ðpχ1 þ pχ2ÞAiGA0 :

ðD46Þ

(D45)–(D46) participate in composing iM4
A0ϕi;rs

, and just
like the processes from (D37)–(D38), one finally arrives
at γϕiA0;t.

3. 2 ↔ 2 processes with the SM external states

The 2 ↔ 2 processes with the SM external states include
f̄f ↔ χ1χ2 and HþH− ↔ χ1χ2, where f ¼ eL, μL, τL, eR,
μR, τR, νiL, uL, dL, sL, cL, tL, bL, uR, dR, sR, cR, tR, and bR.
Notice that in this paper, we omit the freeze-in processes
below the electroweak phase-transition temperature, so
the left-handed and right-handed fermions decouple and
receive different thermal corrections. The Higgs doublet are
also degenerate and the hypercharge symmetry guarantees
hypercharge conservation. This always produces the Higgs
particles in pairs with the opposite hypercharges respec-
tively. The corresponding diagrams are listed in Fig. 8.
Both these two channels involve the mixing between the A0
and the hypercharge gauge boson B.
Let us calculate the f̄f ↔ χ1χ2 processes at first. The

matrix elements are
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iM�;�
f̄f;pq;rs

¼ −g1Yfϵv̄pðp̃�̄
f
Þγμuqðp̃�

f Þ½DB;full
0;μν ðpf þ pf̃Þλ −DB;full

0;μλ ðpf þ pf̃Þν�
× fgχ ½Dfull;νρ

0 ðpf þ pf̃Þλ −Dfull;λρ
0 ðpf þ pf̃Þν�ūrðpχ1Þγρvsðpχ2Þ

þ yA0η½Dfull;ν4
0 ðpf þ pf̃Þλ −Dfull;λ4

0 ðpf þ pf̃Þν�ūrðpχ1Þvsðpχ2Þg: ðD47Þ

Here, the definitionDfull;MN
0 is given by (B8), whileDB;full;μν

0

is the corresponding thermal propagator for the hypercharge
gauge boson B. Compared with the (B8), inDB;full;μν

0 , them0
A

should be eliminated, and the cA0 ðTÞ should be replaced
with the cBðTÞ in (33). In (D47), we omit all the function

parameters with brackets, so DðBÞ;full;MN
0 are the abbrevia-

tions for the DðBÞ;full;MN
0 ðpf þ pf̄Þ. Yf is the hypercharge of

the fermion f. ϵ is the mixing coupling of the A0 and B for
the Lagrangian term

Lϵ ¼ −ϵBμνF0
μν; ðD48Þ

where Bμν ¼ ∂μBν − ∂νBμ. The definitions of p̃�
f=f̄

are

given by

p̃�
f=f̄

¼ p0
f=f̄

�
1;� p⃗f=f̄

jp⃗f=f̄

�
: ðD49Þ

pf=f̄ should be a solution of (B16). A “particle” corresponds
to p0

f=f̄
> m2

f and p
þ
f=f̄

. A “hole” corresponds to p0
f=f̄

< m2
f

and p−
f=f̄

. The definition of mf for each SM fermions is

expressed in Eq. (B17).
The summed squared amplitudes are given by

Af̄f ¼
X
a;b¼�

X
p;q;r;s

Ma;b
f̄f;pq;rs

Ma;b�
f̄f;pq;rs

fF

�
p0
f

T

�
fF

×

�p0
f̄

T

�
ZfðpfÞZfðpfÞ; ðD50Þ

and then again

γf̄f ¼ Nf

Z
d3p⃗f̄d

3p⃗fd3p⃗χ1d
3p⃗χ2

ð2πÞ12ð2p0
f̄
Þð2p0

fÞð2p0
χi1
Þð2p0

χi2
ÞAf̄f

× ð2πÞ4δ4ðpf̄ þ pf − pχi1 − pχi2Þ: ðD51Þ

where Nf indicates the number of color of the fermion f.
Finally, for the HþH− ↔ χ1χ2, the matrix elements are

expressed below,

iMHþH−pq;rs ¼ −
1

2
g1ϵðpHþ − pH−Þμ½DB;full

0;μν ðpf þ pf̃Þλ −DB;full
0;μλ ðpf þ pf̃Þν�

× fgχ ½Dfull;νρ
0 ðpf þ pf̃Þλ −Dfull;λρ

0 ðpf þ pf̃Þν�ūrðpχ1Þγρvsðpχ2Þ
þ yA0η½Dfull;ν4

0 ðpf þ pf̃Þλ −Dfull;λ4
0 ðpf þ pf̃Þν�ūrðpχ1Þvsðpχ2Þg: ðD52Þ

Here, p2
H� ¼ m2

H, with the definition of m2
H given in (69).

The factor 1
2
stands for the hypercharge of the SM-Higgs

doublet.
The corresponding summed squared amplitudes are

AHþH− ¼
X
p;q;r;s

MHþH−;pq;rsM�
HþH−;pq;rsfB

�
p0
Hþ

T

�
fB

�p0
H−

T

�
;

ðD53Þ

so therefore

γHþH− ¼ 2

Z
d3p⃗Hþd3p⃗H−d3p⃗χ1d

3p⃗χ2

ð2πÞ12ð2p0
HþÞð2p0

H−Þð2p0
χi1
Þð2p0

χi2
ÞAHþH−

× ð2πÞ4δ4ðpHþ þ pH− − pχi1 − pχi2Þ: ðD54Þ

Here the additional factor of 2 stands for summation of both
the elements in the SM Higgs doublet.
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