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The existence of large extra dimensions can be probed in various neutrino experiments. We analyze
several neutrino datasets in a model with a dominant large extra dimension. We show that the gallium
anomaly can be explained with neutrino oscillations induced by the large extra dimension, but the region of
parameter space that is preferred by the gallium anomaly is in tension with the bounds from reactor rate
data, as well as the data of Daya Bay and MINOS. We also present bounds obtained from the analysis of
the KATRIN data. We show that current experiments can put strong bounds on the size RED of the extra
dimension: RED < 0.20 μm and RED < 0.10 μm at 90% C.L. for normal and inverted ordering of the
standard neutrino masses, respectively.

DOI: 10.1103/PhysRevD.106.035027

I. INTRODUCTION

The observation of neutrino oscillations in many solar,
atmospheric, and long-baseline experiments is an undis-
puted proof that neutrinos are massive and mixed particles.
The explanation of neutrino masses and mixing requires
the extension of the Glashow-Weinberg-Salam Standard
Model (SM) in which neutrinos are massless (see, e.g., the
reviews in Refs. [1–4]). There are also other reasons to
extend the SM. A theoretical compelling reason is the
explanation of the huge difference between the electroweak
and Planck scales, which is called the “hierarchy problem”.
A possible solution of the hierarchy problem is supplied by
the existence of large extra dimensions (LED) [5–7], which
provides also an elegant explanation of the smallness of
neutrino masses [8–14]. This is achieved with the intro-
duction of sterile right-handed neutrino fields, which are
singlets under the gauge symmetries of the SM and
propagate in a space-time with 4þ NED dimensions called
the “bulk”, where NED is the number of spacelike extra
dimensions. The Yukawa couplings of the right-handed
neutrino fields with the three standard left-handed active
neutrino fields νeL, νμL, ντL, and the SM Higgs boson,

which are confined to the ordinary four-dimensional space-
time called the “brane”, generate Dirac neutrino masses
through the standard Higgs mechanism at the electroweak
scale. However, the values of the Dirac neutrino masses
are reduced with respect to the electroweak scale by the
suppression of the wave functions of the right-handed
neutrino fields on the brane due to the volume of the large
extra dimensions.
The existence of large extra dimensions can be probed in

neutrino experiments through the effects of the Kaluza-
Klein (KK) excitations that describe the right-handed
singlet neutrino fields on the brane. The phenomenology
is similar to that of light sterile neutrinos (see Ref. [15]),
which induce observable short-baseline neutrino oscilla-
tions and small perturbations to the neutrino oscillations in
solar, atmospheric, and long-baseline experiments that are
well-described by standard three-neutrino mixing [16–18].
It is common to consider a LED model with a dominant

extra dimension [13,15,19–30] whose neutrino phenom-
enology is described by only two parameters: the neutrino
mass scale and the radius of the dominant extra dimension.
In this paper, we present the bounds on these parameters
obtained from the analysis of several neutrino oscillation
experiments and from the recent results of the KATRIN
experiment on the search for the effects of sub-eV neutrino
masses on the spectrum of electrons emitted in tritium
decay.
We discuss the implications for the LED model from

the results of reactor short-baseline neutrino oscillation
experiments and the results of the gallium source experi-
ments in the context of the reactor antineutrino anomaly
[31] and the gallium neutrino anomaly [32–34] (see, e.g.,
the reviews in Refs. [35–39]). In particular, we take into
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account the recent results of the BEST gallium source
experiment [40,41].
The plan of the paper is as follows: in Sec. II, we review

the relevant aspects of neutrino mixing in the LED model
under consideration; in Sec. III, we describe the method of
analysis of the data and the results of the separate analyses
of the data of short-baseline experiments (Sec. III A), long-
baseline experiments (Sec. III B), and the KATRIN experi-
ment (Sec. III C); in Sec. IV, we present the results for the
combined bounds on the LED parameters; finally, in Sec. V,
we present a summary of our results and the conclusions.

II. NEUTRINO OSCILLATIONS IN PRESENCE
OF LARGE EXTRA DIMENSIONS

The possible existence of large extra dimensions (LED)
was originally proposed as a solution of the hierarchy
problem [5,7]. In the LED model, the ordinary four-
dimensional space-time is a brane embedded in a space-
time with 4þ NED dimensions, having NED large spacelike
extra dimensions. The fields which are charged under
the gauge symmetries of the Standard Model (SM) are
restricted to the four-dimensional brane, whereas the fields,
which are singlets under the SM gauge symmetries,
propagate in the (4þ NED)-dimensional bulk. In particular,
right-handed sterile neutrino fields are SM gauge singlets
that propagate in the bulk. The Yukawa couplings with the
SM left-handed neutrinos are suppressed by the LED
volume, leading to naturally small Dirac neutrino masses
[8–13]. As most phenomenological studies of neutrino
physics in a LED model [13,15,19–29], we consider a
LED model with one of the extra dimensions that is
compactified on a circle with radius RED, which is much
larger than the size of the other extra dimensions. Therefore,
we consider an effective five-dimensional space-time,
and we assume that there are three five-dimensional right-
handed singlet fermion fields associatedwith the three active
left-handed flavor neutrino fields ναL, with α ¼ e, μ, τ.
Each of the five-dimensional right-handed singlet fermion
fields can be decomposed as an infinite tower of four-
dimensional Kaluza-Klein (KK) fields. After diagonaliza-
tion of the mass matrix, the mixing of the three active
neutrinos is given by

ναL ¼
X3
i¼1

Uαi

X∞
n¼0

V inν
ðnÞ
iL ; ð1Þ

whereU is the ordinary3 × 3unitary neutrinomixingmatrix

and each νðnÞiL is a neutrino field with mass mðnÞ
i ¼

λðnÞi =RED, where λ
ðnÞ
i are the solutions of the transcendental

equation,

λðnÞi − πðmD
i REDÞ2 cot ðπλðnÞi Þ ¼ 0; ð2Þ

where mD
i are the three eigenvalues of the Dirac neutrino

mass matrix, which are naturally much smaller than the

electroweak scale because of the LED volume suppression.
The components of the mixing matrixV are given by [9–11]

ðV inÞ2 ¼
2

1þ π2ðmD
i REDÞ2 þ ðmðnÞ

i =mD
i Þ2

: ð3Þ

The neutrino oscillation probability is given by

Pνα→νβ ¼
����X3
i¼1

X∞
n¼0

U�
αiUβiV2

in exp

�
−i

ðmðnÞ
i Þ2L
2E

�����
2

; ð4Þ

where E is the neutrino energy and L is the source-detector
distance.
The transcendental equation (2) has an infinite number of

solutions λðnÞi for n¼0;1;…;∞ in the intervals ½n; nþ 1=2�.
To get a feeling of the behavior of these solutions, one
can solve the transcendental equation (2) analytically for
mD

i RED ≪ 1 [13] and find the leading expressions,

mð0Þ
i ¼ mD

i

�
1 −

π2

6
ðmD

i REDÞ2 þ…

�
; ð5Þ

mðkÞ
i ¼ k

RED

�
1þ ðmD

i REDÞ2
k2

þ…

�
for k > 0; ð6Þ

Vi0 ¼ 1 −
π2

6
ðmD

i REDÞ2 þ…; ð7Þ

Vik¼
ffiffiffi
2

p mD
i RED

k

�
1−

3

2

ðmD
i REDÞ2
k2

þ…

�
for k> 0; ð8Þ

Therefore, for k > 0, the masses mðkÞ
i increase with k

and the mixing Vik decreases with k. It is also clear that
for very small values of RED [compared with ðmD

i Þ−1]
Vik → 0 for k > 0, leading to the standard three-neutrino
mixing phenomenology with three Dirac neutrino masses
mD

i for i ¼ 1; 2; 3.
Since the standard three-neutrino mixing describes well

the oscillations observed in solar, atmospheric, and long-
baseline neutrino experiments, the LED model must be
considered as a perturbation of three-neutrino mixing,
which corresponds to V in ¼ δn0 for i ¼ 1; 2; 3. Hence,

we require that the zero-mode masses mð0Þ
i generate the

standard mass-squared differences [21],

Δm2
kj ¼ ðmð0Þ

k Þ2 − ðmð0Þ
j Þ2: ð9Þ

We consider [16]

Δm2
21 ¼ 7.5 × 10−5 eV2;

ðΔm2
31ÞNO ¼ 2.55 × 10−3 eV2;

ðΔm2
31ÞIO ¼ −2.45 × 10−3 eV2; ð10Þ

FORERO, GIUNTI, TERNES, and TYAGI PHYS. REV. D 106, 035027 (2022)

035027-2



where NO and IO indicate, respectively, normal ordering
and inverted ordering. In this way, the two independent
squared-mass mass-squared differences Δm2

21 and Δm2
31

allow us to fix two of the independent Dirac mass
parameters mD

i of the LED model. It is convenient to
choose as the remaining free mass parameter, denoted by
m0, the lightest Dirac mass, which depends on the ordering:
m0 ¼ mD

1 (m0 ¼ mD
3 ) in the normal (inverted) neutrino

mass ordering. With this method, the LED model depends
on two parameters: RED and m0. For fixed values of RED
andm0, the determination of the masses and mixing is done
as follows. First, we determine the lightest zero-mode mass

mð0Þ
1 (mð0Þ

3 ) by solving the transcendental equation in
Eq. (2) with mD

1 ¼ m0 (mD
3 ¼ m0) for NO (IO). Next,

we determine the other two zero-mode masses using Eq. (9)
and the values of the mass-squared differences in Eq. (10).
Then, the transcendental equation (2) allows us to deter-
mine the corresponding mD

i ’s. In this way, the values of
all the three mD

i ’s are established, and we can calculate
the masses and mixings for all values of n > 1 using
Eqs. (2) and (3).
The constraints (9) restrict the physical region of

the LED parameters m0 and RED that must allow the

λð0Þi ’s to be smaller than 1=2 in order to have a solution of
the transcendental equation (2). Denoting with r and s the
indices of the largest and smallest zero-mode mass (r ¼ 3
and s ¼ 1 in NO; r ¼ 2 and s ¼ 3 in IO), the physical
region is determined by the inequality,

R2
EDΔm2

rs þ ðλð0Þs Þ2 ¼ ðλð0Þr Þ2 < 1=4: ð11Þ

Note that there is a bound even for m0RED ≪ 1, which can
be found using the approximation in Eq. (5),1

RED < 1=ð2
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

rs

q
Þ: ð12Þ

Since the largest mass-squared difference is the atmos-
pheric one, which is about 2.5 × 10−3 eV2 in both NO
and IO, we have the physical upper bound for the radius of
the extra dimension,

RED ≲ 2 μm: ð13Þ

The behavior of the masses is illustrated in Fig. 1 for
the zero-mode and the first seven KK modes. The masses
are plotted as functions of m0 for RED ¼ 0.49 μm ¼
ð0.40 eVÞ−1. One can see that for small values of m0

the smallest zero-mode mass is approximately equal to m0,
in agreement with Eq. (5). There is a deviation from this
equality for m0 ≳ 0.1 eV and the smallest zero-mode mass
tends to 1=ð2REDÞ ¼ 0.20 eV for m0 ≳ 1 eV. The dashed
and dotted vertical lines indicate the largest value of m0

determined by the inequality (11) for the other two
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FIG. 1. The neutrino massesmðnÞ
i for n ¼ 0; 1;…; 7, as functions ofm0 for RED ¼ 0.49 μm in the (a) normal ordering (m0 ≡mD

1 ) and
(b) inverted ordering (m0 ≡mD

3 ). The dashed and dotted vertical lines indicate the largest value of m0 determined by the inequality (11)
for r ¼ 2 and r ¼ 3 in NO (where s ¼ 1) and for r ¼ 1 and r ¼ 2 in IO (where s ¼ 3). Note that in IO all the dashed and dotted lines are
almost superimposed because the differences are determined by the small solar mass-squared difference.

1Since s is the index of the smallest zero-mode mass, from the
leading term in Eq. (5), we have ðλð0Þs Þ2 ≃ ðm0REDÞ2, which is
negligible with respect to 1=4 for m0RED ≪ 1.
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zero-mode masses. The physical upper bound on m0 is
determined by the dashed lines that correspond to m0 ≲
0.63 eV in both NO and IO.
Figure 2 illustrates the behavior of the mixing elements

V in corresponding to the masses in Fig. 1. One can see that
for small values of m0 the mixing elements Vi0 are
dominant and the mixing elements Vik decrease with k,
in agreement with Eq. (8). Therefore, for m0 ≪ R−1

ED, the
phenomenology of the LED model is determined by a few
low KK modes. On the other hand, for m0 ≳ R−1

ED, it is
necessary to take into account a sufficient number of
high KK modes. We have verified that for the oscillation
experiments considered in this paper adding more than five
modes has no effect on our result. For the analyses of
oscillation data, we therefore use five modes. In the case of
KATRIN, one needs to calculate the number of relevant
modes dependent on the values of m0 and RED, as will be
explained below in Sec. III C.

III. DATA ANALYSIS

In this section, we present the results of our analyses.
Section III A discusses the analysis of reactor rate and
gallium experiments, Sec. III B is dedicated to MINOS=
MINOSþ and Daya Bay, and in Sec. III C, we outline the
analysis procedure of KATRIN data. In Sec. IV, we will
discuss the combined bound from all experiments.
When performing the analyses, we take into account

possible correlations between LED and standard oscillation

parameters by marginalizing over them. In particular,
marginalizing over θ13 and θ23 affects the bounds obtained
in the analyses of Daya Bay and MINOS=MINOSþ data,
respectively. Since current data only slightly prefer normal
over inverted neutrino mass ordering [42] of the three
mostly active states, we perform all of our analyses for
both orderings.
For electron neutrino experiments (νe disappearance and

β-decay experiments), the effects of the LEDKKmodes are
quite different in the two orderings for small values of m0.

As one can see from Fig. 1(a), in the NO case,mð0Þ
1 ,mð0Þ

2 ≪
mð0Þ

3 for m0 ≪ 0.1 eV. Hence, from Eq. (5), it follows that
mD

1 , m
D
2 ≪ mD

3 for mD
i RED ≪ 1. Then, from Eq. (8), we

obtain V1k, V2k ≪ V3k. Therefore, in the NO case, the
dominant LED effects are given by the terms with i ¼ 3 in
the neutrino oscillation probability (4) for νe disappearance
and in β-decay spectra as that of the KATRIN experiment
that we consider in Sec. III C. Since these terms are
suppressed by the smallness of jUe3j2, the LED effects

are small. On the other hand, in the IO case, mð0Þ
3 ≪ mð0Þ

1 ,

mð0Þ
2 form0 ≪ 0.1 eV, as one can see from Fig. 1(b), which

implies that mD
3 ≪ mD

1 , mD
2 and V3k ≪ V1k, V2k for

mD
i RED ≪ 1. In this case, the dominant LED contributions

appear in the terms with i ¼ 1 and i ¼ 2, which are not
suppressed. Therefore, νe disappearance and β-decay
experiments give stronger constraints on the LED param-
eters for inverted ordering than for normal ordering (see,
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FIG. 2. The mixing elements V in for n ¼ 0; 1;…; 7, as functions of m0 for RED ¼ 0.49 μm in the (a) normal ordering (m0 ≡mD
1 ) and

(b) inverted ordering (m0 ≡mD
3 ). The dashed and dotted vertical lines indicate the largest value of m0 determined by the inequality (11)

for r ¼ 2 and r ¼ 3 in NO (where s ¼ 1) and for r ¼ 1 and r ¼ 2 in IO (where s ¼ 3). Note that in IO, all the dashed and dotted lines are
almost superimposed because the differences are determined by the small solar mass-squared difference.
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e.g., Refs. [21,29]). Since this occurs for m0 ≪ 0.1 eV, the
result is a significant decrease of the upper bounds for RED
for small values of m0 in the case of inverted ordering with
respect to normal ordering. Instead, in the case of νμ
disappearance, all the relevant jUμij2 are large, and there is
no big difference between normal and inverted ordering.

A. LED at short baseline experiments

In this section, we present the results of our analyses of
the data of the reactor rate experiments and the gallium
source experiments. It has been shown in Ref. [20] that the
gallium and reactor anomalies can be resolved if LED
induced neutrino oscillations are present in nature. In this
section, we perform an updated analysis using the most
up-to-date reactor rate and gallium data.
The importance of reactor fluxes and its impact on the

statistical significance of the anomaly has been recently
discussed in Refs. [43,44]. Here, we repeat the reactor rate
analysis as in Ref. [43], but with the 3þ 1 oscillation
probability replaced by its LED counterpart. The flux
models that are considered in this work are the Huber-
Mueller model [45,46] (HM), the model by Estienne, Fallot
et al. [47] (EF), the model by Hayen et al. [48] (HKSS), and
the recent model from the Kurchatov institute [49] (KI).
For a detailed description of the models and for the details
of the statistical analysis, the interested reader is referred
to Ref. [43].
The results for the four flux models are shown in Fig. 3

for normal (left panel) and inverted (right panel) neutrino

mass ordering. The results are similar to those in Ref. [43].
For the KI and EF models, no anomaly is found, and we can
only set bounds on the LED parameter space. In the case of
the HM model, we find an elongated region at 90% C.L.,
but no closed regions at 99% C.L. In the case of the HKSS
model, the anomaly is the strongest and then also the
99% C.L. contour is closed.
The GALLEX [50–52] and SAGE [32,53–55] experi-

ments were constructed to detect solar neutrinos. They
have been tested by placing intense artificial 51Cr and 37Ar
radioactive sources inside of the detectors. The resulting
ratios of observed to expected events are significantly
smaller than unity. This deficit became known as the
gallium anomaly [32–34]. The results of GALLEX and
SAGE have been recently confirmed by the BEST
Collaboration [40,41], pushing the combined signifi-
cance of the gallium anomaly to the 5σ level. We analyze
the data of the gallium experiments following Ref. [56],
but including also the BEST data. We also consider a 3%
uncertainty on the gallium cross section. We use only the
cross section model of Bahcall [57], since other models
produce a similar gallium anomaly [58]. In Fig. 3, we
show the preferred region obtained from the combined
analysis of the data of the gallium experiments (orange
lines). This region updates the region obtained in
Ref. [20] by including also the recent results from the
BEST experiment [40]. One sees that the results of the
reactor rate analysis, for all the considered flux models,
and the result from the gallium analysis are in tension.

FIG. 3. Contours at 90% (dashed) and 99% (solid) confidence level obtained from the analysis of reactor rate data for several models
of the reactor antineutrino flux and the analysis of the gallium data for normal (left) and inverted (right) neutrino mass ordering. The gray
lines in the upper right corner mark the limit of the physically allowed region of parameter space. Notice, that in the case of HM, there is
a closed contour surrounding the 90% C.L. allowed region, while for HKSS even the 99% contour is closed. For EF and KI, only upper
limits can be set, since there is no RAA (and hence, no preference for short baseline oscillations) for these flux models. The stars denote
the best fit value obtained in each analysis. The best fit value for inverted ordering for the KI flux model is found form0 < 10−2 eV and
does not appear in the figure.
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The same feature has already been observed in the context
of 3þ 1 oscillations; see Ref. [43].

B. LED at long baseline experiments

The Main Injector Neutrino Oscillation Search (MINOS)
was an accelerator-based neutrino oscillation experiment.
Unlike the former experiments considered in this paper,
MINOS uses a beam of muon neutrinos, instead of electron
neutrinos. The neutrinos were produced at the NuMI beam
facility at Fermilab and detected at the near and far
detectors of the experiment, located at 1.04 km and
735 km, respectively. During the MINOS data taking
period, the neutrino beam peaked at an energy of 3 GeV
and was later tuned to cover larger energies peaking at
7 GeV for the upgraded version of the experiment,
MINOSþ. Traces of large extra dimensions in the data
have been sought for by the MINOS Collaboration [59].
We update these results, considering the data corresponding
to an exposure of 10.56 × 1020 POT in MINOS (mostly
in neutrino mode, only 3.36 × 1020 POT were gathered in
antineutrino mode) and 5.80 × 1020 POT in MINOSþ (in
neutrino mode). The data are the same as those used for the
search of light sterile neutrinos [60]. We adopt the analysis
procedure followed by the experimental collaboration for
the search of active-sterile neutrino oscillations in Ref. [60]
by adapting the public MINOS=MINOSþ code to account
for LED neutrino oscillations instead of active-sterile
oscillations.
In addition to the data collected by MINOS=MINOSþ,

we also analyze data from the Daya Bay reactor neutrino
experiment [61]. Daya Bay uses several nuclear reactors
summing up a total thermal power of ∼17GWth and
measures the antineutrinos at 8 identical detectors, each
with 20 ton fiducial mass, situated at three different sites
(experimental halls). For this analysis, we consider the

dataset corresponding to 1958 days [61]. First, we repro-
duced the three-neutrino analysis performed by the col-
laboration using information from Refs. [61–63] through
an implementation of the experiment in the GLoBES
C-library [64,65]. Instead of a far-over-near ratio analysis,
the spectral information at the three halls was used.
Systematic uncertainties were also included in the analysis,
in the same way as in the analysis in Ref. [16]. After that,
we modified GLoBES in order to include the LED
oscillation probability in Eq. (4).
The results of our analysis are shown in Fig. 4. The red

and black lines correspond to the bounds at 90% (dashed)
and 99% (solid) C.L. for 2 degrees of freedom for
MINOS=MINOSþ and Daya Bay, respectively. The results
of our analysis of MINOS=MINOSþ data are in reasonable
agreement with the preliminary results obtained by the
MINOS collaboration in Ref. [66]. Note, however, that
we perform a simple χ2 analysis, while the results from
Ref. [66] are obtained from a Monte Carlo analysis. We
find that Daya Bay sets the strongest bounds on the LED
parameters for inverted ordering, while for normal ordering
the bound by MINOS=MINOSþ is the strongest for small
values of m0. It should be noted, that these bounds exclude
the LED explanation of the gallium anomaly and are in
even stronger tension with the gallium region than the
regions preferred from the analysis of reactor rate data. It
should also be noted that for small values of RED the
bounds become very weak, since in this case, LED effects
become very small and then m0 corresponds to the overall
neutrino mass scale to which oscillation experiments are
not sensitive.

C. LED at KATRIN

In this subsection, we present the results of our analysis
of the data of the KATRIN experiment. KATRIN is an

FIG. 4. Upper limits at 90% (dashed) and 99% (solid) confidence level obtained from our analysis of data from MINOS=MINOSþ
(red) and Daya Bay (black) for normal (left) and inverted (right) neutrino mass ordering. The gray lines in the upper right corner mark the
limit of the physically allowed region of parameter space. The stars denote the best fit value obtained in each analysis.
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experiment for direct neutrino mass measurement. It
measures the single beta decay of molecular tritium,
T2 → 3HeTþ þ e− þ ν̄e, near the end point of the spectrum.
The KATRIN Collaboration presented their first two mass
measurements in Refs. [67,68]. From the first (second)
campaign, they obtained an upper bound of 1.1 eV (0.9 eV)
at 90% C.L. on the effective electron neutrino mass mβ in
the standard three-neutrino mixing framework, which is
given by

m2
β ¼

X3
i¼1

jUeij2m2
i : ð14Þ

The combined upper bound from both data sets is 0.8 eVat
90% C.L. [68]. A best fit ofm2

β ¼ 0.26 eV2 was obtained in
the second campaign. The KATRIN data have also been
used to search for light sterile neutrinos; see Refs. [69–71].
Using the current data, KATRIN is sensitive to neutrino
masses up to 40 eV because the data span the last 40 eVof
the integral spectrum.
In our analysis, we use the KATRIN data given in

Ref. [71] (corresponding to the second campaign) to search
for the effects of large extra dimensions. In the presence of
LED, the Kurie function is [21]

KðE;m0; REDÞ ¼
X
j

pjϵj
X3
i¼1

jUeij2
X∞
n¼0

ðV inÞ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2j −

�
λðnÞi

RED

�2
s

Θ
�
ϵj −

λðnÞi

RED

�
; ð15Þ

where ϵj ¼ E0 − Vj − E is the neutrino energy, which
depends on the end point of the spectrum E0 and the

energies of the different final states Vj (which occur
with probability pj). In our analysis, we include several
sources of systematic uncertainties, following the discus-
sion in Ref. [71]. In particular, we fit the data with a
free total normalization of the spectrum, a free flat back-
ground component, a hypothetical retarding-potential-
dependent background, and a small time-dependent
background contribution from electrons stored in the
Penning trap. Moreover, we constrain the Q value to be
18575.72� 0.07 eV, as determined from the precise meas-
urement of the atomic mass difference of tritium and 3He in
Ref. [72]. This Q value implies the end point of the
spectrum E0 ¼ 18574.21� 0.6 eV [68].
We first verified our analysis method by repeating the

standard three-neutrino analysis using the data from
the second campaign. We obtained an upper bound of
mβ < 0.83 eV at 90% C.L. and a best fit m2

β ¼ 0.1 eV2.
These results are consistent with the results of the
KATRIN Collaboration presented in Ref. [68]. Next,
we exchanged the standard Kurie function with Eq. (15)
in our analysis code in order to bound the LED param-
eters. In the calculation of the Kurie function, all
KK modes with masses less than 40 eV have to be
included. The results of our analyses are shown in
Fig. 5, where we show the 90% (dashed orange lines)
and 99% (solid orange lines) C.L. bounds for the LED
parameters for normal (left) and inverted (right) neutrino
mass ordering.
For RED ≲ 5 × 10−3 μm, the upper bound on m0 is the

same as the upper bound that we obtained for mβ [see the
discussion after Eq. (8)]. The difference of the upper bound
0.9 eV at 90% C.L. in Fig. 5, with the 0.83 eV bound
declared above is due to the fact that the contours in Fig. 5
are calculated with 2 degrees of freedom, instead of 1.

FIG. 5. Upper limits at 90% (dashed) and 99% (solid) confidence level obtained from our analysis of data from KATRIN for normal
(left) and inverted (right) neutrino mass ordering and also our estimated final sensitivity. Note that in the case of normal ordering, the
bound stops at the physically allowed limit, indicated by the gray line. The stars denote the best fit values obtained in the analysis. Note
that for the sensitivity curve the best fit would correspond to RED ¼ 0 and hence, does not appear in the figure.

LARGE EXTRA DIMENSIONS AND NEUTRINO EXPERIMENTS PHYS. REV. D 106, 035027 (2022)

035027-7



The coincidence of the two bounds is due to the negligible
contribution of the KK modes for RED ≲ 5 × 10−3 μm. In
this case, only the zero mode is relevant, and m0 is
equivalent to mβ.
For RED ≳ 5 × 10−3 μm, the KK modes start to be

relevant, and for RED ∼ 1 μm, more than 200 KK modes
must be considered.
An interesting feature that can be noticed in Fig. 5 is the

bump of the bound that occurs around RED ∼ 3 × 10−2 μm.
We think that this feature is due to the spacing of the
KATRIN data points. We checked this explanation with a
fit of simulated data having a different spacing. We
generated a mock data sample using 100 bins of the
retarding potential which are evenly spaced in the
40 eV interval below the endpoint (compared to the 23
slightly unevenly spaced points used by KATRIN), and
we found a bound without the bump. This implies that the
bump is caused by the particular retarding potentials at
which the KATRIN measurements have been done. A
similar bump, in the same mass range, was found in the
sterile neutrino analysis of the KATRIN Collaboration;
see Ref. [71].
Note that the bound on the LED parameters obtained

from the analysis of the KATRIN data is not very strong in
comparison to the bounds obtained in the previous sub-
sections. It should be noted, however, that the KATRIN
bound does not vanish for small values of RED, where it
simply corresponds to the bound on the neutrino mass scale
of the standard three-neutrino analysis. Therefore, the
analysis of KATRIN data allows us to reduce the volume
of the allowed parameter space of the LED parameters,
which from the analysis of oscillation data alone is
unbound for small values of RED. In Fig. 5, we also show

the expected final sensitivity2 of KATRIN (magenta lines).
We see that the KATRIN bound will improve significantly
in the near future.

IV. COMBINED BOUNDS ON LED PARAMETERS

In this section, we discuss the combined analysis of the
experiments considered individually in Sec. III. We do not
consider the gallium data in this section, since it is in
tension with the other data. This can be done under the
hypothesis that the gallium anomaly is not due to neutrino
oscillations. Regarding the reactor rate data, we consider
only the analysis using the KI fluxes. Note that since
the combined analysis is dominated by MINOS and Daya
Bay, using another model of the reactor antineutrino
fluxes would not affect the combined bound on the LED
parameters.
The result of our analysis is shown in Figs. 6 and 7. In

Fig. 6, we show the two-dimensional allowed regions
for the individual experiments (below the corresponding
lines) and the allowed regions obtained from the combined
analysis (colored regions). As it can be seen in the
right panel of the figure, where the black Daya Bay lines
nearly coincide with the boundaries of the blue and
yellow regions obtained from the combined analysis, for
inverted ordering the combination is dominated by Daya
Bay for RED ≳ 7 × 10−3 μm. Instead, for normal ordering,
both MINOS and Daya Bay give essential contributions
to the definition of the combined allowed region for

FIG. 6. Upper limits at 90% (dashed) and 99% (solid) confidence level obtained from our analysis of data from MINOS=MINOSþ
(red) and Daya Bay (black) and the reactor rate data for the KI flux model for normal (left) and inverted (right) neutrino mass ordering.
We also show the allowed regions (yellow and blue) from the combined analysis of all data. The gray lines in the upper right corner mark
the limit of the physically allowed region of parameter space. The black stars denote the best fit value obtained in the combined fit
of all data.

2Note that our sensitivity estimation is a bit weaker than that of
Ref. [21]. The difference is due to the fact that our estimation uses
more up-to-date information of the experimental details than the
estimation of Ref. [21] done in 2012.
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RED ≳ 7 × 10−3 μm. As it can be seen, MINOS is domi-
nating for large values of RED, while Daya Bay is
dominating for intermediate values of RED. For both
orderings the contribution of KATRIN is to close the
allowed region for small values of RED. For small values
of RED, the LED oscillation probability becomes basically
the standard three-neutrino oscillation probability, and then
the oscillation experiments can not boundm0, which in this
case is simply the neutrino mass scale. In Fig. 5, we showed
the projected final sensitivity of KATRIN. Comparing it
with the bounds in Fig. 6, we see that the contribution of
KATRIN to bound the LED parameter space will become
much more relevant in the near future.
In Fig. 7, we show the one-dimensional Δχ2 profiles for

the compactification radius of the large extra dimension.
Also from this figure, one sees that for normal (inverted)
ordering the bound on RED is dominated by the analysis of
data from MINOS=MINOSþ (Daya Bay). From our
combined analyses, we find that

RED < 0.20 μmat 90%C:L: for NO; ð16Þ

RED < 0.10 μmat 90%C:L: for IO: ð17Þ

These bounds are quite strong for both orderings. In spite of
the potentialities of the next generation of neutrino oscil-
lation experiments, unfortunately it is unlikely that they
will be able to improve these bounds according to Ref. [29]
for JUNO and TAO, Refs. [24,27,28] for DUNE, and
Ref. [26] for SBN.
Let us finally emphasize that the results of our analysis

improve all the bounds on the LED parameters obtained
previously fromneutrinooscillation data [13,15,19,22,59,73].

V. CONCLUSIONS

We have performed an analysis of the data of several
neutrino oscillation experiments and the KATRIN

experiment in the framework of a large extra dimensions
model with a dominant large extra dimension. We obtained
the strongest bounds on the LED parameter space that
have been attained so far from the data of neutrino
experiments. We have shown that the LED explanation
of the gallium anomaly is excluded by the analyses of the
data of the other experiments. This behavior has also been
observed in the context of neutrino mixing with a light
sterile neutrino [43]. Combining all data, we obtained a
bound of RED < 0.20ð0.10Þ μm at 90% C.L. for NO (IO).
Using KATRIN data, we are able to close the region at
small values of RED, as it can be seen in Fig. 6. The
KATRIN bound on m0 is expected to improve by approx-
imately 1 order of magnitude, according to the final
KATRIN sensitivity. Hence, the role of KATRIN will
become more crucial in the future.
Apart from neutrino experiments, searches for large

extra dimensions have been performed using tabletop
gravitational experiments [74–77], collider experiments
[78–82], and also performing analyses of astrophysical
[83–87] and cosmological data [88–90]. Using astro-
physical data, very strong constraints ranging in RED <
0.16–916 nm have been obtained. However, these limits
depend on the technique and some assumptions [91] in
the analyses. It should be noted that the bound that we
obtained from the data of neutrino experiments is 2 orders
of magnitude stronger than the constraints obtained
using tabletop experiments, which achieved a limit of
RED < 37 μm at 95% C.L. [91].
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