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The fundamental nature of dark matter is entirely unknown. A compelling candidate is twin Higgs mirror
matter, invisible hidden-sector cousins of the Standard Model particles and forces. This predicts mirror
neutron stars made entirely of mirror nuclear matter. We find their structure using realistic equations of
state, robustly modified based on first-principle quantum chromodynamic calculations, for the first time.
This allows us to predict their gravitational wave signals, demonstrating an impressive discovery potential
and ability to probe dark sectors connected to the hierarchy problem.
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I. INTRODUCTION

Dark matter makes up ∼85% of matter in our
Universe, yet its properties remain unknown. We only
have gravitational information on large astrophysical or
cosmological scales: how much exists, modest bounds on
self-interactions and more stringent bounds on interactions
with Standard Model (SM) matter [1]. These constraints
still allow for an enormous space of possibilities.
Uncovering the fundamental nature of dark matter would
solve one of the greatest mysteries of modern science.
It is possible all of dark matter is a single, collisionless

particle species. This possibility is appealing not only for its
simplicity, but also because such dark matter candidates
occur in predictive theories of particle physics that address
an a priori unrelated issue. For example, the hierarchy
problem is the inconsistency between the Higgs mass and
the value expected from quantum field theory. In the SM,
the electroweak scale and masses of fundamental particles
are set by the mass of the Higgs boson. However, the Higgs
mass is sensitive to unknown physics at tiny distance
scales, including details of quantum gravity. Quantum
corrections should set the Higgs mass mH near the
Planck scale ∼1018 GeV, which is in direct conflict with
the measured value mH ≈ 125 GeV.
Supersymmetry (SUSY) [2] solves this problem by

introducing particles that cancel quantum corrections
to mH. These might include weakly interacting massive
particles (WIMPs) that could be dark matter. This would
imply a relationship between dark matter signatures and the
observed dark matter relic abundance. Unfortunately, direct
detection signals of WIMPs and collider signals of SUSY
have not yet been found [3,4], straining this hypothesis.
The WIMP paradigm is theoretically attractive, but

paints a picture of dark matter in stark contrast to our
experience with SM matter. SM matter contains various

particles that interact via four fundamental forces—why
should dark matter be so simple in comparison? Nothing
prevents different dark particles, endowed with their own
dark forces (see e.g. [5]). However, dark sectors of similar
complexity to the SM, known as dark complexity [6,7], are
underexplored.
Given the lack of evidence for theories like WIMPs or

SUSY, the plausibility of complex dark matter, and its
wildly different experimental signatures compared to min-
imal dark matter, it is imperative to understand the physical
consequences of dark complexity. This seems daunting
given the vast space of possibilities, but unsolved funda-
mental puzzles of high-energy particle physics can again
provide guidance.
A well-motivated example of dark complexity is mirror

matter [8,9], a dark matter candidate related to SM matter
via a discrete symmetry. Part of dark matter would be made
up of mirror protons, neutrons, and electrons, which do not
interact under SM gauge forces, making them invisible.
Instead, mirror matter interacts with itself via mirror
versions of electromagnetism, the weak and strong forces.
Just as WIMPs occur in supersymmetry, mirror matter is a
prediction of another solution to the hierarchy problem, the
twin Higgs mechanism [9–11]. Twin Higgs predicts differ-
ent collider signatures than SUSY [12,13], evading existing
constraints [3] from LHC searches. Twin Higgs mirror
matter is an excellent starting point to understand dark
complexity. Several of its predictions have already been
theoretically studied and will soon be tested [6,7,10,11].
We examine for the first time one of the simplest, most

spectacular predictions of the twin Higgs: if dark matter
contains mirror matter, then the cosmos should be filled
with mirror neutron stars, invisible degenerate stellar
objects made entirely of mirror nucleons, analogous to
SM neutron stars. These objects are a generic prediction of
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nonminimal dark matter theories with a confining force
similar to SM quantum chromodynamics (QCD), but have
never been studied before in realistic detail. Previous
investigations studied other kinds of exotic compact objects
]14 ]; used SM neutron stars as probes of dark sectors (e.g.

[15]); or considered neutron-star-like objects that were
composed of exact copies of SM nuclear matter [16],
fundamental dark fermions with simple interactions
[17–19], or highly simplified general dark nuclear matter
[20]. Ours is the first realistic study of mirror neutron star
properties arising from a dark QCD sector that is different
from the SM. This allows us to predict their mass-radius
relationship, Love numbers, and moments of inertia in
detail, explicitly demonstrating for the first time that
gravitational wave detectors can discover these objects
using standard analysis techniques, probe their dark sectors
and uncover their connection to the hierarchy problem.

II. TWIN HIGGS MIRROR MATTER

The mirror twin Higgs mechanism [9,10] addresses the
hierarchy problem by introducing a hidden-sector copy of
the SM particles and forces. As in the SM, mirror quarks
form mirror protons and neutrons, coalesce into mirror
nuclei, and form mirror atoms with mirror electrons [11].
The symmetry relating the SM and mirror sector means that
the baryogenesis mechanism that generates the matter excess
of our Universe should have a mirror-sector analog, meaning
a significant fraction of dark matter could be in the form of
mirror matter. Mirror matter and SM matter must interact
very faintly via the Higgs boson, but for the purposes of our
astrophysical discussion we can regard mirror matter as
invisible and only detectable gravitationally.
Earlier studies of mirror matter focused on an exact copy

of SMmatter (e.g. [8]). In contrast, the minimal mirror twin
Higgs predicts mirror matter that is a SM copy, except that
the vacuum expectation value f of the mirror Higgs is
scaled up compared to the value for the SM Higgs v by a
factor of f=v ∼ 3–10. The mirror quarks, leptons, and
gauge boson masses are scaled by the same factor. The
lower bound f=v≳ 3 ensures agreement with experimental
constraints, including LHC Higgs coupling measurements
[21]. Large values of f reduce the theory’s ability to solve
the hierarchy problem, making f ≲ 10 a reasonable upper
bound. Properties of twin Higgs mirror matter significantly
deviate from the SM, while being similar enough to allow
for robust predictions.
Just like SM matter, mirror matter would display rich

dynamics at all size scales. In the earlyUniverse, the presence
of mirror matter gives rise to cosmological signatures like
mirror-baryo-acoustic oscillations and faint dark radiation
signals in the cosmic microwave background [10,11]. More
general scenarios may produce gravitational waves from the
dark hadronization phase transition [22]. Each galaxy would
likely contain a mirror-baryon-component and form mirror

stars [6] that could be detectable, depending on unknown
aspects of mirror stellar physics and the feeble coupling
between SMandmirrormatter. Details of these dynamics are
uncertain, depending on the precise parameters of mirror
matter. However, the end point of mirror stellar evolution is,
as for SM matter, relatively simple: compact objects like
neutron stars, white dwarfs, or black holes. Mirror neutron
stars are a generic prediction of dark complexity and we
investigate their signatures by studying the twin Higgs
benchmark model.
At low energies, mirror QCD behaves similarly to SM

QCD, except that the strong confinement scale Λ0
QCD is

larger than the SM (whereΛQCD ≈ 250 MeV) by a factor of
Λ0
QCD=ΛQCD ≈ 1.3ð1.7Þ for f=v ¼ 3ð10Þ [11]. The mirror

neutron and proton masses increase accordingly. The pion
mass is related to the fundamental quark masses and
confinement scale, mπ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛQCDmq

p
, making the mirror

pion 2 (4) times heavier than mSM
π ¼ 140 MeV for

f=v ¼ 3ð10Þ. This allows us to predict the properties of
mirror neutron stars.
Our work focuses on this symmetric twin Higgs

benchmark model, but the results depend mainly on the
dark confinement scale. This also provides insight into
other mirror QCD scenarios with different mirror hadron
spectra [23].

A. Hierarchy problem and neutral naturalness

The idea that a subcomponent of dark matter could
consist of particles with qualitatively similar properties
to those in the SM has been around for a long time
[8–11,24–30] (see also e.g. [31]). In particular, mirror
models proposed the existence of a mirror-symmetric
sector with mirror analogs of all of the SM particles and
gauge groups. Since these new particles interact under their
own copy of the SM SUð3Þc × SUð2ÞL ×Uð1ÞY gauge
group, their interactions with ordinary matter take place via
portal interactions. Portal interactions couple fields from
one sector to fields from another (such as the vector portal
interaction that introduces a small mixing of the SM photon
and mirror photon). Such interactions do not violate any
symmetries and are expected to be present at some level,
but they can be almost arbitrarily small, which explains
why this new sector of matter and forces may have
remained hidden so far.
More recently, there has been renewed interest in mirror

sectors due to their relevance to the hierarchy problem [9].
The hierarchy problem refers to the extreme hierarchy
between the scale of electroweak interactions and the scale
of gravity—specifically the smallness of the Higgs boson
mass compared to the Planck scale [32]. The Higgs mass is
the only dimensionful parameter in the SM Lagrangian, and
is unprotected from large quantum corrections from new
physics at high energy scales, which must finely cancel
with the bare Higgs mass parameter. This extreme fine
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tuning can be ameliorated in beyond the Standard Model
(BSM) theories which introduce new symmetries that
protect the Higgs mass from high-scale quantum correc-
tions, or make the Higgs a composite state that only exists
at low energies. The most well-known examples of such
models are supersymmetry [2] and composite Higgs [33].
Both of these classes of models predict the existence of new
particles charged under QCD with masses not much higher
than a TeV, and they were part of the motivation for
the construction of the Large Hadron Collider (LHC).
However, in the absence of any discovery of BSM physics
at the LHC [3], such models are under increasing tension.
An alternative class of theories has received increased
attention in recent years, known as neutral naturalness, in
which the lightest BSM particles are all charged under a
hidden gauge group and whose production rates at the LHC
are significantly suppressed as a result [9,34,35]. These
models are able to address the hierarchy problem when this
hidden sector is related to the SM via some symmetry,
which can result in approximate cancellations in the
contributions to the mass of the Higgs. Neutral naturalness
therefore motivates particular types of mirror matter.
The simplest realisation of neutral naturalness is the

mirror twin Higgs model [9]. The hidden sector in this
model is an almost exact mirror copy of the visible sector.
The only difference is the vacuum expectation value (VEV)
of the Higgs field, which also sets the fundamental fermion
and electroweak gauge boson masses. The mirror Higgs
VEV, denoted by f, is a factor of a few higher than the
visible Higgs VEV v. In the minimal mirror twin Higgs
model, this ratio f=v is the only free parameter. This ratio is
required to be ≳3 in order to suppress invisible decays of
the Higgs to mirror sector particles via the Higgs portal,
which are constrained to be below 10% by LHC measure-
ments [12]. On the other hand, f=v≳ 10 makes the theory
fine-tuned and hence unsuitable for addressing the hier-
archy problem. Therefore, the most motivated twin Higgs
mirror sectors feature mirror quarks and leptons that are
scaled up in mass by a sizeable Oð1Þ factor relative to their
SM cousins.
Besides the rather mild collider constraints on the mirror

twin Higgs model, there are some interesting cosmological
constraints on this setup. The mirror twin Higgs predicts a
new massless gauge boson (the mirror photon) and three
new light mirror neutrinos, all of which contribute to the
total radiation density of the Universe during big bang
nucleosynthesis and recombination. The number of light
(relativistic) degrees of freedom (commonly denoted Neff )
at these times are cosmological observables that can be
extracted from measured element abundances and from the
cosmic microwave background. Crucially, the number of
new light degrees of freedom ΔNeff is constrained to be
ΔNeff ≲ 0.25 [36], or ΔNeff ≲ 0.49 using the value of the
Hubble constant obtained in [37]. The mirror twin Higgs

predicts that the visible sector and the mirror sector should
be in thermal equilibrium until the Universe has cooled to
temperatures of order OðGeVÞ, which leads to the robustly
excluded prediction ΔNeff ≈ 5.7 [10,30]. There are various
mechanisms that can avoid this issue—most relevant for
our purposes are those that generate a temperature asym-
metry which effectively dilutes the contribution to ΔNeff
from mirror sector particles. This can be achieved by
asymmetric decays of some heavier particle (for instance,
a right-handed neutrino), that preferentially decays to the
mirror sector, heating up the mirror sector bath relative to
the visible sector bath [10,30]. This can dilute the con-
tribution to ΔNeff and bring it within acceptable observa-
tional bounds. The resulting deviations are expected to be
observable with next-generation measurements of the
cosmic microwave background.
The mirror twin Higgs model is interesting in its

simplicity and predictive power, but it is also a useful
benchmark for more general models with complex dark
sectors. Its similarity to the SM means that many calcu-
lations are very familiar, and it features a variety of
interesting phenomena such as dissipative interactions
(which allow mirror matter to lose energy and cool), bound
states, and color confinement. Dissipative interactions in
particular are interesting because they can lead to the
formation of structure; in particular the formation of
compact objects analogous to stars in the visible sector.
In themirror twinHiggsmodel it is very plausible that mirror
stars could form [6,38], which can have their own distinctive
(if extremely faint) electromagnetic signatures via the photon
portal interaction. Furthermore, even if mirror stellar physics
is radically different fromSMstellar physics, the existence of
degenerate remnant objects such as mirror white dwarfs and
mirror neutron stars, supported by degeneracy pressure, is a
robust prediction. Their formation rate and initial mass
function will depend on complex, nonlinear mechanical
and radiative feedback mechanisms, which are difficult to
model even in the SM. Of course, the detection of even a
single mirror neutron star would be a monumental discovery
that would not only constitute a direct discovery of a
component of dark matter but also probe important details
of the dark sector. The reach of current and future gravita-
tionalwave observatoriesmake such a discovery a tantalising
possibility.
It is important to stress that mirror neutron stars are not

just a consequence of a single model of BSM physics; they
are completely generic predictions of any hidden sector
model with dissipative self-interactions and some analog of
SM QCD. The fact that mirror sector matter is not charged
under SM gauge groups (and hence does not directly
produce any electromagnetic signatures) means that such
objects could indeed be relatively common in our Galaxy
without having been detected thus far—indeed their sig-
natures are expected to be purely gravitational.
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B. Benchmark model

We summarize here the specific details of the twin Higgs
mirror matter model we will use as a benchmark in our
study of mirror neutron stars. For our purposes it consists of
a dark QCD sector, presumed identical to that of the SM
except that all of the quarks are a factor of f=v heavier than
the SM quarks. We will explicitly take values of f=v in the
motivated range ∼3–7. In order for the charge neutrality in
nuclear matter to be satisfied, we also include the mirror
electron and mirror muon along with mirror electromag-
netic interactions. The mirror electron and muon are again a
factor of f=v heavier than their SM counterparts, and the
strength of the mirror electromagnetic interaction is
assumed to be unchanged, i.e. α0 ¼ α. Mirror weak
interactions proceed identically as in the SM, except that
the mirrorW and Z boson masses are also scaled up by the
f=v factor. However, the details of mirror weak interactions
turn out to not be important for our study (it only matters
that they are fast enough to maintain beta equilibrium
inside the mirror neutron star).
The heavier mirror quarks have two important conse-

quences for the mirror QCD sector. The most important is
that the increased masses of the heavy quarks—specifically
those heavier than ΛQCD—will affect the running of the
mirror strong coupling constant. This results in a different
confinement scale Λ0

QCD in the mirror sector. Following
Ref. [11] we take themirror confinement scale to be given by

Λ0
QCD

ΛQCD
≈ 0.68þ 0.41 log

�
1.32þ f

v

�
; ð1Þ

which is the result of a numerical fit to the renormalization
group running of the mirror QCD coupling at 1-loop. For
f=v ¼ 3ð7Þ, Λ0

QCD=ΛQCD ≈ 1.3ð1.6Þ. Another important
effect is that the mass of the mirror pion relative to the
reference scale Λ0

QCD is also increased, since it scales as

m0
π ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

qΛ0
QCD

q
: ð2Þ

This essentially defines our mirror QCD sector, with one
free parameter f=v. One can imagine this benchmark as a
slice through a much broader space of QCD-like models, in
which the masses of the quarks are free to vary independ-
ently rather than increasing in the same ratio.
There exists in the literature copious amounts of lattice

data at large pion masses, which are often extrapolated
down to SM values of the pion mass to obtain realistic
results. However, for our purposes this data represents
direct information about the nature of the mirror QCD
sector. We remind the reader that all quantities from lattice
data are technically dimensionless. Thus the relevant
parameter for us is the ratio m02

π =Λ02
QCD, i.e. the size of

the pion mass relative to the reference scale. In Sec. III B

we explain how this lattice data can be used to determine
the mirror neutron star equation of state.

C. Comparison to previous studies

The study of compact astrophysical objects made up of
exotic matter has a rich history, but our work is the first to
study the gravitational wave observables of realistic mirror
neutron stars that are made entirely of invisible mirror
matter arising from a dark QCD sector, with different
properties than SM neutron stars (focusing on the twin
Higgs mirror matter benchmark model described above).
There are of course many different kinds of exotic

compact objects that could exist (see [14] for a review),
including axion stars (e.g. [39,40]) and Proca stars that can
mimic black holes in gravitational wave events [41].
However, their properties are very unlike (mirror) neutron
stars and they are made of entirely different types of matter,
or arise in modifications of general relativity.
Neutron stars have been studied extensively as a probe of

dark sectors in general and dark matter in particular. For
example, dark matter captured inside (neutron) stars can
affect their structure, which can lead to observable conse-
quences [15,42–65] or even lead to entirely new classes of
hybrid objects [66,67]; neutron stars can emit axions,
leading to constraints from stellar cooling [68]; neutron
stars could capture axion dark matter which gets converted
to photons in its strong magnetic field [69]; and phase
transitions inside neutron stars have been studied as a
possible probe of vacuum energy [70].
This is to be distinguished from our study of mirror

neutron stars made entirely of mirror matter. Mirror neutron
stars do not impact the properties or existence of SM
neutron stars. While the mirror matter hypothesis predicts
both to coexist in our Galaxy, their precise abundance
depends on many aspects of the complete model.
Furthermore, since minimal mirror matter does not have
astrophysically relevant interactions with SM matter (apart
from gravity), and since its self-interactions give rise to
different macroscopic parameters (like Jeans lengths and
ionization temperatures) from SM matter, we do not expect
most SM (mirror) neutron stars to form in regions with high
concentrations of mirror (SM) matter, and hence do not
expect them to necessarily contain large amounts of mirror
(SM) matter. We therefore focus on mirror neutron stars
that are composed entirely of mirror matter and are invisible
to direct electromagnetic observations. That being said, the
effects of Z2-symmetric mirror matter (i.e. exact SM copy)
captured inside neutron stars has been studied in [71–73],
but this did not examine the possibility of mirror neutron
stars made of mirror matter, nor did it consider the more
general twin Higgs mirror matter model.
In the context of our work we want to especially

highlight the following previous studies. First, Ref. [16]
did consider the possibility of mirror neutron stars and that
they could make up a large fraction of observed
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gravitational wave events that would be observed in LIGO/
Virgo. However, since this only considered the special case
of fully Z2-symmetric mirror matter, the properties of
mirror neutron stars would be identical to regular SM
neutron stars, and the physics of mirror neutron stars
themselves was therefore not the focus of the investigation.
As we discussed in the main text, the possibility of an exact
copy of SM matter as mirror matter is certainly an
interesting possibility, but this is not motivated by the
hierarchy problem, and represents only a single very special
case of all the possibilities for mirror matter. Our study is
the first to realistically study the physics of mirror neutron
stars within the twin Higgs mirror matter model with
significantly different properties than SM neutron stars.
Second, Ref. [20] examines the possibility of a neutron

star made of hidden sector nucleons arising as part of a dark
QCD sector, while [17–19] studied degenerate dark stars
made of fundamental asymmetric dark matter fermions.
This is much closer to the spirit of our investigation, and
these studies explore how the mass-radius relationship of
such dark neutron stars depend on some parameters of
either a simplified dark hadron model, or simple inter-
actions of the asymmetric dark matter. However, these
calculations are extremely simplified compared to the
motivated case of twin Higgs nuclear matter we want to
study. In fact, to study degenerate stellar objects arising in
any realistic model of dark QCD in this era of precision
gravitational wave observations, one needs to take into
account the effect of the several nucleon species; the
exchange of and interactions amongst the various mesons;
and the effect of the crust. We are able to take all these
effects into account for the first time by drawing upon
lattice data for different QCD parameters, and derive
concrete predictions for gravitational wave and asymmetric
pulsar binary observations. This is possible because our
approach to dark complexity is guided by possible sol-
utions to the hierarchy problem and its observable conse-
quences, leading us to study twin Higgs nuclear matter in a
regime that is different from the SM nuclear matter but still
tractable to make robust and realistic predictions.
Exotic strongly interacting sectors with an ultralight

confining scale can give rise to even more exotic neutron
starlike objects, see [74]. It is also important to keep in mind
that, in general, the properties of dark QCD sectors might be
gravitationally probed by detecting the stochastic gravita-
tional wave background produced during phase transitions
to the confining phase, see e.g. [22,75]. Furthermore, the
importance of gravitational wave measurements to probe
exotic compact in general, whether they are fermion stars,
boson stars, or other types, has been discussed in [76].
Finally, Ref. [77] represents an investigation of dark

complexity that is very close to ours philosophically in that
it takes guidance from other fundamental puzzles in high
energy physics, but very different in the kind of exotic
stellar object it predicts. This study takes inspiration from

theories that solve the hierarchy problem by predicting
large-N number of copies of SM, each of which are
incredibly dilute and only interact with each other gravi-
tationally. This predicts microscopic exotic objects that
contain material from all N SM-like sectors. This is very
different from mirror neutron stars, but is an interesting
astrophysical consequence of another potential solution to
the hierarchy problem.

III. MIRROR NEUTRON STAR
EQUATION OF STATE

We first build a reasonable model for the equation of
state (EOS) of SM neutron stars, which can be rescaled to
construct a mirror neutron star EOS. Neutron stars probe
different degrees of freedom across their radius, or equiv-
alently their baryon density nB. The uncertainty is largest at
the core of a neutron star, where nB ≳ 2nsatB , with nsatB ≈
3 × 1014 g=cm3 being the nucleon saturation density [78].
Starting from their crust and ending at their core, their
degrees of freedom are thought to be: atoms, then nuclei
(with increasing mass), nuclei and free nucleons (after the
neutron drip line), nucleonic pasta, interacting nucleons
(above nsatB ), then possibly hyperons, and possibly quarks
(though we do not consider these hypothetical phases here).
Due to the sign problem [79], one cannot directly

calculate the EOS of a neutron star from QCD. Effective
models are used instead. Nuclear physicists rely on a rich
trove of data from nuclear experiments, the masses of
known nuclei, measurements of nucleonic interactions,
lattice QCD calculations of resonances and interactions,
and chiral effective theory to define reasonable EOSs up to
nsatB [80]. A well-established model used here is the Baym-
Pethick-Sutherland crust [81], which uses free nuclei and
electrons. Given nB, one finds the nucleus that minimizes
the energy, modeling nuclei from either known experimen-
tal measurements [82] or extrapolating from the semi-
empirical mass formula [83]. The EOS is then constructed
from well-known thermodynamic relations.
We model the core using a mean-field approach that

incorporates electrons, muons, neutrons, and protons in the
zero-temperature approximation valid for T ≪ ΛQCD.
Interactions are mediated via the mesons σ, ωμ, ρ⃗μ, which
may be attractive, repulsive, or self-interactions among
mesons. We ensure local charge neutrality and chemical
equilibrium under weak interactions. The model contains
12 parameters, fixed by experimental data when possible,
determined from well-known scaling relationships, or
constrained by nuclear experimental or astrophysical neu-
tron star data [78,84,85].
We connect the crust and the core EOS, from the liquid

gas phase transition density to the saturation density,
through an interpolation function. This interpolation should
not significantly affect our results, as details of the inner/
outer crust have been estimated to affect low-mass neutron
stars at the sub-10% level [78].
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Solving for the structure of SM neutron stars with our
EOS yields reasonable results and passes typical physics
benchmarks, such as sensible values for nsat, binding
energy per nucleon, incompressibility, and symmetry
energy. It fits within all known constraints from NICER
[86,87] and LIGO/VIRGO [88,89] for the radius (see
Fig. 3) and tidal constraints (see Fig. 4). Our SM EOS
leads to a maximum mass of Mmax ∼ 2.1� 0.1 M⊙, con-
sistent with millisecond pulsars [90].
With our EOS we can now smoothly rescale several of

its parameters to derive a mirror neutron star EOS. This

rescaling accounts for different masses and couplings in
mirror matter due to mirror quarks/leptons being heavier
than SM fermions by a factor f=v ∼ 3–10.
Particle masses and nucleon-meson couplings rely on

knowledge from low energy hadron physics [93], first
principle lattice QCD (e.g. [94]), and chiral perturbation
theory [91,95]. Our results are robust to variations in the
scalings of these parameters within uncertainties from
lattice QCD or chiral perturbation theory. All assumptions,
parameters, error bars, scalings, constraints, and plots of
the EOS, are collected in Tables I and II and Fig. 2.

TABLE I. Parameters of our core model, grouped by their corresponding particles. Their SM values were obtained
from the constraints in Table II and from the Particle Data Group [96]. The quark-mass dependence used to rescale
the parameters in the mirror sector are extracted from lattice QCD data and phenomenological relations, when these
are available. We note that the meson couplings and masses are only relevant to the physics in equilibrium through
combinations of the form g=m. See footnotes below for additional information on individual parameters.

Particle Parameters SM Value

Mirror pion mass scaling, Eq. (13)

Sourceb0 b1 b2

π fπ 92.07� 0.85 MeV [96] 0.094þ0.005
−0.005 0.067þ0.011

−0.011 0.06þ0.10
−0.10 [94,97]

n, p mB 938.9� 0.6 MeVa[96] 0.933þ0.003
−0.006 1.82þ0.12

−0.09 −1.35þ0.25
−0.35 [94,98–100]

σ mσ 400–550 MeV [96] 0.408þ0.012
−0.001 2.42þ0.40

−0.07 −11.0þ0.2
−6.6 [91,92,101]

gσ 7.95b gσ ∝ mB=fπ
c [93,102,103]

a3 0.0036b Kept constant. d � � �
a4 0.0059b Kept constant. d � � �

ω mω 782.65� 0.12 MeV [96] 0.773þ0.015
−0.010 0.573þ0.120

−0.028 0.659þ0.004
−0.411 [104]

gω 9.23b gω ∝ gρ � � �
ρ mρ 775.26� 0.25 MeV [96] 0.746þ0.017

−0.013 0.659þ0.120
−0.028 0.653þ0.007

−0.391 [95]
gρ 39.19 b

gρ ∝ mρ=ð
ffiffiffi
2

p
fπÞe [95,105,106]

gωρ 0.2b Kept constant. d � � �
e− me 0.511 MeVf [96] me ∝ mq � � �
μ− mμ 105.658 MeVf [96] mμ ∝ mq � � �

aUncertainty due to the difference between the neutron and proton masses.
bObtained from the constraints on Table II.
cFrom the Goldberger-Treiman relation, the pion-nucleon coupling is gπ ¼ gAmB=fπ , and from chiral symmetry

gσ ≃ gπ [93,102,103].
dIn the Lagrangian Eq. (3), these couplings are already rescaled with the appropriate powers of other parameters.
eFrom the KSFR relation gρ ¼ mρ=ð

ffiffiffi
2

p
fπÞ [95,105,106].

fUncertainties are vanishingly small for our purposes.

TABLE II. Nuclear physics [107–114] and astrophysics [86,89,90,115,116] constraints used to fix the parameters
of the model for the neutron star EOS, shown in Table I. Values for the effective nucleon mass, nuclear
incompressibility and symmetry energy at saturation are optimized to satisfy constraints on neutron star masses and
radii.

Constraint Description SM Value Parameters

nsatB Nuclear saturation density 0.153 fm−3
gωEb Binding energy per nucleon −16.3 MeV

m�sat
B Nucleon (Dirac) mass at saturation 0.76 mB gσ , a3, a4

Ksat Nuclear incompressibility at saturation 300 MeV
asatsym Symmetry energy at saturation 28 MeV gρ
R Star radii constraints [86,89] gωρ
Mmax Maximum neutron star mass Mmax ≳ 2 M⊙ � � �
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Future lattice QCD investigations could improve our
calculations by supplying information on the mπ depend-
ence of quartic meson interactions.
Our final EOSs are shown in Fig. 2, plotting the pressure

p versus energy density ϵ for several different values of the
quark mass rescaling mq0=mq ¼ f=v. Shaded regions
represent uncertainties discussed in Sec. VII C.

A. Core model for a SM neutron star

Inside the core of a neutron star, the strong compression
leads to a very large density of (degenerate) neutrons.
Within neutron stars, the low-momentum electron energy
levels are filled, which prevents β decay n → pþ e− þ ν̄e;
therefore, the weak interaction of inverse β decay domi-
nates (wherein protons are converted to neutrons), with the
neutrinos produced in this process free to escape the star.

Chemical equilibrium under weak interaction, thus, leads to
a very neutron rich environment. Then, the remaining
protons in the neutron star must be balanced by an exact
equal number of leptons in order to ensure charge neutral-
ity. At sufficiently high densities, electrons can also convert
into muons through the reaction e− → μ− þ ν̄μ þ νe, which
will thus be present in equilibrium. Hence, weak inter-
actions must enter the core EOS through chemical equi-
librium conditions [117]. On the other hand, compared to
strong interactions, weak couplings provide only negligible
corrections to the EOS. Therefore, our core model does not
need to account for the details of weak interactions, as long
as those are fast enough to maintain beta equilibrium but
feeble enough to not generate significant interparticle
potentials. Our core model thus consists of strongly
interacting protons and neutrons, in the presence of a free
gas of electrons and muons, all in chemical equilibrium.
The EOS of strongly interacting matter at very high

densities is not amenable to first principle QCD calcula-
tions and must be extracted from an effective model. We
employ a simple relativistic mean-field model including
effects from scalar attraction, vector repulsion, and vector-
isovector interactions between protons and neutrons, medi-
ated by the mesons σ, ωμ, and ρ⃗μ [84,85,117–120]. In such
models, the balance between attractive scalar interactions
and repulsive forces mediated by vector mesons leads to
nuclear saturation—the existence of an optimal density at
which the energy per baryon reaches its minimum. Vector-
isovector interactions, on the other hand, are responsible for
increasing the energy cost of the excess of neutrons over
protons. For a better description of nuclear matter and
astrophysical constraints, we include self-interactions
between sigma mesons and interactions between vector
and vector-isovector mesons, respectively [85,117]. The
small difference between the neutron and proton masses is
neglected, making the core model isospin symmetric. (The
neutron-proton mass difference in twin Higgs mirror matter
is larger than in the SM [11], but still small enough to be
neglected for our purposes.) However, this symmetry is
broken by a finite isospin chemical potential, generated by
the different electric charges of neutrons/neutrinos and
protons/electrons. The hadronic part of our core model
consists of the following Lagrangian:

L¼ ψ̄

�
iγμ∂μ −mB þ γ0μB þ γ0

τ3
2
μI

�
ψþ

þ ψ̄

�
−gωωμγμ − gργμρ⃗μ ·

τ⃗

2
þ gσσ

�
ψþ

þ 1

2
∂μσ∂

μσ −
1

4
ωμνωμν −

1

4
ρ⃗μν · ρ⃗μνþ

−
1

2
m2

σσ
2 þ 1

2
m2

ωω
μωμ þ

1

2
m2

ρρ
μρμþ

−
a3
3
mBðgσσÞ3 −

a4
4
ðgσσÞ4 þ gωρðgωωμÞ2ðgρρ⃗μÞ2; ð3Þ

FIG. 1. Mass of the sigma meson as a function of f=v,
employing data from chiral perturbation theory with dispersion
theory Refs. [91,92]. The bands correspond to the uncertainty due
to different lattice fits. Note in particular the splitting at around
f=v ≈ 7.

FIG. 2. EOSs (pressure vs energy density) of mirror neutron
stars compared to our SM neutron star. The kink marks the
transition between crust and core.
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where mB is the vacuum nucleon mass, μB is the baryon
chemical potential, μI is the isospin chemical potential,
ωμν ≡ ∂μων − ∂νωμ, and ρ⃗μν ≡ ∂μρ⃗ν − ∂νρ⃗μ − gρðρ⃗μ × ρ⃗νÞ.
(Note that the chemical potentials are derived as a function
of baryon density below.) Here, we employ natural units
ℏ ¼ c ¼ 1, where c is the speed of light, and the metric
signature ημν ¼ diagð1;−1;−1;−1Þ. The nucleon field
ψ ¼ ðp; nÞT in Eq. (3) has isospin indices corresponding
to the proton and neutron degrees of freedom, with isospin
given by I⃗ ¼ 1

2
τ⃗. The last three terms in Eq. (3) are arranged

so that the properties of infinite nuclear matter in equilib-
rium depend on the nucleon-meson couplings gσ , gω, and gρ
only through ratios gσ=mσ, gω=mω, and gρ=ωρ.
We work in the mean-field approximation and assume

low temperatures compared to typical Fermi energies:
T ≈ 0, valid if T ≪ ΛQCD. In this approximation, we only
consider the vacuum expectation values acquired by fields:

hσi≡ σ̄; hωμi≡ ω̄δμ0; hρμi i≡ ρ̄δi3δ
μ
0; ð4Þ

where we require that the symmetry under real-space
rotations and the action of the isospin operator I3 are
preserved. Under this approximation, the nucleons behave
as a free gas of fermions with effective mass and chemical
potentials given by the mesonic condensates:

m�
B≡mB − gσσ̄; μ�B≡μB− gωω̄; μ�I ≡μI − gρρ̄: ð5Þ

When calculating the EOS,we consider the condensates in
Eq. (4) to be uniform in space. In practice, they will change
slowly with radius via their dependence on nB and nI [117].
We first find the EOS as a function of the baryon and isospin
densities nB and nI . The effective chemical potentials for the
proton and the neutron can be found from the respective
densities, np ¼ nB=2þ nI and nn ¼ nB=2 − nI:

μ�p;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kFp;n2 þm�2

B

q
; kFp;n ¼ 2π

�
3

2 × 4π
np;n

�
1=3

;

ð6Þ

where kFp;n is the Fermi momentum. From them we find the
effective baryonic and isospin chemical potentials

μ�B ¼ μ�p þ μ�n
2

; μ�I ¼ μ�p − μ�n: ð7Þ

The pressure can be found from the spatial components of the
energy-momentum tensor:

p ¼ hLi þ 1

3
hψ̄ i∂ψi: ð8Þ

In practice, it is the pressure of a free gas of nucleons with the
effective parameters in Eq. (5), plus terms from the mesons:

p¼ pfreeðμ�p;n;m�
BÞ−

1

2
m2

σσ̄
2 þ 1

2
m2

ωω̄
2 þ 1

2
m2

ρρ̄
2þ

−
a3
3
mBðgσσ̄Þ3 −

a4
4
ðgσσ̄Þ4 þ gωρðgωω̄Þ2ðgρρ̄Þ2: ð9Þ

The energy density can be found from the time component of
the energy-momentum tensor or, equivalently, from the first
law of thermodynamics:

ϵ ¼ μBnB − μInI − p: ð10Þ

The condensates can be found from Eq. (5) and the
Euler-Lagrange equations:

∂hLi
∂σ̄

¼ ∂hLi
∂ω̄

¼ ∂hLi
∂ρ̄

¼ 0: ð11Þ

The condensates ω̄ and ρ̄ are found as functions of nB and
nI , and we can solve Eqs. (5) and (7) for μI and μB. Solving
Eq. (11) for σ̄, we also find m�

B.
Finally, local charge neutrality requires that we also

include a density of negatively charged leptons nl.
Requiring local charge neutrality and beta equilibrium
leads to

nl ¼ np ¼ nB=2þ nI; μI ¼ μp − μn ¼ −μl; ð12Þ

with the same chemical potential μl for all lepton flavors.
We include both electrons and muons, modeled as free
fermions at zero temperature. Solving Eq. (12), we deter-
mine the proton and lepton fractions in the core, as
functions of nB.
The core model contains 12 parameters: six masses

and six couplings, described in Table I. The SM value of
the parameters are shown in the third column of this table.
Our results are only sensitive to the combinations gσ=mσ,
gω=mω, and gρ=mρ, rather than gσ , gω, gρ, and the
corresponding masses separately. However, to make the
rescalings for mirror matter more transparent, we fix
masses and couplings separately. Mass parameters are
fixed to central experimental values [96], while couplings
are chosen to reproduce properties of nuclear matter at
saturation [107–114] and neutron star observations
[86,89,90,115,116]. The values we take for each of these
constraints are shown in Table II, where we also show the
parameters for which each constraint is most relevant.
Values for the effective nucleon mass, nuclear incompress-
ibility and symmetry energy at saturation are chosen within
acceptable ranges so as to satisfy neutron star physics
constraints. In Table II we do not require that our EOS
reaches an even larger maximum mass, as was measured in
GW190814 [121], since it is still under debate if the
secondary compact object in that event was a neutron star
or a black hole [120,122–127].
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B. Core model for a mirror neutron star

To extend our core model to the mirror sector, we need to
understand how its parameters scale with the mirror Higgs
VEV, through the quark masses mq. Parameters of the
hadronic model will depend on m0

q=mq indirectly, through
ΛQCD and mπ , which scale according to Eqs. (1) and (2).
Lepton masses are scaled in proportion to the Higgs VEV
and are thus ∝ m0

q=mq. Since weak couplings are neglected
in the core EOS, no weak-interaction parameters need to be
rescaled, as long as electron capture and inverse beta decays
are sufficiently fast to maintain beta equilibrium. Moreover,
because the isospin asymmetry is driven by beta equilib-
rium, we neglect the mass difference between neutron and
proton in our core model, eliminating the need to rescale
this quantity as well.
The extension of our core model to mirror QCD

primarily involves scaling the masses and couplings that
appear in Eq. (3) as a function of Λ0

QCD and m0
π . In general,

we can express the mass of a given resonance as a power
series in m2

π=Λ2
QCD as follows:

m0
i=GeV

Λ0
QCD=ΛQCD

¼ b0 þ b1

�
m0

π=GeV
Λ0
QCD=ΛQCD

�
2

þ b2

�
m0

π=GeV
Λ0
QCD=ΛQCD

�
4

þ…; ð13Þ

where the coefficients b0, b1, and b2 are extracted, up to
quadratic order, from lattice data and chiral perturbation
theory with dispersion theory (see Table I for details and
references). The pion decay constant fπ is rescaled in the
same way. Although it does not appear explicitly in our
Lagrangian, it is used to estimate the dimensionless
couplings gρ, gω, gσ, as explained below. The lepton masses
me and mμ, on the other hand, are taken to scale as the
quark masses, proportionally to the Higgs VEV. Errors
quoted on the scaling parameters in Table I reflect uncer-
tainties presented in the respective references, and in cases
where we have consulted multiple references we use
uncertainties that reflect the spread of the collective data,
if larger than the uncertainties in individual references.
The remaining, dimensionless parameters that appear in

our Lagrangian, on the other hand, are not extracted from
lattice data. The meson-nucleon couplings gσ, gω, and gρ
are instead obtained via relations from low-energy hadronic
physics. The ρ-nucleon coupling constant, for instance, is
related to mρ=fπ by the so-called KSFR (Kawarabayashi-

Suzuki-Fayyazuddin-Riazuddin) relation gρ ¼ mρ=ð
ffiffiffi
2

p
fπÞ

[105,106], the accuracy of which is discussed in [95].
The ω-nucleon coupling is taken to rescale similarly:
gω=mω ∝ gρ=mρ. Moreover, the scalar-nucleon coupling
gσ can be related to the nucleon mass through the
Goldberger-Treiman relation, gσ ¼ gπNN ¼ gAMN=fπ ,
where gA ∼Oð1Þ is the axial charge of the nucleon and,

inspired by chiral symmetry, we assume that the sigma-
nucleon and pion-nucleon couplings are approximately
equal [93,102,103]. Since gA is approximately constant
as a function of the quark mass, we take gσ ∝ MN=fπ .
Finally, for simplicity and lack of guidance, the remain-

ing coupling constants a3, a4, and gωρ are not rescaled with
ΛQCD and mπ . Notice that the full meson-meson coupling
constants in Eq. (3) are actually a3g3σmB=3, a4g4σ=4, and
gωρg2ωg2ρ. They are written in such a way that the physics of
infinite, homogeneous nuclear matter depends on the
nucleon meson couplings only through the ratios gσ=mσ ,
gω=mω, and gρ=mρ. Because a3, a4, and gωρ are small and
dimensionless, it is reasonable to assume that the full
couplings will depend on m0

q=mq mainly through the
rescaling of the larger parameters gσ;ω;ρ. To make sure
our conclusions are robust, despite that assumption, we
have checked the effect of changing a3, a4, and gωρ in both
the SM and mirror sector scenarios. We find in particular
that neutron star properties are most sensitive to the
coupling gωρ (recall that a3 and a4 are chosen to satisfy
nuclear physics constraints, see Table II). While the value
of the maximum mass does not depend sensitively on gωρ,
we find that the neutron star radius constraints from NICER
[86,87] and LIGO/VIRGO [88,89,128] are only satisfied
for gωρ in the range 0.1≲ gωρ ≲ 0.25 (smaller values of gωρ
correspond to larger radii, and vice versa). While changing
the values of these couplings can significantly impact mass-
radius relations and properties of neutron star matter, we
have found that it did not affect the overall scaling of the
mass-radius curve with m0

q=mq (though this conclusion
could be modified if a3; a4; gωρ themselves have a strong
independent dependence on mπ=ΛQCD).
The lack of data for the a3; a4; gωρ couplings as functions

of the quarkmasses (or equivalentlymπ=ΛQCD) is a limitation
to our mirror neutron star model which leaves room for
improvement. It would be very interesting if future lattice
calculations could extract the pionmass dependence of these
dimensionless quartic meson couplings.
The procedure outlined above is complicated somewhat

by the peculiar behaviour of the sigma mass at large pion
masses. As discussed in Ref. [92], the dependence of the
mσ pole on mπ appears to split into two distinct trajectories
at around mπ ≈ 300 MeV. This may indicate that at this
pion mass the sigma is replaced by two distinct resonances,
whose mass splitting increases with increasing pion mass.
We do not attempt to model this possibility, instead
restricting our focus to the model outlined above, with
just one sigmalike resonance. We will therefore present our
results for each of the twomσ trajectories. It is worth noting
however that mπ ≈ 300 MeV corresponds to f=v ≈ 7, so
the splitting issue does not actually manifest until relatively
high values of f=v. In Table I we present only the scaling
coefficients for the sigma mass dependence before the
bifurcation occurs, since this regime indeed will dominate
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the results we present in this study. In Fig. 1 we show this
splitting as a function of f=v, including our uncertainty
bands derived from the spread of different lattice fits
presented in Ref. [92]. Regardless if one includes the
lower mass or the higher mass of σ for f=v≳ 7, one still
always sees that the mass and radius shrink with increasing
values of f=v. However, the degree to which the mass
and radius inverse scale with f=v does depend on the
bifurcation.

C. Crust model for a SM neutron star

The EOS for the neutron star crust is constructed
following the procedure outlined in [81]. We treat the
crust as being composed of nuclei and free electrons.
Because of their higher mass, muons are not present at crust
densities, where μe < mμ. At a given baryon density/depth
we can assume that all nuclei are of the single species
which minimizes the total energy per unit volume:

Etot ¼ nNðWN þWLÞ þ Ee; ð14Þ

where nN is the number density of nuclei,WN is the energy
of an isolated nucleus,WL is the electrostatic lattice energy
per nucleus, and Ee is the total electron energy per unit
volume. The nuclear energy is given by

WN ¼ mnðA − ZÞ þmpZ − bNA; ð15Þ

where bN is the binding energy per nucleon for the relevant
species. The lattice energy is given by [129]

WL ¼ −κ
Z2e2

4πϵ0a
; ð16Þ

where for a body-centered cubic lattice, which is the con-
figuration which minimizes the lattice energy [81,129],
κ ¼ 1.8119620 and the lattice constant a is related to nN
via nNa3 ¼ 2.
Treating the electrons as free, their energy is given by

Ee ¼
Z

ke

0

k2dk
π2

ðk2 þm2
eÞ1=2; ð17Þ

¼ m4
e

8π2
ðð2t2 þ 1Þ2tðt2 þ 1Þ1=2 − logðtþ ðt2 þ 1Þ1=2ÞÞ;

ð18Þ

where t ¼ ke=me with ke the electron Fermi momentum:

ke ¼
ð3π2neÞ2=3

2me
: ð19Þ

Note that the Fermi momentum is a function of the electron
number density.

For a given baryon number density nB, we have

nN ¼ nB=A; ne ¼ ZnN ¼ nBZ=A: ð20Þ

Thus at any nB we can find the fZ; Ag that minimize Etot,
using known binding energies and extrapolating from
experimental data where necessary. Known binding ener-
gies are taken from the Mathematica v12.0.0.0 function
ISOTOPEDATA [82]. The extrapolation is performed using
the semiempirical mass formula for the binding energy of
nuclei [83,130]:

bNðA; ZÞ ¼ aVA − aSA2=3 − aC
ZðZ − 1Þ
A1=3 þ

− aA
ðA − 2ZÞ2

A
− δðA; ZÞ; ð21Þ

where

δðA; ZÞ ¼

8>><
>>:

0 A is odd;

aPA−1=2 A is even and Z is even;

−aPA−1=2 A is even and Z is odd:

ð22Þ

We take values for the semiempirical mass formula
coefficients following the least-squares fit in [130]:

aV ¼ 15.8 MeV; ð23Þ

aS ¼ 18.3 MeV; ð24Þ

aC ¼ 0.714 MeV; ð25Þ

aA ¼ 23.2 MeV; ð26Þ

aP ¼ 12.0 MeV: ð27Þ

The pressure increases continuously with increasing
depth, which implies that each change in nuclear species
is accompanied by a discontinuity in the density. For this
reason, when calculating the EOS, it is more convenient to
take the pressure p as the independent variable. At a fixed
pressure, the quantity instead to be minimized is actually
the chemical potential μB:

μB ¼ Etot þ p
nB

: ð28Þ

The pressure is given by

p ¼ n2B
∂ðEtot=nBÞ

∂nB
; ð29Þ

from which we obtain
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p ¼ pe þ
1

3
WLnN; ð30Þ

where the electronic pressure pe is

pe ¼ n2e
∂ðEe=neÞ

∂ne
: ð31Þ

One can then show that the chemical potential is given by

μB ¼
�
WN þ 4

3
WL þ Zμe

�
=A; ð32Þ

where μe is the electron chemical potential, defined
analogously to Eq. (28):

μe ¼
Ee þ pe

ne
: ð33Þ

At a given pressure, therefore, for an assumed Z, A we
can use Eqs. (30), (31), (17), and (16) to solve for the
electron density (which, like the pressure, is a continuous
function of depth), remembering that ne ¼ ZnN . Then for a
particular electron density one can evaluate the chemical
potential using Eq. (32), and then minimize over fZ; Ag to
find the equilibrium nuclear species. Once the species is
known, the mass/energy density can be easily obtained and
hence the relationship between pressure and energy den-
sity pðϵÞ.

D. Crust model for a mirror neutron star

Extending these results to mirror sector matter amounts
to finding the correct expression for Etot for larger values of
the quark masses. The electron mass is scaled in the same
ratio as the quark masses:

m0
e

me
¼ m0

q

mq
¼ f

v
; ð34Þ

while the nucleon mass is scaled as for the core using the
information in Table I.
To obtain mirror binding energies and hence mirror

nucleus masses, we construct a table of SM binding
energies bNðA; ZÞ for the different values of A, Z (using
either experimental data or the semiempirical mass for-
mula, as explained above) and rescale those values by
Λ0
QCD=ΛQCD. We expect this naive dimensional rescaling to

capture the lowest-order change in mirror binding energies
compared to the SM, but of course the detailed binding
energies must be treated as unknown. To evaluate the
sensitivity of our results to this significant uncertainty, we
repeat the derivation of neutron star structure and observ-
ables (explained in the next section) for many different
crust models where for each value of A; Z; f=v, each
individual binding energy in the table of bNðA; ZÞ is

multiplied by a random factor in the range (0.5,2), in
addition to the rescaling with Λ0

QCD. We find that this
affects the results of our analysis at the percent level or less.
Therefore, the precise details of mirror nuclear binding
energies can be safely assumed to not dominantly change
the structure of neutron stars at the level of precision
relevant to our investigation.

E. Interpolation region

Finally the intermediate region between the crust and
core is covered by an interpolation function. Our procedure
is to find an interpolation for both pðnBÞ and ϵðnBÞ between
the point of the neutron drip and nuclear saturation density.
First, we note that both the neutron drip and nuclear
saturation density are expected to scale in some way with
mirror quark mass. Following [81], we can find the density/
pressure of the neutron drip for each f=v by solving the
condition μB −mN ¼ 0, where the neutron mass is scaled
appropriately (see above). We find that the baryon number
density nB at which neutron drip occurs scales approx-
imately with ðΛ0

QCDÞ3. Similarly, we choose to scale nuclear
saturation density with ðΛ0

QCDÞ3.
The interpolation is chosen such that the EOS is

continuous, both at neutron drip and at nuclear saturation
density. We also enforce that both p and ϵ are strictly
monotonically increasing with density. This is achieved
using a Fritsch-Carlson monotonic cubic interpolation
[131]. We note that in our core model, the gradient of
pðnBÞ changes very rapidly as nB approaches saturation
density. This means that the interpolating function below
nuclear saturation can change dramatically depending on the
precise density at which it is matched to the core model. In
factwe find that the slope of theEOSat nuclear saturation can
impact on the radius of intermediate mass neutron stars.
Thus, rather thanmatch atnsatB , wematch at the slightly higher
density nB ¼ rBnsatB , with 0 < rB − 1 ≪ 1, where the exact
value of rB ¼ 1.02 is chosen such that the resulting mass-
radius relationship agrees with observational constraints
from NICER [86,87] and LIGO/VIRGO [88,89,128].
When we extend the model to mirror QCD, where there
are no observational constraints to fit to, we simply match at
the same density ratio ðnB=nsatB Þ ¼ rB ¼ 1.02 as in the SM
case. Future work could explore how the properties of liquid
nuclear matter and nuclear pasta phases change for mirror
matter (beyond the simple rescaling with ΛQCD that we
account for), which would further improve the robustness of
our mirror EOS.

IV. MODELING (MIRROR) NEUTRON
STARS IN GENERAL RELATIVITY

Once an EOS is known, the structure of a neutron star
(mirror or not) and its gravitational field is determined by
the Einstein equations: 10 coupled, nonlinear, partial
differential equations [132]. Since all observed neutron
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stars are rotating slowly relative to the Keplerian mass-
shedding limit, one can expand the Einstein equations in
a slow-rotation approximation. Doing so, assuming an
isolated star, the Einstein equations reduce to the Tolman-
Oppenheimer-Volkoff equations at zeroth order in the slow-
rotation approximation. The solution to these equations
yields the mass and radius of the star, for a given central
density; choosing a set of central densities, one can construct
mass-radius curves. At first order in rotation, the solution of a
single partial differential equation yields the moment of
inertia of the star. At secondorder in rotation, the solution of a
set of partial differential equations yields the (rotational)
quadrupole moment of the star.
When a neutron star is not isolated, but rather is in the

presence of a companion, the solution to the Einstein
equations reveal how the neutron star deforms [133]. This
deformation is encapsulated in the (l ¼ 2, tidal) Love
number, which measures the induced quadrupole moment
due to a quadrupolar tidal force. The Love number is
calculated by perturbing the Einstein equations due to an
external tidal field, and solving these equations to first order
in the tidal perturbation. The Love number depends on the
mass and radius of the unperturbed star, since stars with a
lower compactness (ratio of mass to radius) are easier to
deform, leading to a larger Love number. If the companion
to the neutron star is also a neutron star, then the secondary
will possess its own Love number.
The quantities mentioned above (mass, radius, moment

of inertia, quadrupole moment, and Love number) are
astrophysical observables. For example, gravitational wave
observations of binary neutron stars are sensitive to the
masses of the stars and their Love numbers, because these
quantities affect the binding energy of the binary and the
rate it inspirals [134]. Therefore, mirror neutron star
properties could be measured in gravitational wave obser-
vations of mirror neutron star binary mergers. Similarly,
radio observations of binary pulsars are sensitive to the
masses of the binary and their moment of inertia, because
the latter generates precession of the orbital plane (through
spin-orbit coupling interactions), which imprints on the
arrival times of the pulses [135]. Therefore, measuring
mirror neutron star properties might be possible via radio
observations of asymmetric binaries, consisting of a SM
pulsar and a mirror neutron star.
The measurement of these observables is complicated by

parameter degeneracies that exist in the models used to fit
the data. For example, the Love numbers of two neutron
stars in a binary affect the gravitational wave model in a
similar manner (i.e. they both first enter at fifth order in the
post-Newtonian expansion used to create these models
[134]). One can measure a certain combination of them, but
not necessarily their individual values. Certain approxi-
mately universal relations have been discovered that help
break these degeneracies. For example, the I-Love-Q
relations between moment of inertia, Love number, and

rotational quadrupole moment are insensitive at the < 1%
level to variations in the EOS [136,137]. Another example
are binary Love relations between two Love numbers in a
binary system have been shown to be insensitive to
variations in the EOS to better than 10% [138,139].
These approximately universal relations are important
because they can break degeneracies in parameter estima-
tion [89,138–140] and are model independent and EOS-
insensitive tests of general relativity [136,137,139,141].
We here provide a pedagogical review of this calculation,

aimed at nongravitational physicists, which is identical to
the corresponding calculation for SM neutron stars, follow-
ing [132,139,142]. Henceforth, we use the conventions
G ¼ 1 ¼ c and metric signature ð−;þ;þ;þÞ.

A. Spacetime metric of a (mirror or SM)
slowly rotating neutron star

We consider an isolated neutron star, whose interior is
described by some EOS (made of mirror matter or SM
matter), and that rotates uniformly with angular velocity Ω.
We assume the star rotates slowly, Ω2R� ≪ GM�=R2�,
where R� and M� are the star’s radius and mass, such that
we can expand all expressions perturbatively toOðΩ2Þ. The
spacetime metric to this order in slow rotation takes the
form [132,137,142]

ds2 ¼ −eνð1þ 2hÞdt2 þ eλ
�
1þ 2m

r− 2M

�
dr2

þ r2ð1þ 2kÞðdθ2 þ sin2 θðdϕ− ðΩ−ωÞdtÞ2Þ; ð35Þ

where νðrÞ and λðrÞ are metric functions of OðΩ0Þ, ωðr; θÞ
is of OðΩ1Þ, and ðhðr; θÞ; mðr; θÞ; kðr; θÞÞ are of OðΩ2Þ.
The quantityM here is a function of radius, and thus not to
be confused with the total mass of the star, which we shall
call the enclosed mass and will define as

MðrÞ ¼ r
2
ð1 − e−λÞ: ð36Þ

The functions M, ν, and λ are independent of polar angle
because, to OðΩ0Þ the spacetime is spherically symmetric.
The neutron star described by themetric abovewill deform

due to rotation, becoming an ellipsoid instead of a sphere
whenΩ ≠ 0. For this reason, we cannot define the surface of
the rotating object via a condition like r ¼ R�, and instead,
the surface is a function of the polar angle θ. This, in turn,
implies that the energydensity at the (spherical) surface of the
nonrotating star will not vanish everywhere on the (ellipsoi-
dal) surface of the rotating star. But in order for the
perturbative scheme to work, we must be able to expand
the energy density as ϵ ¼ ϵ0 þ ϵ1 þ ϵ2 þOðΩ3Þ, with
ϵn ¼ OðΩnÞ and thus ϵnþ1 ≪ ϵn, which is simply not
possible if ϵ0 ¼ 0. In order to avoid this complication, we
can perform the coordinate transformation
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rðR;ΘÞ ¼ Rþ ξðR;ΘÞ; θ ¼ Θ; ð37Þ

defined such that ϵ½rðR;ΘÞ; θðΘÞ� ¼ ϵðRÞ ¼ ϵ0ðRÞ, i.e. the
coordinate R is the radius at which the density of a given
isodensity contour of the rotating configuration equals the
density of an isodensity contour in the nonrotating configu-
ration.With this transformation, the condition r ¼ rðR�;0;ΘÞ
defines the surface of the star, withR�;0 as the stellar radius of
the nonrotating configuration and the function ξðR;ΘÞ
determining the oblateness of the rotating star, which must
be of OðΩ2Þ (since oblateness is invariant under time
reversal). Heuristically, one can think of R as the radial
coordinate of a nonrotating configuration, r as the radial
coordinate of the rotating configuration, andR� as the radius
of the rotating star as measured in the R coordinate system.
As discussed above, we will expand all quantities in a

slow-rotation expansion, and thus, it is necessary to
establish some notation. In general, we will first transform
all quantities from r → R and perform a Taylor expansion,
so that gðr;θÞ¼ gðRþξ;θÞ¼ gðR;θÞþξ∂rgðR;θÞ. Then,
we will expand all remaining quantities in a slow-rotation
expansion such as gðR;ΘÞ ¼ P

n gnðR;ΘÞ, where gn ¼
OðΩnÞ. The resulting expressions are of the form gðr; θÞ ¼
g0ðR; θÞ þ g1ðR; θÞ þ g2ðR; θÞ þ ξ∂rg0ðR; θÞ, and there are
clearly two terms ofOðΩ2Þ because ξ ¼ OðΩ2Þ. Moreover,
we will find it convenient to expand the angular depend-
ence in Legendre polynomials of cosine polar angle:
gnðR; θÞ ¼

P
l gnlðRÞPlðcos θÞ. Because of the boundary

conditions at r → 0 and r → ∞, and the invariance under
Ω → −Ω, the metric coefficient ω is nonzero only when
l ¼ 1, and h, m, and k are nonzero only when l ¼ 0 or 2
(see for further details [132,142]).

B. Einstein equation to zeroth order in slow rotation

To zeroth order in rotation, the Einstein equations,
Gμν ¼ 8πTμν, reduce to

dM
dR

¼ 4πϵR2; ð38aÞ

dp
dR

¼ −ðϵþ pÞM þ 4πpR3

RðR − 2MÞ ; ð38bÞ

dν
dR

¼ 2
M þ 4πpR3

RðR − 2MÞ ; ð38cÞ

where we recall thatM is a function of radius that is related
to the ðr; rÞ component of the metric, while ν is another
function of radius related to the ðt; tÞ component of the
metric [see Eq. (35)]. We have here omitted the subscript 0
(which denotes the rotation order) for simplicity. There is
also no need here for a Legendre expansion, since at this
order the spacetime is spherically symmetric. The second
equation in the set above is known as the Tolman-
Oppenheimer-Volkoff equation. The above three equations,

together with an EOS p ¼ pðϵÞ defines a closed set of
ordinary differential equations. The EOS is the only
ingredient in this set that determines whether one is
considering SM neutron stars or mirror neutron stars.
This set of equations must now be solved both in the

interior of the star and in the exterior (where p ¼ 0 ¼ ϵ),
ensuring continuity at the surface, which (to zeroth order in
rotation) we will say is located at R ¼ R�;0. The exterior
equations can be solved exactly to find pext ¼ 0 ¼ ϵext,
νext ¼ lnð1 − 2M�;0=RÞ, and Mext ¼ M�;0, where M�;0 is a
constant of integration (to be identified later with the total
mass of the star to zeroth order in rotation). The interior
solution must be obtained numerically because the EOS is
usually provided as a numerical table. To do so, one first
needs to find boundary conditions at the center of the
star Rc, which can be obtained by solving Eqs. (38)
asymptotically about Rc ≪ R�;0. Doing so, one finds

MðRcÞ ¼
4π

3
ϵcR3

c þOðR5
cÞ; ð39aÞ

pðRcÞ¼pc−2πðϵcþpcÞðϵc=3þpcÞR2
cþOðR4

cÞ; ð39bÞ

νðRcÞ ¼ νc þ 4πðϵc=3þ pcÞR2
c þOðR5

cÞ; ð39cÞ

where ϵc and νc are two more constants of integration, while
pc ¼ pðϵcÞ. Given a choice of the central density ϵc, one can
then use the above boundary conditions to integrateMint and
pint from the central radiusRc (a small nonzero but otherwise
arbitrary starting point for the numerical integration)
to the stellar surface R�;0, with the latter defined via
pintðR�;0Þ ¼ εpc, with ε also arbitrary as long as ε ≪ 1.
The constant of integrationνc is then determined by requiring
continuity at the surface, νc ¼ lnð1 − 2M�;0=R�;0Þ, where
M�;0 ¼ MðR�;0Þ.
We have carried out these calculations for the mirror

neutron star EOS described earlier, which leads to the mass-
radius curves shown in Fig. 3. Each choice of central
density then yields a single neutron star, with a given mass
and a given radius (both determined from the integration of
the equations as described above). Choosing a sequence of
values for the central density then yields a mass-radius
curve. For ease of reading, in that figure we use the symbols
M and R to refer to the mass and radius of the star at zeroth
order in rotation, which we referred to in this subsection as
M�;0 and R�;0 (none of which ought to be confused with the
radial coordinate R used earlier). All integrations are done
with Rc ¼ 10 cm and ε ¼ 10−8, although we have checked
that our results do not change appreciably (i.e. by more than
0.1 km) if we vary these integration parameters.

C. Einstein equation to first order in slow rotation

The only relevant equation at first order in rotation
comes from the ðt;ϕÞ component of the Einstein equations.
Since this component transforms as a vector in the
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slow-rotation expansion, we know that ω1ðr; θÞ can be
decomposed in terms of vector spherical harmonics, i.e. we
know that ω1ðr; θÞ ¼

P
l ω1;lP0

lðcos θÞ. Moreover, we
know that ω must be odd under time reversal [because it
must be OðΩÞ], and this then implies that only the l ¼ 1
mode is excited. The perturbed Einstein equations then
yield an equation for ω1;1, namely

d2ω1

dR2
þ 4

R

�
1 −

πR2ðϵþ pÞ
1 − 2M=R

�
dω1

dR
−
16πðϵþ pÞ
1 − 2M=R

ω1 ¼ 0;

ð40Þ

where we have just dropped the rotation subindex [since
this entire subsection is about OðΩÞ perturbation], but kept
the l-harmonic index. The energy density and pressure
here are zeroth order in rotation because again ω1 ¼ OðΩÞ.
As in the OðΩ0Þ case, we must now solve the above

equation in the interior and in the exterior of the star,
ensuring continuity and differentiability at the surface. The
exterior solution is simply

ωext
1 ¼ Ω − 2S=R3; ð41Þ

where S is a constant of integration (later to be identified
with the magnitude of the spin angular momentum), and the

other integration constant is set to zero by requiring
asymptotic flatness. In the interior, we must once more
solve the above differential equation numerically, with a
boundary condition obtained by solving this equation
asymptotically in Rc ≪ R�;0. Doing so, one finds

ω1ðRcÞ ¼ ωc

�
1þ 8π

5
ðϵc þ pcÞR2

c

�
; ð42Þ

where ωc is another integration constant and we have set
the second integration constant to zero by requiring
smoothness at the center. Given a rotation frequency Ω,
one can then find the values of ωc and S that lead to a
continuous and differentiable solution at R�;0, for example
through a numerical shooting method or by exploiting
the homogeneity and scale invariance of Eq. (40) (see

FIG. 3. Mass-radius relations for mirror neutron stars with
quark masses scaled by mq0=mq ¼ f=v. The blue and red shaded
regions correspond to 2σ confidence regions using x-ray obser-
vations of the neutron star J0030þ 0451 and gravitational wave
observations of the neutron star merger GW170817, respectively
[86,87,89]. The gray shaded region corresponds to the 1σ
measurement of the mass of pulsar J0740þ 6620 [90]. Solid
lines (EOS1) represent results for the EOS from Sec. III. The
shaded regions around these curves represent uncertainties in the
mπ dependence of various EOS input parameters (from chiral
perturbation theory and lattice QCD). Faint lines (EOS2) corre-
spond to the modified EOS from Sec. VII E. The distance
between faint (EOS2) and solid (EOS1) curves is meant to
roughly represent systematic uncertainties.

FIG. 4. Moment of inertia I, quadrupole moment Q, and Love
number Λ of mirror neutron stars as a function of their mass.
The solid horizontal lines correspond to the black hole limit
(Λ ¼ 0). The two blue regions are obtained from the NICER
observation and the approximate compactness-I or compact-
ness-Q universal relation. Solid lines (EOS1) represent results
for the EOS from Sec. III. The shaded regions around these
curves represent uncertainties in the mπ dependence of various
EOS input parameters (from chiral perturbation theory and
lattice QCD). Faint lines (EOS2) correspond to the modified
EOS from Sec. VII E. The distance between faint (EOS2) and
solid (EOS1) curves is meant to roughly represent systematic
uncertainties.
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e.g. [137] for more details). Once the correct ðωc; SÞ has
been found for a choice of Ω, one can read out the moment
of inertia via I ≔ S=Ω. Note that the moment of inertia is
actually independent of Ω, since Eq. (40) is scale invariant,
and thus, we can recast it as an equation for ω̄1 ≔ ω1=Ω, so
the shooting problem becomes one of determining ω̄c and I
directly.
We have carried out these calculations for the mirror

neutron star EOS described earlier, which leads to the
moment-of-inertia-mass curves shown in Fig. 4 (top panel).
The parameter along each of these lines is the central
density, since as we explained above, the moment of inertia
is independent of Ω. Figure 4 actually plots the dimension-
less moment of inertia (i.e. I=M3

�;0), since I has units of
½Length�3. All integrations are done with the same choices
of Rc and ε as in the OðΩ0Þ calculation.

D. Einstein equation to second order in slow rotation

At second order in Ω, one finds differential equations for
the metric functions m, k, and h, as well as for the
oblateness parameter ξ. Since these quantities behave as
scalars under rotations, they can be expanded in scalar
spherical harmonics, and moreover, since they must be
even under rotation, only the l ¼ 0 and l ¼ 2 modes are
excited. The l ¼ 0 mode will lead to a Ω2 correction to the
radius and the mass of the star, which we do not consider in
this paper. The l ¼ 2 mode will allow us to calculate the
rotation-induced quadrupole deformation of the star. Since
ðm; k; h; ξÞ are all of OðΩ2Þ, we will suppress the rotation
subindex, but we will keep the l-harmonic index.

The Einstein equations can be simplified through the
stress-energy conservation equation. The latter allows us to
find an expression for ξ2 in terms ofOðΩ0Þ quantities (ν, λ,
M, p, ϵ) andOðΩÞ quantities (ω1). Using this expression in
the Einstein equations, one then finds the following
coupled set of ordinary differential equations for ðh2; k2Þ:

dh2
dR

¼ −
R −M þ 4πpR3

R
eλ

dk2
dR

þ 3 − 4πðϵþ pÞR2

R
eλh2

þ 2

R
eλk2 þ

1þ 8πpR2

R2
e2λm2 þ

R3

12
e−ν

�
dω1

dR

�
2

−
4πðϵþ pÞR4ω2

1

3R
e−νþλ; ð43Þ

dk2
dR

¼ −
dh2
dR

þ R − 3M − 4πpR3

R2
eλh2

þR −M þ 4πpR3

R3
e2λm2; ð44Þ

with the constraint

m2 ¼ −Re−λh2

þ 1

6
R4e−ν−λ

�
Re−λ

�
dω1

dR

�
2

þ 16πðϵþ pÞRω2
1

�
:

ð45Þ

As before, these equations must be solved in the interior
and in the exterior of the star, ensuring continuity at the
surface. In the exterior, one finds

hext2 ¼ S2

M�;0R3

�
1þM�;0

R

�
− c1

3R2

M�;0ðR − 2M�;0Þ
�
1 − 3

M�;0
R

þ 4M2
�;0

3R2
þ 2M3

�;0
3R3

þ R
2M�;0

f2schw ln fschw

�
; ð46aÞ

kext2 ¼ −S2

M�;0R3

�
1þ 2M�;0

R

�
þ c1

3R
M�;0

�
1þM�;0

R
−
2M2

�;0
3R2

þ R
2M�;0

�
1 −

2M2
�;0

R2

�
ln fschw

�
; ð46bÞ

mext
2 ¼ −S2

M�;0R3

�
1 − 7

M�;0
R

þ 10
M2

�;0
R2

�
þ c1

3R2

M�;0

�
1 −

3M�;0
R

þ 4M2
�;0

3R2
þ 2M3

�;0
3R3

þ R
2M�;0

f2schw ln fschw

�
; ð46cÞ

where

fschw ¼ 1 −
2M�;0
R

; ð47Þ

c1 is an integration constant and we have set the other
integration constant to zero by requiring asymptotic flatness.
The quadrupole moment can be read off from the far-
field expansion of the ðt; tÞ component of the metric,
gtt∼−1þ2M�=R−2Q=R3P2ðcosθÞþOðR−4Þ, and since
h2 determines gtt at this order, we then find that

Q ¼ −
�
S2

M�
þ 8

5
c1M3�

�
: ð48Þ

In the interior, one must solve the differential equations
numerically, starting with a boundary condition at the center,
which is obtained asymptotically in R ≪ R�;0: h2ðRcÞ ¼
B · R2

c þOðR4
cÞ and k2ðRcÞ ¼ −B · R2

c þOðR4
cÞ, whereB is

an integration constant. Given a choice of central density ϵc
and angular frequencyΩ, one must then find the constants c1
andB that will yield a solution for k2 andh2 that is continuous
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at the surfaceR�;0. Once more, this can be achieved through a
numerical shooting algorithm, or by exploiting the properties
of the differential system.
We have carried out these calculations for the mirror

neutron star EOS described earlier, which leads to the
quadrupole-momment-mass curves shown in Fig. 4
(middle panel). The parameter along each of these lines
is again the central density, since we plot here the
dimensionless quadrupole moment QM=S2, which is
independent of Ω. All integrations are done with the same
choices of Rc and ε as in the OðΩ0Þ calculation.

E. Einstein equations for a tidally perturbed star

We are now interested in understanding the structure of a
neutron star that is tidally modified by some external
gravitational perturbation. For this calculation, we do not
care about rotation at all, so the background spacetime is
spherically symmetric. Tidal deformations can of course be
excited on rotating stars, but those deformations will not
affect what we calculate below to leading order in a slow-
rotation expansion. The metric ansatz, however, happens to
be identical to that of the slow-rotation approximation
[Eq. (35)], except that ω1 ¼ 0 ¼ Ω, ðm; k; hÞ are first order
in the tidal deformation, and ξ is induced by the tidal

deformation instead of rotation; it is also conventional to
expand the ðm; k; hÞ metric functions in spherical harmon-
ics instead of Legendre polyonomials, but this only
introduces a constant factor. Because of this, the
Einstein equations at zeroth order in tidal deformation
are identical to those obtained at zeroth order in slow
rotation [Eq. (38)], while the Einstein equations at first
order in tidal deformation are identical to those obtained
at second order in slow rotation [Eqs. (43)–(44) with
ω1 ¼ 0 ¼ Ω]. In practice, this implies m2 ¼ −Re−λh2,
which allows us to decouple the equations and find a
second order differential equation for h2:

d2h2
dR2

þ
�
2

R
þ
�
2M
R2

þ4πRðp−ϵÞeλ
��

dh2
dR

−
�
6eλ

R2
−4π

�
5ϵþ9pþðϵþpÞ dϵ

dp

�
eλþ

�
dν
dR

�
2
�
h2¼0:

ð49Þ

As before, this equation must be solved in the exterior
and in the interior of the star, requiring continuity and
differentiability at the surface R�;0. In the exterior, one finds
the solution [143]

hext2 ¼ C2

�
R

M�;0

�
2

fschw − C1

R2

M2
�;0

fschw

�
2M�;0ðR −M�;0Þð3R2 − 6M�;0R − 2M2

�;0Þ
R2ðR − 2M�;0Þ2

þ 3 ln fschw

�
; ð50Þ

where C1 and C2 are integration constants and recall that
we previous defined fschw ¼ 1 − 2M�;0=R. Unlike in the
slow-rotation case, we are here interested in a tidally
perturbed spacetime, which is only formally defined far
away from the source of the perturbation R ≪ Rsource. This
is why we have not imposed asymptotic flatness to
eliminate one of the integration constants. The interior
solution must be found numerically again, with boundary
conditions obtained by solving Eq. (49) asymptotically
about R ≪ R�;0; these conditions happen to be the same as
those found in the slow-rotation case, namely h2ðRcÞ ¼
BR2

c þOðR4
cÞ. One must then find the constants of inte-

gration B and C1=C2 such that the spacetime is continuous
and differentiable at the surface. Note that because of the
scale invariance of Eq. (49), only the ratio of C1 and C2

(and the integration constant of the interior solution B) is
necessary to find a smooth solution.
With the solution at hand, one then wishes to extract

observable quantities, like the tidal Love number. A
multipolar expansion of the metric in the buffer zone,
defined as the spatial region R�;0 ≪ R ≪ Rext (with Rext the
radius of curvature of the source of the external field),
yields [143]

−
1þ gtt

2
¼ −

M�;0
R

−
3QðtidÞ

ij

2R3

�
ninj −

1

3
δij

�
þO

�
1

R4

�

þ 1

2
EijR2ninj þOðR3Þ; ð51Þ

where Eij is the (quadrupole) tidal tensor field, Q
ðtidÞ
ij is the

corresponding tidally induced and traceless quadrupole
moment tensor, ni ¼ xi=R is a field-point unit vector. We
can rewrite these tensors in a spherical harmonic decom-
position Eij ¼

P
m EmY2m

ij , with Y2m ¼ Y2m
ij n

inj and sim-

ilarly for QðtidÞ
ij , and then define the (quadrupole) tidal

deformability λ ≔ −Qm=Em. Comparing this to the buffer
zone expansion of the metric ansatz of Eq. (35)

−
1þ gexttt

2
¼ −

M�;0
R

þ hext2 Y2mðθÞ

¼ −
M�;0
R

þ
�
16

5
C1

M3
�;0

R3
þO

�
1

R4

�

þ C2

R2

M2
�;0

þOðR3Þ
�
Y2mðθÞ ð52Þ
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means that the tidal deformability λ is fully determined by the ratio C1=C2. In fact, one can write down the tidal

deformability entirely in terms of the exterior solution hext2 and its derivative evaluated at the surface of the star, namely

Λ ≔
λ

M5
�;0

¼ 16

15

C1

C2

¼ 16

15
fð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ�gf2C½6 − 3yþ 3Cð5y − 8Þ�

þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� lnð1 − 2CÞg−1; ð53Þ

where the compactness defined via C ¼ M�;0=R�;0 is the
compactness and y ¼ ðR�;0=h2Þðdh2=dRÞ all evaluated
at R ¼ R�;0.
We have carried out these calculations for the mirror

neutron star EOS described earlier, which leads to the tidal-
deformability-mass curves shown in Fig. 4 (bottom panel).
The parameter along each of these lines is again the central
density, and we here plot the dimensionless tidal deform-
ability Λ ¼ λ=M5

�;0. Note that we have colloquially referred
toΛ as the Love number, while in reality it is the dimension-
less tidal deformability [related to the Love number k2 via
k2 ¼ ð3=2Þðλ=R5

�;0Þ ¼ ð3=2ÞΛðM�;0=R�;0Þ5]. All integra-
tions are done with the same choices of Rc and ε as in the
OðΩ0Þ calculation.

V. RESULTS

A. Properties of mirror neutron stars

We find generically that the mass and radius of mirror
neutron stars are smaller than their SM cousins in Fig. 3.
This shift to lower masses and radii occurs because
increased quark masses (and confinement scales) scale
the pressure and energy density with ðΛ0

QCDÞ4, which can
also be understood from simple scaling arguments [144].
The minimum neutron star mass (the Chandrasekhar limit),
the maximum mass, and the radius all scale with the
nucleon mass as ∼1=m2

n. Remarkably, mirror neutron star
mass-radius curves can be closely reproduced by rescaling
both mass and radius in the SM mass-radius curve by
ðmn0=mnÞ−1.9 ≈ ðΛ0

QCD=ΛQCDÞ−2.38. This close agreement
to the naive scaling expectation implies that our results are
robust to details of the hidden sector and depend mostly on
the mirror confinement scale [17].
We conclude that mirror neutron stars are (electromag-

netically) dark objects that have masses between
ð0.5; 1.3Þ M⊙ and radii between (4,7) km for f=v ∼ 3–7.
The smaller maximummass of mirror neutron stars is not in
conflict with binary pulsar observations, because mirror
neutron stars are invisible to electromagnetic observations.
This mass range is potentially the same as primordial black
holes, except that mirror neutron stars have a nonzero Love

number and a larger radius. Mirror neutron stars can be
distinguished from other black-hole-like compact objects
[14], since their compactness never exceeds C ¼ GM=
ðc2RÞ ≲ 0.3, so their surface is far from their would-be
horizons.
Other observable properties of mirror neutron stars also

differ from SM neutron stars. Figure 4 shows the moment
of inertia, the (rotational) quadrupole moment, and the
Love number of mirror neutron stars as functions of their
mass. All quantities shift to lower values for mirror neutron
stars with higher quark masses.

B. Universal relations

A natural question is if certain approximately universal
or EOS-insensitive relations [136,137,139] continue to hold
for mirror neutron stars. Figure 5 show the I-Love-Q
relations (top panels) together with deviations from their
average (bottom) for different quark mass scalings. It is
immediately clear that all of the approximately universal
relations satisfied by SM neutron stars are also satisfied by
mirror neutron stars. The I-Love-Q relations between
moment of inertia, quadrupole moment, and Love number
remain “universal”: they are insensitive to variations in the
mirror quark mass to less than 1%, just like the SM.
When considering mirror neutron stars in a binary

system, we have verified that the interrelation between
the Love numbers in the binary is also insensitive to
variations in the mirror quark mass to better than 10%,
also like the SM. The same is true for binary Love relations,
approximately universal relations between the tidal Love
number of mirror neutron stars in a binary system.
These relations are important because they allow us to

break measurement degeneracies. For example, the gravi-
tational waves emitted by a binary system depend on the
two tidal deformabilities λ1 and λ2, which combine into a
function Λ̃ ¼ Λ̃ðλ1; λ2Þ that can be measured from the data.
The binary Love relations allow us to extract λ1 and λ2 from
a measurement of Λ̃. Given that the binary Love relations
continue to hold in mirror binary neutron stars (to the same
level of accuracy as for SM binary neutron stars), the same
data analysis pipeline implemented for SM binary neutron
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stars can also be used to analyze mirror binary neu-
tron stars.

C. Compactness

As previously discussed, we know that changing quark
masses by f=v increases the QCD confinement scale and
pion masses, which shifts the EOS to larger energy
densities and higher stiffness, in turn leading to smaller
neutron star masses and radii. One of the central differences
here is that mirror neutron stars are significantly more
dense at their core than SM neutron stars. The left panel of
Fig. 6 shows the mass versus central baryon density for
different quark scalings. The central baryon density for the
maximum mass of a mirror neutron star of mq0 ¼ 7mq is

more than 5 times that of a SM neutron star. While a nuclear
physics reader who notes the very large central baryon
densities reached in Fig. 6 might wonder about a phase
transition into quark matter and/or color superconducting
phase, we note that by scaling the quarks masses to higher
values this also shift any potential phase transition to higher
nB. Thus, we do not anticipate the presence of even a strong
first-order phase transition to alter our conclusions.
Since the central density is so much higher than for SM

neutron stars, one may wonder whether the compactness
(C ¼ GM=ðc2RÞÞ is now close to the black hole limit. For
SM neutron stars, C ∈ ð0.2; 0.3Þ approximately, while for a
nonrotating black hole C ¼ 1=2. The right panel of Fig. 6
shows the compactness for mirror neutron stars as a
function of their mass. Interestingly, all mirror neutron

FIG. 5. I-Love-Q relations for mirror neutron stars. The top panels show the dimensionless moment of inertia (Ī ¼ I=M3
�;0) versus the

dimensionless tidal deformability (Λ ¼ λ=M5
�;0) (left), the dimensionless quadrupole moment (Q̄ ¼ QM�;0=S2) versus Λ and Ī versus Q̄

(right) for a variety of quark mass scalings. The bottom panels show the relative fractional deviation between any relation and a fit to all
the data. Observe that the I-Love-Q relations are approximately universal to better than 1%, just as in the case of SM neutron stars.

FIG. 6. Left: mass of the (mirror matter) neutron star vs the central baryon density. Right: compactness of the (mirror matter) neutron
star vs mass.

MAURÍCIO HIPPERT et al. PHYS. REV. D 106, 035025 (2022)

035025-18



stars have the same maximum compactness (C≲ 0.3),
regardless of the mq0 scaling. This is completely different
from so-called exotic compact objects, hypothetical objects
that are typically constructed with a surface that is only a
small distance from their would be horizons [14]. Exotic
compact objects have compactnesses much closer to the
black hole limit thanneutron stars, and in this sense, theymay
act as black hole mimickers. One might have thought that
mirror neutron stars would be black hole mimickers, since
their central densities can be so large and their radii so small.
Yet, we see that they are not, and although they are smaller
than neutron stars, their compactness is comparable.

VI. OBSERVABILITY PROSPECTS

If mirror matter exists, then mirror neutron stars are a
natural consequence that leads to an entirely new type of
compact object that may be populating our Universe,
coexisting with SM neutron stars but completely uncon-
strained by existing electromagnetic observations. Mirror
neutron stars can be detected with future gravitational wave
observations. The inspiral and coalescence of mirror
neutron stars would produce gravitational waves that could
be detected by advanced LIGO and its European and
Japanese partners. Because of their lower mass, the merger
phase would be outside their sensitivity band, but the early
and late inspirals would remain in band. The latter could be
used to measure the Love numbers through the binary Love
relations. A measurement of the masses of the objects, their
Love numbers, and lack of electromagnetic signature
would then be enough to distinguish between SM neutron
stars, primordial black holes, quark stars, and mirror
neutron stars. For example, if advanced LIGO detected
the inspiral of a single electromagnetically dark binary with
masses around 1 M⊙ and Love numbers of Λ ∼Oð100Þ,
this would only be consistent with mirror neutron stars, as it
could not be SM neutron star binary or a quark star binary
[Λ ∼Oð103Þ for this mass [136] ], or primordial black
holes (Λ ¼ 0). Given that future gravitational wave
observatories will be sensitive to merger events in the
entire observable Universe [145,146], this will provide an
extremely powerful probe of dark sector compact objects:
even a nonobservation can severely disfavor many new
physics scenarios, despite the difficulty of predicting
detailed formation rates for mirror neutron stars from first
principles. However, it would of course be very interesting
to understand the formation rate of mirror neutron star
binaries in more detail.
Binary pulsar observations might also detect mirror

neutron stars, if asymmetric binaries of a SM pulsar and
a mirror neutron star exist and the SM pulsar’s radio
emissions were observed. If the binary is sufficiently
relativistic, then it may be possible to measure the moment
of inertia of its components, because this leads to orbital
precession through spin-orbit interactions that impact the
timing model. Analogously to the measurement of the Love

number, the resulting moment of inertia and mass mea-
surements could allow mirror neutron stars to be distin-
guished from other possibilities for the pulsar’s partner.
As discussed above, despite the exotic nature of mirror

neutron stars, approximately universal I-Love-Q and
binary-Love relations still hold [136,137,139] continue
to hold for mirror neutron stars (Fig. 5). This allows mirror
neutron star properties to be extracted from gravitational
wave data using standard techniques [89,140].
A final questionwould concern the expected detection rate

ofmirror neutron-star mergers. Because themagnitude of the
GWsignal scaleswithM5=6=DL, whereM is the chirpmass
and DL is the distance to the source, we expect the horizon
distance of mirror neutron star mergers to be of about
∼ðMmirror=MSMÞ5=6 ∼ 0.2–0.5 times that of its SMcounter-
parts. The rate for these events would scale as Rmirror∼
RSMðRmirror=RSMÞ3F ∼ ð0.008− 0.125Þ×RSM ×F , where
RSM is the rate of SM neutron-star mergers, Rmirror;SM is the
horizon distance for mirror and SM neutron-star mergers,
while F is the relative abundance of mirror neutron-star
mergers to SM ones. The ratio of horizon distances is simply
Rmirror=RSM ∼ 0.2–0.5, as argued above. The rate RSM and
the relative abundance F , however, are highly uncertain.
They both depend on the specific astrophysical formation
channel for these stars, which even in the SM case is
uncertain by two orders of magnitude [147,148].

VII. ROBUSTNESS OF OUR FINDINGS

A. Uncertainties from the Standard
Model neutron-star equation of state

Because the mass-radius relations for SM neutron stars is
not known with certainty, one might ask how uncertainties
in the SM neutron-star EOS affect our results. The effect of
these uncertainties can be estimated by employing the
scaling of the mirror star masses and radii with the mirror
baryon massm0

B. We note that, because the mass and radius
of mirror neutron stars scale with a negative power of the
baryon mass, ∝ ðm0

B=mBÞ−1.9, uncertainties from the SM
mass-radius relation tend to become smaller when extrapo-
lated to the mirror sector. By rescaling the uncertainty in the
radius of a Chandrasekhar-mass neutron star in this manner,
we have checked that the expected mass-radius ranges for
Standard Model and mirror neutron stars do not overlap in
the phenomenologically relevant range of m0

q=mq ≳ 2.
Because gravitational-wave signatures are tightly related
to the mass and radius of the merging objects, this indicates
that the distinctive features ofmirror neutron-starmergers are
robust against uncertainties from the Standard Model EOS.
Moreover, as new observations lead to tighter constraints for
the mass-radius relation of ordinary neutron stars, mirror
neutron-star mergers should become increasingly distin-
guishable from their Standard Model counterparts.
Finally, our core model does not incorporate the

possibility of hyperon nor quarks degrees of freedom.
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While this would change the general shape of the SMmass-
radius relationship [124,149–162] we do not anticipate any
significant effect in our scalings because these degrees of
freedom would also scale with f=v.

B. Sensitivity to mirror matter model

One might also question the extent to which our results
are sensitive to the particular mirror-sector model employed
in our calculations—namely, the Z2-symmetric mirror twin
Higgs, where all mirror quark masses equal the Standard
Model ones times a factor of f=v. It is possible that the
mirror twin Higgs scenario is realized in nature in a
different manner. For example, hard Z2-breaking Yukawa
couplings for the light mirror quarks are frequently con-
sidered in the literature (see e.g. [23]), and would lead to
different masses for the mirror quarks, baryons, and
mesons. Nevertheless, as long as these changes do not
qualitatively change the character of the mirror hadron
sector, we expect the ∼m0

B
−2 scaling of the mass-radius

relation to persist as a reasonable approximation. In that
case, the mass-radius relation of mirror neutron stars can be
readily estimated from the dark baryon mass. However, this
might not be the case if the dark QCD sector is qualitatively
different. For instance, if the dark quarks are much heavier
than the Z2-symmetric expectation, such that the number of
mirror quark flavors Nf with mass below the dark confine-
ment scale is smaller than 2, then the character of dark QCD
and the mirror baryon dark matter component would
change qualitatively due to the absence of dark pions for
Nf ¼ 1, or the qualitatively different origin of baryon
masses for Nf ¼ 0. In those cases, a new analysis of
mirror neutron stars would be necessary.

C. Uncertainties in mirror-sector scalings

The shaded bands in Fig. 2 correspond to the uncertainty
in the pion mass dependence of the EOS input parameters,
obtained from lattice data and chiral perturbation theory.
The relative error grows with increasing quark mass,
reflecting the fact that the further our mirror model is
deformed from SM QCD, the greater the uncertainty in the
properties of mirror QCD resonances. Note that the p − ϵ
curve shifts to larger energy densities and pressures for
increasing quark mass. This is because, to a good approxi-
mation, the pressure and energy density increase in
proportion to ðΛ0

QCDÞ4. This scaling is in agreement with
the naive expectation, since both the mass of the neutron
and nuclear saturation density are both (to zeroth order in
m2

π=Λ02
QCD) increasing with the appropriate powers ofΛ0

QCD.
We have further demonstrated that our results are

insensitive to the fine details of the scaling of the nuclear
binding energies with quark mass. Multiplying all nuclear
binding energies by random numbers in the range (0.5,2)
has only a percent-level effect on our results, showing that

our crust model is robust with respect to these unknown
parameters.
There are three inputs to the core model which we do not

rescale with the quark mass: a3, a4, and gωρ, which
premultiply quartic interactions of the sigma, omega, and
rho mesons. We do not expect rescaling of these parameters
to have a significant effect on our conclusions (see above);
nonetheless lattice data for the pion mass dependence of
these couplings would provide information that our core
model currently lacks, and would be especially valuable
insofar as they would render our predictions more robust.
Similarly, the other parameter that does not get rescaled
with quark mass is rb, which determines the density at
which our interpolation function is matched to the core
model. Improving on this would require a more detailed
model of the regime between the core and crust, and a
model therefore of mirror nuclear pasta and liquid nuclear
matter, which is beyond the scope of this work. However,
we do not anticipate significant effects with their inclusion
beyond subtle differences in the low mass radius [163].

D. Mass-radius scaling relations

A strong argument for the robustness of our conclusions
lies in how the mass-radius relation scales with the mirror
baryon mass: M, R ∼m0

B
−1.9, with interactions slightly

shifting the exponent from the power of −2 expected from
dimensional analysis [17]. Because m0

B=mB < 1, this scal-
ing has the effect of reducing uncertainties from the
Standard Model neutron-star mass-radius relation, when
these are propagated to the mirror sector. It also controls
systematic uncertainties from the scaling of model param-
eters: as long asm0

B is scaled correctly, results should fall in
the right ballpark.
In broad terms we should expect the two important

dimensionful parameters for the physics of neutron stars
to be mn and the Planck mass. Since the Planck mass is
constant, we would naively expect the mass and radius of a
neutron star to scale with the neutron mass as 1=m2

n [144]. In
fact we find that our complete numerical solutions for
neutron star structure closely reflect this naively expected
scaling relation. We can reproduce our numerical results to a
reasonable approximation by simply rescaling the mass and
radius of SM neutron stars by ðm0

n=mnÞd, with d ≈ −1.9, see
Fig. 7. Furthermore the scaling exponent d does not appear to
change for different choices of the parameters a3, a4, gωρ,
strongly indicating that this general behavior is robust, even
beyond the finer details of our model, as long as these
parameters do not themselves have a strong dependence on
the pion mass. An equally good scaling of the mass-radius
relations can be found by considering mirror neutron stars to
be interaction dominated and rescaling M and R by
ðmnmω=gωÞ−1 or by ðmnfπÞ−1 [17].
Based on the robust dependence of our results on the

mirror confinement scale= neutronmass, we also predict
that hidden sectors with lower Λ0

QCD than the SM
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(e.g. due to mirror quarks lighter than the SM) would give
rise to mirror neutron stars with higher masses, Love
numbers, and moments of inertia than SM neutron stars.
Although this scenario is not motivated by the mirror twin
Higgs model that we study, it could arise in more general
dark sector models and models of dark complexity.
Scaling relations for the masses and radii, for different

values of the (mirror) quark mass m0
q, are shown in Fig. 7.

In fact, one obtains roughly the same mass-radius relations
for all values of m0

q=mq under all scenarios, as long as one
rescales both masses and radii by ðm0

B=mBÞ1.9. While the
scaling withm0

B to power−1.9 becomes slightly worse with
modifications to the equation of state (see Sec. VII E), it
still remains valid within less than 10%. Hence, we find
that, while the particular shape of the mass-radius relation
can be sensitive to model details and to imprecision in the
extraction of parameter scalings from lattice QCD, these
details are not sufficiently important to make a difference in
the overall scales for mirror neutron stars, and do not alter
our main conclusions.

E. Robustness check: Modified equation of state

To explicitly check that the uncertainties discussed above
do not have a strong influence on our results, we calculate
the effect of modifying the quark-mass scalings, particle
content, and assumptions in our model. We note that with
these modifications we are purposely trying to take very
drastic changes to the EOS in order to see if we can break
the mass-radius scalings. For instance, we completely

remove protons and electrons such that the stars only
contain neutrons, which would be a very extreme limit.
Thus, these modifications provide a very strong test of the
robustness of our results.
In practice, we do the following:
(1) Scale the value of saturation density in the mirror

sector with the baryon mass m0
B, instead of Λ0

QCD,
as n0sat ∝ m0

B
3.

(2) Remove the scaling of the coupling to the σ and ω
mesons, gσ and gω, leaving them unchanged in the
mirror sector (same as Standard Model value).

(3) Use the scaling originally intended for the coupling
to the σ meson, gσ , for the σ4 coupling, a4, which
was originally left unchanged in the mirror sector.

(4) Use the scaling originally intended for the coupling
to the ρ meson, gρ, for the σ3 coupling, a3, which
was originally left unchanged in the mirror sector.

(5) Decouple the ρ meson from our model altogether by
setting its Standard Model coupling gρ ¼ 0.

(6) Consider pure neutron matter, setting the fraction of
protons to zero.

The results of these modifications are represented by the
faint lines labeled EOS2 in Figs. 3, 4, and 7, where each
color represents a different value of f=v ¼ m0

q=mq. In
particular, Fig. 7 shows that the scaling of the mass-radius
curves with the quark mass still holds within ∼10% for the
modified set of EOSs. Moreover, because stellar masses
and radii decrease with increasing mirror baryon mass m0

B,
one finds that the absolute difference between strong and
faint lines in Figs. 3 and 4 actually becomes smaller for
mirror neutron stars, especially at larger values of f=v. That
is because the scaling with m0

B uncertainties do not worsen,
but rather improve for heavier mirror particles, at least in
absolute terms.
While the modified EOS leads to a new shape of the

mass-radius relation, approximately straight up and down
with a large radius at low masses, stellar masses, and radii
are still in the same ballpark, and remain distant from the
region for Standard Model neutron stars. This means our
conclusions are robust, even under extreme modifications
to our model.

VIII. CONCLUSIONS

We have shown that mirror neutron stars predicted by the
mirror twin Higgs solution to the hierarchy problem can be
detected in standard LIGO observations and analyses. The
detection of mirror neutron stars would revolutionize
cosmology, particle physics, and nuclear physics. It would
answer a fundamental question concerning the nature of
dark matter. It would prove the existence of hidden sectors
and allow us to investigate their possible connection to
other mysteries like the hierarchy problem and baryo-
genesis. Finally, it would lead to a new frontier in nuclear
physics, providing an alternative laboratory for probing
nuclear matter with different fundamental properties.

FIG. 7. Scaling of the mass-radius relation with ðm0
B=mBÞ−1.9.

Solid lines (EOS1) represent results for the EOS from Sec. III.
The shaded regions around these curves represent uncertainties in
the mπ dependence of various EOS input parameters (from chiral
perturbation theory and lattice QCD). Faint lines (EOS2) corre-
spond to the modified EOS from Sec. VII E. The distance
between faint (EOS2) and solid (EOS1) curves is meant to
roughly represent systematic uncertainties.
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This is particularly exciting because latticeQCDcalculations
can be performed across a range of quarks masses, and are in
fact easier to perform for heavier (mirror) pions. Such a
discovery would enrich our understanding of confining
gauge forces and their bound states to an inestimable degree.
Mirror neutron stars represent an exciting opportunity for
gravitational wave and binary pulsar observations to make
ground-breaking fundamental discoveries at the heart of
several interlinked physics disciplines.
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