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We discuss the possibilities of distinguishing among different mechanisms of neutrinoless double beta
decay arising in the effective field theory framework. Following the review and detailed investigation of the
particular ways of discrimination, we conclude that the 32 different low-energy effective operators can be
split into multiple groups that are in principle distinguishable from each other by measurements of the
phase-space observables and by comparison of the decay rates obtained using different isotopes. This
would require not only a substantial experimental precision but necessarily also a considerable improve-
ment of the current theoretical knowledge of the underlying nuclear physics. Specifically, the limiting
aspect in our approach turns out to be the currently unknown or uncertain values of low-energy constants.
Besides the study adopting the effective field theory language we also look into several typical UV models.
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I. INTRODUCTION

The unknown origin of neutrino masses, being one of the
major puzzles of contemporary particle physics, strongly
motivates the quest for lepton number violation in nature.
The prominent way of probing this symmetry is the search
for neutrinoless double beta (0νββ) decay [1], observation
of which would imply nonzero Majorana neutrino masses
in accordance with the black-box theorem [2].
Besides the tight connection to neutrino masses as

realized in the standard mass mechanism, neutrinoless
double beta decay can be triggered in a variety of different
ways, and thus potentially involve also other new physics.
Generally, one can study higher-dimensional lepton-
number-violating operators that can trigger 0νββ decay
[3–13]. In fact, while the sole observation of 0νββ decay
would indeed indicate that neutrinos acquire Majorana
mass, it remains unclear whether the standard mechanism
that gives a contribution proportional to the neutrino mass
would be the dominant one. Examples of models beyond
the standard model that can induce nonstandard contribu-
tions to the 0νββ decay rate include, for instance, the left-
right symmetric models [14–17] triggering several distinct

mechanisms [8,18]. Sterile neutrinos can also contribute to
0νββ decay [18–24].
There is variety of experiments searching for 0νββ

decay in different double-beta-decaying isotopes [25–34].
Currently, the best limit on the half-life reaching
2.3 × 1026 years is claimed by the KamLAND-Zen collabo-
ration [35] studying the decay of 136Xe. The most stringent
limit on the half-life of 0νββ decay of 76Ge attains
1.8 × 1026 years, as obtained by the GERDA collaboration
[25]. Proposed next generation experiments such as
LEGEND [36,37] (76Ge), CUPID [38] (100Mo), SNOþ
[39] (130Te) and nEXO [40] (136Xe) aim towards testing
half-lives of the order of 1027–1028 years. Some experiments
like NEMO-3 are also equipped with the technology to track
individual electrons and measure the individual electron
energy spectra and the opening angle between the two
electrons, which can help to uncover new physics not only in
0νββ decay, but even in standard double beta decay [41].
Recent reviews of the experimental and theoretical efforts in
the field of 0νββ decay can be found, e.g., in Refs. [42–44].
In this work we focus on different possibilities of

experimental discrimination among different mechanisms
inducing 0νββ decay. To do so, we adopt the effective field
theory (EFT) framework developed in Refs. [9,10], which
is briefly introduced in Sec. II. In subsequent Sec. III
we study the possible ways of distinguishing among the
relevant set of low-energy EFT operators from 0νββ decay
observables. After having discussed the single operator
settings, we turn towards more complete models in Sec. IV.
Finally, we summarize our findings in Sec. V. This work
has been carried out utilizing the upcoming NUBB code
package [45].
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II. EFT APPROACH TO 0νββ DECAY:
THE MASTER FORMULA

A. The half-life master formula

As we apply in this work the effective field theory
approach introduced by [9,10], let us start by briefly
summarizing the most important parts. Below the scale
of electroweak symmetry breaking the 0νββ decay ampli-
tude can be described in terms of an SUð3ÞC ×Uð1ÞQ
invariant low-energy effective field theory (LEFT).
Including operators up to LEFT dimension 9 the most
relevant Lagrangians for 0νββ are given by [9,10]

Lð6Þ
ΔL¼2 ¼

2GFffiffiffi
2

p
h
Cð6Þ
VLðuLγμdLÞðeRγμνcLÞ

þ Cð6Þ
VRðuRγμdRÞðeRγμνcLÞ þ Cð6Þ

SL ðuRdLÞðeLνcLÞ
þ Cð6Þ

SRðuLdRÞðeLνcLÞ
þ Cð6Þ

T ðuLσμνdRÞðeLσμννcLÞ
i
þ H:c: ð1Þ

and

Lð7Þ
ΔL¼2 ¼

2GFffiffiffi
2

p
v

h
Cð7Þ
VLðuLγμdLÞðeL ∂

↔

μν
c
LÞ

þ Cð7Þ
VRðuRγμdRÞðeL ∂

↔

μν
c
LÞ
i
þ H:c: ð2Þ

for the long-range part, where

α∂
↔
β ¼ αð∂βÞ − ð∂αÞβ; ð3Þ

as well as the dimension 9 short-range Lagrangian

Lð9Þ
ΔL¼2 ¼

1

v5
X
i

h�
Cð9Þ
i;RðeRecRÞ þ Cð9Þ

i;LðeLecLÞ
�
Oi

þ Cð9Þ
i ðeγμγ5ecÞOμ

i

i
ð4Þ

with the scalarOi and vectorO
μ
i four-quark operators [10,46]

O1 ¼ ðuLαγμdαLÞðuLβγμdβLÞ;
O1

0 ¼ ðuRαγμdαRÞðuRβγμdβRÞ;
O2 ¼ ðuRαdαLÞðuRβdβLÞ;
O2

0 ¼ ðuLαdαRÞðuLβdβRÞ;
O3 ¼ ðuRαdβLÞðuRβdαLÞ;
O3

0 ¼ ðuLαdβRÞðuLβdαRÞ;
O4 ¼ ðuLαγμdαLÞðuRβγμdβRÞ;
O5 ¼ ðuLαγμdβLÞðuRβγμdαRÞ;

Oμ
6 ¼ ðuLαγμdαLÞðuLβdβRÞ;

Oμ
6
0 ¼ ðuRαγμdαRÞðuRβdβLÞ;

Oμ
7 ¼ ðuLtAγμdLÞðuLtAdRÞ;

Oμ
7
0 ¼ ðuRtAγμdRÞðuRtAdLÞ;

Oμ
8 ¼ ðuLαγμdαLÞðuRβdβLÞ;

Oμ
8
0 ¼ ðuRαγμdαRÞðuLβdβRÞ;

Oμ
9 ¼ ðuLtAγμdLÞðuRtAdLÞ;

Oμ
9
0 ¼ ðuRtAγμdRÞðuLtAdRÞ: ð5Þ

Here α, β are color indices and the tA are the generators of
SU(3) in the fundamental representation given by the eight
Gell-Mann matrices λA as tA ¼ 1

2
λA; A ¼ 1…8. The oper-

ators O and O0 in 5 are related via parity transformation.
Together with the standard mechanism of light Majorana
neutrino exchange, this framework contains 32 different
LEFT operators that can trigger 0νββ decay.
The transition from the quark level to the nuclear level

can be achieved employing the chiral effective field theory
(χEFT) [47]. The expected half-life contributed by the 32
effective operators is then captured by a “0νββ master
formula” combining the 32 LEFT Wilson coefficients, six
different phase-space factors (PSFs) given in Table I and
nuclear matrix elements (NMEs) summarized in Table II.
At the same time, low-energy constants (LECs) that
describe the nuclear interactions within χEFT enter the
formula—we summarize these in Table III. The 0νββ half-
life is then given in terms of different subamplitudes Ai as

ðT0ν
1=2Þ−1 ¼ g4A½G01ðjAνj2 þ jARj2Þ

− 2ðG01 −G04Þℜ½A�
νAR� þ 4G02jAEj2

þ 2G04ðjAme
j2 þℜ½A�

me
ðAν þARÞ�Þ

− 2G03ℜ½ðAν þARÞA�
E þ 2Ame

A�
E�

þG09jAMj2 þ G06ℜ½ðAν −ARÞA�
M��: ð6Þ

Assuming that the LEFT operators arise from the Standard
Model EFT (SMEFT) operator basis, the dimension of the
relevant operator at the SMEFT level can differ from the
dimension of the low-energy effective operator. This is
obviously the case for the LEFT dimension-3 neutrino
mass operator that originates from dimension-5 Weinberg
operator in SMEFT [48]. The LEFT dimension-6 and

dimension-7 operators (Oð6Þ
SL;SR;VL;VR;T and Oð7Þ

VL;VR) can
all be generated by dimension-7 SMEFT operators.

Similarly, the LEFT dimension-9 operators Oð9Þ
1L;4L can

stem from dimension 7 in SMEFT at the matching scale

mW , while O
ð9Þ
5L is induced by the running of Oð9Þ

4L from the
matching scale mW down to Λχ . The remaining LEFT
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dimension-9 operators can originate from dimension-9

SMEFT operators except for Oð9Þ
1L

0;Oð9Þ
2R;3R and Oð9Þ

2R;3R
0

which arise at dimension 11 in SMEFT [46].

B. Subamplitudes

The subamplitudes Ai are categorized and defined via
their corresponding leptonic currents. They each depend on
the Wilson coefficients of different LEFToperators and can
be written as

Aν ¼
mββ

me
Mð3Þ

ν þmN

me
Mð6Þ

ν ðCð6Þ
SL ; C

ð6Þ
SR ; C

ð6Þ
T ; Cð7Þ

VL; C
ð7Þ
VRÞ

þ m2
N

mev
Mð9Þ

ν ðCð9Þ
1L ; C

ð9Þ
1L

0; Cð9Þ
2L ; C

ð9Þ
2L

0;

Cð9Þ
3L ; C

ð9Þ
3L

0; Cð9Þ
4L ; C

ð9Þ
5L Þ;

AR ¼ m2
N

mev
Mð9Þ

R ðCð9Þ
1R ; C

ð9Þ
1R

0; Cð9Þ
2R ; C

ð9Þ
2R

0;

Cð9Þ
3R ; C

ð9Þ
3R

0; Cð9Þ
4R ; C

ð9Þ
5R Þ;

AE ¼ Mð6Þ
E;LðCð6Þ

VLÞ þMð6Þ
E;RðCð6Þ

VRÞ;
Ame

¼ Mð6Þ
me;L

ðCð6Þ
VLÞ þMð6Þ

me;R
ðCð6Þ

VRÞ;

AM ¼ mN

me
Mð6Þ

M ðCð6Þ
VLÞ þ

m2
N

mev
Mð9Þ

M ðCð9Þ
6 ; Cð9Þ

6

0; Cð9Þ
7 ; Cð9Þ

7

0;

Cð9Þ
8 ; Cð9Þ

8

0; Cð9Þ
9 ; Cð9Þ

9

0Þ: ð7Þ

The matrix elementsMi depend on the different LECs and
Wilson coefficients. We explicitly state the dependency on
the different Wilson coefficients within the brackets in (7).
Aν depends on the matrix elements

Mð3Þ
ν ¼−V2

ud

�
−

1

g2A
MFþMGT þMT þ2

m2
πgNN

ν

g2A
MF;sd

�
;

Mð6Þ
ν ¼Vud

�
B
mN

ðCð6Þ
SL −Cð6Þ

SRÞþ
m2

π

mNv
ðCð7Þ

VL−Cð7Þ
VRÞ

�
MPS

þVudC
ð6Þ
T MT6; ð8Þ

TABLE I. The different PSFs in terms of 10−14 y−1 used in our
calculations.

G01 G02 G03 G04 G06 G09

238U 6.96 3.79 2.75 5.26 14.43 17.32
232Th 2.70 0.73 0.76 1.83 6.35 7.14
198Pt 1.23 0.55 0.44 0.90 2.64 3.10
160Gd 1.33 1.68 0.73 1.12 2.25 3.08
154Sm 0.44 0.28 0.18 0.34 0.87 1.08
150Nd 8.82 40.15 7.00 8.25 9.83 18.78
148Nd 1.36 2.10 0.79 1.17 2.15 3.09
136Xe 1.88 4.64 1.26 1.69 2.58 4.14
134Xe 0.08 0.02 0.02 0.05 0.18 0.20
130Te 1.81 4.68 1.22 1.63 2.43 3.96
128Te 0.07 0.02 0.02 0.05 0.17 0.19
124Sn 1.13 2.42 0.72 1.01 1.62 2.51
116Cd 2.06 6.51 1.46 1.89 2.59 4.47
110Pd 0.58 0.95 0.34 0.50 0.89 1.30
100Mo 1.89 6.80 1.36 1.75 2.25 4.06
96Zr 2.42 10.43 1.81 2.26 2.68 5.15
82Se 1.15 3.96 0.80 1.06 1.37 2.47
76Ge 0.26 0.43 0.15 0.23 0.40 0.59

TABLE II. NMEs used in our calculations based on the IBM2 model [12].

MF MAA
GT MAP

GT MPP
GT MMM

GT MAA
T MAP

T MPP
T MMM

T MFsd MAA
GTsd MAP

GTsd MPP
GTsd MAP

Tsd MPP
Tsd

76Ge −0.78 6.06 −0.86 0.17 0.20 0.0 0.24 −0.06 0.04 −1.20 4.18 −1.24 0.29 −0.77 0.23
82Se −0.67 4.93 −0.71 0.14 0.17 0.0 0.24 −0.06 0.04 −1.01 3.46 −1.03 0.25 −0.73 0.22
96Zr −0.36 4.32 −0.64 0.13 0.15 0.0 −0.21 0.05 −0.04 −0.87 3.06 −0.89 0.21 0.64 −0.20
100Mo −0.51 5.55 −0.90 0.20 0.22 0.0 −0.29 0.07 −0.05 −1.28 4.48 −1.33 0.30 0.93 −0.28
110Pd −0.42 4.43 −0.76 0.17 0.18 0.0 −0.21 0.06 −0.04 −1.07 3.72 −1.11 0.25 0.79 −0.24
116Cd −0.34 3.17 −0.55 0.12 0.13 0.0 −0.12 0.04 −0.03 −0.80 2.72 −0.81 0.18 0.49 −0.16
124Sn −0.57 3.37 −0.50 0.11 0.12 0.0 0.12 −0.03 0.02 −0.82 2.56 −0.77 0.19 −0.42 0.13
128Te −0.72 4.32 −0.64 0.13 0.15 0.0 0.12 −0.04 0.03 −1.03 3.24 −0.98 0.24 −0.52 0.16
130Te −0.65 3.89 −0.57 0.12 0.14 0.0 0.14 −0.04 0.02 −0.94 2.95 −0.89 0.22 −0.47 0.15
134Xe −0.69 4.21 −0.62 0.13 0.15 0.0 0.12 −0.04 0.03 −0.97 3.07 −0.92 0.22 −0.48 0.15
136Xe −0.52 3.20 −0.45 0.09 0.11 0.0 0.12 −0.03 0.02 −0.73 2.32 −0.69 0.17 −0.36 0.12
148Nd −0.36 2.52 −0.48 0.11 0.12 0.0 −0.12 0.02 −0.02 −0.78 2.54 −0.79 0.19 0.30 −0.09
150Nd −0.51 3.75 −0.76 0.17 0.19 0.0 −0.12 0.04 −0.03 −0.74 2.46 −0.76 0.18 0.34 −0.10
154Sm −0.34 2.98 −0.52 0.11 0.13 0.0 −0.12 0.03 −0.02 −0.78 2.64 −0.79 0.19 0.39 −0.13
160Gd −0.42 4.22 −0.71 0.15 0.17 0.0 −0.21 0.05 −0.03 −1.02 3.52 −1.04 0.24 0.60 −0.19
198Pt −0.33 2.27 −0.50 0.11 0.12 0.0 −0.12 0.03 −0.02 −0.78 2.57 −0.78 0.18 0.37 −0.12
232Th −0.44 4.17 −0.76 0.17 0.18 0.0 −0.21 0.05 −0.04 −1.08 3.80 −1.11 0.25 0.69 −0.22
238U −0.52 4.96 −0.90 0.20 0.21 0.0 −0.21 0.06 −0.04 −1.29 4.51 −1.32 0.30 0.82 −0.25
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and

Mð9Þ
ν ¼−

1

2m2
N
Cð9Þ
ππLðMAP

GT;sdþMAP
T;sdÞ−

2m2
π

g2Am
2
N
Cð9Þ
NNLMF;sd;

ð9Þ

where Mð3Þ
ν represents the contribution from the standard

mass mechanism. In contrast to the traditional approach
employing the nonrelativistic approximation, the EFT
treatment contains also the contribution proportional to
gNN
ν , which parametrizes the contact-term contribution
originating from the exchange of hard neutrinos [54,55].
AR is given by

Mð9Þ
R ¼ Mð9Þ

ν jL→R; ð10Þ

for AE the different contributions are

Mð6Þ
E;L ¼ −

VudC
ð6Þ
VL

3

�
g2V
g2A

MF þ 1

3
ð2MAA

GT þMAA
T Þ

þ 6gE
VL

g2A
MF;sd

�
;

Mð6Þ
E;R ¼ −

VudC
ð6Þ
VR

3

�
g2V
g2A

MF −
1

3
ð2MAA

GT þMAA
T Þ

þ 6gE
VR

g2A
MF;sd

�
; ð11Þ

Ame
is determined by

Mð6Þ
me;L

¼ VudC
ð6Þ
VL

6

�
g2V
g2A

MF −
1

3
ðMAA

GT − 4MAA
T Þ − 3ðMAP

GT þMPP
GT þMAP

T þMPP
T Þ − 12gme

VL

g2A
MF;sd

�
;

Mð6Þ
me;R

¼ VudC
ð6Þ
VR

6

�
g2V
g2A

MF þ 1

3
ðMAA

GT − 4MAA
T Þ þ 3ðMAP

GT þMPP
GT þMAP

T þMPP
T Þ − 12gme

VR

g2A
MF;sd

�
; ð12Þ

and finally AM is given by

Mð6Þ
M ¼ VudC

ð6Þ
VL

�
2
gA
gM

ðMMM
GT þMMM

T Þ þ m2
π

m2
N

�
−

2

g2A
gNN
VLMF;sd þ

1

2
gπN
VLðMAP

GT;sd þMAP
T;sdÞ

��
;

Mð9Þ
M ¼ m2

π

m2
N

�
−

2

g2A
ðgNN

6 Cð9Þ
V þ gNN

7 C̃ð9Þ
V ÞMF;sd þ

1

2
ðgπN

V Cð9Þ
V þ g̃πN

V C̃ð9Þ
V ÞðMAP

GT;sd þMAP
T;sdÞ

�
: ð13Þ

In the above formulas we have defined the combined NMEs

MGT ¼ MAA
GT þMAP

GT þMPP
GT þMMM

GT ;

MT ¼ MAP
T þMPP

T þMMM
T ;

MPS ¼
1

2
MAP

GT þMPP
GT þ 1

2
MAP

T þMPP
T ;

MT6 ¼ 2
g0
T − gNN

T

g2A

m2
π

m2
N
MF;sd −

8gT
gM

ðMMM
GT þMMM

T Þ þ gπN
T

m2
π

4m2
N
ðMAP

GT;sd þMAP
T;sdÞ þ gππ

T
m2

π

4m2
N
ðMPP

GT;sd þMPP
T;sdÞ: ð14Þ

The short-range dimension-9 LEFT operators contribute to the Cð9Þ
V;ππL;πNL;NNL couplings that appear in the chiral

Lagrangian. They are given by

TABLE III. Summary of the low-energy constants necessary to
calculate the 0νββ half-life for all 32 different operators. The table
is taken from [10] and restructured.

Known LECs Unknown LECs

gA 1.271 jg0T j Oð1Þ
gS 0.97 [49] jgππT j Oð1Þ
gM 4.7 jgπN1;6;7;8;9j Oð1Þ
gT 0.99 [49] jgπNVLj Oð1Þ
B 2.7 GeV jgπNT j Oð1Þ
gππ1 0.36 [50] jgNN

1;6;7j Oð1Þ
gππ2 2.0 [50] jgNN

2;3;4;5j Oð16π2Þ
gππ3 −0.62 [50] jgNN

VL j Oð1Þ
gππ4 −1.9 [50] jgNN

T j Oð1Þ
gππ5 −8.0 [50] jgE;me

VL;VRj Oð1Þ
gNN
ν −92.9 GeV−2 � 50% [51–53]
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Cð9Þ
V ¼ Cð9Þ

6 þ Cð9Þ
6

0 þ Cð9Þ
8 þ Cð9Þ

8

0

C̃ð9Þ
V ¼ Cð9Þ

7 þ Cð9Þ
7

0 þ Cð9Þ
9 þ Cð9Þ

9

0

Cð9Þ
ππL ¼ gππ2 ðCð9Þ

2L þ Cð9Þ
2L

0Þ þ gππ3 ðCð9Þ
3L þ Cð9Þ

3L
0Þ − gππ4 Cð9Þ

4L − gππ5 Cð9Þ
5L −

5

3
gππ1 m2

πðCð9Þ
1L þ Cð9Þ

1L
0Þ

Cð9Þ
πNL ¼

�
gπN
1 −

5

6
gππ1

�
ðCð9Þ

1L þ Cð9Þ
1L

0Þ

Cð9Þ
NNL ¼ gNN

1 ðCð9Þ
1L þ Cð9Þ

1L
0Þ þ gNN

2 ðCð9Þ
2L þ Cð9Þ

2L
0Þ þ gNN

3 ðCð9Þ
3L þ Cð9Þ

3L
0Þ þ gNN

4 Cð9Þ
4L þ gNN

5 Cð9Þ
5L

Cfππ;πN;NNgR ¼ Cfππ;πN;NNgLjL→R: ð15Þ

The two LECs gπNV and g̃πNV are defined as

gπN
V ¼ gπN

6 þ gπN
8

g̃πN
V ¼ gπN

7 þ gπN
9 : ð16Þ

For the sake of convenience, we have marked all currently
unknown LECs including gNN

ν in bold within the above
formulas.
In this work wewill study the different LEFToperators at

the matching scale of Λ ¼ mW at which one would usually
match the new beyond the Standard Model (BSM) physics
onto LEFT. The running of the operators down to the scale
of χPT at Λχ ≃ 2 GeV is described in [10].

C. Relation to literature

A different basis to describe 0νββ decay developed first
in [3,4] that is often used in the literature is defined by a set
of 29 dimension-6 and dimension-9 lepton number violat-
ing LEFT operators given by

L6 ¼
GFffiffiffi
2

p
X
i;k

ϵikjiJk ð17Þ

for the long-range part with i;k∈fV�A;S�P;TL;TR;g
and

L9 ¼
G2

F

2mN

X
l;m;n

½ϵlmn
1 JlJmjn þ ϵlmn

2 Jμνl Jμνmjn

þ ϵlmn
3 Jμl Jμmjn þ ϵlmn

4 Jμl Jμνmj
ν
n þ ϵlmn

5 Jμl Jmjμn� ð18Þ
for the short-range part with l; m; n ∈ fL;Rg. Here, ϵik and
ϵlmn are the Wilson coefficients of the different long- and
short-range operators. The quark currents J are given by1

JS�P ¼ JR;L ¼ uð1� γ5Þd;
JV�A ¼ JμR;L ¼ ūγμð1� γ5Þd;
JTR;L

¼ JμνR;L ¼ ūσμνð1� γ5Þd; ð19Þ

and the lepton currents j are given by

jS�P ¼ ēð1� γ5Þνc; jV�A ¼ ēγμð1� γ5Þνc
jTR;L

¼ ēσμνð1� γ5Þνc; jR;L ¼ ēð1� γ5Þec
jμR;L ¼ ēγμð1� γ5Þec: ð20Þ

This framework does not include the dimension-7 operators
of the framework utilized in our approach. While the
remaining long-range part of the two descriptions can be
related easily, the short-range operators are related to each
other via Fierz transformations. One finds that

Cð9Þ
1L ¼ 2v

mN
ϵLLL3 ; Cð9Þ

1L
0 ¼ 2v

mN
ϵRRL3 ;

Cð9Þ
1R ¼ 2v

mN
ϵLLR3 ; Cð9Þ

1R
0 ¼ 2v

mN
ϵRRR3 ;

Cð9Þ
2L ¼ 2v

mN
ðϵLLL1 − 4ϵLLL2 Þ;

Cð9Þ
2L

0 ¼ 2v
mN

ðϵRRL1 − 4ϵRRL2 Þ;

Cð9Þ
2R ¼ 2v

mN
ðϵLLR1 − 4ϵLLR2 Þ;

Cð9Þ
2R

0 ¼ 2v
mN

ðϵRRR1 − 4ϵRRR2 Þ;

Cð9Þ
3L ¼ −

16v
mN

ϵLLL2 ; Cð9Þ
3L

0 ¼ −
16v
mN

ϵRRL2 ;

Cð9Þ
3R ¼ −

16v
mN

ϵLLR2 ; Cð9Þ
3R

0 ¼ −
16v
mN

ϵRRR2 ;

Cð9Þ
4L ¼ 2v

mN
ϵRLL3 ; Cð9Þ

4R ¼ 2v
mN

ϵRLR3 ;

Cð9Þ
5L ¼ −

v
mN

ϵRLL1 ; Cð9Þ
5R ¼ −

v
mN

ϵRLR1 ;

Cð9Þ
6 ¼ v

mN

�
ϵLRR5 þ i

5

3
ϵLRR4

�
;

Cð9Þ
6

0 ¼ v
mN

�
ϵRLR5 þ i

5

3
ϵRLR4

�
;1We keep the two different types of indices for the short-range

currents to stick with the literature.
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Cð9Þ
7 ¼ 4i

v
mN

ϵLRR4 ; Cð9Þ
7

0 ¼ 4i
v
mN

ϵRLR4 ;

Cð9Þ
8 ¼ v

mN

�
ϵLLR5 − i

5

3
ϵLLR4

�
;

Cð9Þ
8

0 ¼ v
mN

�
ϵRRR5 − i

5

3
ϵRRR4

�
;

Cð9Þ
9 ¼ −4i

v
mN

ϵLLR4 ; Cð9Þ
9

0 ¼ −4i
v
mN

ϵRRR4 : ð21Þ

The main difference between the two set of operators is that
the ϵ basis contains short-range tensor operators instead of
color octets.

III. DISTINGUISHING THE EFFECTIVE
OPERATORS

Neutrinoless double-β-decay, if observed, would be
characterized by several experimental observables, precise
determination of which can give us some insight into the
underlying BSM physics. Generally, the 0νββ decay
experiments can be able to determine decay rate, single
electron energy spectrum and angular correlation between
the two emitted electrons. Additional information might be
obtained by studying different ββ modes or by employing
complementary information from other experiments such
as the LHC [56,57]. In the following, we will discuss
possible ways of experimentally distinguishing among the
32 different 0νββ decay inducing LEFT operators with a
focus on the limiting factors of a potential confirmation/
exclusion of the existence of any additional nonstandard
scenario contributing to 0νββ decay alongside the standard
mass mechanism.

A. Phase-space observables

While most experimental collaborations only attempt to
measure the half-life of 0νββ decay, some experiments like
NEMO-3 [58], or its future successor SuperNEMO [59],
are designed to also measure the single electron energy
spectrum and the angular correlation of the two outgoing
electrons. These are associated with different electron
currents and within the simplest approximation they can
be calculated analytically. More exact solutions require
numeric calculations of the exact electron wave functions
[60]. The different PSFsG0k can be written in the form [61]

G0k ¼
ðGFVudÞ4m2

e

64π5 ln 2R2

Z
δðϵ1 þ ϵ2 þ Ef − EiÞ

× ðh0kðϵ1; ϵ2; RÞ cos θ þ g0kðϵ1; ϵ2; RÞÞ
× p1p2ϵ1ϵ2dϵ1dϵ2dðcos θÞ; ð22Þ

where p1;2 and ϵ1;2 are the momentum and energy of the
first and second released electron, R is the radius of
the final-state nucleus and Ei;f denotes the energy of the

initial- or final-state nucleus, respectively. Here, we denote
the part of the differential phase-space factor independent
of the angle between the two outgoing electrons as g0k,
while h0k is the angular correlation part proportional to the
cosine of the opening angle θ. Additionally, G04;06;09 have
to be rescaled to comply with the definitions in [9,10] as

G04 →
9

2
G04;

G06 →
meR
2

G06;

G09 →

�
meR
2

�
2

G09: ð23Þ

The relations between the electron wave functions and the
functions h0k and g0k are given in [61] to which we will
refer here. We apply their simplest approximation scheme
“A” assuming a uniform charge distribution in the nucleus.
Using Eq. (22) one can write the angular correlation
coefficient a1=a0 which is defined via

dΓ
d cos θdϵ̃1

¼ a0

�
1þ a1

a0
cos θ

�
ð24Þ

with

ϵ̃i ¼
ϵi −me

Qββ
∈ ½0; 1� ð25Þ

as

a1
a0

ðϵ̃Þ ¼
P

ijMij2h0iðϵ;ΔMNuclei − ϵ; RÞP
jjMjj2g0jðϵ;ΔMNuclei − ϵ; RÞ : ð26Þ

Here, ΔMNuclei is the mass difference between the mother
and daughter nuclei and Qββ denotes the Q value of the
decay. The potential of utilizing the angular correlation of
the outgoing electrons for discrimination between different
mechanisms of 0νββ has been discussed, e.g., in [62].
Similarly, the single electron spectra are given by

dΓ
dϵ1

¼ ðGFVudÞ4m2
e

64π5 ln 2R2

�X
i

jMij2g0iðϵ;ΔMNuclei − ϵ; RÞ
�

× p1p2ϵðΔMNuclei − ϵÞ: ð27Þ

Consequently, approximating the electron wave functions,
we can easily calculate the expected angular correlation
factor and single electron spectra for each of the 32 LEFT
operators. The normalized single electron spectra as well as
the angular correlations corresponding to each of the six
distinct PSFs are shown in Fig. 1. As we can see, using
these observables the operators associated with distinct
PSFs are in principle distinguishable from each other,
provided substantial experimental accuracy is reached.
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However, distinguishing among different 0νββ mech-
anisms purely based on the phase-space observables has
its obvious limitations. In fact, while G06 is only induced
in the presence of multiple operators the dimension-6
vector operators both trigger several of the remaining
PSFs. Taking this into account, we can identify four
different groups of operators that are in principle dis-
tinguishable using the leptonic PSF observables, namely:

Cð6Þ
VL; C

ð6Þ
VR, the operators corresponding to G01 and the

ones corresponding to G09. The PSF observables that
result from each of these four groups are shown in Fig. 2.
Here, we can see that the left-handed vector current

operator Cð6Þ
VL and the operators corresponding to G09,

while corresponding to distinct PSFs, are practically

indistinguishable since the Cð6Þ
VL phase space turns out

to be dominated by the contribution from G09. The
remaining groups are distinguishable from each other
using at least one of the considered observables.
Note that while the electron wave functions depend on

the charge of the daughter nucleus as well as on the decay
energy, the general shape of the induced observables is not
very dependent on the choice of the decaying isotope. In
Fig. 3 we show the single electron spectra and in Fig. 4 the
angular correlation coefficients corresponding to the six
different PSFs in four different naturally occurring 0νβ−β−

isotopes.

B. Decay rate ratios

The remaining 0νββ observable is the decay rate Γ itself.
While the phase space can be used to distinguish operators
with different leptonic currents, information about the
decay rates in various isotopes can be also applied to
operators with distinct hadronic structures, as these give
rise to different NMEs. The isotope dependence of the
existing calculations of NMEs can be inferred from
Table II. Therefore, one can study the half-life ratios,

ROiðAXÞ≡ TOi
1=2ðAXÞ

TOi
1=2ð76GeÞ

¼
P

jjMOi
j ð76GeÞj2GOi

j ð76GeÞP
kjMOi

k ðAXÞj2GOi
k ðAXÞ

;

ð28Þ

where TOi
1=2ðAXÞ is the half-life induced by the operatorOi in

the isotope AX. The sums
P

j;k are taken over all different
PSFs generated by the operatorOi and become relevant only

for Cð6Þ
VL;VR [see Eqs. (B2) and (B3)]. Studying the half-life

ratio allows for elimination of the unknown particle physics
couplings, as was first discussed in [63] and shortly after also
in [64]. Here, we take 76Ge for the reference isotope. To be
able to quantify how well one can distinguish two different
operators Oi;j from each other we can take the ratio

FIG. 1. Comparison of the normalized single electron spectra
(lower left) and angular correlation coefficients (upper right) in
136Xe that result from the six PSFs which appear in the 0νββ
half-life “master formula.” Red curves correspond to the red-
labeled PSFs on the horizontal axis, while blue curves represent
the PSFs denoted in blue on the vertical axis. The x axis covers
the range ϵ̃ ∈ ½0–1�.

FIG. 2. Normalized single electron spectra (lower left) and
angular correlation coefficients (upper right) for each of the four
distinguishable groups of operators. The shapes are shown for
136Xe assuming the naive dimensional analysis (NDA) values for
the currently unknown LECs. However, the particular choice
does not result in a significant difference in the general shape of
the plots. Red curves correspond to the red-labeled operator
group on the horizontal axis, while blue curves represent the
operator group denoted in blue on the vertical axis. The x axis
covers the range ϵ̃ ∈ ½0�1�.
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RijðAXÞ ¼
ROiðAXÞ
ROjðAXÞ : ð29Þ

Specifically, the ratios Rimββ
relating the nonstandard mech-

anisms with the standard mass mechanism will be of interest
to compare the effect of different higher-dimensional oper-
ators and possibly identify the existence of additional exotic

contributions to the 0νββ rate in experiments. Obviously, two
operators Oi;j would be indistinguishable via this method if
the resulting ratio would equal unity, i.e., if Rij ¼ 1. Vice
versa, they would be perfectly distinguishable for either
Rij → ∞ or Rij ¼ 0, that is, for jlog10ðRijÞj → ∞.
Studying the decay rate ratios has several benefits. First

of all, in case only one Wilson coefficient contributes at a

FIG. 3. The single electron spectra for four different naturally occurring 0νβ−β− isotopes are shown. While the exact quantitative
curves depend on the choice of the isotope, their shape is mostly independent of this choice. As before, the x axis shows the normalized
electron energy ϵ̃.

FIG. 4. Comparison of the angular correlation coefficients in four different isotopes as done for the single electron energy spectra
in Fig. 3.
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time, it drops out. Therefore, the ratio corresponding to a
certain operator and its Wilson coefficient is a constant that
depends only on the corresponding NMEs, LECs and PSFs.
If more Wilson coefficients contribute at the same time,
then only the overall magnitude can be factored out. In this
case, the relations between different coefficients can, of
course, affect the resulting ratios. However, one can still
utilize this method to study specific models and see if they
are distinguishable from the standard mass mechanism. We
will discuss this possibility in Sec. IV. Additionally, when
taking ratios of the half-lives, one can expect that the
impact of correlated systematic relative errors on the NMEs
decreases as they should (at least partially) cancel. In [65] it
was shown that for the NME calculations using quasipar-
ticle random phase approximation (QRPA) uncertainties
arising from unknown gA quenching and nucleon-nucleon
potentials are correlated among different isotopes. Half-life
measurements in different isotopes as a tool to discriminate
among different mechanisms of 0νββ decay have also been
employed previously in [66–69].
Applying this approach to the master-formula framework

one can identify 12 different groups of operators that can in
principle be distinguished from each other. These groups
are summarized in Table IV. However, the distinguish-
ability of the short-range operators strongly depends on the
currently unknown LECs. Taking the most of the unknown
LECs to be zero while keeping gNN

6;7 ¼ gπNV ¼ g̃πNV ¼ 1 (so
that the contribution from the short-range vector operators
is not omitted) makes it impossible to distinguish the short-

range scalar operators Cð9Þ
S2−S5 as well as the short-range

vector operator groups Cð9Þ
V and C̃ð9Þ

V .

1. Sensitivity on the unknown LECs

In Fig. 5 we present the expected ratios ROi as well as the
normalized ratios Rimββ

defined in (28) and (29) for the
above choice of LECs which will be our benchmark
scenario. The ratios for the ϵ basis are shown in Fig. 6.
Additionally, to study the uncertainties arising from the
unknown LECs, the plots include 1000 points per operator
group that each represent variations of the unknown LECs

gi within the ranges ½− ffiffiffiffiffi
10

p
;−1=

ffiffiffiffiffi
10

p � × jgij and
½1= ffiffiffiffiffi

10
p

;
ffiffiffiffiffi
10

p � × jgij, i.e., we vary the LECs within the
range of values given by their expected order of magnitude
shown in Table III. For gNN

ν which generates a short-range
component into the standard mass mechanism we take a
variation of �50%. The central values of the variation, i.e.,
the median values, are marked by crosses.
From the upper panel of Fig. 5 one can infer that the half-

life ratios Rmββ corresponding to the standard mass mecha-
nism are not very sensitive to gNN

ν (they are actually too
small to be visible). In Fig. 7 we explicitly show the impact
of varying the gNN

ν LEC on the expected half-life in 76Ge for
the standard mechanism. Again, compared to the impact of
the unknown Majorana phases the effect of gNN

ν is minor.
However, it is important to note that the impact of gNN

ν on
the overall magnitude of the half-life cannot be ignored as
easily. For comparison, we also present the case where
gNN
ν ¼ 0 in Fig. 7.
For the remaining nonstandard operators, however, we

can see from Fig. 5 that the values of the currently unknown
LECs can have quite a significant impact on the expected

ratios. Often, especially for the short-range Cð9Þ
i groups, the

central values are significantly offset from our benchmark
scenario with most unknown LECs turned off. Hence, for
these operators the appearance of the unknown LECs has a
significant impact on the corresponding 0νββ-decay rate.

Although for some operator groups, such as Cð9Þ
2S−5S, the

spread of the values of the ratios obtained by varying the
unknown LECs is relatively small, for other groups like

the short-range vector contributions Cð9Þ
V ; C̃ð9Þ

V the variation
of the unknown LECs results in a significant stretch around
the central values. For these ratios the precise numerical
value of the unknown LECs is of particular importance.
The different sensitivities of the short-range scalar and
vector operators arise from the fact that for the scalar
operators some of the relevant LECs, namely those encod-
ing pion-pion interactions gππi , are known, while for the
short-range vector operators all relevant LECs are
unknown. Since we do not fix the sign of the unknown
LECs (except gNN

ν ) there can be a gap within the

TABLE IV. Operator groups that can possibly be distinguished via taking decay rate ratios. The choice of the groups depends on the
knowledge of the LECs. If we set the unknown LECs to zero, the short-range scalar operator groups Cð9Þ

S2−S5 become indistinguishable as

well as the short-range vector operator groups C̃ð9Þ
V and C̃ð9Þ

V . Improved knowledge of the LECs, assuming no fine-tuning, would allow to
distinguish among these operator groups.

mββ Cð6Þ
VL Cð6Þ

VR Cð6Þ
T Cð6;7Þ

S;V Cð9Þ
S1 Cð9Þ

S2 Cð9Þ
S3 Cð9Þ

S4 Cð9Þ
S5 Cð9Þ

V C̃ð9Þ
V

mββ Cð6Þ
VL Cð6Þ

VR Cð6Þ
T Cð6Þ

SL Cð9Þ
1L Cð9Þ

2L Cð9Þ
3L Cð9Þ

4L Cð9Þ
5L Cð9Þ

6 Cð9Þ
7

� � � � � � � � � � � � Cð6Þ
SR Cð9Þ

1R Cð9Þ
2R Cð9Þ

3R Cð9Þ
4R Cð9Þ

5R Cð9Þ
6

0 Cð9Þ
7

0

� � � � � � � � � � � � Cð7Þ
VL Cð9Þ

1L
0 Cð9Þ

2L
0 Cð9Þ

3L
0 � � � � � � Cð9Þ

8 Cð9Þ
9

� � � � � � � � � � � � Cð7Þ
VR Cð9Þ

1R
0 Cð9Þ

2R
0 Cð9Þ

3R
0 � � � � � � Cð9Þ

8

0 Cð9Þ
9

0
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LEC-varied ratios resulting in two visible central values for
the operator groups, for which the ratios are sensitive to the
sign of the LECs. The lower part of Fig. 5 which displays
the normalized Rimββ

shows that the central values of the
LEC-varied ratios are closer to 0 than the benchmark
scenario. Therefore, the inclusion of the unknown LECs
tends to impair the distinguishability from the standard
mechanism.
The above discussion clearly shows the importance of

determining the yet unknown LECs involved in the
calculation. This can be achieved, for example, by lattice
QCD calculations [50,70,71].

2. Distinguishing different operators

When studying the 0νββ decay rate the basic question to
ask is whether and how well could a nonstandard con-
tribution be distinguished from the standard light-neutrino
exchange. Employing the half-life measurements in differ-
ent isotopes, one can try to identify those that are most
suitable for discrimination between the mass mechanism
and an exotic 0νββ decay contribution triggered by a
particular higher-dimensional operator. In the first row of

Fig. 8 we show the maximal ratios Rmax
imββ

and the corre-
sponding pair of isotopes obtained for each operator group.
Here, we consider a “representative” scenario by studying
the central values defined as the median ratio Rimββ

of the
range of values obtained from the variation of the LECs. At
the same time, we identify the “worst-case scenario” ratio
defined as the value within the range that is closest to unity,
see the first column of Fig. 8. In this context we consider
only isotopes with existing experimental limits on the half-
life, namely, the following: 76Ge [25], 82Se [26], 96Zr [27],
100Mo [28], 116Cd [29], 128Te [30], 130Te [31], 134Xe [72],
136Xe [33] and 150Nd [34]. Figure 8 also presents all the
other ratios Rmax

ij quantifying the mutual distinguishability
of all the operator groups with the values corresponding to
the representative scenario above the diagonal and the
worst-case scenario below the diagonal. In addition, the
dashed lines in Fig. 8 mark the pairs of operators that could
be discriminated using the phase-space observables.
Considering the central values, the nonstandard long-

range operators Cð6Þ
VR and Cð6;7Þ

S;V give the most distinct half-
life ratios compared to the standard mass mechanism while

the remaining long-range operator groups Cð6Þ
VL and Cð6Þ

T

FIG. 5. The decay rate ratios ROi (upper plot) and Rimββ
(lower plot) for the different operator groups are shown. The larger markers

represent the choice of vanishing unknown LECs with gNN
6;7 ¼ gπNV ¼ g̃πNV ¼ 1. Isotopes with a PSF G0 > 10−14 y−1 are represented by

stars while isotopes with smaller PSFs are represented by round markers. The additional points represent variations of the different
unknown LECs gi randomly chosen from ½− ffiffiffiffiffi

10
p

;−1=
ffiffiffiffiffi
10

p � × jgij and ½þ1=
ffiffiffiffiffi
10

p
;þ ffiffiffiffiffi

10
p � × jgij except for gNN

ν which is varied in a range
of �50%. The crosses represent the central values of the variation, i.e., the median values. The reference isotope is chosen to be 76Ge.
Note that the variation of gNN

ν does induce a small variation of Rmββ which is, however, not visible in the above plot.
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also result in sizable Rmax
imββ

> 2. Additionally, both Cð6Þ
VL and

Cð6Þ
VR could be identified by measuring the angular corre-

lation of the emitted electrons. The nonstandard short-range
operators generally tend to have lower values of the ratios
Rmax
imββ

< 2; thus, there is less potential for identifying their
contribution by experiments. However, the short-range

vector operators Cð9Þ
V and C̃ð9Þ

V are associated with a
different angular correlation than mββ. On the contrary,

the contributions from scalar short-range operators Cð9Þ
S2−S5

would be hardest to discriminate, as they do not manifest
any significant isotope dependence on Rimββ

and do not
differ in the phase-space observables, either.
In the worst-case scenario, the operators in the group

Cð6;7Þ
S;V , i.e., lepton number violating long-range scalar and

vector interactions, are the only operators that result in
Rmax
imββ

> 2. In fact, this is the only operator group that is not

affected by any unknown LECs. Besides Cð6Þ
T all remaining

operators in this setting have expected ratios Rmax
imββ

≤ 1.3,
which would require very precise measurements and
accurate knowledge of the theoretically calculated half-
lives to be able to claim a detection of any of these
nonstandard contributions. The contributions from

Cð6Þ
VL; C

ð9Þ
V and C̃ð9Þ

V could be identified only based on
measurements of the angular correlation and the scalar

FIG. 6. The decay rate ratios ROi (upper plot) and Rimββ
(lower plot) for the different operator groups in the ϵ basis similar to Fig. 5 are

shown.

FIG. 7. Here we show the half-life for 76Ge in dependence on
the minimal neutrino mass mmin for both normal (NO) and
inverted (IO) neutrino mass ordering. The scatter points were
obtained by marginalizing over gNN

ν and the unknown Majorana
phases. The blue and red contours show the possible half-life
ranges when only the phases are varied, while gNN

ν is fixed.
Additionally, the black contours correspond to gNN

ν ¼ 0.
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short-range operators, Cð9Þ
S1 , would be completely indistin-

guishable from the standard mechanism. In Appendix C we
show for completeness the same results employing the full
set of isotopes, for which there exist numerical values of
NMEs computed using IBM2.
To be able to pinpoint the specific nonstandard operator

groupOj contributing to 0νββ decay one needs to consider
half-life ratios Rij for all different isotopes. Considering the
central values, the best candidate to be clearly identified

turns out to be the right-handed vector current Cð6Þ
VR for

which all the ratios Rmax
iCð6Þ

VR

are large, i.e., ≳7.6.

3. The impact of nuclear uncertainties

The uncertainty induced by the nuclear part of the decay
rate calculation, i.e., the NMEs and LECs, highly impacts
and limits the above approach of distinguishing among
different 0νββ mechanisms. The approach of comparing
theoretically predicted ratios with experimentally measured
ratios raises the question of how well these theoretical
uncertainties must be under control.
To study the impact of nuclear uncertainties, we can use

the general formula for the half-life parametrized in terms

of a Wilson coefficient C, the phase-space factor G and an
effective NME which we label Meff ,

T−1
1=2 ¼ jCj2GjMeff j2: ð30Þ

Here,Meff is, generally, a weighted sum of combinations of
different LECs and NMEs (see Appendix B for the explicit
half-life equations of each single operator).
If we consider the theoretical uncertainty of the half-life

to be dominated by the uncertainty of Meff , we can
determine the necessary theoretical accuracy of the nuclear
physics. To estimate this, we assume Meff to be indepen-
dent of the choice of the isotope, i.e.,

ΔMeff

Meff
ðAZÞ ¼ ΔMeff

Meff
¼ const: ð31Þ

Then the necessary theoretical accuracy can be determined
from the simple condition that the expected ratios should
be distinguishable from unity within the theoretical
uncertainty,

ΔRij <
! jRij − 1j: ð32Þ

FIG. 8. The maximal ratios Rmax
ij for all operator combinations i, j. The exact values and the corresponding isotopes are displayed

in each tile. Additionally, operator combinations that result in different phase-space observables are marked by dashed-line shading.
In the upper right half of the plot we show the ratios considering the central values from the variation of the LECs. In the lower left
half we show the worst-case scenario considering the values of ratios Rij that are closest to 1 within the range obtained by the
variation of the LECs.
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Hence, the necessary theoretical accuracy for Meff reads

ΔMeff

Meff
<
! 1

4

jRij − 1j
Rij

: ð33Þ

Again, taking the central values as a baseline, the theo-
retical uncertainty on the overall nuclear part (that is from
both LECs and NMEs) would need to be brought down to
ΔMeff
Meff

∼ 7% to be able to identify all possible nonstandard
contributions assuming single operator dominance. The
exotic contribution easiest to identify using the half-life

ratios would be the right-handed vector current Cð6Þ
VR

requiring an accuracy of ΔMeff
Meff

∼ 22%. We want to empha-
size, again, that this way of estimating nuclear uncertainties
assumes that our calculations of the central ratios are a
reasonable reflection of reality.
In Fig. 9 we show the NME for the standard light-

neutrino-exchange mechanism computed employing a
variety of different numerical approaches. One can clearly
see a significant variation of about a factor of ∼3 with some
additional outliers corresponding to the rEDF (CDFT)
approach. Given the distinct nature of individual nuclear
structure computations the spread of the presented values
clearly cannot be interpreted as theoretical uncertainty of
the NMEs.

Reaching the estimated required accuracy on both LECs
and NMEs seems to be rather challenging considering the
current status of the relevant nuclear physics calculations.
However, the recent advances in ab initio approaches to the
computation of 0νββ decay NMEs seem to pave the path
towards more reliable numerical values and clearer under-
standing of the theoretical uncertainties involved.

C. Other 0νββ modes

Besides the usual 0νβ−β−-decay mode one could also
make use of searches for neutrinoless modes of other ββ
processes. In general there are four of these,
(1) β−β−:

ðA; ZÞ → ðA; Z þ 2Þ þ 2e−ðþ2ν̄eÞ ð34Þ

Δm>
!
0 ð35Þ

(2) βþβþ:

ðA; ZÞ → ðA; Z − 2Þ þ 2eþðþ2νeÞ ð36Þ

Δm>
!
4me ð37Þ

FIG. 9. Comparison of the standard NMEM0ν ¼ − 1
g2A
MF þMGT þMT resulting from different calculation methods. Explicitly, we

show NMEs obtained from the interacting shell model (SM) [73] and subsequent variants like the triaxial projected shell model (tpSM)
[74] or realistic shell model (rSM) [75], the proton-neutron quasiparticle random phase approximation (pnQRPA) [76], the deformed
QRPA (dQRPA) [77,78], the relativistic energy density functional method (rEDF) or covariant density functional theory (CDFT)
[79,80], the nonrelativistic energy density functional method (nrEDF) [81], the interacting boson model (IBM2) [12] and recently
introduced ab initio approaches calculating NMEs from basic principles of χPT [82,83]. The gray bands mark the range of values
covered by the different methods.
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(3) ECβþ:

ðA; ZÞ þ e− → ðA; Z − 2Þ þ eþðþ2νeÞ ð38Þ

Δm>
!
2me ð39Þ

(4) ECEC:

ðA; ZÞ þ 2e− → ðA; Z − 2Þðþ2νeÞ ð40Þ

Δm>
!
0 2ν mode ð41Þ

Δm¼! 0 0ν mode: ð42Þ

Here, EC denotes electron capture. In principle, one could
study all of these processes, as any of them would help to
distinguish different mechanisms using the decay rate ratios
considering nuclear uncertainties to be under control.
However, all the other ββ processes listed in Table VI
are expected to have half-lives significantly longer than the
usual 0νβ−β− decay and are therefore unlikely to show up
in experiments. Despite that, let us discuss their potential
role in a bit more detail.

1. 0νβ+ β+

This process can be treated in a similar way as the usual
0νβ−β− decay, one only needs to consider a negative
nuclear charge Z → −Z to calculate the positron wave
functions. As such, the expected half-life will also be
mainly determined by the PSF which goes with Q5.
Looking at the second column of Table VI we can see
that theQ values for naturally occurring isotopes are up to 1
order of magnitude smaller than usual 0νβ−β− Q values.
Additionally, the electromagnetic repulsion of the outgoing
positrons deforms the wave functions and decreases the
decay rate. Thus, we see that 0νβþβþ will be highly
suppressed compared to 0νβ−β−. Also, given the similar-
ities of the two decays there does not seem to be a natural
way of enhancing the 0νβþβþ-decay rate with respect to
0νβ−β−. The relevant PSFs for the 0νβþβþ decay of
naturally occurring isotopes have been calculated in [84]
and are about 3–5 orders of magnitude smaller than for
0νβ−β− decay.

2. 0νECβ+

The PSFs for the neutrinoless mode of ECβþ were also
calculated with good precision in [84] and are found to be
3–4 orders of magnitude smaller than those corresponding
to 0νβ−β− decay. The reason is the same as in the case of
0νβþβþ decay.

3. 0νECEC

As this process has no particles other than the daughter
isotope in the final state, mass degeneracy between the
mother and daughter isotopes is required in order to satisfy
conservation of energy and momentum. However, as the
daughter isotope is a nonstable state due to the holes left in
the electron shell after the electron capture, the correspond-
ing decay width results in a resonance mechanism [85,86].
Resonances are often found when considering nuclear
excitations in the final state isotope. However, the resonant
enhancement strongly depends on the degeneracy between
the initial and final state and hence small uncertainties in
the mass measurements of these nuclei result in consid-
erable uncertainties of the corresponding half-lives [85].
Existing studies tend to show that the resulting half-lives
are still considerably longer than for 0νβ−β− [86].
Therefore, we do not consider this process in this work.
However, it is fair to note that a close resonance might lead
to half-lives comparable or even shorter than for 0νβ−β−

decay. Recently, it was shown that further significant
enhancement of the 0νECEC decay rate can be generated
by a nonresonance shake mechanism [87]. In this case, the
double electron capture is accompanied by emission of an
electron from the shell of the final state isotope, which can
carry away energy, thus making the whole process less
dependent on the resonant behavior. A dedicated review of
the 0νECEC decay can be found in [88].

4. Bound-state 0νββ

Bound state 0νββ decay refers to a decay in which one
or both of the two outgoing electrons end up in a bound
energy level of the daughter isotope. It is usually referred
to as 0νβEP and 0νEPEP for the one and two bound final
state electrons, respectively, with EP denoting the elec-
tron production or electron placement. Being a reverse
process of 0νECEC, also 0νEPEP requires mass degen-
eracy of the initial and final nuclei and the decay rate is
described by a resonancelike mechanism. The explicit
calculations show that the corresponding half-lives are
even longer than those of double electron capture [85].
The reason is that there are no electron holes in the shell
and only the (small) decay width of the nuclear excitation
enters into the resonance.
The single bound state double-β-decay 0νβEP was

investigated in [89] and found to have PSFs 6–7 orders
of magnitude smaller than those of 0νβ−β− decay. The
decay rates can be significantly enhanced when considering
fully ionized nuclei. In that case, the 0νβEP decay rate can
for certain isotopes even exceed the one of 0νβ−β− decay
[89]. Although this is an interesting idea, a full ionization of
large number of isotopes represents an experimental
challenge. Therefore, despite the enhanced decay rate,
the number of available ions would be too small to reach
the relevant experimental sensitivity.
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5. Decay to excited final state nuclei

Instead of utilizing different isotopes to determine the
decay rate ratios one could also compare the ground state
decay with the decay into an excited state final nucleus
ð0þ; 2þÞ using the same initial state isotope [90,91]. The
potential benefit would be the possibility of studying this
interplay within a single experiment. However, the excited
state decays can be again expected to be highly suppressed
due to the smaller phase space resulting from the smaller Q
value. Additionally, previous studies tend to show that the
NMEs for the decay into the excited final state are either of
a similar size or smaller than those for the ground state
decay [91–93], thus the half-lives would be rather further
suppressed than enhanced by the nuclear part of the
amplitude either.

6. Artificial isotopes

Although there are 69 naturally occurring double-β-
decaying isotopes, we found about ∼2700 possible 0νββ
candidate isotopes when considering the full NIST list of
elements [94]. Some of them have considerably larger Q
values of up to 50 MeV.2 While such a large Q value of
∼50 MeV would result in a significant enhancement of the
decay rate by ∼8 orders of magnitude, there are several
fairly obvious experimental problems. Primarily, it is the
artificial production of these isotopes which would strongly
limit the scale of the experiment. Again ton, kilogram
and even gram scales would usually not be possible.
Additionally, many artificial isotopes, especially those with
large Q values, come with additional decay modes that
strongly dominate and often lead to extremely short half-
lives such that storing them to study 0νββ decay would be
impossible.
To sum up the above paragraphs, despite the fact that a

variety of ββ processes exist, 0νβ−β− decay is largely the
most relevant candidate to study, indeed. Therefore, other
possible 0νββ modes would only become relevant in exotic
scenarios leading either to their significant enhancements,
or to strong suppression of 0νβ−β− decay. Given the
similarity of all the ββ processes, such models would,
however, seem to be rather unnatural from a particle
physics point of view.

IV. DISTINGUISHING SPECIFIC MODELS

Following the discussion of possible discrimination
among different LEFT operators, let us now have a brief
look at complete models. As one would expect, lepton
number violating BSM models will typically excite several
LEFT operators at a time. While it would be challenging to
identify a specific BSM model, as no finite set of BSM

models exists and many different scenarios would result in
the same low-energy physics, we do expect that, given
fixed model parameters, one can at least check whether a
model is consistent with the observed data and reject it if it
is not. In the following paragraphs, we adopt and briefly
discuss three different BSM scenarios that would lead to
0νββ decay. Each of the models will be compared with the
standard mass mechanism predictions.

A. Minimal left-right symmetric model

The Standard Model is a chiral theory. That is, parity is
explicitly broken due to the gauged SUð2ÞL symmetry and
the missing right-handed neutrino. This particular choice of
symmetries and particle content, additionally, results in
vanishing neutrino masses. A simple approach to resolve
these phenomena is to extend the Standard Model’s gauge
group to a left-right symmetric model SUð3ÞC × SUð2ÞL ×
SUð2ÞR ×Uð1ÞB−L [95–97] which is spontaneously broken
to the Standard Model group SUð3ÞC × SUð2ÞL ×Uð1ÞY .
A comprehensive review of the minimal left-right sym-
metric Standard Model (mLRSM) is given in, e.g., [98].
Extending the Standard Model to the left-right symmet-

ric theory requires the existence of additional scalars and
fermions. The conventional minimal setting includes two
scalar triplets ΔL ∈ ð1; 3; 1; 2Þ andΔR ∈ ð1; 1; 3; 2Þ as well
as a scalar bidoubletΦ ∈ ð1; 2; 2�; 0Þ incorporating the SM
Higgs doublet and the right-handed neutrinos νR. The
fermions are grouped into left- and right-handed doublets,

LL¼
�
νL

eL

�
∈ ð1;2;1;−1Þ; QL¼

�
uL
dL

�
∈ ð3;2;1;1=3Þ;

ð43Þ

LR¼
�
νR

eR

�
∈ ð1;1;2;−1Þ; QR¼

�
uR
dR

�
∈ ð3;1;2;1=3Þ;

ð44Þ

which under U ∈ SUð2ÞL;R transform as

ΨL;R → UL;RΨL;R ð45Þ

while the scalar fields transform as

Φ→ ULΦU†
R; ΔL → ULΔLU

†
L; ΔR → URΔRU

†
R:

ð46Þ

There are two discrete symmetries that one can impose onto
a LR symmetric theory which can relate left- and right-
handed fermions. These are parity P and charge conjuga-
tion C [99]. Thus, one can define two different discrete
symmetry transformations:

P∶ ΨL ⇔ ΨR; Φ ⇔ Φ†; ΔL;R ⇔ ΔR;L ð47Þ
2Considering only isotopes without a single-β-decay mode

already significantly reduces this number down to 86. None of
these has, however, a significantly enhanced Q value.
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C∶ ΨL ⇔ ðΨRÞc; Φ ⇔ ΦT; ΔL;R ⇔ Δ�
R;L: ð48Þ

Requiring either P or C invariance results in different
constraints on the scalar potential as well as the Yukawa
coupling matrices [99].3

The lepton number violation at low energy stems from
the leptonic Yukawa interactions given by

Ly¼−
X
ij

fðYl†ÞijLLiΦLR;jþðỸl†ÞijLLiΦ̃LR;j

þYL
ijL

T
L;iCiτ2ΔLLL;jþðYR†ÞijLT

R;iCiτ2ΔRLR;jgþH:c:

ð49Þ

After the neutral components of the scalars have acquired
their VEVs,

hΦi ¼ 1ffiffiffi
2

p
�
κ 0

0 κ0eiα

�
;

hΔLi ¼
1ffiffiffi
2

p
�

0 0

vLeiθL 0

�
;

hΔRi ¼
1ffiffiffi
2

p
�

0 0

vR 0

�
; ð50Þ

one can infer the neutrino mass matrices from (49)

Mν
D;ij ¼

1ffiffiffi
2

p ½Yl
ijκ þ Ỹl

ijκ
0 exp−iα�;

Mν
L;ij ¼

ffiffiffi
2

p
YL
ijvL exp iθL;

Mν
R;ij ¼

ffiffiffi
2

p
YR
ijvR: ð51Þ

There are several diagrams in the mLRSM setting which
can contribute to the 0νββ decay at tree level, see Fig. 10.
Detailed discussions of 0νββ decay within the mLRSM
scenario can be found, e.g., in [8,18,23].
The matching of the C-symmetric mLRSM onto SMEFT

and, subsequently, onto the relevant LEFT operators has
been discussed in [10]. Here, we will summarize their
findings and study the distinguishability from the usual
mass mechanism.
Integrating out the heavy fields with masses proportional

to vR and matching the theory onto SMEFT results in the
lepton number violating operators,

LΔL ¼ Cð5ÞððLTCiτ2ΦSMÞðΦ̃†
SMLÞÞ þ ðLTγμeRÞiτ2ΦSMðCð7Þ

LeudΦ
dRγμuR þ Cð7Þ

LΦDeΦT
SMiτ2ðDμΦSMÞÞ

þ eRecRðCð9Þ
eeuduRγ

μdRuRγμdR þ Cð9Þ
eeΦuduRγ

μdRð½iDμΦSM�†Φ̃SMÞ þ Cð9Þ
eeΦDð½iDμΦSM�†Φ̃SMÞ2Þ; ð52Þ

where ΦSM is the Standard Model Higgs doublet. The
matching scale corresponds to ∼mWR

and the Wilson
coefficients at SMEFT level are given by

Cð5Þ ¼ 1

v2
ðMν

D
TMν

R
−1Mν

D −Mν
LÞ;

Cð7Þ
LeudΦ

¼
ffiffiffi
2

p

v
1

v2R
ðVud

R Þ�ðMνT
D Mν

R
−1Þee;

Cð7Þ
LΦDe ¼

2iξ exp iα
ð1þ ξ2ÞVud

R
� C

ð7Þ
Leud̄Φ;

Cð9Þ
eeud ¼ −

1

2v4R
Vud
R

2

�
ðMν

R
†Þ−1 þ 2

m2
ΔR

Mν
R

�
;

Cð9Þ
eeΦud ¼ −4

ξ exp−iα
ð1þ ξ2ÞVud

R
Cð9Þ
eeud;

Cð9Þ
eeΦD ¼ 4

ξ2 exp−2iα
ð1þ ξ2Þ2Vud

R
2
Cð9Þ
eeud; ð53Þ

where v is the Standard Model Higgs doublets VEV,

v2 ¼ κ2 þ κ02: ð54Þ

Here, Cð5Þ corresponds to the usual seesaw formula. From
the matching scale ∼mWR

the above coefficients have to be
evolved down to mW ∼ 80 GeV, at which one can match
onto the relevant LEFT operators by integrating out the
remaining heavy particles with masses abovemW . By doing
so, one obtains

mββ ¼ −v2Cð5Þ
ee

Cð6Þ
VL ¼ −iVud

L
v3ffiffiffi
2

p Cð7Þ
LΦDe

�;

Cð6Þ
VR ¼ v3ffiffiffi

2
p Cð7Þ

Leud̄Φ
�;

Cð9Þ
1R ðmWÞ ¼ v5Vud

L
2Cð9Þ

eeΦDðmWÞ;
Cð9Þ
1R

0ðmWÞ ¼ v5Cð9Þ
eeudðmWÞ;

Cð9Þ
4R ðmWÞ ¼ −v5Vud

L Cð9Þ
eeΦudðmWÞ: ð55Þ

3Note that a combination of both does not fit observational
constraints [99].
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Evolving the above coefficients down to the χPT scale of

∼2 GeV also generates a nonzero Cð9Þ
5R coefficient since the

renormalization group equations of Cð9Þ
4;5 mix.

The relevant Wilson coefficients are fixed by several
physical parameters: the values of the triplet VEVs vL;R, the
mass of the heavy right-handed triplet mΔR as well as the
masses of the three heavy neutrinos ðmνR1 ; mνR2 ; mνR3Þ and
the lightest neutrino mass mνmin

, the complex phases of the
VEVs α and θL and finally the left-right mixing parameter
ξ. Here, we fix ξ ¼ mb

mt
. The lightest neutrino mass together

with the squared mass differences Δm2
ij that are known

from oscillation data fix the remaining light neutrino
masses for a given mass hierarchy. Taking

jναL;Ri ¼
X
i

U�
αijνiL;Ri ð56Þ

we obtain

Mν ¼ v2Cð5Þ ¼ UPMNSmνUT
PMNS

mν ¼ diagðmν1 ; mν2 ; mν3Þ; ð57Þ

and

Mν
R ¼ URmνRUT

R

mνR ¼ diagðmνR1 ; mνR2 ; mνR3Þ: ð58Þ

Additionally, the mixing matrix U for the heavy neutrinos
must be fixed. Here, we takeUR ¼ UPMNS for simplicity. In
the C-symmetric case, one has

Mν
L ¼ vL exp iθL

vR
MR

ν ð59Þ

and the Dirac mass matrix can be derived as [100]

Mν
D ¼ UPMNSmνR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vL exp iθL

vR
⊮ð3×3Þ −m−1

νRmν

s
UT

PMNS:

ð60Þ

Assuming Vud
L ¼ Vud

R and

mνR1 ¼ 10 TeV; mνR2 ¼ 12 TeV; mνR3 ¼ 13 TeV

mΔR
¼ 4 TeV; vL ¼ 0.1 eV vR ¼ 10 TeV ð61Þ

as in [10], we can derive the LEFT Wilson coefficients in
dependence on the minimal light neutrino mass mmin, the
Majorana phases entering UPMNS and the VEV phases θL
and α.
The resulting phase-space observables in this parameter

setting of the mLRSM are hardly any different from the
standard mechanism. This is because of the specific choice
of parameters studied here which results in the scalar short-
range contributions dominating over the long-range

FIG. 10. Feynman diagrams arising in the mLRSM that contribute to 0νββ. Here, νi andNi represent the light and heavy neutrino mass
eigenstates. It should be noted that, due to mixing of both left- and right-handed neutrinos and gauge bosons, each diagram (except the
triplet-exchange diagram) comes with all possible combinations of the outgoing particle’s chiralities. However, some diagrams are
highly suppressed compared to others.
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contributions. Hence, the phase space is almost indistin-
guishable from the standard mechanism.
The resulting half-life ratios normalized to the standard

mass mechanism are depicted in Fig. 11. Here, in additional
to varying the unknown LECs we also marginalized over
the unknown phases. We can see that assuming inverted
mass ordering there are only minor variations from the
standard mechanism. In the case of normal ordering, the
nonstandard contributions alter the ratios notably only for
small mmin ≤ 10−3 eV. In this region, as shown before in
Fig. 5, the central values of the variation differ significantly
from the benchmark scenario. A similar behavior is
manifested in Fig. 12 displaying the half-life in dependence
on the minimal neutrino mass mmin for both orderings and
in comparison with the standard mechanism on its own.
One can see that in the case of inverted ordering the half-life
is almost unaltered from the standard mechanism while for
normal ordering the nonstandard contributions start to play
a substantial role below ∼10−2 eV decreasing the expected
half-life by about 1 order of magnitude compared to the
standard scenario. In the same range of mmin the uncer-
tainties induced by the unknown LECs start to significantly
influence the predicted half-life. On the other hand,
the central values of the decay rate ratios alter for
mmin ≲ 10−3 eV at most by a factor of Rmax

imββ
∼ 2.2 with

76Ge as the reference isotope. The reason for this behavior
can be traced back to the dominance of the short-range
contributions which (see Sec. III) result in relatively small

Rimββ
despite the appearance of Cð6Þ

VR. This ratio would
translate to a necessary accuracy on the nuclear part of the
amplitude of ΔMeff

Meff
≲ 14%.

B. Gluino and neutralino exchange in =Rp-SUSY

Supersymmetric theories contain supermultiplets of
fermions and bosons which, under supersymmetry, trans-
form into each other. The most simple constructions are
chiral supermultiplets

ðΨL;R;ΦΨ
L;RÞ ð62Þ

which relate two component chiral spinors ðΨL;RÞ and a
corresponding complex scalar ΦL;R. To construct a super-
symmetric version of the Standard Model, one also needs to
consider gauge supermultiplets

ðAa
μ;ΨaÞ ð63Þ

which relate the Standard Model’s gauge bosons Aa
μ to their

superpartner fermionsΨa. One should note that since gauge

FIG. 11. Half-life ratios resulting from different mLRSM settings (different neutrino mass hierarchy and different minimal neutrino
mass) when taking 76Ge as the reference isotope. The ratios are compared to the standard mass mechanism. We vary both the unknown
LECs as well as the unknown phases of the mLRSM model.

FIG. 12. Here we present the half-life of 76Ge in the mLRSM
model in dependency on the minimal neutrino massmmin for both
normal (NO) and inverted ordering (IO). The blue and red areas
represent the scenario marginalized over the unknown phases
with the LECs fixed to their order of magnitude estimate while
the scattered points show the additional variation of the relevant
LECs. The area inside the black borders represents the usual mass
mechanism without any additional contributions.
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bosons have 2 degrees of freedom (d.o.f.) and since this
kind of transformation obviously cannot change the num-
ber of d.o.f., their superpartners Ψa also have 2 degrees
of freedom. Therefore, they are Majorana fermions. As
particles within a supermultiplet must share the same mass,
quantum numbers (except spin), interactions and couplings,
supersymmetry (SUSY) must be broken at low energies to
reproduce the experimentally confirmed SM predictions.
Typically, after SUSY breaking there remains a discrete
symmetry called R parity (Rp) which can be assigned to
every field, such that we haveRp ¼ þ1 for Standard Model
fields and Rp ¼ −1 for the superpartner fields. One can
define R parity as [101]

Rp ¼ ð−1Þ2sþ3ðB−LÞ; ð64Þ

where s is the spin and B and L are the corresponding
baryon and lepton numbers of the field, respectively. If Rp

is a conserved quantity, it follows that the lightest super-
partner cannot decay such that it becomes a candidate for
explaining the origin of dark matter.
However, Rp conservation also comes with the con-

servation of both baryon and lepton number [101]. Thus,
supersymmetric models aiming to explain the baryon
asymmetry of the Universe via explicit violation of either
lepton or baryon number need to break Rp. This induces
new lepton number violating terms [102],

LΔL¼1

=Rp
¼ −λ0111

�
ðuL; dRÞ

�
ecL
−νcL

�
d̃R þ ðeL; νLÞdR

�
ũ�L
−d̃�L

�

þ ðuL; dLÞdR
�

ẽ�L
−ν̃�L

��
þ H:c:; ð65Þ

which can contribute to 0νββ decay. Contributions to
0νββ decay from =Rp-SUSY have been studied first in
Refs. [102,103], the corresponding Feynman diagrams are
shown in Fig. 13. The relevant gluino (g̃) and neutralino
(χ)-fermion interactions are given by [102,104,105]

Lg̃ ¼ −
ffiffiffi
2

p
g3
X
a

λðaÞαβ

2
ðqLαg̃q̃βL − qRαg̃q̃

β
RÞ þ H:c: ð66Þ

and

Lχ ¼
ffiffiffi
2

p
g2
X4
i¼1

ðϵLiðΨÞΨLχiΨ̃L þ ϵRiðΨÞΨRχiΨ̃RþÞþH:c:

ð67Þ

One can obtain the low-energy effective Lagrangian by
integrating out the heavy superfields as well as the Standard
Model particles with masses ≳mW . In doing so, one finds

the different low-energy effective dimension-9 ΔL ¼ 2
operators that contribute to 0νββ decay [103]:

L=Rp
¼ G2

F

2mN
½ēð1þ γ5Þec�

×

�
ðηg̃ þ ηχÞ

�
½ūð1þ γ5Þd�½ūð1þ γ5Þd�

−
1

4
½ūσμνð1þ γ5Þd�½ūσμνð1þ γ5Þd�

�

þ ðηχẽ þ ηg̃0− ηχf̃Þ½ūð1þ γ5Þd�½ūð1þ γ5Þd�
�
: ð68Þ

These can be matched onto the LEFT basis as

Cð9Þ
2R

0 ¼ 2v
mN

½2ηg̃ þ 2ηχ þ ηχẽ þ ηg
0 − ηχf̃�

Cð9Þ
3R

0 ¼ 4v
mN

½ηg̃ þ ηχ �: ð69Þ

The coupling constants are given in terms of gluino,
neutralino and squark masses as [102]

ηg̃ ¼ αsλ
2
mN

mg̃

�
1þ

�
md̃R

mũL

�
4
�

ηg̃
0 ¼ 2αsλ

2
mN

mg̃

�
md̃R

mũL

�
2

ηχ ¼
3α2
4

λ2
X4
i¼1

mN

mχi

�
ϵ2RiðdÞ þ ϵ2LiðuÞ

�
md̃R

mũL

�
4
�

ηχẽ ¼ 9α2λ
2

�
md̃R

mẽL

�
4X4

i¼1

ϵ2LiðeÞ
mN

mχi

ηχf̃ ¼ 3α2
2

λ2
�
md̃R

mẽL

�
2X4

i¼1

mN

mχi

�
ϵRiðdÞϵLiðeÞ

þ ϵRiðuÞϵLiðdÞ
�
mẽL

mũL

�
2

þ ϵRiðuÞϵLiðeÞ
�
md̃R

mũL

�
2
�

ð70Þ

with

λ ¼
ffiffiffiffiffiffi
2π

p

3

λ0111
GFm2

d̃R

: ð71Þ

Both gluino- and neutralino-exchange diagrams contribute
to the same low-energy operators. As pointed out in the
previous section, distinguishing between the different

contributions triggered by Cð9Þ
2R

0 and Cð9Þ
3R

0 is practically
impossible due to the unknown LECs. Given that both
operators contribute only to G01, the phase-space
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observables do not provide any additional information
either. For completeness, we present the ratios normalized
to the mass mechanism in Fig. 14. Clearly, the =Rp-SUSY
model we consider here follows the same pattern as the

scalar short-range operators Cð9Þ
2R and Cð9Þ

2R
0 already dis-

cussed in Sec. III. In Fig. 15 we show the expected half-life
assuming the simultaneous existence of the standard mass
mechanism and the =Rp-SUSY induced mechanisms. Here,
we assume the masses of the non-neutralino superpartners
to be given by the current experimental limits, i.e.,
mẽL ¼ 410 GeV, mq̃L;R ¼ 1600 GeV with q ∈ ½u; d� and
mg̃ ¼ 2260 GeV [106]. We fix the neutralino masses by
requiring that the applied EFT framework holds, which
necessitates mχi ≥ Λχ ≃ 2 GeV. For simplicity we take
mχ1 ¼ 2 GeV and mχi → ∞ for i ≠ 1. Lighter neutralino
masses in connection to 0νββ have also recently been

studied [107]. We set the coupling constant to
λ0111 ¼ 2 × 10−4. Similarly to the mLRSM discussed
above, the additional nonstandard contributions hardly
affect the inverted ordering setting. However, in the normal
ordering case the nonstandard contributions from the
=Rp-SUSY model start to significantly influence the
expected half-lives decreasing them, again, by about 1
order of magnitude. While one would naively assume that
this should result in significantly enhanced ratios, it is
important to bear in mind that any enhancement in the
decay rates which is independent of the isotope of interest
will drop out when considering the decay rate ratios.

C. Leptoquark models

Leptoquarks (LQs) are hypothetical bosons ð3; X; YÞ
with nonzero color charge which couple to both quarks and

FIG. 13. Feynman diagrams of gluino and neutralino exchange contributing to 0νββ within the =Rp-minimal supersymmetric Standard
Model [102].
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leptons. They appear in numerous Standard Model exten-
sions such as technicolor and composite models [108,109]
or grand unifications [110,111] and can be used to generate
neutrino masses at the one-loop level [112]. For a com-
prehensive review on leptoquarks see, e.g., [113].
Ignoring leptoquarks which do not directly couple to the

Standard Model’s particle content (i.e., without right-
handed neutrinos), one can add up to ten different lep-
toquarks obeying the Standard Model symmetries [114].
These are summarized in Table V. By looking at the
relevant Feynman diagrams in Fig. 16 we can see that
the contributions to 0νββ decay arise from leptoquarks with
Qð1Þ ¼ �1=3 [Fig. 16 (left)] and Qð2Þ ¼ �2=3 [Fig. 16
(right)]. The full set of renormalizable LQ-fermion inter-
actions is given by [114]

LS;f¼ðλRS0ÞijS
R†
0 ½uciPRej�þðλR

S̃0
Þ
ij
S̃†0½dciPRej�

þðλRS1=2ÞijS
R†
1=2½uiPLLj�þðλR

S̃1=2
Þ
ij
S̃†1=2½d̄iPLLj�

þðλLS0ÞijSL†0 ½Qc
iPLiτ2Lj�þðλLS1=2ÞijS

L†
1=2½Qc

iPRiτ2ej�
þðλLS1Þij½Qc

iPLiτ2S
†
1Lj�þH:c: ð72Þ

and

LV;f ¼ ðλRV0
Þ
ij
VR†
0μ ½diγμPRej� þ ðλR

Ṽ0
Þ
ij
ṼR†
0μ ½ūiγμPRej�

þ ðλRV1=2
Þ
ij
VR†
1=2μ½dciγμPLLj�

þ ðλR
Ṽ1=2

Þ
ij
Ṽ†
1=2½uciγμPLLj� þ ðλLV0

Þ
ij
VL†
0μ ½Qiγ

μPLLj�

þ ðλLV1=2
Þ
ij
VL†
1=2μ½Qc

iγ
μPRej�

þ ðλLV1
Þ
ij
½Qiγ

μPLV
†
1μLj� þH:c: ð73Þ

for the scalar (S) and vector (V) leptoquarks, respectively.
We follow the notation of [114] distinguishing leptoquarks

FIG. 15. Half-lives in 76Ge for the standard mass mechanism
accompanied by the exchange of heavy neutralinos and gluinos
in the =Rp-SUSY with λ0111 ¼ 2 × 10−4, mẽL ¼ 410 GeV,
mq̃L;R ¼ 1600 GeV, mg̃ ¼ 2260 GeV, mχ1 ¼ Λχ ¼ 2 GeV and
mχi → ∞ for i ≠ 1.

FIG. 14. Half-life ratios resulting from the =Rp-SUSY contributions to 0νββ normalized to the standard mass mechanism.

TABLE V. List of possible scalar and vector leptoquarks
and their transformation properties under the Standard Model
symmetries [114].

LQ (Ω) SUð3ÞC SUð2ÞL Uð1ÞY Q

S0 3 1 −2=3 −1=3
S̃0 3 1 −8=3 −4=3
S1=2 3̄ 2 −7=3 ð−2=3;−5=3Þ
S̃1=2 3̄ 2 −1=3 ð1=3;−2=3Þ
S1 3 3 −2=3 ð2=3;−1=3;−4=3Þ
V0 3̄ 1 −4=3 −2=3
Ṽ0 3̄ 1 −10=3 −5=3
V1=2 3 2 −5=3 ð−1=3;−4=3Þ
Ṽ1=2 3 2 1=3 ð2=3;−1=3Þ
V1 3̄ 3 −4=3 ð1=3;−2=3;−5=3Þ
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coupling to left-handed and right-handed quarks. In addition to the LQ-fermion interactions, one can write down the gauge
invariant and renormalizable LQ-Higgs interactions,

LLQ;Φ ¼ hiS0Φ̃
†S̃1=2Si0 þ hiV0

Φ̃†Ṽμ
1=2V

i
0μ þ hS1Φ̃

†S1S̃1=2 þ hV1
Φ̃†Vμ

1Ṽ1=2μ þ Yi
S1=2

ðΦ̃†Si1=2ÞðS̃†1=2ΦÞ
þ Yi

V1=2
ðΦ̃†Vμi

1=2ÞðṼ†
1=2μΦÞ þ YS1ðΦ̃†S†1ΦÞS̃0 þ YV1

ðΦ̃†V†
1μΦÞṼμ

0 þ κiSðΦ†S1ΦÞSi0† þ κiVðΦ†Vμ
1ΦÞVi

0μ
† þ H:c:

−
X
Ω
ðηΩM2

Ω − gi1i2Ω Φ†ΦÞΩi1†Ωi2 ; ð74Þ

where the leptoquark triplets are defined as

V1 ¼
X
i

τiV1i S1 ¼
X
i

τiS1i: ð75Þ

These LQ-Higgs interactions are essential when consider-
ing contributions to 0νββ decay because they result in
nonzero correlation functions for, e.g.,

hSi0S̃1=2i ∝
X
Ĩ

N Si
0
ĨN S̃1=2 Ĩ

; ð76Þ

where N is the mixing matrix which diagonalizes the
mass matrixN TM2N ¼ M2

diag and Ĩ ¼ N TI are the mass
eigenstate fields. This particular example results in con-
tributions captured by the right diagram in Fig. 16.
After integrating out the heavy LQ degrees of freedom

and rearranging the resulting EFT operators via Fierz
transformations, one arrives at the effective low-energy
four-fermion interactions. The parts of the low-energy
Lagrangian relevant for 0νββ decay are then given by [114]

LLQ ¼ ½ēPLν
c�
	
ϵS
M2

S
½ūPRd� þ

ϵV
M2

V
½ūPLd�




− ½ēγμPLν
c�
	�

αRS
M2

S
þ αRV
M2

V

�
½ūγμPRd�

−
ffiffiffi
2

p �
αLS
M2

S
þ αLV
M2

V

�
½ūγμPLd�



þ H:c:; ð77Þ

with the low-energy Wilson coefficients

ϵI ¼ 2−ηI ½λLI1λRĨ1=2ðθ̃
I
43ðQ1

I Þ þ ηI
ffiffiffi
2

p
θ̃I41ðQ2

I ÞÞ
− λLI0λ

R
Ĩ1=2

θ̃I23ðQ1
I Þ� ð78Þ

αLI ¼ 2

3þ ηI
λLI1=2λ

L
I1
θ̃I24ðQ2

I Þ;

αRI ¼ 2

rþ ηI
λRI0λ

R
Ĩ1=2

θ̃I23ðQ1
I Þ; ð79Þ

where

θ̃Iij ¼
X
k

N ikN jk
M2

I

M2
Ik

: ð80Þ

Here, “common mass scales” MS and MV have been
inserted for convenience. It should be noted that the exact
choice of MS;V does not matter as they drop out. However,
the exact LQ masses do enter into the calculation such that
for leptoquark masses which are about the same order of
magnitude one can choose MS;V to represent the suppres-
sion factors. Looking at Eqs. (78) and (79), there is a priori
no reason from, e.g., naturalness arguments why any of the
low energy coefficients αI and ϵI should be suppressed or
enhanced compared to the others. However, if the LQ
interactions arise from a more complete model or if simply
not all possible LQ interactions are realized in nature,
hierarchical structures might appear. We will therefore
study different settings in which some couplings dominate
over the others. From Eq. (77) we can match the Wilson
coefficients in Eqs. (78) and (79) onto the LEFT basis
arriving at

FIG. 16. Feynman diagrams of the vector (V) and scalar (S) leptoquark interactions contributing to 0νββ.
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Cð6Þ
SL ¼ v2

M2
V
ϵV;

Cð6Þ
SR ¼ v2

M2
S
ϵS

Cð6Þ
VL ¼

ffiffiffi
2

p
v2
�
αLS
M2

S
þ αLV
M2

V

�
;

Cð6Þ
VR ¼ −v2

�
αRS
M2

S
þ αRV
M2

V

�
: ð81Þ

We study the following seven different settings of LQ
contributions to 0νββ decay:
(1) Full LQ model: ϵS ¼ ϵV ¼ αLS ¼ αRS ¼ αLV ¼ αRV ¼ 1
(2) Scalar LQs (S): ϵS ¼ αLS ¼ αRS ¼ 1
(3) Scalar LQs coupling to left-handed (LH) fermions

(SL): αLS ¼ 1

(4) Scalar LQs coupling to right-handed (RH) fermions
(SR): αRS ¼ 1

(5) Vector LQs (V): ϵV ¼ αLV ¼ αRV ¼ 1
(6) Vector LQs coupling to LH fermions (VL): αLV ¼ 1
(7) Vector LQs coupling to RH fermions (VR): αRV ¼ 1.
The left-handed scalar (SL) and left-handed vector (VL)

models result in the same low-energy physics because they
match onto the same LEFT operator. The same is true for
SR and VR. In Fig. 17 we show the corresponding single
electron energy spectra and angular correlations corre-
sponding to each of the above models and compare them
with the standard mechanism scenario. When setting the
unknown LECs to their order-of-magnitude estimates we
find that except for the vector (V) scenario all other models
give shapes distinguishable from the standard mass mecha-
nism for at least one phase-space observable. The resulting
half-life ratios normalized to the neutrino mass mechanism
for each of the above scenarios are shown in Fig. 18. Except
for the SR and VR cases, for which the central values
suggest somewhat weaker distinguishability, we find that
the central values match fairly well the chosen benchmark
scenario. Nonetheless, the spread in Rimββ

is still significant
for the full model as well as the SL and VL models.
Considering the central values, the highest ratio when
taking 76Ge as the reference isotope is realized in the
vector model with Rmax

imββ
∼ 4.5. Again, assuming that the

calculated central values of the half-life ratios represent a
reasonable estimate, this would correspond to a necessary
theoretical accuracy on the nuclear part of the amplitude to
satisfy ΔMeff

Meff
≲ 19%.

In Fig. 19 we show the expected half-lives for the
simultaneous realization of the full LQ model and the

FIG. 17. Angular correlations (upper right) and single electron
energy spectra (lower left) resulting from the different LQ
contributions as well as the standard mass mechanism in
136Xe. The unknown LECs are set to their order-of-magnitude
estimates. The specific choice of the isotope does slightly
influence the shape of the angular correlation.

FIG. 18. Half-life ratios resulting from different leptoquark settings when taking 76Ge as the reference isotope. The ratios are compared
to the standard mass mechanism.
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standard mass mechanism. We assumed the suppression
factors to be MS ¼ MV ¼ 107 GeV. One can see that in
this setting the inverted mass ordering case is not altered
significantly while the half-life in the normal ordering case
is decreased such that the gap between the two mass
orderings is closed.

V. SUMMARY AND CONCLUSIONS

Neutrinoless double beta decay is the best laboratory
probe of lepton number violation and as such can naturally
shed light on the generation of neutrino masses as well as
associated UV physics. The implications of observation of
this hypothetical nuclear process would largely depend on
the mechanism responsible for the dominant contribution. In
this paper we have performed a detailed analysis discussing
the possibilities of experimental discrimination among the
32 different LEFT lepton number violating operators of
dimension ≤ 9 triggering 0νββ decay at low energy.
The main aim of our study is to understand the

differences in various 0νββ decay mechanisms and to
investigate the possibilities of identifying the potential
exotic contribution in experiments. Assuming only one
operator at a time, we found that the 32 different LEFT
operators can be split into 12 groups which are distinguish-
able from each other by comparison of ratios of half-lives in
different double-beta-decaying isotopes. We calculated the
half-life ratios normalized to the standard mass mechanism
Rimββ

for each of the operator groups discussing the
potential for their identification by experimental observa-
tions. Varying the currently unknown low-energy constants
(LECs) around their order-of-magnitude estimates obtained
using NDA we observed that their impact on the expected

half-life ratios can be significant for most operator groups.
To quantify this impact and temporarily eliminate it in our
conclusions we focused on two different scenarios; namely,
we identified the central values of the ratio ranges as well
as the worst-case scenario considering the value of the
ratios closest to 1 within each ratio range. In Fig. 8 we
summarized the potential of distinguishing among different
operator groups for both of these scenarios considering all
isotopes for which the experimental limit on 0νββ decay
half-life exists. Based on the central-value scenario we
estimated the required theoretical accuracy on the nuclear
physics calculations, parametrized by an effective nuclear
matrix element Meff , which would allow for identifying
nonstandard mechanisms in the single operator dominance
scenario. We found that identifying all the nonstandard
mechanisms via half-life ratios would require (at least) a
few-percent accuracy. While the required accuracy of the
theoretical description is beyond the current status of
nuclear uncertainties, advances in ab initio calculations
of nuclear matrix elements may be able to deliver such
precision in the future provided that the currently unknown
LECs are fixed with similar accuracy as those that are
already under control.
The additional information that can be inferred from the

phase-space observables does not allow for distinguishing
operators within the 12 operator groups corresponding to
distinct half-life ratios. However, the phase-space observ-
ables are much less affected by nuclear uncertainties such
that they can potentially deliver important insight into the
underlying mechanism of 0νββ decay even if nuclear
uncertainties remain significant. For operator groups such
as CVð9Þ or C̃Vð9Þ for which the expected half-life ratios do
not differ significantly from the standard mass mechanism
measurements, tracking the outgoing electrons would be a
more promising approach of identification even if nuclear
uncertainties are substantially reduced. Therefore, future
experiments that would have the required technology such
as SuperNEMO seem to be very relevant. The operator
groups that could be distinguished by means of phase-space
observables are also marked in Fig. 8.
Besides the effective approach detailing individual oper-

ators, we focused also on 0νββ decay contributions triggered
by three different high-energy models. In each case, we
identified and discussed the signatures that could help to
distinguish these models in observations of 0νββ decay. Our
approach can be easily extended to any other UV model that
can be matched onto the applied EFT framework.
Based on the obtained results and following their

discussion it becomes clear that, although it might be
possible to unravel an exotic contribution to 0νββ decay,
pinpointing the dominant mechanism underlying this
hypothetical nuclear process most probably would not be
possible without other, complementary experiments. As
discussed, the possibilities of employing different double-
beta processes seems to be rather unlikely because of their

FIG. 19. Here we show the expected half-lives for the full LQ
model with the parameters fixed to ϵS ¼ ϵV ¼ αLS ¼ αRS ¼ αLV ¼
αRV ¼ 1 and the suppression scales MS ¼ MV ¼ 107 GeV.
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phase-space suppression. On the other hand, the underlying
mechanism could be identified by combining the 0νββ
decay data with different experiments searching for lepton
number violation, such as meson decays, tau decays, or
collider searches, which can, however, more naturally
verify a complete UV scenario rather than a specific
effective operator. Useful information will be provided
also by measurements aiming to determine the absolute
neutrino mass scale, including the CMB data providing a
constraint on the sum of neutrino masses,

P
i mνi . A

detailed discussion of the interplay with complementary
probes of neutrino masses and lepton number (non)con-
servation is however beyond the scope of this paper.
Similarly, we have not covered the possibility of existence
of light sterile neutrinos and its implications for 0νββ
decay. The same methods as employed in this study may
allow to unravel additional contributions to 0νββ decay
induced by light sterile neutrinos.
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APPENDIX A: DOUBLE-β MODES

In Table VI we present a list of all naturally occurring
isotopes that decay via any of the 0νββ modes, i.e.,
0νβ−β−; 0νβþβþ; 0νECβþ and 0νECEC. The isotopes as
well as the correspondingQ values are taken and calculated
from the NIST list of elements [94].

TABLE VI. Complete list of natural double-β elements and the corresponding Q values calculated from the NIST
list of elements [94] using the conditions (35), (37), (39) and (41). Overall there are 69 different natural elements that
can decay via at least one double-β mode.

2νβ−β− 2νβþβþ 2νECβþ 2νECEC
AZ Q [MeV] AZ Q [MeV] AZ Q [MeV] AZ Q [MeV]

46Ca 0.99 78Kr 0.80 50Cr 0.15 36Ar 0.43
48Ca 4.27 96Ru 0.67 58Ni 0.90 40Ca 0.19
70Zn 1.00 106Cd 0.73 64Zn 0.073 50Cr 1.17
76Ge 2.04 124Xe 0.82 74Se 0.19 54Fe 0.68
80Se 0.13 130Ba 0.57 78Kr 1.82 58Ni 1.93
82Se 3.00 136Ce 0.33 84Sr 0.77 64Zn 1.09
86Kr 1.26 92Mo 0.63 74Se 1.21
94Zr 1.14 96Ru 1.69 78Kr 2.85
96Zr 3.35 102Pd 0.15 84Sr 1.79
98Mo 0.11 106Cd 1.75 92Mo 1.65
100Mo 3.03 112Sn 0.90 96Ru 2.71
104Ru 1.30 120Te 0.71 102Pd 1.17
110Pd 2.02 124Xe 1.84 106Cd 2.78
114Cd 0.54 130Ba 1.60 108Cd 0.27
116Cd 2.81 136Ce 1.36 112Sn 1.92
122Sn 0.37 144Sm 0.76 120Te 1.73
124Sn 2.29 156Dy 0.98 124Xe 2.86
128Te 0.87 162Er 0.82 126Xe 0.92
130Te 2.53 168Yb 0.39 130Ba 2.62
134Xe 0.83 174Hf 0.077 132Ba 0.84
136Xe 2.46 184Os 0.43 136Ce 2.38
142Ce 1.42 190Pt 0.36 138Ce 0.69
146Nd 0.070 144Sm 1.78
148Nd 1.93 152Gd 0.056
150Nd 3.37 156Dy 2.01
154Sm 1.25 158Dy 0.28
160Gd 1.73 162Er 1.85
170Er 0.66 164Er 0.025
176Yb 1.09 168Yb 1.41

(Table continued)
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APPENDIX B: CONTRIBUTIONS FROM EACH OPERATOR

Assuming only one nonvanishing operator at a time, the half-life can be written in terms of a single Wilson coefficient,
different phase-space factors and the nuclear contributions determined by the different NMEs and LECs. For convenience,
we list the explicit decay rate equations for each operator below:

mββ∶ T−1
1=2 ¼ g4Ajmββj2G01

����V2
ud

me

�
1

g2A
MF −MGT − 2

m2
πgNN

ν
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MF;sd

�����2 ðB1Þ
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TABLE VI. (Continued)

2νβ−β− 2νβþβþ 2νECβþ 2νECEC
AZ Q [MeV] AZ Q [MeV] AZ Q [MeV] AZ Q [MeV]

186W 0.49 174Hf 1.10
192Os 0.41 180W 0.14
198Pt 1.05 184Os 1.45
204Hg 0.42 190Pt 1.38
232Th 0.84 196Hg 0.82
238U 1.14
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APPENDIX C: CONSIDERING ALL ISOTOPES

While we have focused our discussion on isotopes for which experimental limits on the half-lives exist, we want
to present our main findings of Fig. 8 here again but now considering all naturally occurring 0νββ isotopes for which we
have nuclear matrix elements available in the IBM2 framework. The corresponding results are presented in Fig. 20.
In Figs. 21 and 22 we show the resulting ratios including variations of the unknown LECs similar to Figs. 5 and 6 when
considering the whole set of isotopes available.

FIG. 20. Same as Fig. 8 but now for all isotopes with available NMEs in the IBM2 framework: The maximal ratios Rmax
ij for all

operator combinations i, j are shown. The exact values and the corresponding isotopes are displayed in each tile. Additionally, operator
combinations that result in different phase-space observables are marked by dashed-line shading. In the upper right half of the plot we
show the ratios considering the central values from the variation of the LECs. In the lower left half we show the worst-case scenario
considering the values of ratios Rij that are closest to 1 within the range obtained by the variation of the LECs.
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FIG. 21. The decay rate ratios ROi (upper plot) and Rimββ
(lower plot) for the different operator groups are shown. The larger markers

represent the choice of vanishing unknown LECs with gNN
6;7 ¼ gπNV ¼ g̃πNV ¼ 1. Isotopes with a PSF G0 > 10−14 y−1 are represented by

stars while isotopes with smaller PSFs are represented by round markers. The additional points represent variations of the different
unknown LECs gi randomly chosen from ½− ffiffiffiffiffi

10
p

;−1=
ffiffiffiffiffi
10

p � × jgij and ½þ1=
ffiffiffiffiffi
10

p
;þ ffiffiffiffiffi

10
p � × jgij except for gNN

ν which is varied in a range
of �50%. The crosses represent the central values of the variation, i.e., the median values. The reference isotope is chosen to be 76Ge.

FIG. 22. The decay rate ratios ROi (upper plot) and Rimββ
(lower plot) for the different operator groups in the ϵ basis.
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