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We consider a model with gauged baryon number that may be rendered asymptotically safe when
gravitational effects above the Planck scale are taken into account. We study the ultraviolet fixed points in
this theory and determine the restrictions on the parameter space of the model at the TeV scale following
from the requirement that the asymptotic fixed points are reached. Assuming that the new gauge symmetry
is broken at the TeV scale, we comment on the phenomenological implications of these restrictions.
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I. INTRODUCTION

Extensions of the standard model typically involve a set
of new couplings that are only partially constrained by low-
energy experimental observables. Awell-motivated restric-
tion on the ultraviolet (UV) limit of such a theory is useful
when it can remove some of this arbitrariness, leading to a
more predictive low-energy theory. In this paper, we
consider a Z0 model whose phenomenology is affected
in a meaningful way by the requirement that the theory
remain asymptotically safe when extrapolated to infinitely
high-energy scales. We determine the UV restrictions on
the model’s parameter space at the TeV scale and comment
briefly on the phenomenological consequences.
Asymptotic safety was originally proposed by Weinberg

in the context of quantum gravity [1]; for other related
work, see Refs. [2,3]. If Einstein gravity is treated as a
quantum field theory, it is well known that the theory is
nonrenormalizable, requiring an infinite number of cou-
plings. In the asymptotic safety paradigm, one considers a
theory to be unphysical if it includes couplings that flow to
a Landau pole at some finite energy scale. Physically
acceptable theories correspond to a subspace of the original
space of parameters called the ultraviolet critical surface. If
this surface is finite dimensional, then the theory may be
rendered predictive even though it is nonrenormalizable.
Under the renormalization group (RG) flow, couplings on

the UV critical surface may run to nontrivial, interacting
ultraviolet fixed points, or vanishing, “Gaussian” fixed
points. We will refer to the theory as asymptotically free if
all couplings run to Gaussian fixed points, and asymptoti-
cally safe if one or more couplings approach an interacting
UV fixed point while the rest flow to zero. For a review of
asymptotic safety and a comprehensive list of references
see, for example, Ref. [4].
Just as asymptotic safety can reduce the otherwise

infinite parameter space of a nonrenormalizable theory, it
can reduce the finite-dimensional parameter space of a
renormalizable one. This fact has been used to constrain
standard model extensions in several examples discussed in
the recent literature [5–12], focusing on issues including
dark matter [5,7], the current discrepancy between the
standard model prediction and the measured value of the
muon anomalous magnetic moment [6,7], various aspects
of neutrino and Higgs sector physics [8–10], flavor physics
[13], and collider phenomenology [11,12]. The present
work considers another application, adding to this body of
literature. The possibility that baryon number could be
gauged has been discussed extensively in the past [14–20],
both as a possible way of assuring proton stability and for
its interesting TeV-scale phenomenology; the latter moti-
vation is relevant for the present work. The phenomenology
of the new U(1) gauge boson is largely determined by the
gauge coupling gB, the gauge boson mass mB, and a
parameter ϵ (defined later) that specifies the kinetic mixing
between the Uð1ÞB and hypercharge gauge groups.
Notably, the Uð1ÞB gauge boson would be entirely lep-
tophobic if not for the kinetic mixing. Hence, decay
channels that may be easier to discern in light of large
QCD backgrounds (i.e., decays to charged dileptons
rather than dijets) are entirely controlled by the undeter-
mined kinetic mixing parameter. The same parameter also
controls mixing of the Uð1ÞB and electroweak gauge
bosons that is crucial in determining the constraints from
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precise electroweak measurements at the Z-boson scale.
One way of fixing the kinetic mixing parameter, discussed
in Ref. [15], is to require that it vanishes at some scale
by embedding the two Abelian gauge group factors into a
non-Abelian one. Here we explore a more economical
alternative—and one motivated by the eventual inclusion of
gravity—that asymptotic safety allows us to predict the
kinetic mixing in terms of other model parameters based on
the requirement that appropriate fixed points are reached in
the UV. This reduces the space of possibilities for the
properties of the Z0 boson, and provides a guide for
discerning the model at collider experiments.1

Our paper is organized as follows. In Sec. II we define
the model. In Sec. III, we study the UV behavior of the
theory, identifying a number of scenarios where the model
can be extrapolated to infinite energy with some couplings
reaching nontrivial fixed points, and where vacuum stabil-
ity is maintained. We determine what these UV boundary
conditions imply about the allowed parameter values at the
TeV scale. In Sec. IV, we comment on the phenomeno-
logical implications of these results, presenting one exam-
ple in which the branching fraction of the Z0 boson into
standard model particles is predicted. We summarize our
conclusions in Sec. V. Appendix contains the complete list
of one-loop renormalization group β functions used in our
analysis.

II. MODEL

We consider an extension of the standard model in which
baryon number, Uð1ÞB, is gauged. We normalize that gauge
coupling so that baryon number charge is þ1 for a proton
or neutron; the baryon number is 0 for any standard model
lepton. A right-handed neutrino is included so that Dirac
neutrino masses are possible. We do not address the
problem of the flavor structure of the standard model,
nor the smallness of neutrino masses, but remain content
with the fact that the allowed couplings of the model are
sufficient to accommodate all observed fermion masses and
mixing angles. The charges for the particle content
described thus far are shown in Table I.
Additional fermions must be added to assure the can-

cellation of gauge and gravitational anomalies. We assume
three generations of Dirac fermions ψl, ψe, and ψν that are
vectorlike under the standard model gauge group, with
quantum numbers identical to those of the lepton fields lL,
eR, and νR, respectively; the new fields are chiral under

Uð1ÞB. We temporarily denote the Uð1ÞB charges of ψl
L;R,

ψe
L;R, and ψν

L;R as xL;R, yL;R, and zL;R, respectively. For
simplicity, we seek the cancellation of anomalies within
each generation separately. The anomaly cancellation
constraints are then summarized as follows:

(i) Uð1ÞB SUð3Þ2: This anomaly is proportional to
2 · 1

3
− 1

3
− 1

3
¼ 0, and vanishes without help from

the vectorlike sector.
(ii) Uð1ÞB SUð2Þ2: This anomaly is proportional to

3 · 1
3
þ xL − xR, which implies

xL − xR ¼ −1: ð2:1Þ

(iii) Uð1ÞB Uð1Þ2Y : This anomaly is proportional to
− 1

2
þ 1

2
ðxL − xRÞ þ ðyL − yRÞ. With the constraint

of Eq. (2.1), this implies

yL − yR ¼ þ1: ð2:2Þ

(iv) Uð1Þ2B Uð1ÞY : The standard model particles do not
contribute to this anomaly, but the new particles do,
so that

−ðx2L − x2RÞ − ðy2L − y2RÞ ¼ 0: ð2:3Þ

(v) Uð1Þ3B: Again, there is no contribution in total from
the standard model particles, but the new particles
contribute:

2ðx3L − x3RÞ þ ðy3L − y3RÞ þ ðz3L − z3RÞ ¼ 0: ð2:4Þ

(vi) gg Uð1ÞY : Here, g refers to a graviton. The hyper-
charge gravitational anomaly cancels in the standard
model, and this is not affected by the new particles
which are vectorlike in their standard model charges.

(vii) gg Uð1ÞB: In this case, the anomaly is proportional
to 2ðxL − xRÞ þ ðyL − yRÞ þ ðzL − zRÞ. With the
constraints of Eqs. (2.1) and (2.2), this implies

zL − zR ¼ þ1: ð2:5Þ

All the constraints are satisfied with the choice xR ¼ yL ¼
zL ¼ þ1 and xL ¼ yR ¼ zR ¼ 0, as indicated in Table II.

TABLE I. Charge assignments for a single generation of
standard model fields, including a right-handed neutrino.

SUð3ÞC SUð2ÞW Uð1ÞY Uð1ÞB
qL 3 2 1=6 1=3
uR 3 1 2=3 1=3
dR 3 1 −1=3 1=3
lL 1 2 −1=2 0
eR 1 1 −1 0
νR 1 1 0 0

1We note that Ref. [12] also considers asymptotic safety in a
leptophobic model, but one in which only third-generation quarks
are charged under a new U(1). This implies a different fixed point
structure than the one predicted by the model proposed here.
More significantly, the model in Ref. [12] has a serious problem:
the stated charge assignments for the fermions that are vectorlike
under the standard model gauge group forbid the only possible
Yukawa couplings that could generate their masses. This leads to
massless, electrically charged fermions, ruling out the model.
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We assume that the Uð1ÞB symmetry is spontaneously
broken by a complex scalar field ϕ which has baryon
number þ1 and is a singlet under the standard model
gauge group. The charge assignment of ϕ is fixed by the
requirement that it allows Yukawa couplings which gen-
erate masses for the ψ fields when ϕ develops a vacuum
expectation value (vev). One finds that the desired Yukawa
couplings are given by

Ly ¼ ψl
Ly1ψ

l
Rϕ

� þ ψe
Ly2ψ

e
Rϕþ ψν

Ly3ψ
ν
Rϕþ H:c:; ð2:6Þ

where the yi are three-by-three matrices.2 Since there are
pairs of fields that have identical quantum numbers, namely
(ψl

L, lL), (ψe
R, eR), and (ψν

R, νR), we may choose a field
basis in which there are no Yukawa couplings involving ϕ
that mix a heavy and light field, such as lLψ

l
Rϕ

�. However,
heavy-light couplings are possible involving the standard
model Higgs field H:

Lκ ¼ ψl
LHκ1eR þ lLHκ2ψ

e
R þ lL H̃ κ3ψ

ν
R þ H:c:; ð2:7Þ

where the κi are also three-by-three matrices. This set of
Yukawa couplings serves a useful purpose phenomeno-
logically, as it assures that the heavy fields can decay to
light fields, thereby avoiding unwanted stable charged
particles. (For the stringent bounds on heavy, stable
charged particles, seeOther Particle Searches in Ref. [21].)
It is worth noting that the spontaneous breaking of

baryon number through the ϕ vev does not lead to any
problems with proton decay. The Lagrangian has an
anomalous global U(1) baryon number symmetry acting
exclusively on the quark fields q, u, and d, even in the
presence of a ϕ vev. This implies that any gauge-invariant,
dimension-six operator that contributes to proton decay,
and violates this global symmetry, cannot be generated at
any order in perturbation theory, where it might only be
suppressed by a mass scales appearing in the Lagrangian.
On the other hand, Planck-suppressed dimension-six oper-
ators, if present, would be sufficiently suppressed as the

lower bound on the scale of dimension-six operators from
proton decay is typically Oð1016Þ GeV [21]. Interestingly,
there is some evidence that asymptotically safe gravity may
preserve global symmetries, in which case even these
operators would not arise [22]; for additional discussion,
see Ref. [7].
The rest of the theory consists of the scalar sector

Vðϕ; HÞ ¼ −m2
HH

†H þ λ

2
ðH†HÞ2 −m2

ϕϕ
�ϕþ λϕ

2
ðϕ�ϕÞ2

þ λmϕ
�ϕH†H; ð2:8Þ

which involves the new couplings λm and λϕ, and the gauge
kinetic mixing between Uð1ÞB and hypercharge

L ⊃ −
1

4
BμνBμν −

1

4
Fμν
Y FY

μν þ
ϵ

2
BμνFY

μν; ð2:9Þ

which involves the kinetic mixing parameter ϵ. Thus, in
addition to the parameters of the standard model, the theory
we have just defined has one new gauge coupling gB, a
gauge-kinetic mixing parameter ϵ, two new Higgs sector
couplings λϕ and λm, and the new Yukawa couplings in
Eqs. (2.6) and (2.7). If one temporarily rescales the gauge
fields so that the gauge couplings appear in the kinetic
terms, Eq. (2.9) takes the form

L ¼ −
1

4
ðG−2ÞABFA

μνFBμν; ð2:10Þ

where the indices run over the two-dimensional space of
Abelian gauge fields. In studying the renormalization group
equations (RGEs) for models of this type, it is conventional
[23] to redefine the gauge field basis so that the matrix G
has the upper-triangular form

G ¼
� gY

ϵffiffiffiffiffiffiffi
1−ϵ2

p gY

0 1ffiffiffiffiffiffiffi
1−ϵ2

p gB0

�
≡
�
gY g̃

0 gB

�
: ð2:11Þ

Here gB0 is the baryon number gauge coupling in the
original basis. The RGEs are then conveniently expressed
in terms of g̃, gY , and gB. In the basis where the kinetic
terms are canonical in form, the covariant derivative on a
generic field χ may be expressed as

Dμχ ¼ ½∂μ − igBBμQB − iðgYAY
μ þ g̃BμÞQY �χ; ð2:12Þ

whereQB andQY are the baryon number and hypercharges
of χ, respectively. This is a convenient form for studying
some of the phenomenological consequences of the RGE
output.
Finally, following the conventional approach [5,7–12],

we adopt a simplified flavor structure of the theory for use
in our numerical RGE analysis: we ignore standard model
lepton Yukawa couplings and assume that the matrices yi

TABLE II. Charge assignments for the vectorlike fields, for a
single generation. The last column shows the anomaly-free
solution discussed in the text.

SUð3ÞC SUð2ÞW Uð1ÞY Uð1ÞB
ψl
L 1 2 −1=2 xL ¼ 0

ψl
R 1 2 −1=2 xR ¼ 1

ψe
L 1 1 −1 yL ¼ 1

ψe
R 1 1 −1 yR ¼ 0

ψν
L 1 1 0 zL ¼ 1

ψν
R 1 1 0 zR ¼ 0

2For simplicity, we omit possible Majorana masses for νR
and ψν

R.
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and κi, i ¼ 1…3 are each proportional to the identitymatrix;
in other words, these couplings will be taken to represent six
parameters rather than six arbitrarymatrices. These assump-
tions are consistent with the renormalization group running
of the couplings for the following reason: In the absence of
standard model lepton Yukawa couplings, the Lagrangian
has a Uð3Þl × Uð3Þe chiral symmetry. Writing the charge
assignments via the representation pair ðrl; reÞ, this sym-
metry can be extended to the heavy leptons,

eR ∼ ψl
L ∼ ψl

R ∼ ð1; 3Þ;
lL ∼ ψe

L ∼ ψe
R ∼ ψν

L ∼ ψν
R ∼ ð3; 1Þ; ð2:13Þ

provided that the yi and κi are proportional to three-by-three
identitymatrices. This global symmetry is not broken by any
perturbative interaction, allowing us to conclude that the
simple flavor structure ansatz we have assumed will not be
altered by RGE running.

III. FIXED POINT ANALYSIS

With the model now fully developed, let us consider the
structure of its renormalization group flow in detail. In
particular, we will search for fixed points at one loop in
perturbation theory, with gravitational effects parametrized,
and consider in which parts of parameter space this model
exhibits asymptotic safety. We extract the β functions using
PyR@TE 3 [23]; see also Appendix.

A. Generalities

Let us briefly recall some terminology. Consider some
couplings gi with their associated β function denoted as βi.
To study the behavior of the RG flow around a fixed point
gi⋆, consider the expansion

βi ¼ Mi
jδj þ Pi

jkδjδk þOðδ3Þ; ð3:1Þ

where δj ≡ gj − gj⋆ and we defined the coefficients

Mi
j ≡ ∂βi

∂gj

����⋆; Pi
jk ≡ 1

2

∂
2βi

∂gj∂gk

����⋆: ð3:2Þ

The matrix Mi
j has eigenvectors vjk, where k labels the

vectors such that Mi
jvjk ¼ ϑkvik (no summation over k).

At linear order in δi, Eq. (3.1) is solved by

giðμÞ ¼ gi⋆ þ
X
k

ckvik
�
μ

Λ

�
ϑk
; ð3:3Þ

where Λ is an arbitrary reference energy scale defining the
origin of “renormalization time” t ¼ lnðμ=ΛÞ. The ck are
subject to the constraint giðμ → ∞Þ ¼ gi⋆, which requires
that ck ≡ 0 for all k with ϑk ≥ 0. The eigendirections vik in
coupling space are classified according to the sign of

their respective eigenvalues: ϑk < 0 (“relevant”), ϑk ¼ 0
(“marginal”), and ϑk > 0 (“irrelevant”). Consequently, the
UV critical surface is spanned by all the relevant eigendir-
ections, as well as any marginal ones that lead to flow
towards the fixed point. The latter behavior in the case of
marginal directions, however, cannot be established by
considering only the linear terms in Eq. (3.1), but requires
study of the β functions at higher order.
It is generally assumed that the influence of gravity can

be safely neglected when considering particle physics well
below the Planck scale. However, since the renormalization
group flow extends to infinite energies in the scenarios of
interest to us, gravitational corrections to the β functions at
and above the Planck scale need to be taken into account.
(For a different approach towards realizing asymptotic
safety see, for example, Ref. [24].) The precise form of
these corrections depends on the exact matter content and
gravitational theory under consideration, and they have
been computed in several scenarios in the so-called
Einstein–Hilbert truncation [25]; see also Refs. [26–29].
In a generic but simplified picture adopted in phenomeno-
logical literature [5,7,12], the gravitational corrections to
the β functions are modeled by (MPl ¼ 1.2 × 1016 TeV)

βðgiÞ ¼
1

ð4πÞ2 β
ð1ÞðgiÞ − θðμ −MPlÞfggi; ð3:4Þ

βðyiÞ ¼
1

ð4πÞ2 β
ð1ÞðyiÞ − θðμ −MPlÞfyyi; ð3:5Þ

βðλiÞ ¼
1

ð4πÞ2 β
ð1ÞðλiÞ − θðμ −MPlÞfλλi; ð3:6Þ

where θ denotes the Heaviside step function. Here, for
compactness, gi, yi, and λi represent the sets of couplings
fg1;g2;g3;gB;g̃g, fyt;yb;y1;y2;y3;κ1;κ2;κ3g and fλ; λϕ; λmg,
respectively. Note that the universal coupling of gravity to
matter implies that these corrections fg, fy, and fλ are
universal in the gauge, Yukawa, and quartic sectors of the
model, respectively.3 The formof the gravitational correction

3Perhaps a more transparent way to understand the universality
of the gravity correction term in the gauge coupling sector, when
kinetic mixing is present, is to write the renormalization group
equation in terms of the coupling matrix G2

AB, defined in
Eq. (2.10). Working in this basis,G2

AB encodes all the dependence
on the gauge couplings in any diagrammatic calculation. A uni-
versal gravitational correction term would be introduced through
a term proportional to this coupling matrix,

dG2
AB

dt
¼ 1

2

1

16π2
½G2

ACβ
ð1Þ
CDG

2
DB þ ðA ↔ BÞ� − 2G2

ABfg;

where the form of the nongravitational part of the RGE can be
found in Eq. (5.1) of Ref. [30]. This reduces to Eq. (3.4) when
expressed in terms of the component couplings, and yields the
desired form for the gravitational corrections in the case where
kinetic mixing is vanishing.
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in Eq. (3.4) for the gauge couplings was shown first in
Ref. [31] where it was found that fg is renormalization
scheme dependent and either positive or zero; the assumption
that fg > 0 that we adopt here is standard in the phenom-
enological literature, and corresponds to schemes that break
certain classical gauge-gravity symmetries that would other-
wise lead to a vanishing result [31]. For other discussion offg
see Refs. [26–29]. On the other hand, the signs and
magnitudes of the Yukawa and quartic gravitational correc-
tions are typically less constrained. In what follows, we shall
treat the triplet ðfg; fy; fλÞ as an input parameter to our
model, and explore the fixed point structure for a given
triplet.

B. Fixed points and critical surfaces

It is instructive to first consider the Uð1ÞB × Uð1ÞY sector
of our theory, including the kinetic mixing. Henceforth, we
use the SU(5) normalization of hypercharge, g1≡

ffiffiffiffiffiffiffiffi
5=3

p
gY ;

then the gravity-corrected β functions are given by

βð1Þðg1Þ ¼ þ 77

10
g31 − θðμ −MPlÞf̂gg1; ð3:7Þ

βð1ÞðgBÞ ¼ þ11g3B þ 77

6
gBg̃2 −

16

3
g2Bg̃ − θðμ −MPlÞgBf̂g;

ð3:8Þ

βð1Þðg̃Þ ¼ −
16

5
g21gB −

16

3
gBg̃2 þ

77

5
g21g̃þ 11g2Bg̃þ

77

6
g̃3

− θðμ −MPlÞg̃f̂g; ð3:9Þ

where we use the notation f̂A ≡ ð4πÞ2fA with A ¼ g, y, λ.
For energy scales μ < MPl, Eq. (3.7) follows the usual

logarithmic running

α1ðμÞ−1 ¼ α1ðμ0Þ−1 −
1

2π

77

10
ln

�
μ

μ0

�
; α1ðμÞ≡ g21ðμÞ

4π
;

ð3:10Þ

or equivalently,

g1ðμÞ ¼
g1ðμ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 77
10

2g2
1
ðμ0Þ

ð4πÞ2 lnð μμ0Þ
q ; ð3:11Þ

and, if not for the gravity correction f̂g taking over at
μ > MPl, the hypercharge gauge coupling would hit a
Landau pole eventually. Note that the g1 fixed point
structure is independent of the couplings gB and g̃ at
one loop. In the trans-Planckian regime, the fixed point
criterion for g1 reads as follows:

�
77

10
g21⋆ − f̂g

�
g1⋆ ¼ 0: ð3:12Þ

This equation has a trivial solution, corresponding to a
Gaussian fixed point, as well as a nontrivial solution,
corresponding to an interacting fixed point. It is clear that
these are the only two fixed point scenarios: if f̂g is too
small, then the cubic term in βð1Þðg1Þ will dominate and
drive g1 to infinite values. If f̂g is at a critical value f̂critg ,
however, g1 will attain a fixed point exactly at the Planck
scale. And if f̂g is larger than this critical value, the linear
term in βð1Þðg1Þ dominates and drives the coupling to zero
at infinite energies:

f̂g < f̂critg no g1fixed point;

f̂g ¼ f̂critg interacting g1 fixed point;

f̂g > f̂critg Gaussian g1 fixed point: ð3:13Þ

In what follows, we shall discuss the two fixed-point
scenarios in more detail. We present numerical values to
five significant figures since in some instances this is
relevant for hitting unstable fixed point values when running
up from the TeV scale. It is interesting to note that there is
evidence that fixed points in the gauge sector do not destroy
a nontrivial fixed point for the gravitational coupling [32],
which makes the phenomenological approach described
here sensible when considered in a broader context. For a
review of the effects of matter couplings on asymptotic
safety in the gravity sector, see Ref. [33].

1. Gaussian g1 fixed point

The Gaussian fixed point, g1⋆ ¼ 0, is attainable if the
gravity correction dominates at the Planck scale, amounting
to the condition

f̂g > f̂critg ≡ 77

10
g21ðMPlÞ

¼ g21ðμ0Þ
10
77
− 2g2

1
ðμ0Þ

ð4πÞ2 lnðMPl
μ0
Þ
≈ 7.9610; ð3:14Þ

where the numerical value follows from α−1ðμ0Þ ¼ 57.527
at μ0 ¼ 1 TeV [11]. Assuming that the above bound is
satisfied, the gravity correction will then drive g1 to zero
asymptotically such that g1⋆ ¼ 0. Then, Eqs. (3.8) and (3.9)
take the form

βð1ÞðgBÞjg1⋆¼0 ¼ gBEðgB; g̃; f̂gÞ; ð3:15Þ

βð1Þðg̃Þjg1⋆¼0 ¼ g̃EðgB; g̃; f̂gÞ; ð3:16Þ

EðgB; g̃; f̂gÞ ¼
77

6
g̃2 þ 11g2B −

16

3
gBg̃ − f̂g: ð3:17Þ

ASYMPTOTIC SAFETY AND GAUGED BARYON NUMBER PHYS. REV. D 106, 035015 (2022)

035015-5



The fixed points are given by the Gaussian fixed point
ðgB⋆; g̃⋆Þ ¼ ð0; 0Þ, as well as an ellipse EðgB⋆; g̃⋆; f̂gÞ ¼ 0.
This ellipse is rotated by an angle θ in gBg̃ plane,

tan θ ¼ 32

11þ ffiffiffiffiffiffiffiffiffiffi
1145

p ; θ ≈ 36°: ð3:18Þ

The new gauge coupling gB and the mixing g̃ are
bounded by

gB ∈

"
0;

ffiffiffiffiffiffiffiffiffiffiffiffi
231f̂g
2413

s #
; g̃∈

"
−

ffiffiffiffiffiffiffi
6f̂g
77

s
;

ffiffiffiffiffiffiffiffiffiffiffiffi
198f̂g
2413

s #
: ð3:19Þ

Note that g̃ can be negative, given its relation to the
Lagrangian parameter ϵ in Eq. (2.11). It is obvious from
these expressions that in the limiting case of f̂g → 0, that is,
for vanishing gravity corrections, the ellipse shrinks to zero
size and only the Gaussian fixed point survives. In other
words, this nontrivial structure is generated by the gravi-
tational corrections.
In order to understand the behavior in the gBg̃ sector

better, consider a graphical visualization of the two β
functions in Fig. 1. As it turns out, the ellipse corresponds
to an unstable collection of fixed points, also referred to as
“UV repulsive” in the asymptotic safety terminology,
where all values inside the ellipse flow towards the
Gaussian fixed point ðgB⋆; g̃⋆Þ ¼ ð0; 0Þ. All values outside
the ellipse flow to infinite values. In other words, the ellipse
corresponds to a projection of the UV critical surface into
the subspace g1 ¼ 0. This implies that the values of gB and

g̃ are not independent if they are required to reach nontrivial
fixed point values in the UV.
Given the UV critical surface, it is now pertinent to

determine what range of coupling values at μ0 ¼ 1 TeV
flow to those fixed points, where we have selected a value
for μ0 that is representative of high-energy collider physics
experiments. Since the UV ellipse of fixed points is
unstable, it must be hit exactly when running up from
lower energies, leading to greater predictivity than one
would obtain in the case of fixed points that are attractive.
There arises a technical complication: Since the Gaussian
g1 fixed point is an asymptotic one, attained at infinite
energy, it is not possible to fully model this numerically. In
order to keep the treatment tractable, we define a large
energy scale

ln
�
μmax

MPl

�
¼ 100; ð3:20Þ

or equivalently, tmax ¼ lnðμmax=μ0Þ ≈ 137. The scale μmax
is approximately 43 orders of magnitude higher than the
Planck energy, high enough so that g1ðμmaxÞ ≪ 1 when
f̂g > f̂critg . The choice fg ¼ 0.1, for example, gives
g1ðμmaxÞ ≈ 6.5 × 10−5. A linearized analysis of the RG
flow near the g1 fixed point suggests that we may assume
that the values of gB and g̃ at the same scale are given
approximately by their fixed point values on the ellipse
EðgB⋆; g̃⋆; f̂gÞ ¼ 0, completing our set of boundary con-
ditions at the high-energy scale μmax. This provides us with
a method of mapping the UV critical surface to a corre-
sponding surface renormalized at μ0 ¼ 1 TeV. Once this
surface is obtained, we may verify by running up from μ0,

FIG. 1. UV critical surfaces in the gBg̃ plane. The interiors of the ellipse and the line are driven to Gaussian fixed points
ðgB; g̃Þ ¼ ð0; 0Þ, whereas the ellipse’s boundary and the line’s right endpoint are nontrivial fixed points. Couplings outside the ellipse
and outside the line interval are driven to infinite values.

BOOS, CARONE, DONALD, and MUSSER PHYS. REV. D 106, 035015 (2022)

035015-6



to scales even higher than μmax, that the couplings approach
the desired fixed point, providing a numerical sanity check
of our computations. In Fig. 2, we show (i) the exact UV
critical surface, (ii) the resulting values at the Planck scale,
and, finally, (iii) the resulting values at μ0 ¼ 1 TeV.
We conclude that asymptotically safe solutions with a

Gaussian g1 fixed point and nonrivial fixed points in the
gBg̃ plane lead to a correlation between the parameters gB
and g̃ at low-energy scales.

2. Interacting g1 fixed point

The remaining g1 fixed point is nontrivial. In our one-
loop approximation, the value g1⋆ obtained at infinite
energy is also the value at the Planck scale, since the g1
β function vanishes for μ ≥ MPl due to the choice of fg,

g1⋆ ¼ g1ðMPlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
10

77
f̂g

r
: ð3:21Þ

Since the value of g1 at the Planck scale is fixed by the
experimental value at μ0, f̂g is then determined

f̂g ¼
77

10
g21⋆ ¼ 77

10
g2Planck ≡ f̂critg ≈ 7.9610: ð3:22Þ

This corresponds to fg ≈ 0.05, consistent in magnitude
with typical estimates of fg appearing in the literature [5].
Inserting this critical value f̂critg , one finds the two UV fixed
points

ðgB; g̃Þ ¼ ð0; 0Þ;

ðgB; g̃Þ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

231f̂critg

2413

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
768f̂critg

185801

s !
: ð3:23Þ

We again plot the β functions in the gBg̃ sector, albeit now
for finite g1⋆, in Fig. 1. In this case, we see that the
nontrivial gBg̃ fixed point is connected to the Gaussian
fixed point by a line. All values that fall onto this critical
line (aside from the unstable fixed point at the right end)
flow towards that Gaussian fixed point, whereas all values
outside this interval are driven to infinite values. It is
interesting to observe that the range of gB coincides with
the predicted range in the Gaussian g1 fixed point scenario,
whereas the maximum value of g̃ is much smaller. Similar
to the previous case, the line represents the projection of the
UV critical surface into the subspace g1 ¼ g1⋆ and again
implies that the values of gB and g̃ are not independent.
Since the fixed point values of the couplings in

Eqs. (3.21)–(3.23) are reached at μ ¼ MPl, it is straightfor-
ward to flow these back to our reference scale of
μ0 ¼ 1 TeV; see Fig. 2 for the fixed point coupling values
renormalized at μ ¼ ∞, MPl, and 1 TeV. Again, we find a
correlation between the parameters gB and g̃ at low-energy
scales.

C. Running couplings and stability
of the Higgs sector

As is well known, the Higgs vacuum of the standard
model is metastable. The model under consideration here
has extended Higgs, gauge, and fermion sectors, which

FIG. 2. Left: UV critical surfaces (dashed line) mapped back to μ ¼ MPl (dotted line) and to μ0 ¼ 1 TeV (solid line). The Gaussian g1
fixed point is described by the ellipses and the interacting g1 fixed point by the line. The requirement that either the boundary of the
ellipse or the line is reached leads to a unique relation between gB and g̃, thereby reducing the degrees of freedom in parameter space of
the model. Right: infrared values in detail.
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affect the stability analysis and alter this conclusion. The
Higgs potential in our model is given by Eq. (2.8), repeated
here for convenience,

V ¼ −m2
HH

†H þ λ

2
ðH†HÞ2 −m2

ϕϕ
�ϕþ λϕ

2
ðϕ�ϕÞ2

þ λmϕ
�ϕH†H; ð3:24Þ

where λm couples the two scalars H and ϕ, and leads to
mass mixing after these fields develop vevs. In unitary
gauge,

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
; ϕ ¼ vϕ þ φffiffiffi

2
p ; ð3:25Þ

where we have denoted the vevs v and vϕ. Substituting into
Eq. (3.24), one finds the following mass-squared matrix:

M2 ¼
�

λv2 λmvvϕ

λmvvϕ λϕv2ϕ

�
: ð3:26Þ

The two eigenvalues are

m2
� ¼ 1

2

h
λv2þλϕv2ϕ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2v4þ λ2ϕv

4
ϕ−2v2v2ϕðλλϕ−2λ2mÞ

q i
:

ð3:27Þ

As can be seen from the square root, if s≡ λλϕ − λ2m < 0

the eigenvalue m2
− will become negative, indicating that we

are no longer at a local minimum. This can also be verified
via the determinant of the mass-squared matrix,

detM2 ≡m2þm2
− ¼ v2v2ϕðλλϕ − λ2mÞ≡ v2v2ϕs: ð3:28Þ

Therefore, we require that s > 0 henceforth. This condition
is also sufficient to guarantee stability of the potential at
large field amplitudes, since Eq. (3.24) can be written as

V ¼ −m2
HH

†H −m2
ϕϕ

�ϕþ λ

2

�
H†H þ λm

λ
ϕ�ϕ

�
2

þ s
2λ

½ϕ�ϕ�2: ð3:29Þ

The last two terms are positive definite when

s > 0 and λ > 0: ð3:30Þ

These inequalities reduce to λϕ > 0 and λ > 0 in the case
where λm ¼ 0, the expected constraints on the quartic terms
in two decoupled scalar sectors; for a similar analysis, see
Ref. [34]. In studying the RG evolution of the model, we
may now track the sign of s and λ to confirm that stability
of the scalar potential is maintained. We will see in our
subsequent examples that this is the case, and is also

consistent with the existence of fixed points in the
ðλ; λϕ; λmÞ parameter space that we will explicitly identify.
In the numerical examples that we present in the next two

subsections, we adopt the following measured values of the
standard model couplings, renormalized at μ0 ¼ 1 TeV,
also used by Hiller et al. [11]:

g1ðμ0Þ¼0.46738; g2ðμ0Þ¼0.63829; g3ðμ0Þ¼1.05737;

ytðμ0Þ¼0.85322; ybðμ0Þ¼0.01388: ð3:31Þ

We take the scale of Uð1ÞB breaking to be vϕ ¼ 10 TeV,
and require that the lightest scalar mass eigenstate corre-
sponds to the Higgs boson, with mh ¼ 125 GeV. To limit
the scope of our following considerations somewhat, we
choose

λϕðμ0Þ ¼ 0.2; λmðμ0Þ ¼ −0.004: ð3:32Þ

We note that the small negative value of λmðμ0Þ seemed to
lead more readily to solutions with the desired vacuum
stability. With the Higgs doublet vev set at v ¼ 246 GeV,
the requirement that we obtain the correct Higgs boson
mass then fixes λðμ0Þ ¼ 0.25828. The heavier scalar mass
eigenstate will then have a mass of 4.472 TeV, heavy
enough to not be of immediate phenomenological concern.4

Finally we set the Yukawa couplings

κiðμ0Þ ¼ yiðμ0Þ ¼ 0.1; i ¼ 1…3; ð3:33Þ

and the gravitational correction parameters

fλ ¼ fy ¼ 0.1: ð3:34Þ

The value of the gravitational parameter fg depends on
whether we study the Gaussian g1 fixed point ðfg > fcritg Þ,
or the interacting one ðfg ¼ fcritg Þ. The values of the
remaining couplings and fg in these two cases are sum-
marized in Table III. Note that the values of fλ and fy in
Eq. (3.34), as well as the value of fg assumed in the case of
the Gaussian g1 fixed point, are roughly comparable in
magnitude to that of fg in the interacting g1 fixed point
scenario where the gravitational parameter is determined by
the measured value of g1 at low energies.

1. Gaussian g1 fixed point

In this example, we take fg ¼ 0.1 > fcritg so that we
attain a Gaussian fixed point in g1, and choose gBðμ0Þ ¼
0.3 and g̃ðμ0Þ ¼ 0.14988, which assures that these cou-
plings flow to a point on the UV ellipse of fixed points

4For example, given these choices, the mixing angle that
diagonalizes Eq. (3.26) isOð10−4Þ, compared to the experimental
bound from Higgs signal strength measurements that is
Oð10−1Þ [13].
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discussed earlier and displayed in Fig. 2. We plot the RG
flow in the upper two panels of Fig. 3. The Higgs sector
remains stable throughout, and by making use of the one-
loop β functions we find the following fixed points for the
quartic couplings:

λ⋆ ¼ 0.065871; λϕ⋆ ¼ 0.014456; λm⋆ ¼ 0.030760:

ð3:35Þ

These values satisfy the stability conditions Eq. (3.30), and
we have confirmed that they are approached in the
numerical results presented in Fig. 3.

2. Interacting g1 fixed point

Let us now consider fg ¼ fcritg such that we obtain an
interacting g1 fixed point, g1⋆ ¼ g1ðMPlÞ ¼ 1.0168. We
further take gBðμ0Þ ¼ 0.40128 and g̃ðμ0Þ ¼ 0.08338 (the
right endpoint of the solid, TeV line in the second panel of
Fig. 2) to generate a nonzero fixed point for gB and g̃ as well.
We plot the corresponding RG flow in the lower two

panels of Fig. 3. The Higgs sector again remains stable, and
we extract the following fixed points:

λ⋆ ¼ 0.018256; λϕ⋆ ¼ 0.32076; λm⋆ ¼ 0.0037738:

ð3:36Þ

These again are consistent with our stability criteria and
agree with our numerical RG flow. In Fig. 4, we show the
running of couplings in the present scenario compared to

TABLE III. Remaining model parameters and Z0 masses for the
two scenarios described in the text, renormalized at the reference
scale μ0 ¼ 1 TeV. The specific values of gB and g̃ in these two
examples were selected since they run to fixed point values gB⋆
and g̃⋆ that are both nonvanishing. The value of fg in the g1⋆ ≠ 0

case is set by the requirement that the low-energy value of the
hypercharge gauge coupling is reproduced.

Case gB g̃ mB fg

g1⋆ ¼ 0: 0.3 0.14988 3 TeV 0.1 ð>fcritg Þ
g1⋆ ≠ 0: 0.40128 0.08338 4.01 TeV 0.05041 ð¼fcritg Þ

FIG. 3. Renormalization group flow of the Abelian gauge couplings and the quartic couplings. Top: Gaussian g1 fixed point. Bottom:

interacting g1 fixed point. In the right plots, the shaded areas highlight the value of
ffiffiffi
s

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λλϕ − λ2m

q
, where s, λ, and λϕ remain positive

throughout the entire energy range considered here. The quartic couplings attain their numerically expected fixed point values within our
numerical resolution, strongly suggesting stability of the Higgs sector up to arbitrarily high energies. The small deviations of the
couplings away from their fixed point values visible at the right sides of the plots is an artifact caused by the finite resolution of our
numerical approximation and the fact that the fixed points are unstable. By increasing the resolution of the initial conditions at 1 TeV,
these deviations can be pushed out to arbitrarily high energies. At infinite initial resolution, the couplings would hit their fixed point
values exactly.
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that of the standard model, up to the Planck scale. The
curve for the quartic coupling in the standard model was
computed at two loops and assumes the value of λSM
extracted from the one-loop effective potential, λSMðμ0Þ ¼
0.19234 [11]; this allows easy comparison with what is
typically displayed in the literature. The dashed line shows
what we would find for the coupling λ in our model if we
were to assume a boundary value identical to that of the
standard model curve and also work at two loops. This
illustrates that our model’s ability to avoid the metastability

of the standard model is a consequence of the new
contributions to the β functions rather than a different
boundary condition at the TeV scale caused by the non-
vanishing portal coupling λm. Analogous plots can be
generated for the g1⋆ ¼ 0 scenario, but they are qualita-
tively indistinguishable from those shown in Fig. 4, and are
not displayed.
Finally, we note that solutions like those presented in this

section can be obtained for other values of the parameters in
Eqs. (3.33) and (3.34). This is illustrated in Fig. 5, where

FIG. 4. Comparison to the standard model. See the text for discussion.

FIG. 5. The effects of varying input parameter values. The first row corresponds to the Gaussian g1 fixed point, while the second
corresponds to the interacting one. The solid circles indicate viable solutions with perturbative fixed points that satisfy Eq. (3.30)
everywhere, while the crosses represent excluded points. The open circles indicate models with vacuum metastability.
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we allow these parameters to vary and determine whether
viable solutions are obtained. The solid circles represent
solutions where all couplings reach perturbative ultraviolet
fixed points and our conditions for vacuum stability are
satisfied. Due to the large number of model parameters,
there are many possible two-dimensional plots of this type
that one could construct; however, Fig. 5 is sufficient to
demonstrate that Eqs. (3.33) and (3.34) do not represent
special choices.

IV. BRANCHING FRACTIONS

While it is not the purpose of the present work to engage
in an exhaustive phenomenological study of this model
(studies of gauged baryon number in a more general
context exist in the literature [14–16,35]), we would like
to illustrate in this section how the UV restrictions placed
on the parameter space at the TeV scale can lead to
meaningful predictions of the Z0 boson properties. To do
so, we focus on the case of the interacting g1 fixed point,
discussion in Secs. III B 2 and III C 2. In the previous
section, we found that the ultraviolet critical surface
corresponded to a line segment in the gBg̃ plane which,
when run down to the TeV scale, is given by

g̃ ¼ 16

77
gB for 0 ≤ gB ≲ 0.4013: ð4:1Þ

Let us consider the implications of this result for branching
fractions of the Z0 boson. For a Z0 in the multi-TeV mass
range, it is a reasonable approximation to neglect the
masses of all the standard model particles (we comment
on the effect of including them later). In this case, the
partial decay widths take relatively simple form. For decays
to fermions with Nc colors one has

Γðff̄Þ ¼ Nc

48π
ðC2

V þ C2
AÞmBg2B; ð4:2Þ

where the CV and CA can be derived from the form of the
covariant derivative, Eq. (2.12), and we use Eq. (4.1) to
eliminate any dependence on g̃. Numerically, we find that
jCV j is given by 0.8008, 0.6398, 0.2414, and 0.0805 for
the up-type quarks, down-type quarks, charged leptons,
and neutrinos, respectively; the jCAj are each 0.0805. This
is sufficient to determine the partial width to dijets
(including all quarks except the top) and to charged
dileptons. We also take into account that there are decays
to WþW−: this is easiest to compute in the original basis
where the coupling ϵ is present in the gauge boson kinetic
terms and is treated here as a perturbative interaction. In
this case, at lowest order in ϵ, we find (with help from
FeynCalc [36])

ΓðWþW−Þ ¼ α cos θ2wϵ2

12
mB

y4

ð1 − y2Þ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x2

r �
4x4 þ 16x2 −

3

x2
− 17

�
; ð4:3Þ

where x ¼ mB
2mW

, y ¼ mZ=mB, and θw is the weak mixing
angle. Using mW ¼ mZ cos θw and assuming mB ≫ mZ,
one may show that this result approaches

ΓðWþW−Þ ≈ 4

29645π
mBg2B; ð4:4Þ

provided the kinetic mixing is small. The consequence of
Eq. (4.1) is that Eqs. (4.2) and (4.4) are proportional to
mBg2B, which implies that the Z0 branching fractions are
approximately fixed provided that the Z0 boson is suffi-
ciently heavy and that we live within the range
0 ≤ gB ≲ 0.4013. We find that

BFðZ0 → jetsÞ ¼ 77.8%;

BFðZ0 → tt̄Þ ¼ 19.8%;

BFðZ0 → lþl−Þ ¼ 2.0%;

BFðZ0 → WþW−Þ ¼ 0.1% ð4:5Þ

with the remainder going to invisible decays (i.e., neu-
trinos). For example, mB ¼ 3 TeV and gB ¼ 0.3 is a
choice that satisfies our assumptions and is consistent
with current experimental bounds. For this point in model
parameter space, we have checked that the effect of
including final state particle masses, including that of
the top quark, affects the branching fractions shown above
only at the next decimal place. LHC searches for new
resonances decaying to dijets allow the Z0 of the present
model for mB ¼ 3 TeV and gB ¼ 0.3 (see Fig. 3 in
Ref. [35], where the value of the coupling to quarks
would be 0.6 in their conventions, well within their
allowed region). Moreover, Eq. (4.1) implies the value
g̃ ¼ 0.0623, corresponding to the kinetic mixing param-
eter ϵ ¼ 0.1321, consistent with the kinetic mixing bounds
in Ref. [37] for a 3 TeV Z0. One might expect the model to
provide similar predictivity for heavier Z0 bosons which
will be less constrained by current experimental bounds.

V. CONCLUSIONS

We have considered a model with gauged baryon
number that is asymptotically safe due to gravitational
corrections introduced above the Planck scale. Three
generations of vectorlike fermions, which are chiral under
the baryon gauge symmetry, cancel the gauge and gravi-
tational anomalies in the theory. The baryon number gauge
symmetry is spontaneously broken after a new complex
scalar field obtains a nonzero vacuum expectation value. By
requiring that the couplings flow to asymptotic fixed points,
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we restrict the parameter space of the model, in some cases
relating the kinetic mixing to the baryon gauge coupling.
This allows us to predict measurable quantities, such as
branching fractions, of the Z0 boson at future collider
experiments.
The ultraviolet behavior of the model depends on the size

of the gravitational corrections. For sufficiently large
gravitational correction terms in the RGEs, there exists
either a Gaussian fixed point or an interacting fixed point
for the GUT-normalized hypercharge coupling, g1. For
each of these cases, we examined the parameter space of the
baryon gauge coupling and the kinetic mixing, ðgB; g̃Þ, to
find the subspace that flows to ultraviolet fixed points,
thereby defining the UV critical surface. In the Gaussian
case, there is a stable trivial fixed point for ðgB⋆; g̃⋆Þ ¼
ð0; 0Þ and an unstable ellipse of fixed points whose size is
determined by the magnitude of the gravitational correction
terms in the RGEs. In the interacting case, one finds a trivial
fixed point as well as an unstable nontrivial fixed point.
Any value on the line connecting these fixed points flows to
the trivial fixed point. Any values off of this line or outside
of the ellipse flow to infinite values and correspond to
unphysical theories.
In the Higgs sector of our model, we stated the

conditions on the quartic couplings for vacuum stability
and confirmed that they are satisfied under the RG flow.
After fixing values for the couplings at the TeV scale and
running them up to fixed points, we included gravitational
effects on the trans-Planckian RG flow. Within our stated
approximations, we obtained numerical evidence sug-
gesting that the Higgs sector retains its vacuum stability
to arbitrarily high energies, with all of its couplings
approaching nontrivial fixed points.
We briefly examine the phenomenology of the model by

determining the restrictions on the parameter space at the
TeV scale imposed by asymptotic safety. Considering the
case where the g1 fixed point is nonzero, we were able to
predict values for the branching fractions of the Z0 boson
into jets, tt̄, charged dileptons, and WþW−, from the
relationship between the kinetic mixing and baryon gauge
coupling. To good approximation, the partial decay widths
are proportional to mBg2B, when mB ≫ mZ, which implies
that the branching fractions are all fixed if the Z0 boson is
sufficiently massive.
In future work, we look forward to exploring other

aspects of the phenomenology of this asymptotically safe
gauged baryon number model, including how the heavy
vectorlike leptons affect the muon g − 2 and how a viable
dark matter candidate may be included.
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APPENDIX: RENORMALIZATION GROUP
EQUATIONS AT ONE LOOP

Definition:

βðcÞ ¼
X∞
l¼1

1

ð4πÞ2l β
ðlÞðcÞ: ðA1Þ

Gauge couplings:

βð1Þðg1Þ ¼ þ 77

10
g31; ðA2Þ

βð1ÞðgBÞ ¼ þ11g3B þ 77

6
gBg̃2 −

16

3
g2Bg̃; ðA3Þ

βð1Þðg̃Þ ¼ −
16

5
g21gB −

16

3
gBg̃2 þ

77

5
g21g̃þ 11g2Bg̃þ

77

6
g̃3;

ðA4Þ

βð1Þðg2Þ ¼ −
7

6
g32; ðA5Þ

βð1Þðg3Þ ¼ −7g33: ðA6Þ

Yukawas (κ2 ≡ κ21 þ κ22 þ κ23; y
2 ≡ 2y21 þ y22 þ y23):

βð1ÞðytÞ ¼
�
9

2
y2t þ

3

2
y2b þ 3κ2 −

17

20
g21 −

9

4
g22 − 8g23

−
2

3
g2B −

5

3
gBg̃ −

17

12
g̃2
�
yt; ðA7Þ

βð1ÞðybÞ ¼
�
3

2
y2t þ

9

2
y2b þ 3κ2 −

1

4
g21 −

9

4
g22 − 8g23 −

2

3
g2B

þ 1

3
gBg̃ −

5

12
g̃2
�
yb; ðA8Þ

βð1Þðy1Þ ¼
�
3y2 þ y21 þ

1

2
κ21 −

9

10
g21 −

9

2
g22 − 3g2B

þ 3gBg̃ −
3

2
g̃2
�
y1; ðA9Þ

βð1Þðy2Þ ¼
�
3y2 þ y22 þ κ22 −

18

5
g21 − 3g2B þ 6gBg̃− 6g̃2

�
y2;

ðA10Þ

βð1Þðy3Þ ¼ ð3y2 þ y23 þ κ23 − 3g2BÞy3; ðA11Þ
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βð1Þðκ1Þ ¼
�
3y2t þ 3y2b þ

1

2
y21 þ

9

2
κ21 þ 3κ22 þ 3κ23

−
9

4
g21 −

9

4
g22 −

15

4
g̃2
�
κ1; ðA12Þ

βð1Þðκ2Þ ¼
�
3y2t þ 3y2b þ

1

2
y22 þ 3κ21 þ

9

2
κ22 þ

3

2
κ23

−
9

4
g21 −

9

4
g22 −

15

4
g̃2
�
κ2; ðA13Þ

βð1Þðκ3Þ ¼
�
3y2t þ 3y2b þ

1

2
y23 þ 3κ21 þ

3

2
κ22 þ

9

2
κ23

−
9

20
g21 −

9

4
g22 −

3

4
g̃2
�
κ3: ðA14Þ

Quartic couplings (κ2 ≡ κ21 þ κ22 þ κ23, K
4 ≡ κ41 þ κ42 þ κ43,

y2 ≡ 2y21 þ y22 þ y23, Y
4 ≡ 2y41 þ y42 þ y43):

βð1ÞðλÞ ¼þ12λ2þ 2λ2m−
9

5
g21λ− 9g22λ− 3g̃2λ

þ 27

100
g41þ

9

10
g21g

2
2þ

9

10
g21g̃

2þ 9

4
g42þ

3

2
g22g̃

2þ 3

4
g̃4

þ 12λðy2t þ y2bþ κ2Þ− 12ðy4t þ y4bþK4Þ; ðA15Þ

βð1ÞðλϕÞ ¼ þ10λ2ϕ þ 4λ2m − 12g2Bλϕ þ 12g4B

þ 12λϕy2 − 12Y4; ðA16Þ

βð1ÞðλmÞ ¼
�
6λþ 4λϕ þ 4λm −

9

10
g21 −

9

2
g22 − 6g2B

−
3

2
g̃2 þ 6ðy2t þ y2b þ y2 þ κ2Þ

�
λm

þ 3g2Bg̃
2 − 12ðκ21y21 þ κ22y

2
2 þ κ23y

2
3Þ: ðA17Þ
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