
Nuclear fusion catalyzed by doubly charged scalars:
Implications for energy production

Evgeny Akhmedov *

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

(Received 13 October 2021; accepted 15 July 2022; published 12 August 2022)

A number of popular extensions of the Standard Model of particle physics predict the existence of
doubly charged scalar particles X��. Such particles may be long lived or even stable. If they exist, X−−

could form atomic bound states with light nuclei and catalyze their fusion by essentially eliminating the
Coulomb barrier between them. Such an X-catalyzed fusion (XCF) process does not require high
temperatures or pressure and may have important applications for energy production. A similar process of
muon-catalyzed fusion has been shown not to be a viable source of energy because of the sticking of
negative muons to helium nuclei produced in the fusion of hydrogen isotopes, which stops the catalytic
process. We analyze XCF in deuterium environments and show that the X particles can only stick to 6Li
nuclei, which are produced in the third-stage reactions downstream in the catalytic cycle. The
corresponding sticking probability is very low and, before getting bound to 6Li, each X particle can
catalyze ∼3.5 × 109 fusion cycles, producing ∼7 × 104 TeV of energy. We also discuss the ways of
reactivating the X particles from the Coulomb-bound (6LiX) states, which would allow reusing them in
XCF reactions.
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I. INTRODUCTION

A number of popular extensions of the Standard Model
(SM) of particle physics predict the existence of doubly
charged scalar particles X��. These include the type-II
seesaw [1–6] and the Zee-Babu [7,8] models of neutrino
masses, the left-right model [9–11], the Georgi-Machacek
model [12–16], the 3-3-1 model [17,18] and the little Higgs
model [19]. Doubly charged scalars appear also in sim-
plified models, in which one merely adds such scalars in a
gauge-invariant way in various representations of the SM
gauge group SUð2ÞL to the particle content of the SM.
The Lagrangian of the model is then complemented
by gauge-invariant interaction terms involving these new
fields [20,21].
Doubly charged scalars may be long lived or even stable

[21–24]. As the simplest example, one can add to the SM
an uncolored SUð2ÞL-singlet scalar field X with hyper-
charge Y ¼ 2 [21]. The corresponding doubly charged
particles will couple to the neutral gauge bosons γ and Z0

and may also interact with the SM Higgs boson H through

the ðH†HÞðX†XÞ term in the Higgs potential. Gauge
invariance allows, in addition, the Yukawa coupling of X
to right-handed charged leptons, hXlRlRX þ H:c. This is
the only coupling that makes the X particles unstable in this
model; they will be long lived if the Yukawa coupling
constants hX are small. The Yukawa coupling of X may be
forbidden by, e.g., Z2 symmetry X → −X, in which case the
X scalars will be stable.
Doubly charged scalar particles are being actively

searched for experimentally, but up to now have not been
discovered. For discussions of current experimental con-
straints on the doubly charged particles and of the sensi-
tivities to them of future experiments see [21–27] and
references therein.
In addition to interesting particle-physics phenomenol-

ogy, doubly charged scalars may have important implica-
tions for cosmology. In this paper we will, however,
consider another aspect of their possible existence. As
we shall demonstrate, doubly charged particles can catalyze
fusion of light nuclei, with potentially important applica-
tions for energy production. The negatively charged X−−

(which we will hereafter simply refer to as X) can form
atomic bound systems with the nuclei of light elements,
such as deuterium, tritium, or helium. One example is the
anti-helium-like ðddXÞ atom with the X particle as the
“nucleus” and two deuterons in the 1s atomic state instead
of two positrons. (Here and below we use the brackets to
denote states bound by the Coulomb force). As X is
expected to be very heavy, the size of such an atomic
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system will in fact be determined by the deuteron mass md
and will be of the order of the Bohr radius of the ðdXÞ ion,
ad ≃ 7.2 fm. Similar small-size atomic systems ðNN0XÞ
can exist for other light nuclei N and N0 with charges
Z ≤ 2.
Atomic binding of two nuclei to an X particle brings

them so close together that this essentially eliminates the
necessity for them to overcome the Coulomb barrier in
order to undergo fusion. The exothermic fusion reactions
can then occur unhindered and do not require high temper-
ature or pressure. The X particle is not consumed in this
process and can then facilitate further nuclear fusion
reactions, acting thus as a catalyst.
This X-catalyzed fusion mechanism is to some extent

similar to muon-catalyzed fusion (μCF) ([28–35], see
[36–42] for reviews), in which the role of the catalyst is
played by singly negatively charged muons. μCF of hydro-
gen isotopes was once considered a prospective candidate
for cold fusion. However, already rather early in its studies
it became clear that μCF suffers from a serious shortcoming
that may prevent it from being a viable mechanism of
energy production. In the fusion processes, isotopes of
helium are produced, and there is a chance that they will
capture on their atomic orbits the negative muons present in
the final state of the fusion reactions. Once this happens,
muonic ions (3Heμ) or (4Heμ) are formed, which, being
positively charged, cannot catalyze further fusion reactions.
This effect is cumulative; the sticking to helium nuclei thus
eventually knocks the muons out from the catalytic process,
i.e., the catalytic poisoning occurs.
Out of all μCF reactions, the d − t fusion has the smallest

muon sticking probability, ωs ≃ 10−2. This means that a
single muon will catalyze ∼100 fusion reactions before it
gets removed from the catalytic process. The corresponding
total produced energy is ∼1.7 GeV, which is at least a
factor of 5 smaller than the energy needed to produce and
handle one muon [32]. In addition, the muon’s short
lifetime makes it impractical to try to dissolve the produced
(3Heμ) or (4Heμ) bound states by irradiating them with
particle beams in order to reuse the released muons. These
considerations have essentially killed the idea of using μCF
for energy production.
There were discussions in the literature of the possibility

of energy generation through the catalysis of nuclear fusion
by hypothetic heavy long-lived or stable singly charged
[34,43–45] or fractionally charged [46] particles. However,
it has been shown in [34,44,45] that these processes suffer
from the same problem of catalytic poisoning as μCF, and
therefore they cannot be useful sources of energy. In
particular, in Ref. [44] it was demonstrated that reactivation
of the catalyst particles by irradiating their atomic bound
states with helium nuclei by neutron beams, as suggested in
[46], would require beams that are about 9 orders of
magnitude higher than those currently produced by the
most powerful nuclear reactors.

In this paper we consider the fusion of light nuclei
catalyzed by doubly negatively charged X particles and
demonstrate that, unlike μCF, this process may be a viable
source of energy. We analyze X-catalyzed fusion (XCF) in
deuterium environments and show that the catalytic poison-
ing may only occur in this case due to the sticking of X
particles to 6Li nuclei, which are produced in the fusion
reactions of the third stage. The corresponding sticking
probability is shown to be very low, and, before getting
bound to 6Li, each X particle can catalyze ∼3.5 × 109

fusion cycles, producing ∼7 × 104 TeV of energy. To the
best of the present author’s knowledge, nuclear fusion
catalyzed by doubly charged particles has never been
considered before.

II. X-CATALYZED FUSION IN DEUTERIUM

We will be assuming that X particles interact only
electromagnetically, which in any case should be a very
good approximation at low energies relevant to nuclear
fusion. Let X particles be injected in pressurized D2 gas
or liquid deuterium. Being very heavy and negatively
charged, the X particles can easily penetrate D2 molecules
and D atoms, dissociating the former and ionizing the latter
and losing energy on the way. Once the velocity of an X
particle becomes comparable to atomic velocities
(v ≃ 2e2=ℏ ∼ 10−2c), it captures a deuteron on a highly
excited atomic level of the (dX) system, which then very
quickly deexcites to its ground state, mostly through electric
dipole radiation and inelastic scattering on the neighboring
deuterium atoms. As the (dX) ion is negatively charged, it
swiftly picks up another deuteron to form the (ddX) atom.
The characteristic time of this atomic phase of the XCF
process is dominated by the X moderation time and is
∼10−10 s at liquid hydrogen density N0 ¼ 4.25 ×
1022 nuclei=cm3 and T ≃ 20 K and about 10−7 s in deu-
terium gas at 0° C and pressure of one bar (see Appendix A).
After the ðddXÞ atom has been formed, the deuterons

undergo nuclear fusion through several channels, see
below. Simple estimates show that the fusion rates are
many orders of magnitude faster than the rates of the atomic
formation processes. That is, once (ddX) [or similar
(NN0X)] atoms are formed, the fusion occurs practically
instantaneously. The time scale of XCF is therefore
determined by the atomic formation times. The rates of
the fusion reactions, however, determine the branching
ratios of various fusion channels, which are important for
the kinetics of the catalytic cycle.
At the first stage of XCF in deuterium two deuterons fuse

to produce 3He, 3H, or 4He. In each case there is at least one
channel in which the final-state X forms an atomic bound
state with one of the produced nuclei. Stage I fusion
reactions are

ðddXÞ→ 3Heþ nþX ðQ¼ 2.98 MeV;29.1%Þ ð1aÞ
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ðddXÞ → ð3HeXÞ þ n ðQ ¼ 3.89 MeV; 19.4%Þ ð1bÞ

ðddXÞ → 3Hþ pþ X ðQ ¼ 3.74 MeV; 34.4%Þ ð2aÞ

ðddXÞ → ð3HXÞ þ p ðQ ¼ 4.01 MeV; 6.2%Þ ð2bÞ

ðddXÞ → 3Hþ ðpXÞ ðQ ¼ 3.84 MeV; 0.5%Þ ð2cÞ

ðddXÞ → 4Heþ γ þ X ðQ ¼ 23.6 MeV; 4 × 10−9Þ
ð3aÞ

ðddXÞ → ð4HeXÞ þ γ ðQ ¼ 24.7 MeV; 3 × 10−8Þ
ð3bÞ

ðddXÞ → 4Heþ X ðQ ¼ 23.6 MeV; 10.4%Þ: ð3cÞ

Here in the parentheses the Q values and the branching
ratios of the reactions are shown. In evaluating theQ values
we have taken into account that the atomic binding of the
two deuterons to X in the initial state reduces Q, whereas
the binding to X of one of the final-state nuclei increases it.
As the Bohr radii of most of the X-atomic states we
consider are either comparable to or smaller than the
nuclear radii, in calculating the Coulomb binding energies
one has to allow for the finite nuclear sizes. We do that by
making use of a variational approach, as described in
Appendix A 2.
The rates of reactions (1b), (2b), (2c), and (3b) with

bound X particles in the final states are proportional to the
corresponding X-particle sticking probabilities, ωs. The
existence of such channels obviously affects the branching
ratios of the analogous reactions with free X in the final
states.
Radiative reactions (3a) and (3b) have tiny branching

ratios, which are related to their electromagnetic nature and
to the fact that for their X-less version, dþ d → 4Heþ γ,
transitions of the E1 type are strictly forbidden. This comes
about because the two fusing nuclei are identical, which, in
particular, means that they have the same charge-to-mass
ratio. This reaction therefore proceeds mainly through E2
transitions [35]. When the deuterons are bound to X, the
strict prohibition of E1 transitions is lifted due to possible
transitions through intermediate excited atomic states.
However, as shown in Appendix A 3 b, the resulting E1
transitions are in this case heavily hindered and their rates
actually fall below the rates of the E2 transitions.
Reaction (3c) is an internal conversion process. Note

that, unlike for reactions (1a)–(3b), the X-less version of
(3c) does not exist: the process dþ d → 4He is forbidden
by kinematics. For the details of the calculation of the rate
of reaction (3c) as well as of the rates of the other reactions
discussed in this paper, see Appendix B. The relevant Q

values of the reactions and sticking probabilities are
evaluated in Appendices A 2 and A 3, respectively.
The final states of reactions (1a), (2a), (3a), and (3c)

contain free X particles which are practically at rest and can
immediately capture deuterons of the medium, forming
again the (ddX) atoms. Thus, they can again catalyze d − d
fusion through stage I reactions (1a)–(3c). The same is also
true for the X particles in the final state of reaction (2c)
which emerge being bound to protons. Collisions of (pX)
with deuterons of the medium lead to fast replacement of
the protons by deuterons through the exothermic charge
exchange reaction ðpXÞ þ d → ðdXÞ þ p with the energy
release ∼90 keV (see Appendix A 1 b). The produced ðdXÞ
ion then picks up a deuteron to form the ðddXÞ atom, which
can again participate in stage I reactions (1a)–(3c).
The situation is different for the X particles in the final

states of reactions (1b) and (2b) forming the bound states
with 3He and 3H, respectively. They can no longer directly
participate in stage I d − d fusion reactions. However, they
are not lost for the fusion process: the produced (3HeX) and
(3HX) can still pick up deuterons of the medium to form the
atomic bound states (3HedX) and (3HdX), which can give
rise to stage II fusion reactions, which we will consider
next.
Before we proceed, a comment is in order. While (3HX)

is a singly negatively charged ion which can obviously pick
up a positively charged deuteron to form an (3HdX) atom,
(3HeX) is a neutral X atom. It is not immediately obvious
whether it can form a stable bound state with d, which, if it
exists, would be a positive ion. In the case of the usual
atomic systems, analogous (though negatively charged)
states do exist—a well-known example is the negative ion
of hydrogen H−. However, the stability of (3HedX) cannot
be directly deduced from the stability of H−: in the latter
case the two particles orbiting the nucleus are identical
electrons, whereas for (3HedX) these are different entities—
nuclei with differing masses and charges. Nevertheless,
from the results of a general analysis of three-body
Coulomb systems carried out in [47–49], it follows that
the state (3HedX) [as well as the bound state (4HedX) which
we will discuss later on] should exist and be stable. For
additional information see Appendix 1 c.
Once (3HeX) and (3HX), produced in reactions (1b) and

(2b), have picked up deuterons from the medium and
formed the atomic bound states (3HedX) and (3HdX), the
following stage II fusion reactions occur:

ð3HedXÞ→ 4HeþpþX ðQ¼ 17.4 MeV;94%Þ ð4aÞ

ð3HedXÞ → ð4HeXÞ þ p ðQ ¼ 18.6 MeV; 6%Þ ð4bÞ

ð3HedXÞ→ 4HeþðpXÞ ðQ¼ 17.5MeV;3× 10−4Þ ð4cÞ

NUCLEAR FUSION CATALYZED BY DOUBLY CHARGED … PHYS. REV. D 106, 035013 (2022)

035013-3



ð3HdXÞ → 4Heþ nþ X ðQ ¼ 17.3 MeV; 96%Þ ð5aÞ

ð3HdXÞ → ð4HeXÞ þ n ðQ ¼ 18.4 MeV; 4%Þ: ð5bÞ

In these reactions, the vast majority of X bound to 3He and
3H are liberated; the freed X particles can again form ðddXÞ
states and catalyze stage I fusion reactions (1a)–(3c). The
same applies to the final-state X particles bound to protons,
as was discussed above. The remaining relatively small
fraction of X particles come out of stage II reactions in the
form of ð4HeXÞ atoms. Together with a very small amount
of ð4HeXÞ produced in reaction (3b), they pick up deuterons
from the medium and form ð4HedXÞ states, which undergo
stage III XCF reactions:

ð4HedXÞ→ 6Liþ γþX ðQ¼ 0.32 MeV;10−13Þ ð6aÞ

ð4HedXÞ→ ð6LiXÞ þ γ ðQ¼ 2.4 MeV;2× 10−8Þ ð6bÞ

ð4HedXÞ → 6Liþ X ðQ ¼ 0.32 MeV;≃100%Þ: ð6cÞ

In these reactions, almost all previously bound X particles
are liberated and are free to catalyze nuclear fusion again
through XCF reactions of stages I and II. The remaining
tiny fraction of X particles end up being bound to the
produced 6Li nuclei through reaction (6b). However, as
small as it is, this fraction is very important for the kinetics
of XCF. The bound states ð6LiXÞ are ions of charge þ1;
they cannot form a bound state with positively charged
nuclei and participate in further XCF reaction. That is, with
their formation, catalytic poisoning occurs and the catalytic
process stops.
From the branching ratios of stages I, II, and III XCF

reactions, one finds that the fraction of the initially injected
X particles that end up in the ð6LiXÞ bound state is
∼2.8 × 10−10. This means that each initial X particle,
before getting stuck to a 6Li nucleus, can catalyze
∼3.5 × 109 fusion cycles.
Direct inspection shows that, independently of which

subchannels were involved, the net effect of stages I, II, and
III XCF reactions is the conversion of four deuterons to a
6Li nucleus, a proton, and a neutron:

4d → 6Liþ pþ nþ 23.1 MeV: ð7Þ

Therefore, each initial X particle will produce about
7 × 104 TeV of energy before it gets knocked out of the
catalytic process. It should be stressed that this assumes that
the X particles are sufficiently long lived to survive during
3.5 × 109 fusion cycles. From our analysis it follows that
the slowest processes in the XCF cycle are the formation of
positive ions ð3HedXÞ and ð4HedXÞ. The corresponding
formation times are estimated to be of the order of 10−8 s.
(see Appendix A 1 c). Therefore, for the X particles to

survive during 3.5 × 109 fusion cycles and produce ∼7 ×
104 TeV of energy, their lifetime τX should exceed ∼102 s.
For shorter lifetimes the energy produced by a single X
particle before it gets stuck to a 6Li nucleus is reduced
accordingly.

III. ACQUISITION AND REACTIVATION
OF X PARTICLES

The amount of energy produced by a single X particle has
to be compared with energy expenditures related to its
production. X particles can be produced in pairs in accel-
erator experiments, either in lþl− annihilation at lepton
colliders or through the Drell-Yan processes at hadronic
machines. Although the energy E ∼ 7 × 104 TeV produced
by one X particle before it gets knocked out of the catalytic
process is quite large on a microscopic scale, it is only about
10 mJ. This means that ≳108 X particles are needed to
generate 1 MJ of energy. While colliders are better suited for
the discovery of new particles, for the production of large
numbers of X particles fixed-target accelerator experiments
are more appropriate. For such experiments the beam energy
must exceed the mass of the X particle significantly.
Currently, plans for building such machines are being
discussed [50].
The problem is, however, that the X particle production

cross section is very small. This comes about because of
their expected large mass (mX ≳ 1 TeV=c2) and the fact
that for their efficient moderation needed to make the
formation of ðdXÞ atoms possible, X particles should be
produced with relatively low velocities. The cross section
σp of the production of X particles with mass mX ≃
1 TeV=c2 and β ¼ v=c ≃ 0.3 is only ∼1 fb (note that for
scalar X particles σp ∝ β3). As a result, the energy spent on
production of an XþþX−− pair will be by far larger than the
energy that can be generated by one X−− before it gets
bound to a 6Li nucleus. This means that reactivating and
reusing the bound X particles multiple times would be
mandatory in this case. This, in turn, implies that only very
long-lived X particles with τX ≳ 3 × 104 yr will be suitable
for energy production.
Reactivation of X particles bound to 6Li requires dis-

sociation of ð6LiXÞ ions. This could be achieved by
irradiating them with particle beams, similarly to what
was suggested for reactivation of the lower-charge catalyst
particles in Ref. [46]. However, it would be much more
efficient to use instead ð6LiXÞ ions as projectiles and
irradiate a target with their beam.
The Coulomb binding energy of X to 6Li is about

2 MeV; to strip them off by scattering on target nuclei with
the average atomic number A ≃ 40 one would have to
accelerate ð6LiXÞ ions to velocities β ≃ 0.01 which, for
mX ≃ 1 TeV=c2, corresponds to beam energy ∼0.05 GeV.
At these energies the cross section of the stripping reaction is
≳0.1 b, andX particles can be liberated with high efficiency
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in relatively small targets. The energy spent on the reac-
tivation of one X particle will then only be about 10−9 of the
energy it can produce before sticking to a 6Li nucleus.
If X particles are stable or practically stable, i.e., their

lifetime τX is comparable to the age of the Universe, there
may exist a terrestrial population of relic X particles bound
to nuclei or (in the case of Xþþ) to electrons and thus
forming exotic nuclei or atoms. The possibility of the
existence of exotic bound states containing charged mas-
sive particles was suggested in Ref. [51] (see also [52]) and
has been studied by many authors. The concentration of
such exotic atoms on the Earth may be very low if reheating
after inflation occurs at sufficiently low temperatures. Note
that reheating temperatures as low as a few MeV are
consistent with observations [53]. A number of searches
for such superheavy exotic isotopes has been carried out
using a variety of experimental techniques, and upper limits
on their concentrations were established; see [54] for a
review.
Exotic helium atoms ðXþþeeÞ were searched for in the

Earth’s atmosphere using a laser spectroscopy technique,
and the limit of their concentration 10−12–10−17 per atom
over the mass range 20–104 GeV=c2 was established [55].
In the case of doubly negatively charged X, their Coulomb
binding to nuclei of charge Z would produce superheavy
exotic isotopes with nuclear properties of the original
nuclei but chemical properties of atoms with nuclear charge
Z − 2. Such isotopes could have accumulated in continental
crust and marine sediments. Singly positively charged ions
(6LiX) and (7LiX) chemically behave as superheavy pro-
tons; they can capture electrons and form anomalously
heavy hydrogen atoms. Experimental searches for anoma-
lous hydrogen in normal water have put upper limits on its
concentration at the level of ∼10−28–10−29 for the mass
range 12 to 1200 GeV=c2 [56] and ∼6 × 10−15 for the
masses between 10 and 105 TeV=c2 [57].
If superheavy isotopes containing relic X particles of

cosmological origin exist, they can be extracted from
minerals, e.g., by making use of mass spectrometry
techniques, and their X particles can then be stripped
off. To estimate the required energy, we conservatively
assume that it is twice the energy needed to vaporize the
matter sample. As an example, it takes about 10 kJ to
vaporize 1 g of granite [58]; denoting the concentration of
X particles in granite (number of X per molecule) by cX, we
find that the energy necessary to extract one X particle is
∼2.3 × 10−18 J=cX. Requiring that it does not exceed the
energy one X particle can produce before getting stuck to a
6Li nucleus leads to the constraint cX ≳ 2.3 × 10−16. If it is
satisfied, extracting X particles from granite would allow
XCF to produce more energy than it consumes, even
without reactivation and recycling of the X particles.
Another advantage of the extraction of relic X particles from
minerals compared with their production at accelerators is

that it could work even for X particles with mass
mX ≫ 1 TeV=c2.
In assessing theviability ofXCFas amechanismof energy

generation, in addition to pure energy considerations, one
should obviously address many technical issues related to its
practical implementation, such as collection and moderation
of the producedX particles and prevention of their binding to
the surrounding nuclei (or their liberation if such binding
occurs), etc. However, the corresponding technical difficul-
ties seem to be surmountable [59].

IV. DISCUSSION

There are several obvious ways in which our analysis of
XCF can be generalized. Although we only considered
nuclear fusion catalyzed by scalar X particles, doubly
charged particles of nonzero spin can do the job as well.
While we studied XCF in deuterium, fusion processes
with participation of other hydrogen isotopes can also be
catalyzed by X particles.
We considered XCF taking place in X-atomic states. The

catalyzed fusion can also proceed through in-flight reac-
tions occurring, e.g., in dþ ðdXÞ collisions. However,
because even at the highest attainable densities the average
distance r̄ between deuterons is much larger than it is in
ðddXÞ atoms, the rates of in-flight reactions are suppressed
by a factor of the order of ðr̄=adÞ3 ≳ 109 compared with
those of reactions occurring in X atoms.
Our results depend sensitively on the properties of

positive ions ð3HedXÞ and ð4HedXÞ, for which we obtained
only crude estimates. More accurate calculations of these
properties and of the formation times of these positive ions
would be highly desirable.
The existence of long-lived doubly charged particles

may have important cosmological consequences. In par-
ticular, they may form exotic atoms, which have been
discussed in connection with the dark matter problem
[60–62]. They may also affect primordial nucleosynthesis
in an important way. In Ref. [63] it was suggested that
singly negatively charged heavy metastable particles may
catalyze nuclear fusion reactions at the nucleosynthesis era,
possibly solving the cosmological lithium problem. The
issue has been subsequently studied by many authors; see
Refs. [64,65] for reviews.Doubly charged scalarsXmay also
catalyze nuclear fusion reactions in the early Universe and
thus may have significant impact on primordial nucleosyn-
thesis. On the other hand, cosmologymay provide important
constraints on the XCF mechanism discussed here.
Therefore, a comprehensive study of cosmological implica-
tions of the existence of X�� particles would be of great
interest.
To conclude, we have demonstrated that long-lived or

stable doubly negatively charged scalar particles X, if
they exist, can catalyze nuclear fusion and provide a viable
source of energy. Our study gives a strong additional
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motivation for continuing and extending the experimental
searches for such particles.
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Note added.—Recently, the ATLAS Collaboration has
reported a 3.6σ (3.3σ) local (global) excess of events with
large specific ionization energy loss jdE=dxj in their search
for long-lived charged particles at LHC [66]. In the
complete LHC Run 2 dataset, seven events were found
for which the values of jdE=dxj were in tension with the
time-of-flight velocity measurements, assuming that the
corresponding particles were of unit charge. It has been
shown in [67] that this excess could be explained as being
due to relatively long-lived doubly charged particles. It
would be very interesting to see if the reported excess will
survive with increasing statistics of the forthcoming LHC
Run 3.

APPENDIX A: ATOMIC PROCESSES
AND X-ATOM FORMATION TIMES

1. Formation times of X-atomic systems

a. Formation of ðdXÞ ions and of ðddXÞ
and ð3HdXÞ atoms

Moderation of muons in medium and formation of μ
atoms were considered in the classic papers [68,69] which
stood the test of time (see, e.g., [70]). The moderation time
is practically independent of the mass of the ionizing
particle and is inversely proportional to square of its charge;
this allows one to deduce the moderation times for X
particles by a simple scaling of the muonic case. From the
results of Ref. [69] we find that the moderation time of X
particles from β≡ v=c ≃ 0.1 to atomic velocities v ≃
2e2=ℏ ≃ 1.5 × 10−2c is

τ ≃ 6 × 10−11 s ðA1Þ

at liquid hydrogen density N0 ¼ 4.25 × 1022 nuclei=cm3

and T ≃ 20 K. It is about 4.8 × 10−8 s in deuterium gas at
0° C and pressure of one bar.
Once an X particle has slowed down to atomic velocities,

it gets captured on a highly excited state of the (dX) ion,
which then deexcites through a combination of γ-ray
cascade emission (mostly E1 transitions) and inelastic
scattering on the neighboring deuterium atoms with their
Auger ionization. This is similar to deexcitation of highly
excited ðμdÞ atoms in the case of μCF. In the latter case, the
two deexcitations processes are generically of comparable

rates; at liquid hydrogen density the Auger process slightly
dominates. The deexcitation to the ðμdÞ ground state occurs
within t ∼ 10−12 s [71].
In the case of ðdXÞ deexcitation, the radiative processes

get enhanced. Indeed, the rates of E1 emission are propor-
tional to cube of the energy Eγ of the emitted γ and square
of the transition matrix element of the electric dipole
operator dfi. It is easy to see that Eγ scales linearly with
the mass of the atomic orbiting particle m, whereas dfi
scales linearly with the Bohr radius of the system, i.e., is
inversely proportional to m. Therefore, the rates of E1
transitions scale linearly with m. As a result, we find that
the rate of radiative deexcitation of the (Xd) system is larger
than that of the ðdμÞ atom by a factormd=mμ ∼ 20. One can
therefore expect the deexcitation of ðdXÞ ions to be at least
as fast as that for the muonic deuterium, i.e., to occur
within ∼10−12 s.
The produced negative ion ðdXÞ can pick up another

deuteron from the medium to form a highly excited state of
the ðddXÞ atom, which can deexcite through the same
processes as ðdXÞ. In addition, being electrically neutral,
ðddXÞ can penetrate deep inside the neighboring deuterium
atoms and experience the electric field of their nuclei. This
leads to Stark mixing effects which further accelerate the
de-excitation processes [71,72].
The situation is quite similar for the formation time of

ð3HdXÞ atoms. An ð3HXÞ negative ion produced in reaction
(2b) picks up a deuteron from the medium to form a highly
excited state of the ð3HdXÞ atom. The latter then deexcites
as described above for the ðddXÞ atom, within approx-
imately the same time interval.

b. Charge exchange reaction d + ðpXÞ → ðdXÞ+ p
A simple and accurate estimate of the cross section of the

muon exchange reaction dþ ðpμÞ → ðdμÞ þ p, based on
dimensional analysis and the fact that low-energy cross
sections of inelastic processes are inversely proportional
to the relative velocities of the colliding particles, was given
in [36]. The cross section of the reaction dþ ðpXÞ →
ðdXÞ þ p can be estimated similarly, which yields

σc ≃ 4πa2pfv�=v: ðA2Þ

Here ap ¼ ℏ=ð2αmpcÞ ¼ 1.44 × 10−12 cm is the Bohr
radius of the ðpXÞ atom, v and v� are the relative velocities
of the involved particles in the initial and final states,
respectively, and f is a constant of order unity. Taking into
account that the relative velocities of the initial-state particles
are very small and the Q value of the reaction dþ ðpXÞ →
ðdXÞ þ p is ≃90 keV, we find v� ≃ 1.4 × 10−2c, which
gives

σcv ≃ 10−14 cm3=s: ðA3Þ
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For the rate λc and the characteristic time tc of this reaction
we then find, at liquid hydrogen density N0 ¼ 4.25×
1022 nuclei=cm3,

λc¼σcvN0≃4×108 s−1; tc¼ λ−1c ≃2.5×10−9 s: ðA4Þ

c. Positive ions ð3HedXÞ and ð4HedXÞ
and time scales of their formation

The complexes ð3HedXÞ and ð4HedXÞ are positive ions.
Such systems can be considered as composed of a tightly
bound “inner core”, represented by a neutral (HeX) atom,
and a deuteron, weakly bound to the core by atomic
polarization effects. The neutral atoms in the inner cores
are slightly perturbed by the presence of an external
deuteron and are characterized by the binding energies
and Bohr radii approximately equal to those of the
corresponding ð3HeXÞ or ð4HeXÞ atoms in the absence
of the additional deuteron. The extraneous deuteron is
bound on a 1s0 orbit characterized by a larger radius and
much smaller binding energy.
It is not immediately obvious if such exotic atomic

systems are actually stable; in particular, their stability
cannot be deduced from the stability of negative ion of
hydrogen H− familiar from the usual atomic physics.
Stability of three-body Coulomb systems with arbitrary
masses and charges of the particles was studied in a number
of papers, see, e.g., [47–49]. From their general results it
follows that the states (3HedX) and (4HedX) should actually
be stable. This can be seen from Fig. 8 of Ref. [47], Fig. 3
of [48] or Fig. 13 of [49], where the stability regions are
shown in the case of arbitrary fixed masses of the particles
and the chargeq1 ¼ 1 as a function ofq−12 andq−13 . Hereq1 is
the absolute value of the charge of the particle which is
opposite to the other two (q1 ¼ ZXe in the casewe consider),
whereas q2 and q3 are the charges of the same-sign particles,
with the convention q2 ≥ q3. As the stability depends on the
ratios of the charges and not on their absolute values, q1 was
set equal to unity for convenience. With such a normaliza-
tion, we have q2 ¼ 1, q3 ¼ 1=2. It can be seen from the
abovementionedFigures that the point ðq−12 ; q−13 Þ ¼ ð1; 2Þ is
inside the stability region, that is, positive ions (3HedX) and
(4HedX) must be stable. This point is, however, rather
close to the border of the stability region, which reflects
the relative smallness of the binding energy of the deuteron
(“deuteron affinity”).
We have attempted a variational calculation of the

binding energies of such positive ions using simple two-
and three-parameter Hylleraas-type trial wave functions
which were able to predict the stability of the H− ion, but
found no binding of deuteron. This is apparently related to
the fact that (HedX) ions, which have nuclei of differing
mass and charge on their atomic orbits, are more complex
than H− ions, whose two electrons are identical particles.

A qualitative analysis of the properties of such systems
would therefore necessitate calculations with more sophis-
ticated trial wave functions. This would require a dedicated
study, which is beyond the scope of the present paper.
In the absence of an actual calculation, we have to resort

to semi-quantitative methods. In doing that, we will be
using the properties of a negative ion H− as a starting point,
but will also take into account the peculiarities of (3HedX)
and (4HedX) ions. In the case of H−, the radius of the outer
electron’s orbit is about a factor 3.7 larger than that of the
inner electron [73], and the binding energy of the outer
electron (electron affinity) is about 18 times smaller than
that of the inner one. Taking into account tighter binding of
the inner core in the case of the positive ions we consider,
we assume the radii a of their external orbits and the
deuteron binding energies Ebd to be, respectively, a factor
of ∼30 larger and 3 orders of magnitude smaller than those
of the corresponding ðHeXÞ atoms. A factor ∼30 increase
for a compared with the inner core radius is obtained as
follows: we multiply the factor 3.7 hinted by H− ions by
2 × 2 ¼ 4 due to the X particle and the He nucleus each
having charge 2 and by the ratio of the mass of 3He (or 4He)
to the deuteron mass. This gives factor ∼22–30. For the
binding energy of the extra deuteron we take into account
that it scales as a−2. We therefore choose

ð3HedXÞ∶ a ≃ 7 × 10−12 cm; Ebd ≃ 1.2 keV; ðA5Þ

ð4HedXÞ∶ a ≃ 5 × 10−12 cm; Ebd ≃ 1.6 keV: ðA6Þ

The formation of (3HedX) and (4HedX) ions can proceed
as follows. An (3HeX) atom produced in reaction (1b)
collides with the neighboring D2 molecules, dissociating
them and picking up one of their deuterons through the
exothermic reaction

ð3HeXÞ þ D2 → ð3HedXÞ þ dþ 2e−: ðA7Þ

This is the dissociative attachment (DA) mechanism,
analogous to the one by which H− ions are produced in
e− þ H2 → H− þ H reactions. An important difference is,
however, that what is attached is now a nucleus (deuteron)
rather than an electron. The formation of (4HedX) ions from
(4HeX) atoms produced in reactions (4b) and (5b) proceeds
similarly. [Note that a tiny fraction of (4HedX) ions is
produced directly in the stage I reaction (3b).]
As the Q values of the formation reactions of (3HedX)

and (4HedX) ions are about 2 orders of magnitude larger
than the dissociation energy of D2 molecules and the
ionization potential of D atoms, these processes are actually
similar to the usual charge exchange reactions on free
particles, except that most of the released energy is now
carried away by the final-state electrons. The rates and
characteristic times of these processes can therefore be
estimated using the expressions similar to those in
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Eqs. (A3) and (A4). This gives, at the liquid hydrogen
density,

λDA ∼ 5 × 107 s−1; tDA ¼ λ−1DA ∼ 2 × 10−8 s: ðA8Þ

2. Atomic binding energies of light nuclei
in X atoms and Q values of fusion reactions

The Q value of an XCF reaction can be found by
subtracting from the Q value of the corresponding X-less
reaction the atomic binding energy of the nuclei in the
initial state and adding to it the binding energy of one of the
produced nuclei to X in the final state, when such bound
states are formed. We therefore first find the relevant
binding energies.

a. Anti-helium-like ðddXÞ atom
The total binding energy of the helium atom is

79.005 eV. From this value, the binding energy of the
(ddX) atom is obtained to a very good accuracy by the
simple rescaling with the factor md=me, which gives
EbðddXÞ ¼ 0.290 MeV.

b. Other X atoms with Coulomb-bound light nuclei

For atomic ðNN0XÞ states other than ðddXÞ we first
consider hydrogenlike atoms ðNXÞ and than estimate the
atomic binding energy of the additional nucleus N0
(m > m0 is assumed). In the limit of pointlike nuclei the

ground-state wave function ψ1sðrÞ, the Bohr radius a, and
the binding energy E0

b of an ðNXÞ state are

ψ1sðrÞ ¼
1ffiffiffiffiffiffiffiffi
πa3

p e−r=a; a ¼ ℏ2

ZXZe2m
¼ 1

ZXZα
ℏ
mc

;

E0
b ¼ jE0

1sj ¼
1

2
ðZXZαÞ2mc2: ðA9Þ

Here Ze and m are the charge and the mass of the nucleus
N, and −ZXe is the charge of the X particle (ZX ¼ 2 in the
case under discussion).
For most of the nuclei we consider that the Bohr radii of

the ðNXÞ atomic states are either comparable to or smaller
than the nuclear radii, and the approximation of pointlike
nuclei is rather poor. We therefore allow for finite nuclear
sizes by making use of a variational approach. We consider
nuclei as uniformly charged balls of radius R and employ
the simple one-parameter test wave function of Flügge and
Zickendrant, which has the correct asymptotics for both
large and small r [74,75]:

ψðrÞ ¼ NðλÞ
�
1þ λr

2R

�
e−

λr
2R; NðλÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

7π

�
λ

2R

�
3

s
:

ðA10Þ

Here λ is the variational parameter. With this wave function,
the expectation value of the energy of the system is

EðλÞ ¼ 3

56

ℏ2

mR2

�
λ2 þ R

a

�
216

λ2
− 28 − e−λ

�
216

λ2
þ 216

λ
þ 80þ 14λþ λ2

���
: ðA11Þ

We minimize it numerically, which yields the ground-state
energy E1s, the binding energy of the system being
EbðRÞ ¼ jE1sj. The corresponding value of λ determines,
through Eq. (A10), the ground-state wave function of the
system. It will be used in the calculations of the sticking
probabilities in Appendix A 3 a below.
We calculate the binding energies of ðNXÞ states for

two different choices of the values of the nuclear radii R.

First, we employ the frequently used expression R ¼ RN≡
1.2A1=3 fm, where A is the atomic number of the nucleusN.
Second, we make use of the experimentally measured rms

charge radii rNc ≡ hr2ci1=2N [76] and set the nuclear radii equal
toRNc ≡ ð5=3Þ1=2rNc, which is the relation betweenRNc and
rNc in the uniformly charged ball model of the nucleus. The
results are presented inTable I alongwith theBohr radiia and

TABLE I. Properties of ðNXÞ bound states. Third and fifth columns show experimental values of rms charge radii rNc ≡ hr2ci1=2N from
Ref. [76] and the corresponding nuclear radii found as RNc ¼ ð5=3Þ1=2rNc. EbðRNÞ and EbðRNcÞ are binding energies calculated for the
corresponding values of nuclear radii; E0

b ¼ ðZXZαÞ2mc2=2 is binding energy in the limit of pointlike nuclei.

Bound state Bohr radius a (fm) rNc (fm) [76] RN ¼ 1.2A1=3 (fm) RNc (fm) EbðRNÞ (MeV) EbðRNcÞ (MeV) E0
b (MeV)

(pX) 14.4 0.8783 1.20 1.134 0.096 0.096 0.100
(dX) 7.20 2.142 1.51 2.765 0.189 0.183 0.200
(3HX) 4.81 1.759 1.73 2.271 0.276 0.268 0.299
(3HeX) 2.41 1.966 1.73 2.538 1.00 0.905 1.196
(4HeX) 1.81 1.676 1.905 2.163 1.202 1.153 1.588
(6LiX) 0.805 2.589 2.18 3.342 2.680 2.069 5.369
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the binding energies for pointlike nucleiE0
b. Note that for our

further calculations we use the results based on the exper-
imentally measured nuclear charge radii, which are presum-
ably more accurate.
As a test, we also performed similar calculations for

atomic systems ðNCÞ with C a singly negatively charged
heavy particle, for which the binding energies were
previously found in [63]. Our results are in good agreement
with those of Ref. [63], the difference typically being
within 1%.
The binding energies of the X atoms in the initial states

of the XCF reactions other than ðddXÞ are found as follows.
For ð3HdXÞ atoms, we add to the binding energy of the
negative ð3HXÞ ion the deuteron binding energy found
through the variational procedure described above, assum-
ing the deuteron to be a pointlike particle in the Coulomb
field of a nucleus of charge Z3H − ZX ¼ −1 and radius
equal to that of the 3H nucleus. For positive ions ð3HedXÞ
and ð4HedXÞ, we add to the binding energies of ð3HeXÞ and
ð4HeXÞ atoms the deuteron binding energy Ebd given in
Eqs. (A5) and (A6), respectively. The obtained binding
energies are then used for calculating the Q values of the
XCF reactions under consideration. The results are shown
in the third column of Table III.

3. Sticking probabilities and related issues

a. Sticking probabilities in the sudden approximation

To evaluate the probability ωs that the X particle in the
final state of a fusion process will stick to one of the
produced nuclear fragments, we make use of the fact that
nuclear reactions of XCF occur on time scales that are
much shorter than the characteristic X-atomic time. Indeed,
the characteristic time of X-atomic processes is
tat ∼ ad=vat ∼ ℏ3=ð4mde4Þ ≃ 1.6 × 10−21 s, whereas the
fusion reactions of XCF occur on the nuclear time scales
≲10−23 s. This disparity between the atomic and nuclear
time scales in XCF allows one to use the sudden approxi-
mation [77] for evaluating the X-sticking probabilities ωs.
Consider the reaction ðN1N2XÞ → N3 þ N4 þ X. Just

before the fusion occurs, the nuclei in the ðN1N2XÞ atom
approach each other to a distance of the order of the range
of nuclear force. The atomic wave function therefore
adiabatically goes over into that of the hydrogenlike atom
with a nucleus of mass mi ¼ m1 þm2 and charge Zi ¼
Z1 þ Z2 orbiting the X particle. We denote this wave
function ψ i. As the fusion occurs suddenly (compared
with the atomic time scale), the state of the atomic system
immediately after the fusion will be described by the same
wave function. Transition amplitudes can then be found by
projecting it onto the proper final states. Let the velocity of
the produced nucleus N3 of massm3 be v⃗. As the final-state
X particle is practically at rest, this is also the relative
velocity of N3 and X. The probability that N3 will get
captured by X and form a bound state with it is then

ωs ¼
X
α

				
Z

ψ�
fαψ ie−iq⃗ r⃗dV

				
2

; ðA12Þ

where ψfα is the wave function of the final ðN3XÞ state and
q⃗ ¼ m�v⃗=ℏ, m� ¼ m3mX=ðm3 þmXÞ ≃m3 is the reduced
mass of the N3X system. The sum in (A12) is over all the
bound states of the hydrogenlike atom ðN3XÞ.
The case of radiative fusion reactions ðN1N2XÞ → N3 þ

γ þ X is considered quite similarly. However, due to
different kinematics, the values of q ¼ jq⃗j are related
differently to the Q values for these reactions. For the
nonradiative reactions we have q ¼ ffiffiffiffiffiffiffiffiffi

2μQ
p

=ℏ with
μ ¼ m3m4=ðm3 þm4Þ, whereas for the radiative ones we
have q ≃Q=ðℏcÞ.
The main contribution to ωs comes from the transition to

the ground state of the ðN3XÞ atom, with the total
contribution of all the excited states being less than 20%
[34]. For our estimates we shall therefore restrict ourselves
to transitions to the ground states. The functions ψ i and ψf

are then the wave functions of the 1s states of the hydro-
genlike atoms with masses and charges of the atomic
particles mi ¼ m1 þm2, Zi ¼ Z1 þ Z2, and mf ¼ m3,
Zf ¼ Z3, respectively.
To take into account the finite size of the nuclei, we use

the wave functions (A10) with the substitutions λ → λi;f,
where the variational parameters λi;f are found from the
minimization of EðλÞ defined in (A11) with the replace-
ments a → ai;f and R → Ri;f. The Bohr radii ai;f are given
by the standard formula [see Eq. (A17) below]; the nuclear
radii Ri;f can be found from the rms nuclear charge radii as
discussed in Appendix A 2 b. To find Rf, we can directly
use the experimentally measured rms charge radius of the
nucleus N3. For the initial state, we approximate the rms
charge radius ri of the compound nucleus N1N2 as

ri ≃ ðr3N1c
þ r3N2c

Þ1=3; ðA13Þ

where rN1c ≡ hr2ci1=2N1
and rN2c ≡ hr2ci1=2N2

are the experi-
mentally measured rms charge radii of the N1 and N2

nuclei, respectively. Note that Eq. (A13) corresponds to the
liquid drop model of nucleus. Equation (A12) then gives
for the sticking probability

ωs ¼
�
32πNiNfκ

ðκ2 þ q2Þ3
�
κ2 þ 3κiκfðκ2 − q2Þ

κ2 þ q2

��
2

; ðA14Þ

where

Ni;f ¼ Nðλi;fÞ; κi;f ¼
λi;f
2Ri;f

; κ ¼ κi þ κf: ðA15Þ

For comparison, we also calculate the sticking proba-
bilities ωs0 neglecting the nuclear size, i.e., employing the
usual ground-state wave functions of the hydrogenlike
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atoms with pointlike nuclei (A9). From Eq. (A12) we
find

ωs0 ¼
ð2arÞ6
ðaiafÞ3

1

ð1þ q2a2rÞ4
; ðA16Þ

where

ai;f ¼
ℏ

ZXZi;fαmi;fc
; ar ¼

aiaf
ai þ af

: ðA17Þ

The obtained values of the sticking probabilities ωs and ωs0
are shown in the fourth and fifth columns of Table III.

b. Lifting the prohibition of radiative
E1 transitions for Coulomb-bound nuclei

The radiative nuclear fusion reaction dþ d → 4Heþ γ
has a tiny branching ratio. This is because it proceeds
mostly through E2 electromagnetic transitions, as E1
transitions are strictly forbidden for fusions of identical
particles. Indeed, after the separation of the irrelevant
center-of-mass motion, one finds that for particles of
charges q1;2 and masses m1;2 the effective charge of the
electric dipole operator is q ¼ ðq1m2 − q2m1Þ=ðm1 þm2Þ,
which vanishes when the two particles have the same
charge-to-mass ratio.
The situation may be different for XCF, when the fusing

particles are bound to an orbit of an X atom. Fusion may
then proceed through the transition to an intermediate
excited atomic state, which then deexcites via atomic
electric dipole radiation. In this mechanism the motion
of the center of mass of the initial-state nuclei plays a
central role, and the effective charge of the dipole operator
does not vanish. Consider the XCF reaction

ðddXÞ → ð4HeXÞ� → ð4HeXÞ þ γ; ðA18Þ

where ðddXÞ is in its ground ð1sÞ2 state and ð4HeXÞ� is an
excited state of the ð4HeXÞ atom which can decay through
an E1 transition. For definiteness, we take ð4HeXÞ� to be a
state with the principal quantum number n ¼ 3 (contribu-
tions of states with higher n are in general suppressed as
1=n3). Conservation of the total angular momentum and
parity in strong interactions responsible for the fusion
process imply that the intermediate n ¼ 3 state can be
either 3s or 3d. The excited ð4HeXÞ� state can then decay
through E1 γ emission to the 2p state of the ð4HeXÞ atom,
which will eventually deexcite to the ground state of
ð4HeXÞ. Thus, the radiative fusion reaction (3b) might
proceed through an E1 transition from an excited state of
ð4HeXÞ rather than through the usual E2 transitions.
It is easy to see, however, that this does not lead to any

appreciable increase of the rate of reaction (3b). Indeed, the
amplitude of the process in Eq. (A18) contains the product

of the amplitude of fusion with the formation of ð4HeXÞ�
and the amplitude of its subsequent E1 deexcitation. The
rate of the process (A18) is therefore proportional to the
probability that 4He produced as a result of the fusion
reaction is bound to X in an excited state of the ð4HeXÞ
atom rather than being ejected. The latter can be found in
the sudden approximation by making use of the expression
on the right-hand side of Eq. (A12) with ψfα being the
wave functions of the 3s and 3d states. Using for our
estimates the hydrogenlike wave functions for pointlike
nuclei, we find for the corresponding probabilities

P3s ¼
28

33
ðq2a2Þ2ðq2a2 þ 16

27
Þ2

ðq2a2 þ 16
9
Þ8 ; P3d ¼

217

39
ðq2a2Þ2

ðq2a2 þ 16
9
Þ8 :

ðA19Þ

Here q ≃Q=ðℏcÞ is the momentum transfer to the produced
4He nucleus divided by ℏ, and a is the Bohr radius of the
(4HeX) atom. Note that these probabilities are suppressed for
both large and small qa. Large-qa quenching is a result of
fast oscillations of the factor e−iq⃗ r⃗ in the integrand of (A12),
whereas the suppression at small qa is a consequence of the
orthogonality of the wave functions ψfα and ψ i. For process
(A18) we have qa ≃ 0.22, which yields P3s ≃ 8 × 10−3,
P3d ≃ 1.1 × 10−2. In estimating the rate of reaction (A18)we
also have to take into account that the photon emission
process is nonresonant. This leads to an additional suppres-
sion by the factor ∼ðΔE=EγÞ2 ≃ 9 × 10−5, where ΔE ≃
0.2 MeV is the energy difference between the n ¼ 3 and
n ¼ 2 states of the ð4HeXÞ atom and Eγ ≃Q ≃ 24 MeV is
the energy of the emitted γ. As a result, the rate of the X-
atomic E1 transition gets suppressed by a factor 1.7 × 10−6

compared with what is expected for a typical E1 transition.
To assess the importance of the X-atomic channel (A18)

of reaction (3b) we use the simple estimate of the rates of
electric multipole transitions from Ref. [78]:

ΓðElÞ ≃ 2ðlþ 1Þ
l½ð2lþ 1Þ!!�2

�
3

lþ 3

�
2

α

�
EγR

ℏc

�
2l Eγ

ℏ
: ðA20Þ

HereR is the nuclear radiusRN for nuclear transitions and the
size of the atomic system a for transitions between atomic
states. Note that, in the case of X atoms with light nuclei, the
nuclear and atomic radii are of the same order of magnitude
(see Table I). For the process under consideration one could
expect, neglecting the suppression of E1 transitions,
ΓðE1Þunsup:=ΓðE2Þ ∼ ð625=12ÞðEγa=ℏcÞ−2 ∼ 800. Taking
into account the discussed above suppression factor, we
arrive at ΓðE1Þ=ΓðE2Þ ∼ 1.4 × 10−3.
Thus, although transitions through excited atomic states

of the ð4HeXÞ atom lift the forbiddance of electric dipole
radiation in the fusion reaction (3b), the resulting E1
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transition is heavily hindered, and its contribution to the
rate of the process can be neglected.
A very similar argument applies to the radiative fusion

reaction (6b). Although the fusing nuclei, 4He and d, are not
identical in this case, they have nearly the same charge-to-
mass ratio. As a result, in the corresponding X-less reaction
E1 transitions are heavily suppressed, and the reaction
proceeds primarily through the E2 radiation. The XCF
reaction (6b) could go through excited atomic states of the
ð6LiXÞ atom. We find, however, that in this case the
suppression of the atomic E1 transition is even stronger
than it is for reaction (3b). Indeed, the Q value of the
reaction is rather small (Q ≃ 2.4 MeV), leading to
qa ≃ 10−2. Assuming again transitions through n ¼ 3
atomic states, we find for the probabilities of formation
of the excited states ð6LiXÞ� the values P3s ≃ 3 × 10−10,
P3d ≃ 6 × 10−10. The suppression factor due to the non-
resonant nature of the radiative transitions from the 3s and
3d states to the 2p state of ð6LiXÞ is ðΔE=EγÞ2 ≃ 0.02.
Altogether, this gives for the atomic E1 transitions in
process (6b) the suppression factor ∼2 × 10−11, which
makes them completely irrelevant.

APPENDIX B: ASTROPHYSICAL S-FACTORS,
REACTION FACTORS, AND FUSION RATES

In this section we give the details of our calculations of
the cross sections, rates, and branching ratios of the XCF
reactions under discussion.

1. Cross sections and reaction factors

The cross section of a fusion reaction of nuclei N1 and
N2 of masses m1;2 and charges Z1;2 is usually written
as [79]

σðEÞ ¼ SðEÞ
E

e−2πη12 ; ðB1Þ

where SðEÞ is the so-called astrophysical factor, E is the
c.m. system energy and η12 is the Sommerfeld parameter:

η12 ¼
Z1Z2e2

ℏv
¼ Z1Z2α

ffiffiffiffiffiffiffi
μc2

2E

r
; μ ¼ m1m2

m1 þm2

: ðB2Þ

Here v is the relative velocity of the fusing particles. If there
are no low-energy resonances in the fusion reaction, the
astrophysical factor SðEÞ is a slowly varying function of E
at low energies. For catalyzed fusion from the relative
s-wave state of N1 and N2 the reaction factor AðEÞ is
defined as AðEÞ ¼ σðEÞvC−2

0 [32]. Here C2
0 is the s-wave

Coulomb barrier penetration probability factor:

C2
0 ¼

2πη12
e2πη12 − 1

: ðB3Þ

This gives

AðEÞ ¼ SðEÞ
πZ1Z2αμc

ð1 − e−2πη12Þ: ðB4Þ

The transition from SðEÞ to AðEÞ takes into account the fact
that the catalyst particle screens the Coulomb fields of the
fusing nuclei and essentially eliminates the Coulomb
barrier. The rates λ of XCF reactions are related to the
corresponding AðEÞ factors as

λ ¼ AðEÞρ0; ρ0 ≡ jψ ið0Þj2R: ðB5Þ

Here ρ0 is the squared modulus of the atomic wave function
of the initial (N1N2X) state taken at zero separation
between the nuclei N1 and N2 (more precisely, at a distance
of the order of the range of nuclear forces) and integrated
over their distance R to the X particle. It plays the same role
as the number density n of the target particles in the usual
expression for the reaction rates λ ¼ σnv [32].
In muonic molecules or molecular ions, the energies of

relative motion of nuclei are very low, so that η12 ≫ 1; the
term e−2πη12 in Eq. (B4) is therefore always omitted in the
literature on μCF. In addition, in evaluating the cross
sections of the fusion reactions it is usually sufficient to
consider the astrophysical S factors in the limit E → 0.
In contrast to this, in XCF processes the kinetic energy E

of the relative motion of the nuclei N1 and N2 in (XN1N2)
atoms is not negligible. For a system of charges bound by
the Coulomb force, the virial theorem relates the mean
kinetic energy T̄ and mean potential energy Ū as 2T̄ ¼ −Ū.
Therefore, the mean kinetic energy T̄ in the ground state
coincides with the binding energy of the system:
Eb ¼ jT̄ þ Ūj ¼ T̄. On the other hand, T̄ is the sum of
themean kinetic energies of the relativemotion ofN1 andN2

and of their center-of-mass motion. In the ðddXÞ atom, these
two energies are to a good accuracy equal to each other,
which gives E ≃ Eb=2 ¼ 0.145 MeV. For other (XN1N2)
atomic systems of interest, the situation is more complicated;
a rough estimate of the kinetic energy of relative motion of
the fusing nuclei yields E ≃ Ebm2=ðm1 þm2Þ, wherem2 is
the smaller of the two masses.
This can be explained as follows. Consider for simplicity

the wave function of the ðN1N2XÞ atom to be a product of
the hydrogenlike wave functions of ðN1XÞ and ðN2XÞ
systems, i.e.,

Ψiðr⃗1; r⃗2Þ ¼
1

πða1a2Þ3=2
e−

r1
a1
−r2
a2 : ðB6Þ

Such a wave function occurs when one neglects the
Coulomb interaction between N1 and N2, but in fact Ψi
of this form can partly include correlations between N1 and
N2 provided that one replaces the charge of the X particle
ZX by an effective charge ZXeff in the expressions for the
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Bohr radii a1 and a2 or, better still, treats a1 and a2 as
variational parameters. The ground-state mean values of the
total kinetic energy of the ðN1N2XÞ system, kinetic energy
of the center of mass ofN1 andN2, and their relative kinetic
energy are then

T̄ ¼ ℏ2

2m1a21
þ ℏ2

2m2a22
; T̄c:m: ¼

ℏ2

2m

�
1

a21
þ 1

a22

�
;

T̄rel ≡ E ¼ ℏ2

2m1a21

m2

m
þ ℏ2

2m2a22

m1

m
; ðB7Þ

wherem≡m1 þm2. Note that T̄c:m: þ T̄rel ¼ T̄. Form1 ¼
m2 we find E ¼ T̄=2 ¼ Eb=2. Assume now m1 > m2.
Since we expect ai ∝ m−1

i (i ¼ 1, 2), the kinetic energies
in Eq. (B7) can be estimated as

T̄ ∼
ℏ2

2m1a21
; T̄c:m: ∼

ℏ2

2ma21
;

E ¼ T̄ − T̄c:m: ∼
ℏ2

2m1a21

m2

m
∼ T̄

m2

m
; ðB8Þ

which yields E ∼ Ebm2=ðm1 þm2Þ.
Wave function (B6) can also be used for evaluating the

parameter ρ0 defined in Eq. (B5). Direct calculation gives

ρ0 ¼
1

πða1 þ a2Þ3
: ðB9Þ

We shall also employ the wave function Ψiðr⃗1; r⃗2Þ of
Eq. (B6) in Appendix B 3 for evaluating of the parameter ρ1
that enters into the expression for the rates of reactions (3c)
and (6c).

2. Astrophysical S factors and XCF reaction rates

The Coulomb binding of the fusing nuclei N1 and N2 to
an X particle should have no effect on the strong inter-
actions responsible for the fusion and can only modify the

reaction rates due to the facts that (i) the Coulomb repulsion
barrier is actually eliminated due to the very close distance
between N1 and N2 in the X-atom, and (ii) because of the
very small size of X-atoms, the number densities of N1 and
N2 within an ðN1N2XÞ atom are many orders of magnitude
larger than their number densities achievable for in-flight
fusion. This means that, for those reactions that can occur in
the absence of X particles, we can use the experimentally
measured values of the corresponding astrophysical S
factors in order to calculate the rates of the XCF reactions.
We take the relevant data from Refs. [80–85]. For internal
conversion (IC) reactions (3c) and (6c), which do not have
X-less analogues, we calculate the rates directly in the next
subsection. The input data necessary for the calculations of
the reaction factors AðEÞ for all the discussed reactions and
the obtained results are shown in Table II.

3. Rates of internal conversion (IC)
processes (3c) and (6c)

IC is deexcitation of an excited nucleus in an atom
through the ejection of an atomic electron (or, in the case of
muonic atoms, of a muon) [86]. For IC in a process of
nuclear fusion, the initial excited nuclear state is a com-
pound nucleus formed by the merger of the two fusing
nuclei. In the case of μCF, the ejected particle is the muon;
for XCF, it is more appropriate to speak about the ejection
of the final-state nucleus itself rather than of the X particle,
as the latter is expected to be much heavier than light
nuclei. However, when considered in terms of the relative
motion between the “nucleus” and the orbiting particle, the
treatment of IC in XCF closely parallels that in the case of
the usual atoms or molecules.
At low energies relevant to fusion of light nuclei, IC

predominantly proceeds through electric monopole (E0)
transitions whenever this is allowed by angular momentum
and parity selection rules. This is the case for reactions (3c)
and (6c). The matrix element of an E0 transition can be
written as [87]

TABLE II. Binding energies Eb, relative kinetic energies E of fusing nuclei, astrophysical S-factors SðEÞ, reaction factors AðEÞ,
ρ parameters and rates λ for the XCF reactions of stages I, II and III. Rates are inclusive of all subchannels with either free or bound X
particles in the final state, except for IC processes, where final-state X can only be free. Symbol ” means same as in the above line. ρ
factors shown in the sixth column are values of ρ1 for IC reactions (3c) and (6c) and ρ0 for all other reactions. See text for details.

Reaction Eb (MeV) E (MeV) SðEÞ (MeV b) AðEÞ (cm3=s) ρ0;1 (1035 cm−3) λ (s−1)

ðddXÞ → 3Heþ nþ X 0.290 0.145 0.102 [80] 1.31 × 10−16 0.64 8.4 × 1018

ðddXÞ → 3Hþ pþ X ” ” 8.6 × 10−2 [80] 1.11 × 10−16 ” 7.1 × 1018

ðddXÞ → 4Heþ γ þ X ” ” 7 × 10−9 [83] 9.0 × 10−24 ” 5.8 × 1011

ðddXÞ → 4Heþ X ” ” 1.9 × 10−2 2.5 × 10−17 0.73 1.8 × 1018

ð3HedXÞ → 4Heþ pþ X 0.91 0.36 7.1 [84] 4.0 × 10−15 7.6 × 10−3 3.0 × 1018

ð3HdXÞ → 4Heþ nþ X 0.32 0.13 5.6 [85] 6.2 × 10−15 0.88 5.5 × 1020

ð4HedXÞ → 6Liþ γ þ X 1.16 0.39 1.3 × 10−8 [82] 6.6 × 10−24 1.8 × 10−2 1.2 × 1010

ð4HedXÞ → 6Liþ X ” ” 1.55 7.9 × 10−16 0.14 1.1 × 1019
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Mfi ¼
2π

3
ZXe2Q̃0ψ

�
fð0Þψ ið0Þ: ðB10Þ

Here ψ ið0Þ is the atomic wave function of the initial-state
compound nucleus bound to the X particle and ψfð0Þ is the
final-state continuum atomic wave function of the ejected
nucleus, both taken at zero separation between the nucleus
and the X particle. The quantity Q̃0 (not to be confused with
Q0 of Table III) is the transition matrix element of the
nuclear charge radius operator between the initial and final
nuclear states:

Q̃0 ¼ hfj
XZ
i¼1

r2pijii: ðB11Þ

Here the sum is taken over nuclear protons. The rate of the
process is readily found from the matrix element (B10):

λIC ¼ gs
8π

9
Z2
Xα

2

�
mc
ℏ

�
2

c

ffiffiffiffiffiffiffiffiffiffiffi
E0

2mc2

r
jQ̃0j2FðZXZ; E0Þρ1:

ðB12Þ

Here gs is the statistical weight factor depending on the
angular momenta of the initial and final states, m is the
mass of the nucleus N produced as a result of the fusion
reaction and E0 is its kinetic energy, which to a good
accuracy coincides with the Q value of the reaction. The
factor FðZXZ; E0Þ, defined as

FðZXZ; E0Þ ¼
jψfð0Þj2Z
jψfð0Þj2Z¼0

; ðB13Þ

takes into account the deviation of the wave function of the
final-state nucleus N of charge Z from the plane wave due
to its interaction with the electric field of the X particle. It is
similar to the Fermi function employed in the theory of
nuclear β decay. By ρ1 we denoted the quantity jψ ið0Þj2; it
will be discussed in more detail below.
We estimate the transition matrix elements of the charge

radius operator as

Q̃0 ≃ rirf; ðB14Þ

where rf ≡ hr2ci1=2f is the rms charge radius of the final-
state nucleus, and ri is the rms charge radius of the
compound nucleus in the initial state, which we express
through the rms charge radii rN1c

and rN2c
of the fusing

nucleiN1 andN2 according to Eq. (A13). Thus, we actually
estimate the transition matrix element of the charge radius
operator Q̃0 as the geometric mean of the charge radii of the
initial and final nuclear states.
The function FðZXZ; E0Þ can be written as

FðZXZ; E0Þ ¼
2πη

1 − e−2πη
: ðB15Þ

The Sommerfeld parameter η is in this case

η ¼ ZXZα

ffiffiffiffiffiffiffiffi
mc2

2E0

s
: ðB16Þ

Note the similarity of Eq. (B15) with Eq. (B3); the
difference is that Eq. (B3) describes the Coulomb repulsion

TABLE III. General characteristics of reactions (1a)–(6c). Q and Br are Q values and branching ratios of XCF reactions; Q0 and Br0
are values of these parameters for the corresponding X-less processes. ωs and ωs0 are X-sticking probabilities found for nuclei of finite
and zero radius, respectively.

Reaction Q0 (MeV) Q (MeV) ωs0 ωs Br0 Br

ðddXÞ → 3Heþ nþ X 3.27 2.98 Not applicable Not applicable 54.2% 29.1%
ðddXÞ → ð3HeXÞ þ n Not applicable 3.89 0.61 0.40 Not applicable 19.4%
ðddXÞ → 3Hþ pþ X 4.03 3.74 Not applicable Not applicable 45.8% 34.4%
ðddXÞ → ð3HXÞ þ p Not applicable 4.01 0.22 0.15 Not applicable 6.2%
ðddXÞ → 3Hþ ðpXÞ Not applicable 3.84 1.9 × 10−2 1.2 × 10−2 Not applicable 0.5%
ðddXÞ → 4Heþ γ þ X 23.85 23.56 Not applicable Not applicable 3.7 × 10−8 4 × 10−9

ðddXÞ → ð4HeXÞ þ γ Not applicable 24.71 0.95 0.87 Not applicable 3 × 10−8

ðddXÞ → 4Heþ X Not applicable 23.56 Not applicable Not applicable Not applicable 10.4%
ð3HedXÞ → 4Heþ pþ X 18.35 17.44 Not applicable Not applicable 100% 94%
ð3HedXÞ → ð4HeXÞ þ p Not applicable 18.60 0.29 0.06 Not applicable 6%
ð3HedXÞ → 4Heþ ðpXÞ Not applicable 17.54 2.3 × 10−3 3.0 × 10−4 Not applicable 3.0 × 10−4

ð3HdXÞ → 4Heþ nþ X 17.59 17.27 � � � Not applicable 100% 96%
ð3HdXÞ → ð4HeXÞ þ n Not applicable 18.42 0.23 4.0 × 10−2 Not applicable 4.0%
ð4HedXÞ → 6Liþ γ þ X 1.475 0.32 � � � Not applicable 100% 10−13

ð4HedXÞ → ð6LiXÞ þ γ Not applicable 2.39 1–1.2 × 10−6 1–1.2 × 10−3 Not applicable 1.9 × 10−8

ð4HedXÞ → 6Liþ X Not applicable 0.32 Not applicable Not applicable Not applicable ≃100%
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of the like-sign charged nuclei N1 and N2, whereas
Eq. (B15) accounts for the Coulomb attraction of the
oppositely charged X particle and final-state nucleus N
of charge Z. This attraction increases the value of the
atomic wave function of N at r ¼ 0 and leads to the
enhancement of the reaction probability (Sommerfeld
enhancement [88]).
The quantity ρ1 in Eq. (B12) is the squared modulus of

the wave function of the compound nucleus in the initial
state of the IC reaction, taken at zero separation between the
nucleus and the X particle. We evaluate it by integrating the
squared wave function of the initial atomic state ðN1N2XÞ
over the distance r⃗ between the fusing nuclei in the volume
jr⃗j ≤ R1c þ R2c (where R1c and R2c are the radii of the
fusing nuclei) and setting the distance R between their
center of mass and the X particle to zero:

ρ1 ≡
Z

jr⃗j≤r0

jψ iðR⃗ ¼ 0; r⃗Þj2d3r; r0 ¼ R1c þ R2c: ðB17Þ

For our estimates we use the wave function Ψiðr⃗1; r⃗2Þ
defined in Eq. (B6). Going from the coordinates r⃗1 and r⃗2
of N1 and N2 to their relative coordinate r⃗ and c.m.
coordinate R⃗ and substituting into (B17), we obtain

ρ1 ¼
a3�

πða1a2Þ3
�
1 − e−

2r0
a�

�
1þ 2

r0
a�

þ 2
r20
a2�

��
;

a� ≡
�

m2

m1 þm2

a−11 þ m1

m1 þm2

a−12

�
−1
: ðB18Þ

a. Reaction ðddXÞ → 4He+X (3c)

For this reaction Z1 ¼ Z2 ¼ 1, Z ¼ 2, and
Q ¼ 23.56 MeV. The transition matrix element of the
charge radius operator, estimated according to Eqs. (B14)
and (A13), is Q̃0 ≃ 4.52 fm2. For transitions from the (ddX)
state one has to take into account that the initial state of two
spin-1 deuterons in the atomic s state can have total spin
S ¼ 2 or 0 (spin 1 is excluded byBose statistics). This gives 6
possible initial spin states. As the final-state nucleus 4He has
zero spin and the transition operator is spin independent, the
IC transition (3c) is only possible from the S ¼ 0 state of
ðddXÞ. Therefore, gs ¼ 1=6. For evaluating the parameter ρ1
given in Eq. (B18) we use the values of a1 ¼ a2 ¼ 8.53 fm
found from the variational treatment of the ðddXÞ atom with
wave function (B6).

b. Reaction ð4HedXÞ → 6Li+X (6c)

In this case Z1 ¼ 2, Z2 ¼ 1, Z ¼ 3, and
Q ¼ 0.320 MeV. For the transition matrix element of
the charge radius operator we find Q̃0 ≃ 6.32 fm2. The
reaction ð4HedXÞ → 6Liþ X is an E0 transition between
nuclear states of total spin 1; therefore, the weight factor
gs ¼ 1. For our evaluation of ρ1 we take a1 ¼ 1.81 fm,
which is the Bohr radius of the ð4HeXÞ atom, and
a2 ≃ 30a1, as discussed in Appendix A 1 c.
The expression for the rates of IC processes can

conveniently be written in the form similar to (B5):
λIC ¼ Aρ1, where the reaction factor A is defined as the
factor multiplying ρ1 in eq. (B12). The values of the IC
reaction factor A and of the quantity ρ1 for reactions (3c)
and (6c) are presented in Table II, along with the reaction
factors and rates of the other discussed XCF reactions.
To assess the accuracy of our calculations of the IC

reaction factors, we compared our result for the ð4HedXÞ →
6Liþ X process with the existing calculations, which were
carried out in the catalyzed BBN framework for the case of
a singly charged catalyst particle C using a simple scaling
law [63] and within a sophisticated coupled-channel
nuclear physics approach [89]. To this end, we recalculated
our result taking ZX ¼ 1, Q ¼ 1.3 MeV, and the c.m.
energy E ¼ 10 keV which were used in [63,89]. For the
reaction factor A of the process dþ ð4HeCÞ → 6Liþ C we
found A≡ λIC=ρ1 ≃ 9.9 × 10−17 cm3=s. Eq. (B4) then
gives for the corresponding astrophysical S factor
SðEÞ ¼ 0.19 MeVb. This has to be compared with the
results of Ref. [63] (0.3 MeV b) and Ref. [89]
(0.043 MeV b). Our result lies between these two numbers,
and is a factor of 1.6 smaller than the former and a factor of
4.4 larger than the latter.

4. Branching ratios

The rates of the subchannels of the XCF reactions in
which the final state X sticks to one of the produced nuclear
fragments are obtained by multiplying the total rate of the
channel, given in Table II, by the corresponding sticking
probability ωs, shown in Table III. The rate of the
subchannel with a free X in the final state is then found
by subtracting from the total rate of the channel the rates of
all the subchannels with bound X in the final state. As an
example, the rates of reactions (2b) and (2c) are obtained by
multiplying the total rate of the ðddXÞ fusion process with
the production of 3H and p, λ ¼ 7.1 × 1018 s−1, by ωs ¼
0.15 and ωs ¼ 1.2 × 10−2, respectively; the rate of reaction
(2a) is then given by λð1–0.15–1.2 × 10−2Þ. It is then
straightforward to find the branching ratios of all the
discussed reactions; the results are presented in Table III.
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