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We discuss first-order electroweak phase transition in models with extended Higgs sectors for the case
with relatively heavy additional scalar bosons. We first show that, by the combination of the sphaleron
decoupling condition, perturbative unitarity, and vacuum stability, mass upper bounds on additional scalar
bosons can be obtained at the TeV scale even at the alignment limit where the lightest Higgs boson behaves
exactly like the SM Higgs boson at tree level. We then discuss phenomenological impacts of the case with
the additional scalar bosons with the mass near 1 TeV. Even when they are too heavy to be directly detected
at current and future experiments at hadron colliders, the large deviation in the triple Higgs boson coupling
can be a signature for first-order phase transition due to quantum effects of such heavy additional Higgs
bosons. On the other hand, gravitational waves from the first-order phase transition are found to be weaker
in this case as compared to that with lower masses of additional scalar bosons.
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I. INTRODUCTION

Although the standard model (SM) has been successful
being consistent with current data at LHC [1,2], there are
phenomena that cannot be explained in the SM such as
neutrino oscillation, dark matter and baryon asymmetry of
the Universe (BAU). Therefore, new physics beyond the
SM is absolutely necessary.
In order to explain the BAU, the idea of baryogenesis

is the most promising. A new model is required to satisfy
the Sakharov’s conditions to realize baryogenesis [3]. It
has turned out that the SM cannot satisfy these conditions
[4–7]. Its extension has to be considered for successful
baryogenesis. In particular, for the scenario of electroweak
baryogenesis [8], extended Higgs sectors are often intro-
duced to satisfy the Sakharov’s conditions having the
sufficient amount of CP violation and realizing strongly
first-order electroweak phase transition.
The strongly first-order phase transition is the most

important characteristic property for the model of electro-
weak baryogenesis. The electroweak phase transition in
extended Higgs models with additional doublet scalar fields
[9–19], singlet fields with scalar mixing [20–24] or without
scalar mixing [25–28] etc., has been studied. In the model

of electroweak baryogenesis, the condition of strongly first-
order phase transition (the sphaleron decoupling condition)
can be approximately described by [8]

vc
Tc

> 1; ð1Þ

where Tc is the critical temperature, and vc is the value of
the order parameter at Tc.
Phenomenological consequences of extended Higgs

sectors have been examined at current and future collider
experiments. For instance, the two Higgs doublet model
(THDM) [29–41], the SM with singlet fields [42–49], the
triplet Higgs model [50–55] and the inert doublet model
(IDM) [56–59] have been studied. In particular, the triple
Higgs boson coupling in several extended Higgs models,
which characterize the structure of the Higgs potential, can
deviate significantly from the SM prediction via quantum
corrections [29,39,40,47,50,57]. The large quantum effect
is often called the nondecoupling effect. New effective field
theories describing the nondecoupling effects have recently
been proposed [60–63]. Such large deviations in the triple
Higgs boson coupling due to the quantum nondecoupling
effects are often predicted in models of electroweak baryo-
genesis to satisfy the sphaleron decoupling condition (1)
[13,64]. Namely, the strongly first-order electroweak phase
transition can be tested by detecting a large deviation in the
triple Higgs boson coupling from the SM prediction at
future hadron colliders and lepton colliders such as the
High Luminosity-LHC (HL-LHC) [65,66], Future Circular
Collider (FCC-hh) [67], International Linear Collider (ILC)
[68], and Compact LInear Collider (CLIC) [69]. For
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example, it has been shown that the electroweakbaryogenesis
can be realized in the framework of a CP-violating THDM
without the constraints from the electric dipole moments
[70,71]. In thismodel, the tripleHiggs boson coupling should
deviate from the SM prediction about 33–55%.
It has also been known that gravitational waves (GWs)

from the first-order phase transition can be used to explore
such a scenario of electroweak baryogenesis [72].1 The
spectrum takes a special shape with a peak around 10−3

to 10−1 Hz. Such GWs are expected to be observed at the
LISA [74], DECIGO [75], BBO [76], TianQin [77], and
Taiji [78]. From detailed measurements of the GWs, not
only the nature of electroweak phase transition [72] but also
the structure of the extended Higgs sector may be able to be
determined [27,28,79–81].
It has been known that from the unitarity argument [82]

there are upper bounds on the masses of the additional
Higgs bosons if the coupling constants of the lightest SM-
like Higgs boson h deviate from the SM ones [34,83,84]. In
the alignment limit where the lightest Higgs boson behaves
exactly like the SM Higgs boson at the tree level, on the
contrary, no such upper bound is obtained, and the masses
of additional Higgs bosons can be very large.
In this letter, the first-order electroweak phase transition

is discussed in models with extended Higgs sectors for
the case with relatively heavy additional Higgs bosons. We
here employ the more exact expression of the sphaleron
decoupling condition. We then examine the parameter
space of the THDM where the sphaleron decoupling
condition is satisfied with perturbative unitarity [85–87]
and vacuum stability [88]. A similar analyses are also
performed in the model with N singlet scalar fields
possessing a OðNÞ global symmetry (N-scalar singlet
model) [27] and the IDM [89]. We find that mass upper
bounds on additional Higgs bosons are obtained to be at the
TeV scale even in the alignment limit.
We also discuss phenomenological impacts of the case

with the additional Higgs bosons with the mass near 1 TeV
in these extended Higgs models. We find that even though
they are too heavy to be directly detected at current and
future experiments at hadron colliders, the large deviation
in the triple Higgs boson coupling can be a signature for
the first-order electroweak phase transition due to quantum
effects of such heavy additional Higgs bosons, while GWs
from the first-order phase transition is weaker in this case as
compared to the case with light additional Higgs bosons.
The structure of this paper is as follows. In Sec. II, we

give a review of the THDM. In Sec. III, we discuss the
condition of the strongly first-order electroweak phase
transition. Then, in Sec. IV, we discuss the constraint on
the THDM by utilizing the condition defined in Sec. III.

In Sec. V, we consider three benchmark points to show
phenomenological differences between the models with
light and heavy additional Higgs bosons. We also discuss
the triple Higgs boson coupling with relatively heavy
additional Higgs bosons in the THDM, and show the
GW spectra in each benchmark point. In Sec. VI, we show
a similar discussion on the N-scalar singlet model and the
IDM. Discussions and conclusions are given in Sec. VII.

II. THE TWO HIGGS DOUBLET MODEL

We here define the THDM, by using which we explain
details of our analysis for the phase transition. For the
results in the other models such as the N-scalar singlet
model and the IDM, we only summarize them in Sec. VI.
We consider the CP-conserving THDM with a softly-

broken Z2 symmetry Φ1 → Φ1, Φ2 → −Φ2. The symmetry
plays a role to avoid flavor changing neutral currents at the
tree level [90]. The Higgs potential in the model is given by

VTHDM
tree ðΦ1;Φ2Þ¼m2

1jΦ1j2þm2
2jΦ2j2−ðm2

12Φ
†
1Φ2þH:c:Þ

þλ1
2
jΦ1j4þ

λ2
2
jΦ2j4þλ3jΦ1j2jΦ2j2

þλ4jΦ†
1Φ2j2þ

�
λ5
2
ðΦ†

1Φ2Þ2þH:c:

�
: ð2Þ

Although m2
12 and λ5 are complex in general, we here

assume that these are real for simplicity. The doublets Φi
(i ¼ 1, 2) are parametrized as

Φi ¼
� wþ

i
1ffiffi
2

p ðvi þ hi þ iziÞ
�

ði ¼ 1; 2Þ; ð3Þ

where tan β ¼ v2=v1, v1 ¼ v cos β, v2 ¼ v sin β, and
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
ð≃246 GeVÞ. We reduce two parameters

m2
1 and m2

2 by using the stationary conditions

∂VTHDM
tree

∂h1

����
min

¼ ∂VTHDM
tree

∂h2

����
min

¼ 0: ð4Þ

Diagonalizing the mass matrices and introducing the
mixing angle α for the CP-even neutral scalars, we obtain
five mass eigenstates; two CP-even states (h,H), a CP-odd
state (A) and charged states (H�). We take h as the Higgs
boson discovered at the LHC. The free parameters are
given by2

mH; mA; mH� ; tan β;

M2 ≡m2
12=ðsin β cos βÞ; sinðβ − αÞ: ð5Þ

The THDM is classified by the Z2 charge assignment for the
quarks and charged leptons as shown inTable I.We especially
focus on the type-I and type-II THDM in this paper.1It has been discussed that the observation of primordial black

holes may be important as a new tool to verify the first-order
electroweak phase transition via cosmological observations [73]. 2We utilize the definition described in Ref. [29].

SHINYA KANEMURA and MASANORI TANAKA PHYS. REV. D 106, 035012 (2022)

035012-2



We consider the bound from perturbative unitarity [82]
to discuss the constraints on the THDM [85–87]. The
dimensionless parameters λi (i ¼ 1;…; 5) in the Higgs
potential in Eq. (2) are constrained by perturbative unitarity.
Unless the Higgs field h behaves like the SM Higgs boson,
upper bounds on the masses of the additional Higgs bosons
are obtained by perturbative unitarity [34,45,83,84]. On the
contrary, if h is SM-like, no upper bound on the masses of
the additional Higgs bosons is obtained. As we discuss
later, the upper bound can be obtained even in such cases by
imposing the sphaleron decoupling condition in addition to
the unitarity bound. Another theoretical constraint comes
from vacuum stability, which is expressed by [91,92]

λ1 > 0; λ2 > 0; λ3 þ λ4 þ jλ5j > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð6Þ

The direct searches at collider experiments also set the
bound on the masses of the additional Higgs bosons. By the
LEP experiments [93], the THDM with mH� < 78 GeV is
ruled out. The additional Higgs bosons are also explored by
the LHC experiments. The lower bounds on the masses of
the additional Higgs bosons are determined via the A → ττ̄
and A → tt̄ processes [41]. For instance, in the type-I
THDM with tan β ¼ 1, the mass regions mΦ < 600 GeV
are excluded where Φ ¼ H;A;H�. In the type-II THDM
with tan β < 2 (tan β > 10), the mass regions mΦ <
350 GeV (mΦ < 400 GeV) are excluded.
The masses of the charged Higgs bosons are strongly

constrained by flavor experiments [94]. In the type-I
THDM with tan β < 1.5, mH� < 300 GeV is excluded
via the measurement of the Bs → μμ process. For the
type-II THDM, mH� < 590 GeV is excluded independ-
ently of tan β via the measurement of the B → Xsγ process.
The measurement of the Higgs boson couplings at the

LHC is also important. For the type-I THDM with tan β ¼
1 (tan β ¼ 2), jcosðβ − αÞj > 0.18 (0.25) is excluded. For
the type-II THDM, jcosðβ − αÞj > 0.09 (0.11) is excluded
at tan β ¼ 1 (tan β ¼ 2).
Another parameter that is important when discussing

constraints on the Higgs sector is the oblique parameters S,
T and U [95]. The experimental constraints on these
parameters are given by [94]

S¼ 0.04�0.11; T¼ 0.09�0.14; U¼−0.02�0.11:

ð7Þ

On the other hand, the two-point function of W and Z
bosons in the THDM are calculated in Refs. [96–98]. The
theoretical calculations and the measurements of the rho
parameter indicate that the following condition should be
satisfied approximately

mH� ≃mA or mH� ≃mH with sinðβ−αÞ¼ 1: ð8Þ

This condition is satisfied when the Higgs potential
possesses a custodial symmetry [99–101].

III. CONDITION OF STRONGLY FIRST-ORDER
PHASE TRANSITION

In this section, we discuss the sphaleron decoupling
condition. In order to formulate the condition, we should
consider the effective potential at finite temperatures.
We follow the definition for the effective potential in
the THDM in the Parwani scheme [102] discussed in
Ref. [16]. We also utilize the definition of the nucleation
temperature Tn described in Ref. [72]. We use the public
code COSMOTRANSITIONS to obtain Tn for our numerical
evaluation [103].
The key of electroweak baryogenesis is a sphaleron

transition process. This process violates the baryon number
via the chiral anomaly [104]. To generate the observed
baryon asymmetry via the mechanism of electroweak
baryogenesis, the sphaleron process must decouple in
the broken phase. The transition rate of the sphaleron
process is related to the energy of sphalerons at finite
temperatures. In order to discuss the feasibility of electro-
weak baryogenesis, we should evaluate the sphaleron
energy in extended Higgs models.
The sphaleron is a nonperturbative solution in field

equations of the SUð2Þ gauge theory [104–106]. The
sphaleron in extended Higgs models has been calculated
[12,15,20,21,23,107–111]. We propose a new ansatz for
the configuration of the sphaleron, which is an extension
of the ansatz proposed by Spannowsky and Tamarit [108]
to the finite temperature systems

Wa
i ðξ⃗Þ ¼

vðTÞ
2

�
ϵaijnj

1 − RðξÞ cos θðξÞ
ξ

þ ðδai − naniÞ
RðξÞ sin θðξÞ

ξ

�
; ð9Þ

Φ1ðξ⃗Þ ¼
v1ðTÞffiffiffi

2
p S1ðξÞeinaσaϕ1ðξÞ

�
0

1

�
; ð10Þ

Φ2ðξ⃗Þ ¼
v2ðTÞffiffiffi

2
p S2ðξÞeinaσaϕ2ðξÞ

�
0

1

�
; ð11Þ

where ⃗ξ ¼ gvðT Þ⃗r=2, ξ ¼ j⃗ξj and vðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1ðTÞ2 þ v2ðTÞ2

p
. The profile functions R, S1 and S2

satisfy the following boundary conditions

TABLE I. Z2 charge assignment in each type of the THDM.

Φ1 Φ2 QL LL uR dR eR

Type-I þ − þ þ − − −
Type-II þ − þ þ − þ þ
Type-X þ − þ þ − − þ
Type-Y þ − þ þ − þ −
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lim
ξ→0

RðξÞ→−1; lim
ξ→0

S1ðξÞ→ 0; lim
ξ→0

S2ðξÞ→ 0;

lim
ξ→∞

RðξÞ→ 1; lim
ξ→∞

S1ðξÞ→ 1; lim
ξ→∞

S2ðξÞ→ 1: ð12Þ

We take θðξÞ ¼ π and ϕiðξÞ ¼ π=2 (i ¼ 1, 2) as taken in
Ref. [108]. The sphaleron energy at finite temperatures
EsphðTÞ is given by

EsphðTÞ ¼
4πvðTÞ

g
EðTÞ; ð13Þ

EðTÞ¼
Z

dξ

�
1

2

�
∂R
∂ξ

�
2

þ 1

4ξ2
ð1−RðξÞÞ2

þv1ðTÞ2ξ2
vðTÞ2

��
∂S1
∂ξ

�
2

þ 1

2ξ2
S21ð1−RðξÞÞ2

	

þv2ðTÞ2ξ2
vðTÞ2

��
∂S2
∂ξ

�
2

þ 1

2ξ2
S22ð1−RðξÞÞ2

	

þ 8ξ2

g2vðTÞ4 ðVeffðS1;S2;TÞ−Veffðv1;v2;TÞÞ
�
; ð14Þ

where Veff is the effective potential at finite temperatures.
The profile functions R; S1, and S2 are determined to realize
the saddle point of the energy functional and satisfy the
boundary conditions described in Eq. (12).
The condition for the suppression of the baryon number

violating process in the broken phase is given by

−
1

NB

dNB

dt
≃ AðTÞe−EsphðTÞ=T < HHubbleðTÞ: ð15Þ

where NB is the baryon number, and HHubbleðTÞ is the
Hubble parameter at T. The prefactor AðTÞ is a fluctuation
determinant defined around the sphaleron configuration
[112]. Using AðTÞ calculated within the SM, the inequality
(15) evaluated at T ¼ Tn is transformed into [15,109]

vðTnÞ
Tn

>
g

4πEðTnÞ
�
41.65þ7 ln

vðTnÞ
Tn

−
Tn

100GeV

�

≡ζsphðTnÞ: ð16Þ

We take the above condition as the criterion for the strongly
first-order phase transition. In the following, we discuss
the constraint on the several extended Higgs models by
utilizing the condition.
We comment on the thermal correction to the effective

potential by new particles. For the THDM with the align-
ment, field dependent masses of additional Higgs bosons
are given by m2

ΦðϕÞ ¼ M2 þ λΦϕ
2 ðΦ ¼ H;A;H�Þ. ϕ is

the order parameter, and λΦ is the linear combination of λi
(i ¼ 1;…; 5) in Eq. (2). On the other hand, the thermal
correction to the effective potential has the Boltzmann
suppression factor exp ½−m2

ΦðϕÞ=T2� [16]. In the decou-
pling region (M2 ≫ λΦv2), the Boltzmann suppression is

significant in the thermal correction. On the contrary, in the
nondecoupling region (M2 ≲ λΦv2), the Boltzmann sup-
pression factor is Oð1Þ at ϕ ¼ 0.

IV. BOUNDS ON MASSES OF THE ADDITIONAL
HIGGS BOSONS

In this section, we discuss the constraint on the THDM
by using the sphaleron decoupling condition (16) in the
following several cases.
[Scenario 1] (Alignment with degenerated masses)
We here discuss the scenario in which all the coupling

constants of the Higgs boson h are SM-like, and the masses
of the additional Higgs bosons are degenerate. In Fig. 1,
parameter regions are shown where the sphaleron decou-
pling condition in Eq. (16) is satisfied. In the red region,
the sphaleron decoupling condition is not satisfied. For
the heavy mass region mΦ > 1 TeV (Φ ¼ H, A, H�), the
Boltzmann suppression in the thermal correction is sig-
nificant because M is large. In such a case, the strongly
first-order phase transition can be realized mainly by the
radiative correction to the effective potential at the zero
temperature [17]. The blue region is excluded by the
condition for the completion of electroweak phase tran-
sition.3 In the gray region, the unitarity bound is not
satisfied. The green region indicates that the phase tran-
sition is two step where the first phase transition is a
second-order phase transition, or single step second-order
phase transition. The upper bounds on the additional Higgs
boson masses are determined by the combination of the
sphaleron decoupling condition and the unitarity bound.
In the alignment limit, there is no upper bound on the

masses of the additional Higgs bosons without imposing
the sphaleron decoupling condition [34,45,83,84]. Even in
such a case, the upper bound is obtained by combining the
sphaleron decoupling condition with the unitarity bound.
[Scenario 2] (Alignment with a relatively small mass

difference)
Next, we consider the THDM with mH� ¼ mA ¼ mH þ

mZ and sinðβ − αÞ ¼ 1. In Fig. 2, the allowed parameter
regions in Scenario 2 are shown. These regions satisfy the
same conditions as in Fig. 1. If the masses of the additional
Higgs bosons are not degenerate, we cannot take the limit
mΦ → M, whereΦ ¼ H, A,H�. Hence, it is not possible to
take large mΦ while keeping the dimensionless parameters
λi (i ¼ 1;…; 5) small. Therefore, in such a case, the upper
bounds on the masses of the additional Higgs bosons are
determined only by the argument of perturbative unitarity.
However, we have confirmed that the bound is weaker
than the bound obtained by the combination of the
sphaleron decoupling condition and perturbative unitarity
in Scenario 2.

3This condition is given by ΓbubbleðTÞ=HHubbleðTÞ4 ¼ 1 at T ¼
Tn where ΓbubbleðTÞ is the nucleation rate of the vacuum bubbles.
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[Scenario 3] (Alignment with a relatively large mass
difference)
We consider the THDM with mH� ¼mA¼mHþ1.5mZ,

sinðβ − αÞ ¼ 1 and tan β ¼ 1.5. In Fig. 3, we show the

allowed parameter regions in Scenario 3 at largeM regions.
In this case, the upper bounds on the masses of the
additional Higgs bosons cannot be determined by the
sphaleron decoupling condition and the unitarity bound.

2 S
tep

 P
T

 o
r 2n

d
 O

P
T

2 S
tep

 P
T

 o
r 2n

d
 O

P
T

2 S
tep

 P
T

 o
r 2n

d
 O

P
T

FIG. 1. The allowed parameter regions for mH� ¼ mA ¼ mH, sinðβ − αÞ ¼ 1 and tan β ¼ 1, 1.5 and 2. The red region is excluded by
the sphaleron decoupling condition. The blue region represents that the electroweak phase transition has not been completed. The gray
region is excluded by the unitarity bound. The green region indicates that the phase transition is two step where the first phase transition
is a second-order phase transition, or the single step second-order phase transition. The strongly first-order electroweak phase transition
cannot be realized in Scenario 1 with tan β > 2.
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FIG. 2. The allowed regions in the THDM with mH� ¼ mA ¼ mH þmZ, sinðβ − αÞ ¼ 1 and tan β ¼ 1, 2, 2.5. The definition of the
regions for each color is the same in Fig. 1.
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Instead, the upper bounds are determined by perturbative
unitarity and vacuum stability. As we discussed in the case
of Scenario 2, when the additional Higgs bosons have a
large mass difference, we cannot take large mΦ. The
theoretical constraints on the masses of the additional
Higgs bosons are stronger as the mass difference increases.
[Scenario 4] (Nonalignment)
Finally, we discuss the THDM without alignment. As an

example, we focus on the model with mH� ¼ mA ¼ mH,
tan β ¼ 1 and sinðβ − αÞ ¼ 0.999. In Fig. 4, we can see the
importance of the alignment. In this case, the constraint on
the masses of the additional Higgs bosons is more stringent
when sinðβ − αÞ deviates from unity. Thus, the mass upper
bounds are lower than those in the case with alignment.
This result indicates that the strongly first-order phase
transition in the THDM with relatively heavy additional
Higgs bosons prefers the alignment.
As shown in this section, even when we consider the

THDMwith the alignment, we can obtain the upper bounds
on the masses of the additional Higgs bosons by using the
sphaleron decoupling condition. We have numerically
confirmed that the upper bounds are around 1.6–2 TeV.
If no new scalar particles are discovered below this bound,
realizing the scenario of electroweak baryogenesis may be
difficult. Our result provides an important criterion for
verifying the feasibility of electroweak baryogenesis.
Before closing this section, we give two comments on

our analysis. The strongly first-order electroweak phase
transition in the THDM with the heavy additional Higgs
bosons requires relatively large λi (i ¼ 1;…; 5). In such a

case, the subleading terms neglected in our thermal mass
calculation may be non-negligible due to additional con-
tributions from super daisy diagrams [113]. Since there is
no established method to systematically incorporate these
effects in the THDM, we have only taken into account
thermal masses, as often done so in the literature.4

We have obtained the upper bounds on the masses of the
additional Higgs bosons. Getting this bound, we have used
the unitarity bound at the tree level and the sphaleron
decoupling coupling condition using the effective potential
at the one-loop level. When higher-order corrections are
considered, upper bounds on masses of additional Higgs
bosons can be changed. However, it is expected that even in
such case upper bounds on masses of additional Higgs
bosons can exist.

V. SIGNATURES FOR RELATIVELY HEAVY
ADDITIONAL HIGGS BOSONS

As we have shown in Sec. IV, in the THDM with the
additional Higgs bosons whose masses are larger than
1 TeV, the strongly first-order electroweak phase transition
may be realized. It would be difficult to test such models at
near future collider experiments such as HL-LHC and the
ILC. We here discuss how to verify the scenario with heavy
additional Higgs bosons. We focus on the three benchmark

FIG. 3. The allowed parameter regions in THDM with
mH� ¼ mA ¼ mH þ 1.5mZ, sinðβ − αÞ ¼ 1 and tan β ¼ 1.5. In
addition to the theoretical constraints described in Fig. 1, the
constraint from the vacuum stability is shown. Upper bounds on
the additional Higgs boson masses are given by perturbative
unitarity and vacuum stability in Scenario 3.
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FIG. 4. The allowed parameter regions in the THDM for
sinðβ − αÞ ¼ 1 and sinðβ − αÞ ¼ 0.999. For comparison, we
show the left figure in Fig. 1 again as the left panel. The upper
bounds on the masses of the additional Higgs bosons are around
1.2 TeV for sinðβ − αÞ ¼ 0.999. The definition of the regions for
each color is the same in Fig. 1.

4For several extended Higgs models, systematic methods are
discussed to include the subleading finite temperature corrections
to the thermal mass [114–116].
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scenarios BM0, BM1, and BM2 as shown in Table II. For
BM1 the additional Higgs bosons are relatively light (a few
100 GeV), while for BM2 the additional Higgs bosons are
relatively heavy (around 1 TeV). As shown in Ref. [41],
testing BM2 is difficult at the HL-LHC and the ILC.
Although BM0 cannot satisfy the experimental constraints
from LHC and current flavor experiments, we dare to show
the GW spectrum in this benchmark for comparison.
As we mentioned in the Introduction, the triple Higgs

boson coupling is the key to verify the first-order electro-
weak phase transition. The triple Higgs boson coupling is
defined by using the effective potential Veff as

λhhh ≡ ∂
3Veffðh; T ¼ 0Þ

∂h3

����
min

: ð17Þ

We define the deviation in the triple Higgs boson coupling
from the SM prediction as Δλhhh=λSMhhh ≡ ðλhhh − λSMhhhÞ=
λSMhhh, where λSMhhh is the value in the SM. Δλhhh=λSMhhh can
be significant even in extended Higgs models with heavy
additional Higgs bosons due to their quantum effects
[29,39,40]. We have confirmed that a large Δλhhh=λSMhhh is
required to satisfy the sphaleron decoupling condition in
the heavy scenario such as BM2. In order to satisfy the
sphaleron decoupling condition in the THDM with mΦ >
700 GeV (Φ ¼ H,A,H�),Δλhhh=λSMhhh > 60% is required at
the one-loop level. The results indicate that the THDMwith
relatively heavy additionalHiggs bosons can be tested by the
measurement of the triple Higgs boson coupling at future
collider experiments.
Two-loop corrections to the triple Higgs boson coupling

in the THDM have been calculated in Refs. [39,40].
Including the scalar two-loop corrections, the deviation
in the triple Higgs boson coupling is larger than the one-
loop result. We have evaluated the constraint on the triple
Higgs boson coupling from the sphaleron decoupling
condition including the two-loop corrections. Then, we
have obtained that Δλhhh=λSMhhh > 80% is required to satisfy
the sphaleron decoupling condition in the THDM with
mΦ > 700 GeV (Φ ¼ H, A,H�) at the two-loop level. The
lower bound on the triple Higgs boson coupling is larger by
including the two-loop corrections.
On the other hand, we do not take into account the two-

loop corrections to the strength of the phase transition.
According to Refs. [117,118], the strength of the phase
transition is weakened by about 10% due to the two-loop
corrections in the IDM. Since the two-loop corrections to

the effective potential at finite temperatures in THDM have
not been calculated completely, we only consider the
effective potential with the one-loop corrections and daisy
resummation.
We also discuss the GWs from the first-order electro-

weak phase transition. The spectrum of the GWs from
the strongly first-order electroweak phase transition is
characterized by αGW and β̃GW. These parameters are
defined by [72]

αGW ≡ 1

ρrad

�
−ΔVeff þ T

∂ΔVeff

∂T

�����
T¼Tn

; where

ρradðTÞ ¼
π2

30
g�T4; ð18Þ

β̃GW ≡ βGW
HHubbleðTÞ

¼ T
d
dT

�
S3
T

�����
T¼Tn

: ð19Þ

where ΔVeff ¼ VeffðφB
1 ðTÞ;φB

2 ðTÞ; TÞ − Veffð0; 0; TÞ. φB
i

(i ¼ 1, 2) is the bounce solutions for the vacuum bubbles.
S3ðTÞ is the free energy of the vacuum bubbles.
GW spectra ΩGWðfÞ from the first-order electroweak

phase transition consist of three sources; collisions of the
vacuum bubbles (Ωφ), compressional waves (sound waves)
(Ωsw) andmagnetohydrodynamics turbulence (Ωturb) [119]

5;

h2ΩGWðfÞ ≃ h2ΩφðfÞ þ h2ΩswðfÞ þ h2ΩturbðfÞ: ð20Þ

In general, the leading contribution is the sound wave source
ΩswðfÞ [27,28].
We focus on the three benchmarks in Table II. In Fig. 5

the GW spectra in each benchmark scenario are shown for
the different wall velocity (vb). The sensitivity curves at
each future GW observation are also shown. The solid
(dashed) lines correspond to the cases that the wall velocity
is 95% (40%) of the light speed.6 Interestingly, although
magnitudes of the deviation in the triple Higgs boson

TABLE II. Benchmark scenarios with sinðβ − αÞ ¼ 1. Δλ1lhhh=λSMhhh is the deviation in the triple Higgs boson coupling at the one-loop
level. Δλ2lhhh=λSMhhh is that at the two-loop level.

mH� mA mH M tan β Δλ1lhhh=λSMhhh Δλ2lhhh=λSMhhh vn=Tn

BM0 373 GeV 373 GeV 373 GeV 50 GeV 1 71.5% 86.4% 3.80
BM1 464 GeV 464 GeV 373 GeV 200 GeV 1.8 80.2% 112% 2.60
BM2 891 GeV 891 GeV 800 GeV 720 GeV 1.8 80.2% 125% 2.37

5Recently, the effect of strongly first-order phase trainsition on
the fitting functions for the GW spectra has been evaluated [120].
In this paper, we discuss the prediction of the GW spectra by
using the fitting functions, which have often been used in
previous studies.

6There are previous studies that have clarified a relation
between the wall velocity and the Higgs potential by using
quasiclassical calculation methods [121]. In this paper, however,
the wall velocity is treated as a free parameter.
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coupling at the one-loop level are similar between BM1 and
BM2, the peak height of the GW spectrum is lower when
the additional Higgs bosons are heavy. If both large
Δλhhh=λSMhhh and the peaked GW spectrum are determined
at future experiments, the additional Higgs bosons are
expected to be relatively light. On the other hand, if large
Δλhhh=λSMhhh is found but no GW spectrum is observed, the
scenario with relatively heavy additional Higgs bosons may
be plausible.
We note that a detailed analysis for the detectability of

the GWs is required in order to determine the mass scale
of the additional Higgs bosons. We may be able to guess
the mass scale of additional Higgs bosons by using the
correlation between the GW spectrum and the triple Higgs
boson coupling. The analysis for the detectability of the
GW spectrum is beyond the scope of this paper. Although
the GW spectrum in BM1 is lower than the sensitivity
curves of the LISA, Taiji and DECIGO, we may be able to
detect the signal by investigating the sensitivity of these
interferometers in details [80].

VI. ELECTROWEAK PHASE TRANSITION IN THE
N-SCALAR SINGLET MODEL AND THE INERT

DOUBLET MODEL

Following the analysis for the THDM, we here analyze
the phase transition in other models such as the N-scalar
singlet model and in the IDM.
For simplicity, we consider the model with N additional

singlet real scalar fields Si which have a global OðNÞ
symmetry [25],

VNscalarðΦ; S⃗Þ ¼ −μ2Φ†Φþ λðΦ†ΦÞ2 þ μ2S
2
jS⃗j2

þ λS
4!

jS⃗j4 þ λΦSjS⃗j2Φ†Φ; ð21Þ

where ðS⃗ÞT ¼ ðS1;…; SNÞ is a vector under the OðNÞ
symmetry. We also assume μ2S > 0. In order to obtain upper
bounds on the masses of the additional Higgs bosons, we
utilize the bound from perturbative unitarity [122] and the
sphaleron decoupling condition given in Eq. (16). In this
model, we obtain the upper bounds on the masses of the
additional singlet fields as 2 TeV (1.4 TeV) when N ¼ 1
(N ¼ 4). As N is larger, this upper bound is more stringent.
Next, we show the results in the IDM. The Higgs

potential is given by

VIDMðΦ1;Φ2Þ¼ μ21Φ
†
1Φ1þμ22Φ

†
2Φ2þ

λ1
2
ðΦ†

1Φ1Þ2

þλ2
2
ðΦ†

2Φ2Þ2þλ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þλ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þþ
λ5
2
½ðΦ†

1Φ2Þ2þH:c:�:
ð22Þ

Like the THDM, the IDM has five mass eigenstates; two
CP even states (h, H), a CP odd state (A) and charged
states (H�). To avoid the rho parameter constraint, we take
mH� ¼ mA. We identify the CP-even Higgs field H as a
dark matter candidate in this paper. By the direct searches
such as the LUX [123], the dark matter mass (mH) is
strongly constrained. If we takemH ¼ mh=2, we can obtain
the constraints on the masses of the charged Higgs bosons
(mH�) and the CP-odd Higgs boson (mA) from the
sphaleron decoupling condition and the completion con-
dition of the phase transition. The lower bound is deter-
mined by the sphaleron decoupling condition. The upper
bound is determined by the completion condition of the
phase transition;

300 GeV < mH� ; mA < 410 GeV: ð23Þ

We note that we have obtained the above lower bound by
using the sphaleron decoupling condition given in Eq. (16).
It means that our result is the improvement of the previous
work [124–126].

VII. DISCUSSIONS AND CONCLUSIONS

We give comments on several issues. We have treated the
CP-conserving THDM with softly-broken Z2 symmetry.
As confirmed in Refs. [14,127], due to the inclusion of
nonzero CP-violating phases, strength of the first-order
phase transition tends to be weakened. In this case, the
constraints on the THDM from the sphaleron decoupling
condition might be more stringent than our results.
We have analyzed the constraint on the extended Higgs

models by using the sphaleron decoupling condition, the
completion condition of electroweak phase transition,
perturbative unitarity and vacuum stability. In addition to
these theoretical constraints, if we include the bound from

FIG. 5. The GW spectra in each benchmark scenario. The solid
(dashed) lines are the cases that the wall velocity is 95% (40%) of
the light speed.
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the triviality [128], the allowed parameter region can be
narrowed down in general [91,92,129,130]. Thus, we
expect that the upper bounds on the additional Higgs
boson masses are lower. However, the mass upper bounds
determined by the triviality include a cutoff scale depend-
ence. Therefore, we have not taken into account the
triviality as a theoretical constraint.
We have utilized perturbative unitarity at the tree level to

discuss the constraints on the extended Higgs models.
When we consider the unitarity bound at the one-loop level,
the extended Higgs models might be more strongly con-
strained [131]. But, the unitarity bounds at the one-loop
level are inherently energy dependent. In our paper, to
obtain the conservative mass upper bounds on the addi-
tional Higgs bosons, we have only considered the con-
straint from perturbative unitarity at the tree level.
We mention the relation between our results and the

predictions in the effective field theories. In the Standard
Model effective field theory (SMEFT) with a dimension-six
operator jΦj6=Λ2 where Λ is the cutoff scale, the sphaleron
decoupling condition requires Λ < 750 GeV as shown in
Refs. [64,132]. On the other hand, we have shown that the
strongly first-order electroweak phase transitions are pos-
sible in the renormalizable extended Higgs models such as
the THDMeven in themasses of the additionalHiggs bosons
are above 750 GeV. It indicates that the strongly first-order
electroweak phase transition cannot be comprehensively
explored by the SMEFT framework. Instead, the nonlinear
form of the effective field theory (Higgs EFT) would well
describe the strongly first-order phase transition [60–63].
In this paper, in addition to the unitarity bound, we have

evaluated the constraint on the extended Higgs models by
using the sphaleron decoupling condition given in Eq. (16).
In the THDM, we have obtained the new result that the
upper bounds on the masses of additional Higgs bosons
exist around 1.6–2 TeV even when h is SM-like. This
indicates that even if the THDM with relatively heavy

Higgs bosons whose masses are TeV scale, the strongly
first-order electroweak phase transition can be realized.
Since light additional Higgs bosons will soon be strongly
constrained by future flavor and collider experiments, it
might be important to clarify the possibility of the strongly
first-order phase transition due to the quantum effects of
heavy additional Higgs bosons.
We have found that in order to realize the strongly first-

order phase transition in the THDM with mΦ > 700 GeV
(Φ ¼ H, A, H�), the triple Higgs boson coupling must
deviate from the SM prediction at least 80% at the two-loop
level. This result is important to verify such scenarios at
near future collider experiments such as the HL-LHC and
the ILC where the deviation in the triple Higgs boson
coupling can be measured.
We have also confirmed that the peak height of the GW

spectrum is lower as the masses of the additional Higgs
bosons are larger even when the deviation in the triple
Higgs boson coupling is similar. If the large deviation in the
triple Higgs boson coupling and the peaked GW spectrum
are found, we can expect that the additional Higgs bosons
are relatively light. On the contrary, if the large deviation
is found in the triple Higgs boson coupling but no GW
spectrum is observed, it would be plausible that the
additional Higgs bosons are relatively heavy. We may be
able to guess the scale of masses of the additional Higgs
bosons even if these additional fields are not discovered by
direct searches at future collider experiments.
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