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We study a scenario to derive four-dimensional modular flavor symmetric models from a higher-
dimensional theory by assuming the compactification consistent with the modular symmetry. In our
scenario, wave functions in extra-dimensional compact space are modular forms. That leads to constraints
on combinations between modular weights and ΓN (Γ0

N) representations of matter fields. We also present
illustrating examples.
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I. INTRODUCTION

The supersymmetric (SUSY) modular invariant theories
give us an attractive framework to address the flavor
problem of quarks and leptons. Indeed, finite modular
flavor symmetric models have been presented for years
[1–13]. The homogeneous modular group Γ ¼ SLð2;ZÞ
and inhomogeneous modular group Γ̄ ¼ SLð2;ZÞ=Z2

include S3, A4, S4, A5 as finite subgroups [14]. Indeed,
the quotients ΓN ¼ Γ̄=ΓðNÞ are isomorphic to Γ3 ≃ A4,
Γ4 ≃ S4, and Γ5 ≃ A5, while Γ=Γð2Þ ≃ S3, where ΓðNÞ are
principle congruence subgroups. These non-Abelian
flavor symmetries such as S3, A4, S4, A5 were often used
to derive quark and lepton mass matrices successfully in
flavor model building before the studies of modular flavor
models [15–24].
In modular flavor models, Yukawa couplings are modu-

lar forms depending on the modulus τ, and are certain
representations under ΓN and their covering groups Γ0

N . We
assign modular weights and ΓN (Γ0

N) representations to
matter fields as well as Higgs fields, although Higgs fields
are assigned to a ΓN (Γ0

N) trivial singlet in most of the
modular flavor models. Then, the structure of quark and
lepton mass matrices is given by certain modular forms
under the assumption that the Yukawa coupling terms (in
the superpotential) as well as mass terms are invariant under

the modular symmetry. By taking these modular flavor
symmetric mass matrices, one can realize realistic
quark and lepton masses and mixing angles by fixing
the modulus τ. The CP violation and related phenomena
have been also studied [25–34]. Besides mass matrices of
quarks and leptons, related topics such as grand unified
theory, leptogenesis, dark matter, etc., have been discussed
in many works [35–94]. It is also remarked that the
standard model effective field theory (SMEFT) has been
studied in the modular symmetry [95,96]. Theoretical
investigations have also been proceeded [97–110].
Various combinations of matter modular weights and ΓN
(Γ0

N) representations have been studied in order to lead to
phenomenologically interesting results. On the other hand,
the modular symmetry is the geometrical symmetry of
compact spaces such as T2 and the orbifold T2=Z2. Thus,
four-dimensional modular flavor symmetric models could
be derived from a higher-dimensional theory such as a
superstring theory. For example, flavor transformations
under the modular symmetry were studied in heterotic
orbifold models [111–113] and magnetized D-brane mo-
dels [4,114–119]. Furthermore, Calabi-Yau compactifica-
tions have many moduli, and they have larger geometrical
symmetries, i.e., symplectic modular symmetries Spðg;ZÞ
[120–123]. However, in most four-dimensional (4D) modu-
lar flavor models, their relations with a higher-dimensional
theory are not clear: How do 4D modular flavor symmetric
models appear as a 4D low-energy effective field theory
from a higher-dimensional theory? Our purpose in this
paper is to propose a scenario to derive 4D modular flavor
symmetric models from a higher-dimensional theory. We
do not specify its compactification, but we assume generic
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compactification consistent with the modular symmetry.
We study the Kaluza-Klein decompositions in a modular-
symmetric way. In this scenario, wave functions in extra-
dimensional compact space can be written by modular
forms. Such a scenario leads to constraints of 4D modular
flavor symmetric models. Modular weights and represen-
tations of matter fields are constrained.
This paper is organized as follows. In Sec. II, we give a

brief review of the modular symmetry and modular forms.
We also study the structure of Γð3Þ modular forms. In
Sec. III, we study a scenario to derive 4D modular flavor
symmetric models from a higher-dimensional theory with
modular-symmetric compactification. In Sec. IV, we study
illustrating examples with A4 modular flavor symmetry.
Section V is our conclusion. In the Appendix, we show an
example to project wave functions with ΓN reducible
representations to an irreducible one.

II. MODULAR SYMMETRY AND
MODULAR FORMS

A. Modular symmetry

Here, we briefly review the modular symmetry and
modular forms. The SLð2;ZÞ ¼ Γ group is a group of
the following 2 × 2 matrices:

γ ¼
�
a b

c d

�
; ð1Þ

where a, b, c, d are integers and ad − bc ¼ 1. The
SLð2;ZÞ group is generated by S and T,

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
: ð2Þ

They satisfy the following algebraic relations:

S4 ¼ 1; ðSTÞ3 ¼ 1: ð3Þ

The modulus τ transforms as

τ → γτ ¼ aτ þ b
cτ þ d

ð4Þ

under the modular symmetry. The generators S and T
satisfy the following algebraic relations on τ:

S2 ¼ 1; ðSTÞ3 ¼ 1; ð5Þ

i.e., PSLð2;ZÞ ¼ SLð2; ZÞ=Z2 ¼ Γ̄.
The modular forms are described by a holomorphic

function fiðτÞ, which transforms under the modular
symmetry as

fiðγτÞ ¼ ðcτ þ dÞkρðγÞijfjðτÞ ð6Þ

with k and ρðγÞij being the modular weight and unitary
matrices, respectively.
Here, we introduce the principal congruence subgroups

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ;

�
a b

c d

�
¼
�
1 0

0 1

�
ðmod NÞ

�
: ð7Þ

The ΓðNÞ modular forms satisfy

fiðγτÞ ¼ ðcτ þ dÞkfiðτÞ ð8Þ

for γ ∈ ΓðNÞ. Thus, the unitary matrices are representations
of quotients ΓN ¼ Γ̄=ΓðNÞ. Interestingly, the quotients ΓN
with N ¼ 3, 4, 5 are isomorphic to A4, S4, A5, respectively.
In addition, Γ8 and Γ16 include Δð96Þ and Δð384Þ [4].
These are finite modular subgroups including irreducible
triplet representations. Moreover, the quotient Γ2 ¼ Γ=Γð2Þ
is isomorphic to S3.
Since S2 ¼ 1 in Γ̄ on the modulus τ, the modular weight

k must be even. The dimensions dkðΓðNÞÞ of modular
forms of weights k and levels N are determined math-
ematically and shown in Table I. These modular forms
are dk representations of ΓN . In general, they are reducible
representations and can be decomposed to irreducible
representations as shown in the next subsection for N ¼ 3.
The above modular forms can be extended to Γ ¼

SLð2;ZÞ, which is the double covering group of Γ̄. For
this group, the modular weights can be odd integers, and
ρðγÞij are representations of the double covering groups of
ΓN , Γ0

N . Furthermore, we can extend the double covering
group of Γ ¼ SLð2;ZÞ. The modular weights can be half-
integers, and ρðγÞij are representations of the double
covering groups of Γ0

N . For example, such modular forms
with half-integers are obtained in magnetized D-brane
models on T2 and T2=Z2 [118].

B. Γð3Þ modular forms

Here, we show explicitly Γð3Þ modular forms and their
A4 representations. The A4 group has four irreducible
representations, 3; 1; 10; 100. Their tensor products are
obtained as

TABLE I. Dimensions of modular forms of the level N and
weight k.

N dkðΓðNÞÞ ΓN

2 k=2þ 1 S3
3 kþ 1 A4

4 2kþ 1 S4
5 5kþ 1 A5
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3 × 3 ¼ 3s þ 3a þ 1þ 10 þ 100;

3 × 1 ¼ 3 × 10 ¼ 3 × 100 ¼ 3; ð9Þ

where 3s and 3a are symmetric and antisymmetric, respec-
tively, and

1m × 1n ¼ 1l; ð10Þ

where l ¼ mþ n (mod 3), 10 ¼ 1, 11 ¼ 10, and 12 ¼ 100.

The Γð3Þ modular forms of weight k ¼ 2 have dimen-
sion d2 ¼ 3, and they are the A4 triplet. Their explicit forms
are written by [1]

Yð2Þ
3 ðτÞ ¼

0
B@

Y1ðτÞ
Y2ðτÞ
Y3ðτÞ

1
CA; ð11Þ

Y1ðτÞ ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ −

27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω2

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ ω

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ

�
;

Y3ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ ω2

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ

�
; ð12Þ

where ηðτÞ is the Dedekind eta function,

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ expð2πiτÞ: ð13Þ

The modular forms of higher weights are obtained by the

tensor products of Yð2Þ
3 ðτÞ. The modular forms of weight

k ¼ 4 have dimension d4 ¼ 5. They decompose to 3, 1, and
10 and are written explicitly by

Yð4Þ
3 ðτÞ ¼

0
B@

Y2
1 − Y2Y3

Y2
3 − Y1Y2

Y2
2 − Y1Y3

1
CA;

Yð4Þ
1 ¼ Y2

1 þ 2Y2Y3; Yð4Þ
10 ¼ Y2

3 þ 2Y1Y2: ð14Þ

The modular form corresponding to the nontrivial singlet

100 vanishes identically Yð4Þ
100 ¼ Y2

2 þ 2Y1Y3 ¼ 0 [1]. Also,
the modular form corresponding to 3a vanishes.
Similarly, modular forms of higher weights are con-

structed (see, e.g., Refs. [54,57]). The modular forms of
weight k ¼ 6 have dimension d6 ¼ 7. They decompose to
3þ 3þ 1, and are written explicitly by

Yð6Þ
3;1ðτÞ ¼ Yð4Þ

1 Yð2Þ
3 ðτÞ ¼ ðY2

1 þ 2Y2Y3Þ

0
B@

Y1

Y2

Y3

1
CA;

Yð6Þ
3;2ðτÞ ¼ Yð4Þ

10 Y
ð2Þ
3 ðτÞ ¼ ðY2

3 þ 2Y1Y2Þ

0
B@

Y3

Y1

Y2

1
CA;

Yð6Þ
1 ðτÞ ¼ ðYð4Þ

3 Yð2Þ
3 Þ1 ¼ Y3

1 þ Y3
2 þ Y3

3 − 3Y1Y2Y3; ð15Þ

where ðYð4Þ
3 Yð2Þ

3 Þ1 is the trivial singlet projection of the

tensor product Yð4Þ
3 Yð2Þ

3 .
The modular forms of weight k ¼ 8 have dimension

d8 ¼ 9. They decompose to 3þ 3þ 1þ 10 þ 100, and are
written explicitly by

Yð8Þ
3;1ðτÞ ¼ Yð4Þ

1 Yð4Þ
3 ¼ ðY2

1 þ 2Y2Y3Þ

0
B@

Y2
1 − Y2Y3

Y2
3 − Y1Y2

Y2
2 − Y1Y3

1
CA;

Yð8Þ
3;2ðτÞ ¼ Yð4Þ

10 Y
ð4Þ
3 ¼ ðY2

3 þ 2Y1Y2Þ

0
B@

Y2
2 − Y1Y3

Y2
1 − Y2Y3

Y2
3 − Y1Y2

1
CA;

Yð8Þ
1 ðτÞ ¼ Yð4Þ

1
2 ¼ ðY2

1 þ 2Y2Y3Þ2;
Yð8Þ
10 ðτÞ ¼ Yð4Þ

1 Yð4Þ
10 ¼ ðY2

1 þ 2Y2Y3ÞðY2
3 þ 2Y1Y2Þ;

Yð8Þ
100 ðτÞ ¼ Yð4Þ

10 Y
ð4Þ
10 ¼ ðY2

3 þ 2Y1Y2Þ2: ð16Þ

Note that the nontrivial singlet 100 appears when the
weight k ¼ 8.
The modular forms of weight k ¼ 10 have dimension

d10 ¼ 11. They decompose to 3þ 3þ 3þ 1þ 10, and are
written explicitly by

TABLE II. A4 representations for each weight k.

k dk A4 representations

2 3 3
4 5 3þ 1þ 10
6 7 3þ 3þ 1
8 9 3þ 3þ 1þ 10 þ 100
10 11 3þ 3þ 3þ 1þ 10
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Yð10Þ
3;1 ðτÞ ¼ Yð8Þ

1 Yð2Þ
3 ðτÞ ¼ ðY2

1 þ 2Y2Y3Þ2
0
B@

Y1

Y2

Y3

1
CA;

Yð10Þ
3;2 ðτÞ ¼ Yð8Þ

100 Y
ð2Þ
3 ðτÞ ¼ ðY2

3 þ 2Y1Y2Þ2
0
B@

Y2

Y3

Y1

1
CA;

Yð10Þ
3;3 ðτÞ ¼ Yð8Þ

10 Y
ð2Þ
3 ðτÞ ¼ ðY2

1 þ 2Y2Y3ÞðY2
3 þ 2Y1Y2Þ

0
B@

Y3

Y1

Y2

1
CA;

Yð10Þ
1 ðτÞ ¼ Yð4Þ

1 Yð6Þ
1 ¼ ðY2

1 þ 2Y2Y3ÞðY3
1 þ Y3

2 þ Y3
3 − 3Y1Y2Y3Þ;

Yð10Þ
10 ðτÞ ¼ Yð4Þ

10 Y
ð6Þ
1 ¼ ðY2

3 þ 2Y1Y2ÞðY3
1 þ Y3

2 þ Y3
3 − 3Y1Y2Y3Þ: ð17Þ

Table II shows the A4 representations for the modular forms of each weight k.

III. 4D LOW-ENERGY EFFECTIVE
FIELD THEORY FROM A

HIGHER-DIMENSIONAL THEORY

We study a scenario to derive 4D modular flavor
symmetric models from a (4þ d)-dimensional theory by
compactification. We assume that the modulus τ describes
geometrical characters of d-dimensional compact space
such as shape, although the compact space may have other
moduli. On top of that, we assume that the compact space
has the modular symmetry on τ. This originates from the
symmetry of τ, that is, the geometric symmetry of extra-
dimensional spaces. For instance, if extra-dimensional
spaces include T2 or its orbifold as subspace, such back-
grounds enjoy the SLð2;ZÞ modular symmetry when the
modulus τ is identified with the complex structure modulus
or the Kähler modulus [4,114–119]. Furthermore, the
Spð2h;ZÞ symplectic modular symmetry also appears in
toroidal orbifolds with multimoduli [107] and Calabi-Yau
backgrounds [120–123]. Our discussion can be applied
for such a compact space. In this section, we study the
modular-symmetric theory without specifying the extra-
dimensional space. Most 4D modular flavor symmetric
models are constructed within the framework of a (global)
supersymmetric theory. Hence, we assume that our com-
pactification preserves 4D N ¼ 1 supersymmetry.
We denote coordinates of 4D spacetime and

d-dimensional compact space by x and y, respectively.
Bosonic fieldsΦðx; yÞ and spinor fieldsΨðx; yÞ in a higher-
dimensional theory are written by Kaluza-Klein decom-
position as

Φðx; yÞ ¼
X
i

ϕiðxÞφiðyÞ þ � � � ;

Ψðx; yÞ ¼
X
i

ψ iðxÞχiðyÞ þ � � � : ð18Þ

Bosonic fields Φðx; yÞ correspond to scalars or vectors in
(4þ d) dimensions, but vector fields with vector indices
along extra-dimensional space are 4D scalars. The first
terms on the rhs are massless modes (zero modes) and the
others are massive modes. Here, we focus on massless
modes. In general, there is more than one zero mode, which
is labeled by the index i. The zero-mode index i corre-
sponds to the flavor index in the 4D low-energy effective
field theory. Hereafter, we often omit this index i.
It is noted that ϕðxÞ and ψðxÞ are 4D fields, while φðyÞ

and χðyÞ are wave functions in extra dimensions. The wave
functions φðyÞ and χðyÞ depend on the modulus τ, namely,
metric deformations of extra-dimensional space. Since this
theory is assumed to be modular symmetric, these wave
functions are modular forms.1 Thus, for fixed modular
weight k, ΓN representations of wave functions φðyÞ and
χðyÞ are constrained as in the previous section. For
example, for N ¼ 3, the wave functions φðyÞ and χðyÞ
of weight k ¼ 2 are only the A4 triplet, but not singlets.
When k ¼ 4, wave functions φðyÞ and χðyÞ can correspond
to either of 3, 1, 10, but not 100. The singlet 100 can appear for
k ¼ 8 and higher weights. Hence, we have constraints on
weights k and ΓN representations in a higher-dimensional
theory. Note that the value of level N depends on models in
a higher-dimensional theory. For instance, the Γ3 repre-
sentations appear in twisted modes of the heterotic T2=Z3

orbifold [111–113]. Other representations are also possible
on heterotic orbifolds and magnetized D-brane models. The
value of N depends on the geometric structure of extra-
dimensional spaces as well as background sources. It is
important to reveal the geometric meaning of N, but we
leave these issues for future research.

1For example, wave functions in magnetized D-brane models
are modular forms [4,114–119].
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For fixed weight k, there are dkðΓðNÞÞ dimensions of
modular forms as shown in Table I. Hereafter, we assume
that not all modular forms, but one or more irreducible
representations of ΓN , appear as zero-mode wave functions
of matter fields. Such a projection from dkðΓðNÞÞ dimen-
sions to irreducible representations would be possible by
imposing certain boundary conditions. In the Appendix, we
show an example to project out some of the reducible
representations in zero-mode wave functions so as to
obtain irreducible representations. Here, we show that such
projections can be consistent with the modular symmetry.
We assume that a wave function φ1ðyÞ corresponding to dk-
dimensional modular forms of ΓðNÞ satisfies a zero-mode
equation with a specific boundary condition. When those
dk-dimensional wave functions are a reducible representa-
tion of ΓN , the unitary matrix ρðγÞij is represented by

ρðγÞij

0
BBB@

φ1ðyÞ
..
.

..

.

1
CCCA¼

0
BBB@

ρð1ÞðγÞij
ρð2ÞðγÞij

. .
.

1
CCCA
0
BBB@

φ1ðyÞ
..
.

..

.

1
CCCA:

ð19Þ
That implies that the modular transformation of φ1ðyÞ is
closed in the irreducible representation corresponding
to ρð1ÞðγÞij but does not transform other representations

such as ρð2ÞðγÞij. Thus, it is consistent with the modular
symmetry to pick up an irreducible representation from
dk-dimensional modular forms.
The minimal SUSY model has one pair of Higgs modes,

i.e., the up-sector and down-sector Higgs fields. They must
be ΓN singlets. Thus, it is reasonable to assign the modular
weight k ¼ 0 to the Higgs modes.
It is natural to normalize the wave function of the

weight k as Z
ddy

ffiffiffi
g

p jφðyÞj2 ¼ 1

ð2ImðτÞÞk ð20Þ

with g being the determinant of the metric of extra-
dimensional space. This normalization is consistent with
the modular symmetry. Indeed, the left-hand side of the
above expressions transforms asZ

ddy
ffiffiffi
g

p jφðyÞj2 → jcτ þ dj2k
Z

ddy
ffiffiffi
g

p jφðyÞj2; ð21Þ

taking into account the modular transformation of φðyÞ:

φðyÞ → ρðγÞðcτ þ dÞkφðyÞ: ð22Þ

Note that
R
ddy

ffiffiffi
g

p
is invariant under the modular trans-

formation, i.e., the coordinate transformation. Thus, it is
consistent with the modular transformation of τ:

ð2ImðτÞÞ−k → jcτ þ dj2kð2ImðτÞÞ−k: ð23Þ

We start with the following canonical kinetic term,

∂MΦ�
∂
MΦ; ð24Þ

in a higher-dimensional theory.2 Then, we carry out dimen-
sional reduction by the use of the above normalization so as
to obtain the following Kähler potential of matter fields:

K ¼ 1

ð2ImðτÞÞk jϕðxÞj
2: ð25Þ

We require that the 4D effective field theory is invariant
under the modular transformation. The 4D matter fields
must have the modular weights −k, which have opposite
signs compared with the wave function weights k. Here and
hereafter, we use the notation that the same letter is used for
both the superfield and its lowest scalar component.
Next, we study the Yukawa coupling terms in the

superpotential. For example, suppose that the Yukawa
coupling terms in the 4D effective theory originate from
the following terms in a higher-dimensional theory:

yΨ̄eΦ�
HΨL; ð26Þ

where Φ�
H is the higher-dimensional field corresponding

to the 4D down-sector Higgs field Hd, and ΨL, Ψe are
higher-dimensional fields corresponding to left-handed and
right-handed leptons in the 4D effective theory. Then, we
integrate the extra dimensions y so as to derive the Yukawa
coupling terms in the 4D superpotential,

W ¼ YeðτÞLHdec: ð27Þ

Here, the 4D Yukawa coupling YeðτÞ is obtained by

YeðτÞ ¼ y
Z

ddy
ffiffiffi
g

p
χecðyÞχLðyÞφ�

HðyÞ: ð28Þ

The 4D modes L and ec have modular weights −kL and
−ke, respectively, while Hd has vanishing modular weight.
The 4D Yukawa coupling YeðτÞ has modular weight
kL þ ke because the product of wave functions in the extra
dimension has weight kL þ ke. Then, the above super-
potential is invariant under the modular transformation.
Indeed, the modular transformation of matter fields (22)
induces the correct modular transformation of the Yukawa
couplings:

2Note that other higher-dimensional higher-derivative and
interaction terms will provide the correction terms in the Kähler
potential, but they would be suppressed by the compactification
scale.

4D MODULAR FLAVOR SYMMETRIC MODELS INSPIRED BY A … PHYS. REV. D 106, 035001 (2022)

035001-5



YeðτÞ → ðcτ þ dÞkLþkeρðγÞYeðτÞ: ð29Þ

The same result can be derived another way as follows.
The product of wave functions χecðyÞχLðyÞ can be
expanded by all the Kaluza-Klein (KK) wave functionsΦH,

χLðyÞχecðyÞ ¼ YeðτÞφHðyÞ þ � � � ; ð30Þ

since all the KK wave functions are a complete set. The first
term on the rhs corresponds to the massless mode, while the
others are massive modes.3 The expansion coefficient YeðτÞ
corresponds to the 4D Yukawa coupling. Both sides must
have the same modular weight, and φH has vanishing
weight. Thus, the 4D Yukawa coupling YeðτÞ has modular
weight kL þ ke. Thus, we can derive the 4D modular flavor
symmetric model from a higher-dimensional theory. In this
scenario, we have the constraint on combinations between
modular weights and ΓN representations of matter fields,
although one has assigned modular weights and ΓN
representations to matter fields without such a constraint
in modular flavor models, which have been constructed so
far. For example, one cannot assign odd weights to matter
fields in modular ΓN flavor models. The modular Γ0

N flavor
symmetry is then required to assign odd weights to matter
fields. In the next section, we show A4 modular flavor
models as illustrating examples.

IV. EXAMPLES IN A4 MODULAR
FLAVOR MODELS

In the previous section, we have studied a scenario to
derive 4D modular flavor symmetric models from a higher-
dimensional theory. In this scenario, we have the constraint
on combinations of modular weights and ΓN representa-
tions for matter fields. For example, matter fields must have
even modular weights in A4 modular flavor models. The
matter fields with modular weight −k ¼ −2 must be A4

triplet, but other representations cannot be allowed. The
nontrivial A4 singlet 100 cannot be assigned to the matter
fields with modular weight −k ¼ −2;−4;−6, but can be
assigned to the matter fields with −k ¼ −8. We present A4

models.
In many A4 models, three generations of lepton doublets

L are assigned to the A4 triplet 3, and three generations of
right-handed charged leptons ec are assigned to three A4

singlets, 1; 100; 10. In order to use such assignments of A4

representations, we study the model that three generations
of lepton doublets Li have modular weight −k ¼ −2 and
three generations of right-handed charged leptons eci have
modular weight −k ¼ −8. Such an assignment is summa-
rized in Table III.

The A4 modular invariant superpotential relevant to the
lepton sector can be written by

W ¼
X
r

αrðYð10Þ
r LÞ1Hdec1 þ

X
r

βrðYð10Þ
r LÞ10Hdec100

þ
X
r

γrðYð10Þ
r LÞ100Hdec10 þ

X
r

gr
Yð4Þ
r

Λ
LHLH: ð31Þ

We set αr ¼ βr ¼ γr ¼ 0 except r ¼ ð3; 1Þ of Eq. (17), and
the dimensionful parameter Λ is set to obtain the correct
scale of neutrino masses. On the other hand, nonvanishing
gr’s are given for r ¼ 3; 1; 10 of Eq. (14). Then, this
superpotential is quite similar to the one in Ref. [31].
Indeed, we set

τ¼0.0796þ1.0065i; g1=g3¼0.124; g10=g3¼−0.802;

α3;1=γ3;1¼6.82×10−2; β3;1=γ3;1¼1.02×10−3; ð32Þ

so as to realize realistic values of charged lepton mass
ratios and neutrino mass squared differences. The obtained
mixing angles are

sin2 θ12 ¼ 0.294; sin2 θ23 ¼ 0.563; sin2 θ13 ¼ 0.0226;

ð33Þ

which are within a 1σ error bar of observed values [127].
Thus, we can construct the modular flavor symmetric
models, which are consistent with our scenario and can
derive realistic results.
Although the above model is a simple model, we may

be able to study other assignments consistent with our
scenario. For example, we assign A4 representations and
modular weights to three generations of eci as 1 (weight −4),
100 (weight −8), and 10 (weight −4), while we use the same
assignment for Li and Hd. Then, the modular A4 invariant
superpotential can be written by

W ¼
X
r

αrðYð6Þ
r LÞ1Hdec1 þ

X
r

βrðYð10Þ
r LÞ10Hdec100

þ
X
r

γrðYð6Þ
r LÞ100Hdec10 þ

X
r

gr
Yð4Þ
r

Λ
LHLH: ð34Þ

We also set αr ¼ βr ¼ γr ¼ 0 except r ¼ ð3; 1Þ of Eqs. (15)
and (17). By using proper values of the parameters, we can
realize almost the same results of the lepton masses and

TABLE III. Assignment of A4 representations and weights.

Li eci Hd

SUð2Þ 2 1 2
A4 3 1; 100; 10 1
k −2 −8 0

3In specific higher-dimensional theories, the production of
massless wave functions can be expanded only by massless
modes [124–126].
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mixing angles as the previous model. In this model, three
generations of eci have two different modular weights, −4
and −8. Thus, these three generations may originate from
not a single field Φðx; yÞ in a higher-dimensional theory,
but at least two fields Φðx; yÞ and Φ0ðx; yÞ where one field
corresponds to modular weight−4 and the other corresponds
to weight −8.
As another model, we assign three generations of eci as 1

(weight −4), 10 (weight −4), and 10 (weight −4), while we
use the same assignment for Li and Hd. Then, the modular
A4 invariant superpotential can be written by

W ¼
X
r

αrðYð6Þ
r LÞ1Hdec1 þ

X
r

βrðYð6Þ
r LÞ100Hdec10

þ
X
r

γrðYð6Þ
r LÞ100Hdec10 þ

X
r

gr
Yð4Þ
r

Λ
LHLH: ð35Þ

Taking αr ¼ γr ¼ 0 except r ¼ ð3; 1Þ and βr ¼ 0 except
r ¼ ð3; 2Þ of Eq. (15), we can also realize almost the same
results of the lepton masses and mixing angles as the
previous model. Since three generations of eci have the
same modular weight in this model, they can originate from
a single fieldΦðx; yÞ in a higher-dimensional theory. In this
model, two modes have the same A4 representation 10 and
the same weight −4. They may have different properties on
boundary conditions in extra dimensions, e.g., ZN twist
eigenvalues. Alternatively, we assign three generations of
eci as 1 (weight −4), 10 (weight −4), and 1 (weight −4).
These models are consistent with our scenario and can

lead to realistic lepton masses and mixing angles. One of
the important issues is to study their difference in particle
phenomenology, i.e., how to distinguish these models. The
first model in Table III and the second model have different
modular weights for the matter fields with the representa-
tion f1; 10g. Here, we give a comment on the phenomeno-
logical difference due to the modular weights.
Within the framework of supergravity theory, soft scalar

massesmi with the moduli-dependent Kähler metric Kiī are
given as [128]

mi ¼ m2
3=2 −

X
X

jFXj2∂X∂X̄ lnKiī; ð36Þ

when F-terms FX of the moduli X develop their vacuum
expectation values. Suppose that the F-term Fτ of the
modulus τ develops its vacuum expectation value. Then,
the Kähler metric in Eq. (25) leads to the soft masses [76]

m2
i ¼ m2

3=2 − ki
jFτj2

ð2ImτÞ2 : ð37Þ

The first model in Table III leads to degenerate soft
masses in three generations of right-handed leptons as well
as left-handed leptons. In the second model, the right-
handed lepton with the representation 100 has a modular

weight different from the other. Thus, their slepton masses
are not degenerate.
Similarly, in the third model, three generations of slepton

masses are degenerate. We may have a difference between
the first and third models in higher-dimensional operators
in the SMEFT [96].

V. CONCLUSION

We have studied the scenario to derive 4D modular
flavor symmetric models from a higher-dimensional theory.
In our scenario, wave functions in extra dimensions are
modular forms. That leads to the constraints on combina-
tions between modular weights and ΓN (Γ0

N) representa-
tions, which have not been considered in the bottom-up
approach. As illustrating examples, we have shown explicit
A4 models, taking into account the constraints from a
higher-dimensional theory. We have found that realistic
results on lepton masses and mixing angles are realized.
Our discussions can also be applied to the quark sector,
though we do not discuss them here. We can extend them to
other ΓN models and their covering groups. Further studies
along our scenario would be important to connect 4D flavor
models with a higher-dimensional theory such as a super-
string theory.
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APPENDIX: PROJECTION BY
BOUNDARY CONDITION

Here, we show an example to project wave functions
with ΓN reducible representations to an irreducible one by
imposing further boundary conditions.
Suppose that the following five wave functions satisfy

the same zero-mode equations in some compactification
with the complex coordinate z ¼ y1 þ τy2, which may have
other dimensional coordinates,

χ1ðz;τÞ≡ ðψ0;2ðz;τÞÞ4þðψ1;2ðz;τÞÞ4;
χ2ðz;τÞ≡2

ffiffiffi
3

p
ðψ0;2ðz;τÞÞ2ðψ1;2ðz;τÞÞ2;

χ3ðz;τÞ≡ ðψ0;2ðz;τÞÞ4− ðψ1;2ðz;τÞÞ4;
χ4ðz;τÞ≡2ððψ1;2ðz;τÞÞ3ψ1;2ðz;τÞþψ0;2ðz;τÞðψ1;2ðz;τÞÞ3Þ;
χ5ðz;τÞ≡2ððψ1;2ðz;τÞÞ3ψ1;2ðz;τÞ−ψ0;2ðz;τÞðψ1;2ðz;τÞÞ3Þ;

ðA1Þ

where
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ψ j;Mðz;τÞ≡
�
M
A2

�
1=4

eπiMzImz
Imτϑ

� j
M

0

�
ðMz;MτÞ; j∈Z=MZ;

ðA2Þ

and ϑ denotes the Jacobi-theta function defined by

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞτe2πiðaþlÞðνþbÞ: ðA3Þ

These wave functions transform each other under the
modular symmetry. Under the S transformation with
z → −z=τ, these wave functions transform

χiðz; τÞ → ð−τÞ2ρðSÞijχjðz; τÞ; ðA4Þ

where

ρðSÞij ¼
 
ρð1ÞðSÞij 0

0 ρð2ÞðSÞij

!
; ðA5Þ

ρð1ÞðSÞ ¼ −
1

2

�
1

ffiffiffi
3

p
ffiffiffi
3

p
−1

�
; ρð2ÞðSÞ ¼ −

0
B@

0 1 0

1 0 0

0 0 1

1
CA:

ðA6Þ

The above behavior implies that the above wave functions
have modular weight 2. Under the T transformation, these
wave functions transform

χiðz; τÞ → ρðTÞijχjðz; τÞ; ðA7Þ

where

ρðTÞij ¼
 
ρð1ÞðTÞij 0

0 ρð2ÞðTÞij

!
; ðA8Þ

ρð1ÞðTÞ¼
�
1 0

0 −1

�
; ρð2ÞðTÞ¼

0
B@
1 0 0

0 0 i

0 i 0

1
CA: ðA9Þ

ρðSÞ and ρðTÞ are representations of Γ4 ≃ S4. In particular,
χi are reducible representations. ðχ1; χ2Þ correspond to
the doublet 2 of S4, while ðχ3; χ4; χ5Þ correspond to the
triplet 30.
In addition to the above compactification, we impose

further boundary conditions. We study the shifts of the
coordinate

z→ zþðmþnτÞ=2; ðm;nÞ¼ð1;0Þ;ð0;1Þ;ð1;1Þ: ðA10Þ

The modes ðχ1; χ2Þ are invariant under all of these shifts.
On the other hand, the modes ðχ3; χ4; χ5Þ transform

χi → eπiQ
i
ðm;nÞχi; ðA11Þ

where

Q3
ðm;nÞ ¼ ð0;1;1Þ; Q4

ðm;nÞ ¼ ð1;0;1Þ; Q5
ðm;nÞ ¼ ð1;1;0Þ

ðA12Þ

for ðm; nÞ ¼ ð1; 0Þ; ð0; 1Þ; ð1; 1Þ, respectively. Thus, if we
require the shift invariance of wave unctions, we can
project the five wave functions χi with the representations
2þ 30 to the irreducible representation 2, ðχ1; χ2Þ. (For shift
invariance, see Refs. [116,118,129].)
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