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We study a scenario to derive four-dimensional modular flavor symmetric models from a higher-
dimensional theory by assuming the compactification consistent with the modular symmetry. In our
scenario, wave functions in extra-dimensional compact space are modular forms. That leads to constraints
on combinations between modular weights and I'y (I')) representations of matter fields. We also present

illustrating examples.
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I. INTRODUCTION

The supersymmetric (SUSY) modular invariant theories
give us an attractive framework to address the flavor
problem of quarks and leptons. Indeed, finite modular
flavor symmetric models have been presented for years
[1-13]. The homogeneous modular group I' = SL(2, Z)
and inhomogeneous modular group T = SL(2,2)/Z,
include S;, A4, S4, As as finite subgroups [14]. Indeed,
the quotients I'y = I'/T(N) are isomorphic to I'; ~A,,
I'y~S,, and I's ~ As, while ['/T'(2) ~ S5, where I'(N) are
principle congruence subgroups. These non-Abelian
flavor symmetries such as S;, A4, S4, A5 were often used
to derive quark and lepton mass matrices successfully in
flavor model building before the studies of modular flavor
models [15-24].

In modular flavor models, Yukawa couplings are modu-
lar forms depending on the modulus 7z, and are certain
representations under I'y and their covering groups I'},. We
assign modular weights and I'y (I'y) representations to
matter fields as well as Higgs fields, although Higgs fields
are assigned to a I'y (I'}y) trivial singlet in most of the
modular flavor models. Then, the structure of quark and
lepton mass matrices is given by certain modular forms
under the assumption that the Yukawa coupling terms (in
the superpotential) as well as mass terms are invariant under
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the modular symmetry. By taking these modular flavor
symmetric mass matrices, one can realize realistic
quark and lepton masses and mixing angles by fixing
the modulus z. The CP violation and related phenomena
have been also studied [25-34]. Besides mass matrices of
quarks and leptons, related topics such as grand unified
theory, leptogenesis, dark matter, etc., have been discussed
in many works [35-94]. It is also remarked that the
standard model effective field theory (SMEFT) has been
studied in the modular symmetry [95,96]. Theoretical
investigations have also been proceeded [97-110].
Various combinations of matter modular weights and I'y
(I')y) representations have been studied in order to lead to
phenomenologically interesting results. On the other hand,
the modular symmetry is the geometrical symmetry of
compact spaces such as 72 and the orbifold 7%/Z,. Thus,
four-dimensional modular flavor symmetric models could
be derived from a higher-dimensional theory such as a
superstring theory. For example, flavor transformations
under the modular symmetry were studied in heterotic
orbifold models [111-113] and magnetized D-brane mo-
dels [4,114—119]. Furthermore, Calabi-Yau compactifica-
tions have many moduli, and they have larger geometrical
symmetries, i.e., symplectic modular symmetries Sp(g, Z)
[120-123]. However, in most four-dimensional (4D) modu-
lar flavor models, their relations with a higher-dimensional
theory are not clear: How do 4D modular flavor symmetric
models appear as a 4D low-energy effective field theory
from a higher-dimensional theory? Our purpose in this
paper is to propose a scenario to derive 4D modular flavor
symmetric models from a higher-dimensional theory. We
do not specify its compactification, but we assume generic
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compactification consistent with the modular symmetry.
We study the Kaluza-Klein decompositions in a modular-
symmetric way. In this scenario, wave functions in extra-
dimensional compact space can be written by modular
forms. Such a scenario leads to constraints of 4D modular
flavor symmetric models. Modular weights and represen-
tations of matter fields are constrained.

This paper is organized as follows. In Sec. II, we give a
brief review of the modular symmetry and modular forms.
We also study the structure of I'(3) modular forms. In
Sec. III, we study a scenario to derive 4D modular flavor
symmetric models from a higher-dimensional theory with
modular-symmetric compactification. In Sec. IV, we study
illustrating examples with A, modular flavor symmetry.
Section V is our conclusion. In the Appendix, we show an
example to project wave functions with Iy reducible
representations to an irreducible one.

II. MODULAR SYMMETRY AND
MODULAR FORMS

A. Modular symmetry

Here, we briefly review the modular symmetry and
modular forms. The SL(2,Z) =T group is a group of
the following 2 x 2 matrices:

=00 (1)

where a, b, ¢, d are integers and ad — bc = 1. The
SL(2,Z) group is generated by S and T,

0 1 1 1
S = , T= . (2)
-1 0 0 1
They satisfy the following algebraic relations:
4 =1, (ST)® = 1. (3)

The modulus 7 transforms as

4)

under the modular symmetry. The generators S and T
satisfy the following algebraic relations on 7:
§? =1, (ST)® =1, (5)
ie, PSL(2,Z)=SL(2,2)/Z, =T.
The modular forms are described by a holomorphic

function f;(z), which transforms under the modular
symmetry as

fi(ye) = (et + d)*p(y),;f () (6)

with k and p(y);; being the modular weight and unitary

matrices, respectively.
Here, we introduce the principal congruence subgroups

-
(£ 2)-(00) ) o

The T'(N) modular forms satisfy

b
) € SL(2,7),
d

filrr) = (et + d)!fi(r) (8)

fory € I'(N). Thus, the unitary matrices are representations
of quotients I'y = I'/I"(N). Interestingly, the quotients I'y
with N = 3, 4, 5 are isomorphic to A4, Sy4, As, respectively.
In addition, I'y and I'j¢ include A(96) and A(384) [4].
These are finite modular subgroups including irreducible
triplet representations. Moreover, the quotient I, = I'/T°(2)
is isomorphic to Ss.

Since $? = 1 in I on the modulus 7, the modular weight
k must be even. The dimensions d;(I'(N)) of modular
forms of weights k and levels N are determined math-
ematically and shown in Table I. These modular forms
are d, representations of I'y. In general, they are reducible
representations and can be decomposed to irreducible
representations as shown in the next subsection for N = 3.

The above modular forms can be extended to I' =
SL(2,7Z), which is the double covering group of T". For
this group, the modular weights can be odd integers, and
(), ; are representations of the double covering groups of
Iy, I'y. Furthermore, we can extend the double covering
group of I' = SL(2, Z). The modular weights can be half-
integers, and p(y); ; are representations of the double
covering groups of I'},. For example, such modular forms
with half-integers are obtained in magnetized D-brane
models on 72 and T7%/Z, [118].

B. I'(3) modular forms

Here, we show explicitly I'(3) modular forms and their
A, representations. The A, group has four irreducible
representations, 3,1,1’,1”. Their tensor products are
obtained as

TABLE 1. Dimensions of modular forms of the level N and
weight k.

N di(I(N)) Ty
2 k/2+1 S5
3 k+1 Ay
4 2k +1 Sy
5 Sk+1 As
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3x3=3,+3,+1+1'+1", The I'(3) modular forms of weight k = 2 have dimen-
3x1=3x1=3x1"=3 (9) sion d, = 3, and they are the A, triplet. Their explicit forms
| are written by [1]

where 3, and 3, are symmetric and antisymmetric, respec-

tively, and ) Y(7)
Y@ = | ne |. (11)
lm X ln = lf, (10) Y3(T)

where # =m+n (mod 3), 1, =1,1, =1, and 1, = 1".

=52 (s e e on )
o =3 (3 - e i a3
=3 (e o e ) ) "
where 7(z) is the Dedekind eta function, Iwhere (v3"¥"), is the wivial singlet projection of the

tensor product Y§4> Y(32>.

n(r) = q'/* H(l —q"),q =exp(2mit).  (13) The modular forms of weight k = 8 have dimension
n=1 dg = 9. They decompose to 3+3+1+ 1"+ 1", and are

. . i written explicitly by
The modular forms of higher weights are obtained by the

tensor products of ¥ gz) (7). The modular forms of weight Y2 —Y,Y;
_ : - _ 8 44
k/— 4 have dnpenswn 44 = 5. They decompose to 3, 1, and Yé{ (r) = Y(l )Yg ) _ (Y2 421,73 | v2-vv, |
1’ and are written explicitly by 5
Y- Y, Y,
Y2 - Y,Y; Y3 —Y,Y;
v{'() = | i-ry, |, Yo =vYy = (3 2y | -1y, |,
Y2-Y,Y; Y=Y\,

vV =vivorys, vy

Y=vitoryy,, (14 v =y = (2 121,752,

YW () = Yy = (v2 + 2v,¥5) (Y2 + 27, Y>),

The modular form corresponding to the nontrivial singlet v v
1" vanishes identically ¥ = ¥3 +2v,¥; =0 [1]. Also,  ¥¥(r) = ¥yl = (v2 +-2v,v,)2. (16)
the modular form corresponding to 3, vanishes.
Similarly, modular forms of higher weights are con-  Note that the nontrivial singlet 1” appears when the
structed (see, e.g., Refs. [54,57]). The modular forms of  weight k = 8.
weight k = 6 have dimension d6 =1. They decomp()se to The modular forms of weight k = 10 have dimension
3+ 3 +1, and are written explicitly by djp = 11. They decompose to 3+ 3 +3 + 1+ 1/, and are
written explicitly by
Y,
Y;(f1) () = 54) Yg2)(7) = (Y7 +2Y,Y3)| Y |, TABLE II. A, representations for each weight k.
€ k dy A, representations
Y3 2 3 3
YO ) = vy @) = 3 +2ry) | v | 4 5 34147
y 6 7 3+3+1
2 g 3434141 +1"
6 4)y,(2 i
Y(1>(T)=(Yg)Yg))l=Y?+Y§+Y§—3Y1Y2Y3, (15) 10 11 3+3+3+1+1
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Y3

YiV(@) = YDy (e) = (P 2rys) (Y +2rin) | vy |,

Y,

Y{%) = Y7 = (V2 4 21,73) (Y3 + Y3 + Y3 = 3,1, Ys),
Y'Y = (v2 4 27,7,) (Y3 + Y3 + Y3 = 3, Y, Y5). (17)

Table II shows the A, representations for the modular forms of each weight k.

III1. 4D LOW-ENERGY EFFECTIVE
FIELD THEORY FROM A
HIGHER-DIMENSIONAL THEORY

We study a scenario to derive 4D modular flavor
symmetric models from a (4 + d)-dimensional theory by
compactification. We assume that the modulus z describes
geometrical characters of d-dimensional compact space
such as shape, although the compact space may have other
moduli. On top of that, we assume that the compact space
has the modular symmetry on z. This originates from the
symmetry of z, that is, the geometric symmetry of extra-
dimensional spaces. For instance, if extra-dimensional
spaces include 77 or its orbifold as subspace, such back-
grounds enjoy the SL(2, Z) modular symmetry when the
modulus 7 is identified with the complex structure modulus
or the Kihler modulus [4,114-119]. Furthermore, the
Sp(2h, Z) symplectic modular symmetry also appears in
toroidal orbifolds with multimoduli [107] and Calabi-Yau
backgrounds [120-123]. Our discussion can be applied
for such a compact space. In this section, we study the
modular-symmetric theory without specifying the extra-
dimensional space. Most 4D modular flavor symmetric
models are constructed within the framework of a (global)
supersymmetric theory. Hence, we assume that our com-
pactification preserves 4D A = 1 supersymmetry.

We denote coordinates of 4D spacetime and
d-dimensional compact space by x and y, respectively.
Bosonic fields @(x, y) and spinor fields ¥(x, y) in a higher-
dimensional theory are written by Kaluza-Klein decom-
position as

D(x,y) = Z¢i(x)¢i(y) + -,
P(xy) =Y wilz() + o (18)

Bosonic fields ®(x, y) correspond to scalars or vectors in
(4 4+ d) dimensions, but vector fields with vector indices
along extra-dimensional space are 4D scalars. The first
terms on the rhs are massless modes (zero modes) and the
others are massive modes. Here, we focus on massless
modes. In general, there is more than one zero mode, which
is labeled by the index i. The zero-mode index i corre-
sponds to the flavor index in the 4D low-energy effective
field theory. Hereafter, we often omit this index i.

It is noted that ¢p(x) and y(x) are 4D fields, while ¢(y)
and y(y) are wave functions in extra dimensions. The wave
functions ¢(y) and y(y) depend on the modulus z, namely,
metric deformations of extra-dimensional space. Since this
theory is assumed to be modular symmetric, these wave
functions are modular forms.' Thus, for fixed modular
weight k, I'y representations of wave functions ¢(y) and
x(v) are constrained as in the previous section. For
example, for N = 3, the wave functions ¢(y) and y(y)
of weight k = 2 are only the A, triplet, but not singlets.
When k = 4, wave functions ¢(y) and y(y) can correspond
to either of 3, 1, 1/, but not 1”. The singlet 1” can appear for
k = 8 and higher weights. Hence, we have constraints on
weights k and I'y representations in a higher-dimensional
theory. Note that the value of level N depends on models in
a higher-dimensional theory. For instance, the I'; repre-
sentations appear in twisted modes of the heterotic 7%/Z5
orbifold [111-113]. Other representations are also possible
on heterotic orbifolds and magnetized D-brane models. The
value of N depends on the geometric structure of extra-
dimensional spaces as well as background sources. It is
important to reveal the geometric meaning of N, but we
leave these issues for future research.

'For example, wave functions in magnetized D-brane models
are modular forms [4,114-119].
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For fixed weight k, there are d;(I'(N)) dimensions of
modular forms as shown in Table 1. Hereafter, we assume
that not all modular forms, but one or more irreducible
representations of 'y, appear as zero-mode wave functions
of matter fields. Such a projection from d;(I'(N)) dimen-
sions to irreducible representations would be possible by
imposing certain boundary conditions. In the Appendix, we
show an example to project out some of the reducible
representations in zero-mode wave functions so as to
obtain irreducible representations. Here, we show that such
projections can be consistent with the modular symmetry.
We assume that a wave function ¢, (y) corresponding to dj-
dimensional modular forms of I'(N) satisfies a zero-mode
equation with a specific boundary condition. When those
di-dimensional wave functions are a reducible representa-
tion of I'y, the unitary matrix p(y);; is represented by

»1(y) PV (), »1(y)

P(V)ij : = p(Z) (y)if

(19)

That implies that the modular transformation of ¢, (y) is
closed in the irreducible representation corresponding
to p(l)(y)l-j but does not transform other representations
such as p®(y),;. Thus, it is consistent with the modular
symmetry to pick up an irreducible representation from
d,-dimensional modular forms.

The minimal SUSY model has one pair of Higgs modes,
i.e., the up-sector and down-sector Higgs fields. They must
be I'y singlets. Thus, it is reasonable to assign the modular
weight k = 0 to the Higgs modes.

It is natural to normalize the wave function of the
weight k as

[t = G @)

with ¢ being the determinant of the metric of extra-
dimensional space. This normalization is consistent with
the modular symmetry. Indeed, the left-hand side of the
above expressions transforms as

2

/ dy /Ao = |et + dPt / iy a0 (21)

taking into account the modular transformation of ¢(y):

o(y) = p(y)(ct + d)*p(y). (22)

Note that | ddy\/ﬁ is invariant under the modular trans-
formation, i.e., the coordinate transformation. Thus, it is
consistent with the modular transformation of z:

(2Im(7))™* - |ct + d|*(2Im(z))7*. (23)
We start with the following canonical kinetic term,
Oy @ M, (24)

in a higher-dimensional theory.2 Then, we carry out dimen-
sional reduction by the use of the above normalization so as
to obtain the following Kéhler potential of matter fields:

1

K= (Im(e)F b (x) . (25)

We require that the 4D effective field theory is invariant
under the modular transformation. The 4D matter fields
must have the modular weights —k, which have opposite
signs compared with the wave function weights k. Here and
hereafter, we use the notation that the same letter is used for
both the superfield and its lowest scalar component.

Next, we study the Yukawa coupling terms in the
superpotential. For example, suppose that the Yukawa
coupling terms in the 4D effective theory originate from
the following terms in a higher-dimensional theory:

Y PP, (26)

where @7, is the higher-dimensional field corresponding
to the 4D down-sector Higgs field H,, and ¥;, ¥, are
higher-dimensional fields corresponding to left-handed and
right-handed leptons in the 4D effective theory. Then, we
integrate the extra dimensions y so as to derive the Yukawa
coupling terms in the 4D superpotential,

W =Y, ()LH e . (27)

Here, the 4D Yukawa coupling Y, (7) is obtained by

Y(0) =y / By it O 0o (28)

The 4D modes L and e have modular weights —k; and
—k,, respectively, while H,; has vanishing modular weight.
The 4D Yukawa coupling Y,(r) has modular weight
k; + k, because the product of wave functions in the extra
dimension has weight k; + k,. Then, the above super-
potential is invariant under the modular transformation.
Indeed, the modular transformation of matter fields (22)
induces the correct modular transformation of the Yukawa
couplings:

*Note that other higher-dimensional higher-derivative and
interaction terms will provide the correction terms in the Kéhler
potential, but they would be suppressed by the compactification
scale.
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Yo(t) = (et + )™ ep(y)Y. (7). (29)

The same result can be derived another way as follows.
The product of wave functions y.(y)y,(y) can be
expanded by all the Kaluza-Klein (KK) wave functions @,

2L (V) = Yo(D)pu(y) + -+, (30)

since all the KK wave functions are a complete set. The first
term on the rhs corresponds to the massless mode, while the
others are massive modes.’ The expansion coefficient Y, (7)
corresponds to the 4D Yukawa coupling. Both sides must
have the same modular weight, and ¢y has vanishing
weight. Thus, the 4D Yukawa coupling Y,(z) has modular
weight k; + k,. Thus, we can derive the 4D modular flavor
symmetric model from a higher-dimensional theory. In this
scenario, we have the constraint on combinations between
modular weights and I'y representations of matter fields,
although one has assigned modular weights and T’y
representations to matter fields without such a constraint
in modular flavor models, which have been constructed so
far. For example, one cannot assign odd weights to matter
fields in modular I'y flavor models. The modular ', flavor
symmetry is then required to assign odd weights to matter
fields. In the next section, we show A, modular flavor
models as illustrating examples.

IV. EXAMPLES IN A; MODULAR
FLAVOR MODELS

In the previous section, we have studied a scenario to
derive 4D modular flavor symmetric models from a higher-
dimensional theory. In this scenario, we have the constraint
on combinations of modular weights and I'y representa-
tions for matter fields. For example, matter fields must have
even modular weights in A; modular flavor models. The
matter fields with modular weight —k = —2 must be A,
triplet, but other representations cannot be allowed. The
nontrivial A, singlet 1” cannot be assigned to the matter
fields with modular weight —k = —2, —4, —6, but can be
assigned to the matter fields with —k = —8. We present A4
models.

In many A, models, three generations of lepton doublets
L are assigned to the A, triplet 3, and three generations of
right-handed charged leptons e¢ are assigned to three A,
singlets, 1,1”, 1. In order to use such assignments of A,
representations, we study the model that three generations
of lepton doublets L; have modular weight —k = —2 and
three generations of right-handed charged leptons e¢ have
modular weight —k = —8. Such an assignment is summa-
rized in Table III.

In specific higher-dimensional theories, the production of
massless wave functions can be expanded only by massless
modes [124-126].

TABLE III. Assignment of A, representations and weights.
L; el H,
SU(2) 2 1 2
Ay 3 1,117 1
k -2 -8 0

The A, modular invariant superpotential relevant to the
lepton sector can be written by

10 10
W= a,(Vi'"L) Hae§ + > pe(VVOL) Hyes,
r r

(@
Y
10 ¢ r
+ E ye(YYOL) W H e, + § ge——LHLH. (31)

We set a, = f, = 7, = O exceptr = (3,1) of Eq. (17), and
the dimensionful parameter A is set to obtain the correct
scale of neutrino masses. On the other hand, nonvanishing
g.’s are given for r=3,1,1" of Eq. (14). Then, this
superpotential is quite similar to the one in Ref. [31].
Indeed, we set

£=0.0796+1.0065i, ¢y/g3=0.124, gy /g3 =—0.802,
a3,1/y3_1 =6.82 % 10_2, ﬁ3’1/7/3’1 =1.02x ]0_3, (32)

so as to realize realistic values of charged lepton mass
ratios and neutrino mass squared differences. The obtained
mixing angles are
sin @, = 0.294,

sin?@y; =0.563,  sin?6,; = 0.0226,

(33)

which are within a 1o error bar of observed values [127].
Thus, we can construct the modular flavor symmetric
models, which are consistent with our scenario and can
derive realistic results.

Although the above model is a simple model, we may
be able to study other assignments consistent with our
scenario. For example, we assign A, representations and
modular weights to three generations of e{ as 1 (weight —4),
1”7 (weight —8), and 1’ (weight —4), while we use the same
assignment for L; and H,. Then, the modular A4 invariant
superpotential can be written by

6 . 10 .
W= "a,(r"L) Hye§ + 3 B (L) Hyes,
r r

(4)
(6) c Yy
+2r:yr(yr L)l//Hdel,—i—zr:gr LHLH.  (34)

We also set a, = ff, = 7, = O exceptr = (3,1) of Egs. (15)
and (17). By using proper values of the parameters, we can
realize almost the same results of the lepton masses and
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mixing angles as the previous model. In this model, three
generations of ef have two different modular weights, —4
and —8. Thus, these three generations may originate from
not a single field ®(x,y) in a higher-dimensional theory,
but at least two fields ®(x,y) and @’(x, y) where one field
corresponds to modular weight —4 and the other corresponds
to weight —8.

As another model, we assign three generations of ef as 1
(weight —4), 1/ (weight —4), and 1’ (weight —4), while we
use the same assignment for L; and H,. Then, the modular
A, invariant superpotential can be written by

W= a(\L) Hec; + > pe(YL) 1 H e,

(4)
Y
6 ¢
+ E e (Y1) H e, + § gr%LHLH. (35)

Taking a, =y, = 0 except r = (3,1) and S, = 0 except
r = (3,2) of Eq. (15), we can also realize almost the same
results of the lepton masses and mixing angles as the
previous model. Since three generations of ef have the
same modular weight in this model, they can originate from
a single field ®(x, y) in a higher-dimensional theory. In this
model, two modes have the same A, representation 1’ and
the same weight —4. They may have different properties on
boundary conditions in extra dimensions, e.g., Zy twist
eigenvalues. Alternatively, we assign three generations of
e as 1 (weight —4), 1’ (weight —4), and 1 (weight —4).

These models are consistent with our scenario and can
lead to realistic lepton masses and mixing angles. One of
the important issues is to study their difference in particle
phenomenology, i.e., how to distinguish these models. The
first model in Table III and the second model have different
modular weights for the matter fields with the representa-
tion {1,1'}. Here, we give a comment on the phenomeno-
logical difference due to the modular weights.

Within the framework of supergravity theory, soft scalar
masses m; with the moduli-dependent Kéhler metric K;; are
given as [128]

mi=m3, =Y |F¥oyozInK;,
X

(36)

when F-terms FX of the moduli X develop their vacuum
expectation values. Suppose that the F-term F* of the
modulus 7z develops its vacuum expectation value. Then,
the Kéhler metric in Eq. (25) leads to the soft masses [76]

|F?
(2Imr)?”

2 2

mi =m3,, —k; (37)

The first model in Table III leads to degenerate soft
masses in three generations of right-handed leptons as well
as left-handed leptons. In the second model, the right-
handed lepton with the representation 1”7 has a modular

weight different from the other. Thus, their slepton masses
are not degenerate.

Similarly, in the third model, three generations of slepton
masses are degenerate. We may have a difference between
the first and third models in higher-dimensional operators
in the SMEFT [96].

V. CONCLUSION

We have studied the scenario to derive 4D modular
flavor symmetric models from a higher-dimensional theory.
In our scenario, wave functions in extra dimensions are
modular forms. That leads to the constraints on combina-
tions between modular weights and I'y (I'y) representa-
tions, which have not been considered in the bottom-up
approach. As illustrating examples, we have shown explicit
A, models, taking into account the constraints from a
higher-dimensional theory. We have found that realistic
results on lepton masses and mixing angles are realized.
Our discussions can also be applied to the quark sector,
though we do not discuss them here. We can extend them to
other I'yy models and their covering groups. Further studies
along our scenario would be important to connect 4D flavor
models with a higher-dimensional theory such as a super-
string theory.
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APPENDIX: PROJECTION BY
BOUNDARY CONDITION

Here, we show an example to project wave functions
with I'y reducible representations to an irreducible one by
imposing further boundary conditions.

Suppose that the following five wave functions satisfy
the same zero-mode equations in some compactification
with the complex coordinate 7 = y; + 7y,, which may have
other dimensional coordinates,

where
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and 9 denotes the Jacobi-theta function defined by
g [a} (v,7) = Z omila+0)r p2i(a+E)(v+b) (A3)
b ez

These wave functions transform each other under the
modular symmetry. Under the S transformation with
7z — —z/7, these wave functions transform

xi(z,7) = (=7)*p(8);x(z, 7). (A4)
where
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The above behavior implies that the above wave functions
have modular weight 2. Under the T transformation, these
wave functions transform

Xi(z.7) = p(T);x(z,7), (A7)

where
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p(8) and p(T) are representations of I'y ~ S,. In particular,
yi are reducible representations. (y,y,) correspond to
the doublet 2 of S,, while (y3,y4,xs) correspond to the
triplet 3'.

In addition to the above compactification, we impose
further boundary conditions. We study the shifts of the
coordinate
z-z+(m+n7)/2, (m,n)=(1,0),(0,1),(1,1). (A10)
The modes (y;,y,) are invariant under all of these shifts.
On the other hand, the modes (y3, x4, y5) transform

Xi— eﬂin”"”>)(i’ (Al1)

where

Q?m’n):<07171)7 Q‘("m’n):(lvovl)? Q?m’n):(lvlvo)
(A12)

for (m,n) = (1,0),(0,1), (1, 1), respectively. Thus, if we
require the shift invariance of wave unctions, we can
project the five wave functions y; with the representations
2 + 3’ to the irreducible representation 2, (y, y» ). (For shift
invariance, see Refs. [116,118,129].)
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