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We present a relativistic heavy-quark action tuning for the charm sector on ensembles generated by the
Coordinated Lattice Simulations consortium. We tune a particular five-parameter action in an entirely
nonperturbative and—up to the chosen experimental input—model-independent way using machine
learning and the continuum experimental charmonium ground-state masses with various quantum
numbers. In the end, we are reasonably successful; obtaining a set of simulation parameters that we
then verify produces the expected spectrum. In the future, we will use this action for finite-volume
calculations of hadron-hadron scattering.
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I. MOTIVATION

In recent years, studies of hadron-hadron scattering using
Lüscher’s finite-volume method [1,2] have become the
state of the art for obtaining information about physical
scattering amplitudes from lattice QCD. In the light-quark
sector, such studies typically make use of moving frames to
maximize the information about scattering amplitudes
deduced from a single gauge-field ensemble (for examples,
please refer to Ref. [3]).
For hadrons with heavy charm or bottom quarks, keep-

ing heavy-quark discretization effects under control is an
additional concern. In the case of ensembles generated by
the Coordinated Lattice Simulations (CLS) consortium [4],
using the sameWilson-clover action [5] for heavy quarks as
is used for light (up, down, and strange) quarks, leads to
sizable heavy-quark discretization effects [6] for all but the
finest lattice spacings considered. These discretization
effects can be understood in the context of the Fermilab
approach [7,8]. In one of the standard implementations used
extensively by the Fermilab Lattice and MILC Collabo-
rations (see, for example, [9–11]), a single parameter of the
relativistic heavy-quark (RHQ) action discussed in the next
section is tuned nonperturbatively. This approach was used

for the study of hadron resonances and bound states with
Lüscher’s finite-volumemethod, to study heavy-lightmesons
[12–14] and charmonium [15]. However, tuning only a single
parameter nonperturbatively, significant discretization effects
are still present in hadronic dispersion relations [8,13], which
complicates the change of frame from interacting two-hadron
energies in moving frames to the center-of-momentum frame
needed to make use of moving frames in the scattering
calculation. For this reason, only rest-frame data were used in
Refs. [12–15]. In more recent studies of the charmonium
spectrum in (coupled-channel) scattering of charmed mesons
[16,17], moving frames were used by extracting energy
differences with regard to only close-by noninteracting
meson-meson levels and by purely working with the con-
tinuum form of the dispersion relations, which minimizes the
effects from heavy-quark discretization effects [18]. This
introduces a hard-to-quantify systematic uncertainty.
In heavy-hadron spectroscopy studies pursued by the

Hadron Spectrum Collaboration, anisotropic lattices are
used to study multihadron scattering with heavy hadrons
[19–23]. In their approach, the fine temporal lattice spacing
combined with a tuning of the mass and anisotropy
parameters that reproduce the physical ηc mass and a
relativistic dispersion relation enable the use of moving
frames. Discretization effects in the spin-dependent split-
tings are still, however, expected to be sizable in such an
approach [8].
To reduce the uncertainty from heavy-quark discretiza-

tion effects in the context of scattering studies, it is
therefore desirable to at least tune the dispersion relation
to be approximately relativistic with a speed of light c ¼ 1
(in natural units). In the next section, we will introduce the
relativistic heavy-quark action used. We then proceed to
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describe the lattice gauge-field ensembles used in our
simulation and to describe the methodology for a fully
nonperturbative tuning of this action. In Sec. IV, we
proceed to show the outcome of this tuning procedure
and compare it to the charm simulations with the CLS light-
quark action. In Sec. V, we summarize our results and
provide a brief outlook.

II. INTRODUCTION

While the Fermilab approach already appeared in
Ref. [7], we will more closely follow Refs. [24,25], also
known in the literature as the “Tsukuba” action, and write
down a general asymmetric Wilson action:

Dxy¼δxy

−κc

�X
i

ðrs−νγiÞUiðxÞδxþi;yþðrsþνγiÞU†
i ðxÞδx;yþi

�
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�
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X
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X
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σitFitðxÞ
�
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Commonly, rt ¼ 1 is chosen, as this parameter is argued to
be redundant. The remaining five parameters are κc, rS, ν,
cE, and cB. Prescriptions in the literature exist for choosing
these parameters based on mean-field-improved perturba-
tion theory and for nonperturbative tuning of individual
parameters. An in-depth discussion about our implemen-
tation of this action within the library openQCD can be
found in Appendix A. We would like to make it clear that
our methodology does not rely on this specific choice of
action and could be simply applied to any of the tunings
employed in the literature.
In Refs. [9–11], cSW ¼ cE ¼ cB ≡ u−30 is set to the value

from tree-level tadpole-improved perturbation theory, with
the tadpole factor u0 determined from the fourth root of
the plaquette, or the mean Landau link. In addition, the
choices rs ¼ ν ¼ 1 are used. Note that it is argued that rs
is a redundant parameter. In this approach, only κc is
determined nonperturbatively (from tuning the kinetic mass
M2 of the Ds meson to its physical value). In the context of
spectroscopy, this approach was used in Ref. [26] to obtain
an excellent description of ground-state mass splittings in
the charmonium spectrum. In the Fermilab approach
[7,8,27], the heavy-meson dispersion relations take the
general form

EðpÞ ¼ M1 þ
p2

2M2

−
ðp2Þ2
8M3

4

−
a3W4

6

X
i

p4
i þ � � � ; ð2Þ

due to broken Lorentz symmetry. M1 is known as the
(meson) rest mass and M2 as the kinetic mass, and M4 and
higher are referred to as generalized masses [27]. The term

with W4 and similar higher-order terms occur due to rota-
tional symmetry breaking, and, in general,M1≠M2≠M4….
When tuningonly κc, the resulting sizable difference between
M1 and M2 is of concern for the scattering studies detailed
in Sec. I.
In Ref. [25], the specific five-parameter action of Eq. (1)

was introduced. In Refs. [28–30], this action was semi-
nonperturbatively tuned on a set of ensembles with the
same lattice spacing a−1 ¼ 2.194ð10Þ GeV, where κc was
tuned to obtain the physical spin average of the ηc and J=ψ
masses. The parameter rs was determined completely
perturbatively using one-loop mean-field-improved expres-
sions, whereas cE and cB were determined from perturba-
tive mass corrections to the nonperturbatively measured
cSW of Ref. [32]. The value of νwas tuned independently of
all the other parameters to obtain the relativistic dispersion
relation c2 ¼ 1. We will discuss such an approach later in
Sec. IV B, as we allow all parameters to vary and can infer
their interdependence. Having c2 ¼ 1 is quite useful, as
we will not have to determine masses of states through
their dispersion relation; in the Fermilab language, we are
enforcing that M1 ¼ M2.
Finally, in Ref. [33], a more conventional fully non-

perturbative tuning of the four-parameter action with rt ¼ 1
and rs ¼ ν and of the three-parameter action where, addi-
tionally, cE ¼ cB has been performed [34], also allowing
M1 ¼ M2. Here, the argument that cE ¼ cB can be chosen
relied on the observation of nonstable parameters when
performing the tuning of the four-parameter action in
Ref. [33]. In a companion paper [36], it was argued (in
their RHQ power counting) that this was a consequence of
cB − cE being redundant up to higher-order effects.
For our own study, we keep all five parameters. Before

introducing the details of our methodology, we would like
to point out that cE ≈ cB indeed results from our tuning,
and—inasfar as this can be seen on our limited range of
lattice spacings—both values slowly approach cSW, while ν
and rs approach 1 ¼ rt. In particular, in contrast to
Ref. [33], we do not observe any instabilities in our
predictions across different ensembles or lattice spacings,
and all five parameters will be reasonably well determined.

III. METHODOLOGY

A. Gauge-field ensembles

We perform calculations on gauge-field ensembles
generated by the CLS consortium [4,37] with 2þ 1 flavors
of dynamical, nonperturbatively improvedWilson fermions
[5]. We use five different lattice spacings ranging from
a ¼ 0.09929 to 0.04981 fm, and with pion masses between
421 and 282 MeV, on trajectories where the trace of the
quark mass matrix TrM is kept constant and approximately
physical. In our study, we use ensembles with either open
[38] or periodic boundary conditions in time. The ensem-
bles we considered for the tuning of the relativistic heavy-
quark action are listed in Table I.
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B. Obtaining the dispersion relation

We will follow Appendix A of Ref. [40] [in that context
used for tuning a nonrelativistic quantum chromodynamics
(NRQCD) action] and use partially twisted Coulomb-
gauge-fixed wall sources [41] to determine the spin-
averaged dispersion relation of the ηc and J=ψ . We will
partially twist [43,44] along the diagonal ðθ; θ; θÞ to
maximally reduce effects from rotational symmetry break-
ing and use the following five twist angles (in lattice units):

θi ¼ 0;

ffiffiffi
2

9

r
;

ffiffiffi
4

9

r
;

ffiffiffi
6

9

r
;

ffiffiffi
8

9

r
;

such that our values of ðapÞ2 are evenly distributed
between 0 and 3.

To determine c2 and our masses am, we will fit the ηc
and J=ψ correlators to the following form:

Cðp; tÞ ¼ Að1þ p2ðDþ p2EÞÞ
�
e−t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðamÞ2þc2ðapÞ2

p

þ Be−ðLT−tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðamÞ2þc2ðapÞ2

p �
; ð3Þ

with free parameters A, am, D, E, and c2—the speed of
light squared. The parameter B takes the value of 1 if the
gauge field has a periodic temporal boundary and 0 if it is
open. An example of our tuning and the fit to Eq. (3) for the
ηc correlator on the ensemble H101 is shown in Fig. 1.

C. Chosen measurements and correlation functions

To make sure that we are using observables that are
sensitive to all of the parameters in the RHQ action, we will
be using both S- and P-wave charmonium ground-state
masses (listed in Table II) in addition to the dispersion
relation for the spin-averaged S-wave ground state. A
possibility that would make this dependence a bit more
obvious would have been to focus on the 1S hyperfine
splitting, along with the S-wave–P-wave splitting, the spin-
orbit splitting, and the tensor splitting within the P wave,
as, for example, used in Refs. [9,26]. For computational
reasons, we instead restrict the interpolator basis to the
states that can be reached using the quark-line connected
contractions of the simple mesonic operators at rest:

OðxÞ ¼ ðψ̄ΓψÞðxÞ ð4Þ

and compare these directly with their continuum analogs.
Note that the JPC ¼ 1þ− hc is, however, a good proxy for

TABLE I. Table of ensembles—values for the lattice spacing come from Refs. [6,39], as do the pion masses.
Further details on these ensembles can be found in Ref. [4]. Here, Nconf indicates the number of well-separated
gauge configurations used and Nsrc the number of time-translated wall sources averaged over per gauge
configuration.

β Name L3 × LT T boundary Nconf × Nsrc a−1 [GeV] mπ [GeV]

3.34 A653 243 × 48 Periodic 100 × 16 1.987(20) 0.422(4)
3.34 A654 243 × 48 Periodic 100 × 16 1.987(20) 0.331(3)

3.40 U103 243 × 128 Open 1000 × 1 2.285(28) 0.419(5)
3.40 H101 323 × 96 Open 500 × 1 2.285(28) 0.416(5)
3.40 H102 323 × 96 Open 500 × 1 2.285(28) 0.354(5)
3.40 H105 323 × 96 Open 500 × 1 2.285(28) 0.284(4)

3.46 B450 323 × 64 Periodic 100 × 16 2.585(33) 0.416(4)
3.46 S400 323 × 128 Open 500 × 1 2.585(33) 0.351(4)
3.46 N451 483 × 128 Periodic 253 × 8 2.585(33) 0.287(4)

3.55 H200 323 × 96 Open 1000 × 1 3.071(36) 0.419(5)
3.55 N202 483 × 128 Open 900 × 1 3.071(36) 0.410(5)
3.55 N203 483 × 128 Open 750 × 1 3.071(36) 0.345(4)
3.55 N200 483 × 128 Open 856 × 1 3.071(36) 0.282(3)

3.70 N300 483 × 128 Open 770 × 1 3.962(45) 0.421(4)
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FIG. 1. Effective mass plots of the ηc meson with the fit of
Eq. (3) for the ensemble H101.
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the spin average of the 1P states, as the 1P hyperfine
splitting is expected to be very small [45] (which can
also be seen in a previous lattice determination [26]).
Throughout, we will use gauge-fixed wall sources with
Gaussian sink smearing implemented by the method dis-
cussed in Appendix B to optimize for the ground states and
those with twisting. An example of our zero-momentum
states can be found in Fig. 2 for the ensemble N202.
For the open-boundary ensembles, we perform a single

wall-source propagator inversion at T=2, in the middle of
the bulk, and symmetrize the resulting correlator. We must
make sure to not perform our fits too close to the open
boundary, as these boundary effects can be relatively
strong, as seen in Fig. 1.

D. Neural-network charm-action tuning

Our idea is to randomly choose values of κc, rs, ν, cE,
and cB and measure the basic spectrum of Table II on a
sufficient number of gauge configurations. We will then
train a neural network in predicting these parameters for
given input masses and c2 and finally use this model to
predict the best guesses for the parameters of the action that
lie closest to the experimental masses with spin-averaged
c2 ¼ 1, hopefully within a precision of 1%. We acknowl-
edge that all of the states will likely have residual cutoff

effects with different slopes, but the parameters of the
action should be able to absorb the leading cutoff effects
[7,8]. As we approach the (chiral-)continuum limit, the
states from the predicted parameters tend to the continuum
masses, by design.
We strived to have at least about 30 different sets of run

parameters randomly drawn from initially broad Gaussian
distributions per ensemble [47]. For some ensembles, we
performed more runs to investigate the possible interen-
semble dependencies, such as those emanating from the
pion mass or the volume. Typically, after about 20 runs, we
start refining our parameter space by narrowing the new
trial parameters and by feeding guesses back into the
system to accelerate convergence. For each state entering
the network, we use 1000 bootstraps, which will both help
give the network lots of data to train against and inform it of
correlations between states.
We will first consider each individual ensemble sep-

arately to train the network, eventually investigating
combinations of ensembles and performing more-global
fits. We initially have six input parameters: the lattice
determinations of the ηc, J=ψ , χc0, χc1, and hc mesons
and the lattice ηc − J=ψ spin-averaged dispersion relation
c2. We will use a feed-forward network with one hidden
layer of only 12 neurons [48] and an output layer of five
neurons (κc, rs, ν, cE, and cB). On each of the layers we
use the sigmoid activation [49] and the Adam [50]
minimizer, with an adjusted learning rate, early stopping,
and a batch size of 80, with the loss function set as the
mean-squared deviation. Often, the model will converge
rapidly to stable training and validation losses in fewer
than 200 epochs.
Once the network understands the relation between the

lattice-determined states and the charm-action parameters
on an ensemble, we determine the best finite-lattice-spacing
approximation to the action parameters needed to obtain
something close to the experimental states with c2 ¼ 1
from the spin-averaged dispersion relation. Initial studies
indicated that this approach gave predictions with heavier-
than-physical ηc and χc0 states on our coarsest ensembles,
and we decided to introduce so-called “class weights”
to tell the network to prefer tuning κc by a factor of 2
compared to the other outputs. Empirically, this makes the
ηc and χc0 closer to physical while making the χc1 and hc
and c2 a little less accurate, as will be seen in Fig. 4.
For the selection of our training and validation sets, we

randomly shuffle the runs and remove approximately 20%
for validation. We run the training over 50 of these
reshufflings and perform a weighted average (with weight
proportional to the inverse of the validation loss) of the
networks’ best guesses to determine our predictions. In the
following (Table III), we quote our predicted parameters
with 1σ errors, although this should not be construed as a
true error but rather an indication of the variation of the
parameters within the training runs we performed.

0 4 8 12 16 20 24 28 32 36 40 44
t/a

0.95

1

1.05

1.1

1.15

1.2

1.25

am
ef

f

h
c

χ
c1

χ
c0

J/ψ
η

c

FIG. 2. Effective masses of the states listed in Table II for the
ensemble N202.

TABLE II. List of operators used in our measurement of
charmonium, their expected quantum number equivalents to con-
tinuum states, and the experimental masses of these states [46].

State ηc J=ψ χc0 χc1 hc

Γ γ5 γi I γiγt γiγj
JPC 0−þ 1−− 0þþ 1þþ 1þ−

Experiment [GeV] 2.9839 3.096916 3.41471 3.51072 3.52549
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IV. RESULTS

A. Table of predictions

In Table III, we present our results for the tuning on
individual ensembles as well as a combined dataset built
from the individual ones at fixed lattice spacing, which is
practically an assumption of a flat approach to physical
light and strange quark masses, combined with the (likely
justified) assumption that finite-volume effects in our
charmonium observables are not relevant for our volumes.
Typically, the loss from the neural network reduces when
the larger dataset “Comb” is used, and this larger dataset
should protect us a little more from overfitting.
We perform a correlated single-exponential χ2-

minimization fit to each individual state in Table II for
each run to determine the masses of these states, with fit
ranges chosen appropriately to give χ2=d:o:f: of the order
of 1 with 0.05 < p < 0.95, over as large a range of time
slices as possible. For example, for the prediction for N202
(Fig. 2), we fit the range t=a ¼ 20 → 32 for the ηc and J=ψ ,
t=a ¼ 7 → 32 for the χc0 and χc1, and t=a ¼ 9 → 23 for
the hc. These masses, along with the spin-averaged
effective speed of light squared, are then fed into the
neural network to learn the parameter dependence on the
states. We see good stability with the neural-network-
predicted parameters upon variation of our fit ranges.
Comparing our results to the similar tuning of Ref. [28]

(κc ¼ 0.10959947, cE ¼ 1.7819512, cB¼1.9849139, rs ¼
1.1881607, and ν¼1.1450511) albeit on different ensembles,

we see some similarities and a few differences. Namely, that
at a similar lattice spacing to theirs (a−1 ¼ 2.194 GeV), our
1-ensembles, the values we obtain for κc, cE, and cB are
larger, while both rs and ν are smaller. Our larger values
of cE and cB are unsurprising, as the gauge fields used
are generated with the tree-level Symanzik gauge action
whereas they used the Iwasaki, and the size of the non-
perturbative cSW is larger for the Symanzik gauge action at
comparable lattice spacing. It is interesting to note that their

TABLE III. Charm-action parameter predictions for our data—the quantities in brackets are one-sigma variations
in the predicted parameters; see the text for details. “Comb” refers to the prediction from the neural network when
combining all results with a given lattice spacing. Different lattice spacings are separated by vertical spaces.

Ensemble Runs κc cE cB rs ν

A653 41 0.10951(09) 2.150(16) 2.313(28) 1.1645(34) 1.1515(40)
A654 33 0.10939(06) 2.110(11) 2.290(13) 1.1709(39) 1.1609(24)

Comb 74 0.10946(04) 2.138(09) 2.305(13) 1.1672(23) 1.1563(25)

U103 40 0.11409(09) 1.982(06) 2.139(15) 1.1375(13) 1.1229(16)
H101 40 0.11436(10) 1.925(11) 2.112(18) 1.1412(22) 1.1222(16)
H102 45 0.11447(07) 1.894(12) 2.032(16) 1.1454(20) 1.1098(28)
H105 40 0.11450(09) 1.937(08) 2.093(09) 1.1376(22) 1.1144(19)

Comb 165 0.11434(06) 1.940(07) 2.102(12) 1.1395(18) 1.1167(23)

B450 34 0.11826(10) 1.890(08) 2.051(08) 1.1017(23) 1.0849(36)
S400 35 0.11796(09) 1.880(10) 2.060(12) 1.1073(17) 1.0924(19)
N451 23 0.11835(10) 1.907(09) 2.025(07) 1.1020(15) 1.0950(20)

Comb 92 0.11810(04) 1.894(04) 2.052(05) 1.1043(12) 1.0926(12)

H200 36 0.12248(11) 1.864(09) 1.894(07) 1.0683(22) 1.0518(29)
N202 36 0.12256(20) 1.865(08) 1.889(10) 1.0679(13) 1.0446(24)
N203 36 0.12232(06) 1.863(09) 1.879(11) 1.0733(09) 1.0605(11)
N200 36 0.12211(09) 1.860(08) 1.888(06) 1.0753(09) 1.0564(15)

Comb 144 0.12235(05) 1.859(05) 1.886(04) 1.0722(09) 1.0552(08)

N300 50 0.12608(15) 1.792(15) 1.873(14) 1.0382(13) 1.0168(19)
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FIG. 3. The predicted normalized deviation of the parameters as
we change the effective spin-averaged speed of light.
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values for κc, rs, and ν resemble more our tuning parameters
on the coarser ensembles A653 and A654.
It is clear from Table III that as the lattice spacing reduces

the size of all of the parameters cE, cB, rs, and ν also
decrease, with rs and ν practically tending to their expected
continuum values of 1. Both of the parameters cE and cB
are greater than the value of (but tending toward) cSW from
Ref. [51], with the hierarchy of cB > cE as expected
perturbatively from Ref. [25].

B. Can we tune parameters independently of others?

As c2 ¼ 1 from the spin-averaged dispersion relation
is one of our inputs, we can use this as a handle and
investigate the dependence on the predicted physical
parameters as this value is varied (and all the other states
are still set to their physical values). If the deviation on κc,
rs, cE, cB, and ν is large as small changes are applied to this
dispersion relation, then the model is suggesting that there
is significant interdependence between these parameters
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FIG. 4. Overview of the resulting masses for the hadrons used for our neural net tuning. The horizontal lines show the experiment
masses. The uncertainty combines statistical and scale-setting uncertainties in quadrature, and the uncertainty is dominated by the scale
setting. The panels are sorted from coarsest (top) to finest (bottom) lattice spacing. For each ensemble, two results are shown: the tuning
on the single ensemble (left, open symbol) and the tuning on the collection of ensembles with the same β (right, filled symbol).
Ensembles within the same panel differ by volume and/or pion mass.
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and that this tuning should not be done independently,
as was performed in Ref. [28].
Figure 3 illustrates the normalized deviation for some

model-predicted parameter P, which we define as

N½c2� ¼ ðP½c2� − P½1�Þ=P½1�; ð5Þ

for the combined A653 and A654 ensembles as we varied
the spin-averaged dispersion relation’s c2. We can see
that κc and rs do not depend strongly on c2, whereas ν, cE,
and cB do, with cE and cB being somewhat anticorrelated
with ν. Although ν seems to be the main perpetrator in
determining the effective speed of light, cE and cB both

change accordingly and would likely need to be retuned to
accommodate an independent tuning in ν.

C. Accuracy of our predictions and systematics

We now proceed to test our predicted parameters from
Table III by performing the same measurement runs on the
same configurations as the training was performed on and
comparing the determined states and the effective speed of
light to the physical continuum states. We will investigate
both the combined and the individual results to illustrate
the lack of measurable dependence on the pion mass
within the precision of our determinations. A plot of our
ability to reproduce the spectrum is shown in Fig. 4, and
one can see that within our large errors there is good
agreement; mostly this is due to the lack of precision of
our lattice spacing.
Figure 5 shows the spin-averaged c2 reached for our

tuning procedure on all ensembles. For each ensemble, we
show both the result from the tuning procedure on a single
ensemble (the left point of the pair) and the result from
using all ensembles at the same value of β (the right point of
a given pair). Our overall goal here was to obtain c2 ¼ 1 to
about 1%, which we achieve on most ensembles for the
spin average, or the individual ηc and J=ψ . For the
dispersion relation, the single-ensemble tuning works a
bit better than combining ensembles at each lattice spacing.
However, the opposite will be true for the splitting
discussed in the next few paragraphs. Note that, while
there are some outliers, the situation is vastly improved
compared to a standard Wilson action (cB ¼ cE ¼ csw, and
rs ¼ rt ¼ ν ¼ 1) as used for the charm quark in Ref. [6]
and discussed in the next subsection (Sec. IV D). The
individual determinations of c2 for the ηc and J=Ψ can be
found in Fig. 8 in the appendixes. We note that all of our ηc
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values of c2 lie below those of the J=Ψ and their difference
is at most of the order of 2% for our data. There is a
suggestion that this difference becomes smaller with
decreasing pion mass and increased physical volume.
To investigate residual discretization effects within our

approach, we take a look at the mass splittings among our
tuning states. In the left-hand-side panel in Fig. 6, we show
the 1S hyperfine splitting between the J=ψ and ηc mesons
resulting from the neural net training with all ensembles at a
given value of β. While the run parameters suggested by the
neural net based on the training data do not lead to a
particularly accurate 1S hyperfine splitting at coarse lattice
spacing, this discrepancy does get smaller toward the
continuum limit. This suggests that our strategy of using
the physical inputs for the tuning of the action parameters at
each lattice spacing is working. In addition to the data from
our final runs, we also show the PDG value [46] as a
magenta star and an independent lattice determination that
provides this splitting as a prediction [26]. For a plot of
further results for this quantity, see Fig. 8 of the same
reference.
The right-hand side of Fig. 6 shows a mass splitting

which is equal to the S-wave–P-wave splitting in the
absence of a P-wave hyperfine splitting. In this quantity,
we expect a very mild heavy-quark dependence, as the
physical S-wave–P-wave splittings in charmonium and
bottomonium are almost the same. Just like for the hyper-
fine splitting, there is no obvious sign of issues with our
tuning approach. Overall, we tend to get somewhat smaller
values for this splitting, although with large errors coming
from our determination of hc. As our application for this
action will mostly be qualitative studies of hadron-hadron
scattering, we currently see no need to attempt to further
improve the observed behavior, which would require an
improvement in statistical precision on our side combined
with an improvement in the determination of the lattice
spacing.

D. A tuning comparison on the same ensembles

In Ref. [6], a charm-quark tuning was performed that uses
cE ¼ cB ¼ cSW and rs ¼ ν ¼ 1, varying κc to achieve the
physical continuum value of theDs-mesonmass on the same
ensembles as used in this work. This tuning treats the charm
quark on the same footing as the light and strange quarks by
using the standardWilson-clover action; onemaywell expect
this to have significant discretization effects as aMηc
becomes of the order of 1 for the coarse ensembles.
Figure 7 illustrates the deviation of the spin-averaged

dispersion relation c2, which can be used as a proxy for the
magnitude of discretization effects of both tunings. In the
dispersion relation for theDs tuning, the deviation from 1 is
at most 20%, reducing to about 4% on the finest (N300)
lattice. A naive, straight-line fit through all of the Ds-tuned
results describes the data poorly and overpredicts the
value of c2 in the continuum as there is still some visible
curvature at small a2. A quadratic fit in a2 to the three finest
ensembles describes the data well and gives c2 ¼ 1 in
continuum.
The hyperfine splitting in Fig. 7 shows a similar slope in

a2 between the two approaches, although theDs tuning lies
systematically below that of our tuning and the physical
hyperfine splitting. This is due to the ensembles used in this
comparison lying at the SUð3Þf-symmetric point and the
Ds tuning compensating for the valence strange being
lighter than its physical value. This has the side effect that a
precise charm tuning via theDs is valid only at the physical
point or through extrapolations toward it when the strange-
quark mass is unphysical.

V. CONCLUSIONS AND OUTLOOK

We have shown that it is possible to nonperturbatively
determine charm-quark action parameters reasonably pre-
cisely using machine learning techniques. This method is
appealing as it does not rely on lattice perturbation theory or
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anunderlyingmodel to tune parameters. Itsmain drawback is
that a sufficiently large number of measurement runs need to
bemade for training purposes, which couldmake it costly for
large ensembles. Although, at the precision we are able to
achieve, we see little pion-mass or finite-volume dependence
of our tuning parameters. We also note that it appears
impossible to exactly reproduce the chosen continuum states
of charmonium at finite lattice spacing with this five-
parameter action, even though a good approximation can
be achieved.
We see no reasonwhy this approach could not be extended

to, for example, b-quark physics using the same relativistic
heavy-quark action or any of the fewer-parameter variants.
While residual discretization effects are expected to be
sizable for bottomonium [8], this approach should be very
useful for refining some older predictions for exotic hadrons
in the B-meson spectrum [14]. The same approach could
equally well be used to tune an effective action, such as
NRQCD, provided one has enough continuum states to
compare against that allow for a handle on the underlying
simulation parameters. The method presented here, quite
naturally, extends to even higher-order heavy-quark actions
due to the inherent flexibility of neural-network fits.
In future works, we will use this action for scattering

studies using Lüscher’s finite-volume method for heavy-
light meson spectroscopy and charmonium spectroscopy,
with the stochastic distillation technique [52,53]. In this
regard, a first step consists of testing the dispersion
relations of heavy-light D and Ds mesons in our approach.
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APPENDIX A: ON OUR CHARM-ACTION
IMPLEMENTATION

We use a modified version of the library OpenQCD-1.6
[38] for our computation of propagators for the charm-

quark Dirac operator of Eq. (1). This required the rewriting
of the Dirac operator in single and double precision in
Advanced Vector Extensions and fused multiply-add
vector intrinsics, as some of the optimizations (and inline
assembly) used in the implementation of the vanillaWilson
action could not be utilized. On paper, the arithmetic
intensity of this charm action is about a factor of 2 more
expensive than the usual Wilson action, although an
optimization was used here to turn the underlying spinors
into color-major, spin-minor order (OpenQCD-1.6 is spin-
major, color-minor) to improve cache coherence and
perform fewer shuffling and register loading operations.
It is likely that this charm-quark action is worse condi-
tioned than the usual Wilson action, as it is found to have a
larger clover term than cSW. Nevertheless, our implemen-
tation is roughly comparable to a valence strange-quark
inversion at physical ms [40] in OpenQCD using the
DFL_SAP_GCR algorithm [54].
In initial investigations, we found some deviations

between charmonium correlators at large times due to
the stopping condition of the L2-norm of the residual
depending on the precision we used. To help resolve this,
we changed the stopping criteria to be the L∞-norm
instead, which empirically behaved much better.

APPENDIX B: COULOMB GAUGE-FIXED BOX
SINKS AS A SINK SMEARING

If we consider the box-sink propagator introduced in
Ref. [40],

S̃ðx; tÞ ¼
Xr2<R2

r¼0

Sðxþ r; tÞ; ðB1Þ

when one goes to compute the contracted meson, there are
clearly double sums, and, in the limit of R2 → 3L

2
2, we are

performing two sums over the spatial volume, which
becomes very expensive. Empirically, we find the cost in
contractions scales quadratically with R2, and this sum
quickly becomes the dominant cost of contractions as R2

increases.
A more-efficient implementation would be to notice that

the box-sink approach could be considered as a convolution
with a particular step function, fðxÞ ¼ θðr < R2Þ, and
herein lies the connection to sink smearing and a clue to
efficient calculation of these propagators. An approxima-
tion to this step function could be a Gaussian with some
width σ ∝ R2, fðxÞ ¼ e−x

2=σ (although, in principle, any
arbitrary function could be used, for S-wave states some-
thing with rotational symmetry makes sense), and we apply
the convolution using the usual (fast) Fourier transform
prescription:

Sðp; tÞ ¼ F ðSðx; tÞÞ ¼
X
x

eip·xSðx; tÞ; ðB2Þ

FULLY NONPERTURBATIVE CHARM-QUARK TUNING USING … PHYS. REV. D 106, 034508 (2022)

034508-9



where F is used to denote the Fourier transform and
likewise F−1 its inverse.

S̄ðxÞ ¼ 1

V
F−1ðSðp; tÞf�ðpÞÞ: ðB3Þ

We have turned a somewhat expensive approximate con-
volution into a full convolution with an arbitrary function
fðxÞ, the cost of which are 12 × 12 complex spatial-volume
FFTs per time slice.
It is important to note that this approach holds only

because of the Coulomb gauge-fixed wall sources we use,
as only in this case can one treat the links as identity
matrices and, hence, completely ignore them and apply a
continuous function. Such approaches have been known in
the literature in the case of smearing either the source and/
or the sink, e.g., applying arbitrary potentials in Ref. [55].

APPENDIX C: c2 FROM THE INDIVIDUAL
PSEUDOSCALAR AND VECTOR CHANNELS

Figure 8 shows the speed of light squared for the
individual J=ψ and ηc mesons. The value for the J=ψ is

typically a bit larger than that of the ηc and both individu-
ally show only a small deviation from the relativistic speed
of light.
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