
Jet transport coefficient q̂ in lattice QCD

Amit Kumar ,1,2,* Abhijit Majumder,1,† and Johannes Heinrich Weber3,4,‡
1Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA

2Department of Physics, McGill University, Montreal, Quebec H3A-2T8, Canada
3Department of Computational Mathematics, Science and Engineering & Department of Physics and

Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
4Institut für Physik, Humboldt-Universität zu Berlin & IRIS Adlershof, D-12489 Berlin, Germany

(Received 11 November 2020; revised 8 October 2021; accepted 22 July 2022; published 10 August 2022)

We present the first calculation of the jet transport coefficient q̂ in quenched and (2þ 1)-flavor QCD on a
4D Euclidean lattice. The lightlike propagation of an energetic parton is factorized from the mean square
gain in momentum transverse to the direction of propagation, which is expressed in terms of the thermal
field-strength field-strength correlator. The leading-twist term in its operator product expansion is
calculated on the lattice. Continuum extrapolated quenched results, and full QCD estimates based on
unrenormalized lattice data, over multiple lattice sizes, are compared with (non)perturbative calculations
and phenomenological extractions of q̂. The lattice data for q̂ show a temperature dependence similar to the
entropy density. Within uncertainties, these are consistent with phenomenological extractions, contrary to
calculations using perturbation theory.
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I. INTRODUCTION

The study of hot and dense QCD matter, produced in
relativistic heavy-ion collisions, using high transverse
momentum (pT) jets, currently boasts an almost established
phenomenology [1–3]. The experimental data on various
aspects of jet modification is also extensive [4–14]. Almost
all of the evidence points to the formation of a quark-gluon
plasma (QGP), a state of matter where the QCD color
charge is deconfined over distances larger than the size of a
proton [15,16]. Chiral symmetry—spontaneously broken
in a hadron gas—is restored during the transition to the
QGP, which is a smooth crossover at zero baryon density
centered around the pseudocritical temperature Tpc ¼
156.5ð1.5Þ MeV [17,18] (for three physical light quark
flavors in the sea). Jets are expected to undergo consid-
erable modification within the QGP compared to confined
nuclear matter [19].
While a lot of the theoretical development of jet

quenching has been focused on modifications to the parton
shower, considerably less work has been carried out on the
study of the interaction between a parton in the jet with the

QGP itself. Most current calculations either model the QGP
as a set of slowly moving (or static) heavy scattering centers
[19–22], or in terms of hard-thermal loop (HTL) effective
theory [23–26]. Regardless of the model, a description of
transverse momentum exchange between the medium and a
jet parton can be encapsulated within the transport coef-
ficient [27]

q̂ ¼
PNevents

i¼1

PNiðLÞ
j¼1 ½ki;j⊥ �2

Nevents × L
: ð1Þ

The meaning of the above equation is that given a path
through a medium with a predetermined density profile, a
single parton may scatter NiðLÞ times while traversing a
distance L < vτi in event i (τi is the lifetime of the parton
which travels at a speed v). In each scattering (j), it
exchanges transverse momentum ki;j⊥ . In this paper, we
will only focus on momentum exchanges transverse to the
direction of the jet parton, as these tend to have a dominant
effect on the amount of energy lost via bremsstrahlung from
the parton [22,28].
In heavy-ion collisions, the density will vary with

location, and thus one necessarily averages over a non-
uniform profile, which fluctuates from event to event.
Several successful fluid dynamical simulations, which
compare to RHIC and LHC data [29,30], assuming small
density gradients, have used an equation of state calculated
in lattice QCD [31] as an input. Unlike the dynamical
medium in a heavy-ion collision, lattice simulations assume
static media in thermal equilibrium. The use of lattice QCD
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input in fluid-dynamical simulations is predicated on the
ability to reliably coarse grain the system into space-time
unit cells, over which intrinsic quantities, e.g., temperature
(T), entropy density (s), pressure (P), remain approxi-
mately constant.
The calculations presented in this paper are an extension

of the above principle: Calculations of q̂ in the static
medium of lattice QCD will be compared with phenom-
enological estimations, where jets are propagated through a
QGP fluid dynamical simulation. These QGP simulations
yield the space-time profiles for intrinsic quantities, e.g.,
Tðr⃗; tÞ, sðr⃗; tÞ etc., and the local q̂ is calculated from these,
using dimensional parametrization or perturbative tech-
niques, typically with an overall normalization that can be
varied to fit experimental data. Thus, the parton propagat-
ing through this dynamical medium experiences a varying
q̂. Once the overall normalization is determined, one
reports the q̂ (or some dimensionless ratio involving q̂)
as a function of the temperature.
In this paper, we will compute the dimensionless ratio

q̂=T3 [3], directly from lattice gauge theory and compare
with calculations of the same ratio using other models of
the QGP, and parametrized extractions from comparisons
with experimental data. The paper is organized as follows:
In Sec. II, we outline the basic process of a single parton
scattering off the glue field in a QGP, define q̂ and relate
it to a series of local operator products with increasing
number of covariant derivatives, suppressed by increasing
powers of the energy of the parton. In Sec. III, focusing
only on the leading operator product, in the limit of a very
energetic parton, we present details of the calculation of
this operator product in both quenched and full QCD
simulations. Results of our calculations, compared to those
from both model calculations and phenomenological
extractions from data, are presented in Sec. IV. A summary
and outlook for future calculations is presented in Sec. V.
Numerical tables derived from the lattice ensembles used,
as well as perturbatively calculated correction factors are
discussed in the appendices.

II. JET TRANSPORT COEFFICIENT q̂

The transport coefficient q̂ is the leading jet transport
coefficient that characterizes the rate of medium-induced
radiative energy loss of the hard parton traversing the QGP.
A strategy to compute this coefficient from first principles
within the framework of lattice gauge theory was first
proposed in Ref. [32]. In this section, we briefly describe
the methodology and formulate q̂ in terms of a series of
local operators that can be computed on pure gluonic
plasma and QCD plasma.

A. Leading order expression

We consider a hard parton with high energy E and
virtuality Q such that E ≫ Q ≫ μD, the Debye mass in the

medium. The choice of a large E, Q leads to a diminished
coupling αSðQÞ with the medium, due to asymptotic
freedom [33,34]. As a result, interactions between the hard
parton and a medium of limited extent will be dominated by
one-gluon exchange (OGE), i.e., Ni ¼ 1 for all events.
In light-cone coordinates, the incoming quark, traveling

in the −z direction, has two nonzero components,
qþ ¼ ðq0 þ q3Þ= ffiffiffi

2
p

≪ q− ¼ ðq0 − q3Þ= ffiffiffi
2

p
. The quark

undergoes a single scattering off the gluon field in the
medium and gains transverse momentum k⊥ (Fig. 1). In
this frame, the momentum of the quark changes from

qi≡ ½qþ;q−;0;0�→qf≡ ½qþþ k⃗ 2
⊥=ð2q−Þ;q−; k⃗⊥�: ð2Þ

The momentum scaling of incoming quark and exchanged
gluons are

qi ≡ ðQ2=2q−; q−; 0⊥Þ ∼ ðλ2; 1; 0Þq−;
k≡ ðkþ; k−; k⊥Þ ∼ ðλ2; λ2; λÞq−; ð3Þ

where λ ≪ 1. The matrix element for this process is
given as

M¼hqfj⊗ hXj
Z

TI

0

dtd3xgψ̄ðxÞγμtaAa
μðxÞψðxÞjni⊗ jqii;

ð4Þ

where jni and jXi represent the initial and final state of the
medium, respectively. The factors ψðxÞ, ψ̄ðxÞ½¼ ψ†γ0�, and
Aa
μðxÞ represent the quark and gluon wave functions (and

complex conjugate), with coupling g. The spatial integra-
tions are limited within a volume V ¼ L3 and the time of
interaction ranges from 0 to TI ¼ L=c (we use particle
physics units with ℏ, c ¼ 1). Replacing the average over
events, with an average over all initial states jni (energy En)
of the medium, weighted by a Boltzmann factor, with β ¼
1=T the inverse temperature and Z the partition function of
the thermal medium, we obtain

q̂ ¼
X
n

e−βEn

ZTI

Z
d4kk2⊥ ×

d4WðkÞn;X
d4k

; ð5Þ

where

FIG. 1. A forward scattering diagram for the hard quark
undergoing a single scattering off the gluon field in the plasma.
The vertical dashed line represents the cut-line.
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Wn;X ¼ jMj2
2Nc

ð6Þ

represents the scattering probability, for a quark in one of
2 spins and Nc color states. After performing spin sum and
colored average, the differential decay rate is given as
(assuming

P
X jXihXj ¼ 1):

d4Wn;XðkÞ
d4k

¼ Disc
2πi

�
g2

ð2πÞ4VNc

Z
d4xd4y

e−ikðx−yÞ

2Eðqþ kÞ2

× hnjTr½=q=AðxÞð=qþ =kÞ=AðyÞ�jni
�
; ð7Þ

where Nc is the number of colors.
Following standard methods outlined in Ref. [32], where

factors of k⊥ are turned into partial derivatives in y⊥ and y−,
we obtain the following well-known expression for q̂,

q̂ ¼ c0

Z
dy−d2y⊥
ð2πÞ3 d2k⊥e−i

k⃗2⊥
2q−y

−þik⃗⊥:y⃗⊥

×
X
n

hnj e
−βEn

Z
Tr½Fþjð0ÞFþ

j ðy−; y⊥Þ�jni; ð8Þ

where c0 ¼ 16παs
ffiffiffi
2

p
CR=ðN2

c − 1Þ, CR (for a quark
CR ¼ CF ¼ ðN2

C − 1Þ=ð2NCÞ) is the representation spe-
cific Casimir, αs is the strong coupling constant at the
vertex between the hard quark and the glue field, Fμν ¼
taFaμν is the bare gauge field-strength tensor. Here and
hereafter the index j ¼ 1, 2 runs over transverse directions.
Computing the thermal and vacuum expectation value of

the nonperturbative operator Fþjð0ÞFþ
j ðy−; y⊥Þ is chal-

lenging due to the near light-cone separation between the
two field-strength tensors. The separation is slightly space-
like y2 ¼ −y2⊥ < 0, similar to the case of a parton dis-
tribution function (PDF) [35]. Beyond this method, there
have been other efforts based on a 3D Euclidean lattice
approach [36,37], as well as in classical lattice theory [38].
Another nonperturbative pure-glue calculation of q̂
employed a stochastic vacuum model [39] with inputs
obtained from lattice simulations. However, the current
framework remains the sole exploration of q̂ in 4D, first-
principles quantum lattice simulations.

B. Analytic continuation in deep-Euclidean region

To recast q̂ in terms of a series of local operators
amenable to a lattice calculation, we apply a method of
dispersion as outlined in Ref. [32]. In this approach, a
generalized coefficient is defined as

Q̂ðqþÞ ¼ c0

Z
d4yd4keiky

ð2πÞ4
2q−hTr½Fþjð0ÞFþ

j ðyÞ�i
ðqþ kÞ2 þ iϵ

; ð9Þ

where

h…i≡X
n

hnj…jni e
−βEn

Z
: ð10Þ

The object Q̂ðqþÞ has a branch cut in a region where qþ ∼
T ≪ q− corresponding to the quark propagator with
momentum qþ k going on mass shell (Fig. 1). In this
region, the incoming hard quark is lightlike, i.e.,
q2 ¼ 2qþq− ≈ 0, and the discontinuity of Q̂ðqþÞ is related
to the physical q̂ as

Disc½Q̂ðqþÞ�
2πi

����
at qþ∼T

¼ q̂: ð11Þ

In addition to the thermal discontinuity, Q̂ðqþÞ also has
an additional vacuum discontinuity in the region qþ ∈
ð0;∞Þ due to real hard gluon emission processes. In this
region, the incoming hard quark is timelike. If instead,
one takes qþ ≪ 0, e.g., qþ ¼ −q−, the incoming quark
becomes spacelike and there is no discontinuity on the
real axis of qþ. In this deep spacelike region, the quark
propagator can be expanded as follows:

1

ðqþ kÞ2 ≃
−1

2q−ðq− − ðkþ − k−ÞÞ ;

¼ −1
2ðq−Þ2

X∞
n¼0

� ffiffiffi
2

p
k3

q−

�n

: ð12Þ

Using integration by parts, the factor of exchanged gluon
momentum k3 [Eq. (12)] is replaced with the regular spatial
derivative ∂3 acting on the field strength F

þ
j ðyÞ [Eq. (9)]. A

set of higher order contributions from gluon scattering
diagrams can be added to promote the regular derivative to
a covariant derivative D3 (in the adjoint representation).
With all factors of k removed from the integrand [Eq. (9)],
except for the phase factor, k can be integrated out
(
R
d4keiky) to yield δ4ðyÞ, setting y to the origin. This

yields Q̂ðqþ ¼ −q−Þ½≡Q̂jqþ¼−q− � as

Q̂jqþ¼−q− ¼ c0

�
Tr

�
Fþjð0Þ

X∞
n¼0

�
i
ffiffiffi
2

p
D3

q−

�n

Fþ
j ð0Þ

�	
=q−;

ð13Þ

each term in the series is a local gauge-invariant operator.
To relate Q̂ðqþ ¼ −q−Þ to the physical q̂, consider the

following contour integral in the qþ complex plane:

I1 ¼
I

dqþ

2πi
Q̂ðqþÞ

ðqþ þ q−Þ ¼ Q̂ðqþ ¼ −q−Þ; ð14Þ

where the contour is taken as a small anti-clockwise circle
centered around point qþ ¼ −q−, with a radius small
enough to exclude regions where Q̂ðqþÞ may have dis-
continuities. Alternatively, the integral can be evaluated by
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analytically deforming the contour over the branch cut of
Q̂ðqþÞ for qþ ∈ ð−T1;∞Þ and obtaining Eq. (14) as

Q̂ðqþ ¼ −q−Þ ¼
ZT2

−T1

dqþ

2πi
Disc½Q̂ðqþÞ�
ðqþ þ q−Þ

þ
Z∞
0

dqþ

2πi
Disc½Q̂ðqþÞ�
ðqþ þ q−Þ : ð15Þ

The limits −T1 and T2 in the first integral represent lower
and upper bounds of qþ½¼ kþ þ k2⊥=ð2q− þ 2k−Þ�, beyond
which the thermal discontinuity in Q̂ðqþÞ on the real axis
of qþ is zero. In this region, the hard incoming quark
is close to on-shell, i.e., q2 ¼ 2qþq− ≈ 0, and undergoes
scattering with the medium. The second integral in Eq. (15)
corresponds to the contributions from vacuumlike proc-
esses, where the timelike hard quark with momentum
qþ ∈ ð0;∞Þ undergoes vacuumlike splitting. Hence, the
second integral is temperature independent.
Using Eqs. (11)–(15), we obtain (suppressing

y− ¼ y⊥ ¼ 0)

q̂
T3

¼
c0
P∞

n¼0 ð Tq−Þ2nh 1
T4 Tr½FþjΔ2nFþ

j �iðT−VÞ
ðT1 þ T2Þ=T

; ð16Þ

where the subscript (T−V) represents the vacuum sub-
tracted expectation value and T1 þ T2 ≃ 2

ffiffiffi
2

p
T represents a

width of the thermal discontinuity of Q̂ðqþÞ. The width of
the discontinuity in Cartesian coordinates will always be
very close to 2T [40]. The extra factor of

ffiffiffi
2

p
is due to the

choice of light-cone coordinates. Minor shifts in this
estimate may depend on details of how the medium itself
is treated, on the nature of the parton, or on the loop order
of the interaction. We abbreviate the differential operator
as Δ≡ i

ffiffiffi
2

p
D3=T. Only even powers of Δ contribute in

Eq. (16), since hTr½FþjΔ2nþ1Fþ
j �i would not be invariant

under either parity or time reflection, and thus evaluates to
zero. The above expression for the transport coefficient q̂
contains several features: Each term in the series is local,
allowing for their computation on the lattice. The succes-
sive terms in the series are suppressed by the hard scale q−,
and hence computing only the first few terms may be
sufficient. In the limit q− → ∞ only the leading-twist term
contributes, namely, the first term in the series [Eq. (16)].
To compute the local operators [Eq. (16)] at finite

temperature, we perform Wick’s rotation

x0 → −ix4; A0 → iA4 ⇒ F0j → iF4j: ð17Þ

For a quark in the limit of q− → ∞, q̂ reduces to

q̂
T3

¼ 4παs
NCT4

hFþjFþ
j iT−V: ð18Þ

In the case of a quenched plasma of gluons, the expectation
value hFþjFþ

j iT−V is related to the entropy density s via the
following relation:

1

T4
hFþjFþ

j iT−V ¼ 1

2

s
T3

: ð19Þ

Hence, we obtain a direct relation between q̂ and s:

q̂ ¼ 2παs
NC

s: ð20Þ

Since s is a genuine physical observable (protected by
Ward identities) that does not require renormalization (in
the continuum), the renormalization of αs (in MS scheme)
introduces an unavoidable scheme dependence of q̂. Note,
the above relation [Eq. (20)] holds for the case of infinite
energy quark traversing pure SU(3) plasma.

C. Analytic relation in a weakly coupled theory

The q̂ relation derived in [Eq. (20)] relating a dynamical
quantity q̂ to a static quantity s, may seem hard to believe at
first, but one can show that this indeed holds in the limit of
running coupling for a very high energy parton. In this
subsection, we will demonstrate this for a weakly coupled
quenched QGP where analytical expressions exist for both
sides of the equation. To obtain a q̂ that is well defined
in the limit of q− → ∞ or E → ∞, we use the expression
including running coupling derived by Arnold and Xiao
[41], in the limit that E ≫ T ∼mD, where mD is the Debye
mass,

q̂ ¼ CFΞbIþðΛÞg2ðΛÞg2ðmDÞ
T3

π2
: ð21Þ

In the quenched limit for the plasma, we only include the
sum over spin degrees of freedom times the trace normali-
zation for gluons, where Ξb ¼ 2CA ¼ 6. The factor IþðΛÞ
contains large logarithms which depend on the hard scale
Λ, which we assume to be

ffiffiffiffiffiffiffiffiffiffiffi
NET

p
, where 2≲N ≲ 6.

Thus, we have

Iþ ¼ ζð3Þ
2π

ln
�

Λ
mD

�
þ ΔIþ: ð22Þ

The correction term,

ΔIþ ¼
�ðζð2Þ − ζð3ÞÞ

2π

��
ln
�

T
mD

�

þ 1=2 − γE þ lnð2Þ
�
− 0.386=ð2πÞ; ð23Þ

does not contain any large logarithms involving the hard
scale Λ and can be neglected compared to the leading term
in Iþ.
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We can now combine the large logarithm in Iþ along
with that in g2 to obtain

lim
Λ→∞

g2ðΛÞg2ðmDÞ ln
�

Λ
mD

�
≃
g2ðmDÞ
−2β0

; ð24Þ

where

β0 ¼ −
11CA − 4NfTF

48π2
¼ −

11CA

48π2
ffor Nf ¼ 0g ð25Þ

and TF ¼ 1=2. Substituting the above in the expression for
q̂ in Eq. (21), we obtain

q̂ ¼ CFΞb
ζð3ÞT3

4π

48

11CA
g2ðmDÞ;

¼ N2
C − 1

NC
αsðmDÞT3



ζð3Þ 48

11

�
; ð26Þ

where we have separated the obvious factors of color,
coupling and temperature from the residual numerical
factor in curly brackets. Using the Ramanujan series
expansion for Apery’s constant ζð3Þ ≃ 7π3=180, we obtain

q̂ ¼ N2
C − 1

NC
αsðmDÞT3



8π3

45

21

22

�
: ð27Þ

The entropy density of a pure noninteracting (massless)
gluon gas is given as

s ¼ ðN2
C − 1ÞT3π2

4

45
: ð28Þ

Substituting the above into Eq. (20) and separating factors
of color, coupling and temperature from the residual
numerical factor, we obtain

q̂ ¼ N2
C − 1

NC
αsT3



8π3

45

�
: ð29Þ

Evaluating αs at mD, one notes that the two methods to
obtain q̂ are within 5% of each other. We point out that, in
the expression for the entropy density above, we have
neglected any effect of dynamically generated thermal
mass, while dynamically generated screening effects are
included in the expression in Eq. (27). The inclusion of
these effects will reduce the entropy density and bring
Eq. (29) even closer to Eq. (27).

III. COMPUTING q̂ ON 4D LATTICE

After having confirmed the veracity of the formalism
introduced in Ref. [32] for the case of an energetic parton
traversing a weakly coupled quenched plasma, we proceed
tomore realistic plasmas simulated on a latticewith standard
periodic boundary conditions. As we have seen earlier

[Eq. (20)], the leading-twist operator can be related for a
pure glue plasma to the energy momentum tensor (EMT).
The EMT’s nonsinglet components, which are in a nonet
representation in the continuum, split into a triplet and a
sextet in the discretized theory that require multiplicative
renormalization [42]. Operators mixing magnetic and elec-
tric field strengths that are included in Eq. (16) are related to
the sextet representation of the energy-momentum tensor,
and hence vanish on ensembles with our chosen boundary
conditions, i.e., in the rest frame. We have studied the first
three nonzero operators in the q̂ series,

Ôn ¼
Tr½F3jΔ2nF3j − F4jΔ2nF4j�

T4
ð30Þ

(summed over j; n ¼ 0, 1, 2). The field-strength Fμν is
discretized via clover-leaf operators projected to anti-
Hermitian traceless matrices,

ig0F μνðxÞ ¼
PQμνðxÞ

a2L
¼ ig0Fμν þOða2LÞ; ð31Þ

where

Qμν ¼
1

4
½Uμ;ν þ Uν;−μ þU−μ;−ν þU−ν;μ� ð32Þ

withUμ;ν being the plaquettewith lattice spacing aL in plane
μ − ν and

PQ ¼ 1

2

�
Q −Q† −

1

Nc
Tr½Q −Q†�

�
: ð33Þ

A. Gauge ensembles and lattice setup

In this subsection, we discuss the parameters used in
generating gauge ensembles for pure SU(3) and (2þ 1)-
flavor QCD lattices. We have generated nτ × n3σ lattices at
finite temperature T > 0 with aspect ratio nσ=nτ ¼ 4 for
nτ ¼ 4, 6 and 8, where T ¼ 1=ðaLnτÞ, and the corres-
ponding vacuum T ¼ 0 lattices with nτ ¼ nσ using the
MILC code [43] and the United States lattice quantum
chromodynamics software stack [44].
In the presented lattice calculations, the unquenched

lattices were generated using the rational hybrid
Monte Carlo algorithm [45] with highly improved stag-
gered quark (HISQ) action [46] and tree-level Symanzik
gauge action [47,48] for (2þ 1)-flavor QCD. The leading
cutoff effects are Oða4Þ and Oðg20a2Þ. We employed tuned
input parameters (bare lattice coupling β0 ¼ 10=g20, and
bare quark masses), and use the r1 lattice scale following
Refs. [47–50] by the HotQCD and TUMQCD collabora-
tions. This setup has a physical strange and two degene-
rate light quarks with ml ¼ ms=20 corresponding to a
pion mass of about 160 MeV in the continuum limit.
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We summarize the gauge ensembles in Tables I–III in
Appendix A.
We have generated pure SU(3) gauge ensembles via the

heat-bath algorithm using Wilson gauge action [51] with
β0 ¼ 6=g20 and leading cutoff effectsOða2Þ. We summarize
the gauge ensembles in Tables IV–VI in Appendix A,
where we also discuss the scale setting.

B. Temperature dependence of bare operators

We present in Fig. 2 the expectation values of the bare
field strength operators Ôn [Eq. (30)] for all ensembles
(nτ ¼ 8, 6 and 4) in pure gauge theory or (2þ 1)-flavor
QCD. The vacuum contributions have been subtracted
while computing the temperature dependence; for the
leading-twist operator, Ô0, the vacuum contribution

TABLE I. The parameters to generate (2þ 1)-flavor QCD
gauge ensembles with ml ¼ ms=20 for lattice size nτ ¼ 4 with
aspect ratio ns=nτ ¼ 4.

β0 ¼ 10=g20 ams T (MeV) #TUsðT ≠ 0Þ #TUsðT ¼ 0Þ
5.9 0.132 201 10000 10000
6.0 0.1138 221 10000 10000
6.285 0.079 291 10000 10000
6.515 0.0603 364 10000 10000
6.664 0.0514 421 20000 10000
6.95 0.0386 554 10000 10000
7.15 0.032 669 10000 10000
7.373 0.025 819 10000 10000

TABLE II. The parameters to generate (2þ 1)-flavor QCD
gauge ensembles with ml ¼ ms=20 for lattice size nτ ¼ 6 with
aspect ratio ns=nτ ¼ 4.

β0 ¼ 10=g20 ams T (MeV) #TUsðT ≠ 0Þ #TUsðT ¼ 0Þ
6.0 0.1138 147 10000 10000
6.215 0.0862 181 10000 10000
6.285 0.079 194 10000 10000
6.423 0.067 222 7600 10000
6.664 0.0514 281 10000 7000
6.95 0.0386 370 10000 8000
7.15 0.032 446 10000 8600
7.373 0.025 547 10000 10000
7.596 0.0202 667 8600 10000
7.825 0.0164 815 9140 10000

TABLE III. The parameters to generate (2þ 1)-flavor QCD
gauge ensembles with ml ¼ ms=20 for lattice size nτ ¼ 8 with
aspect ratio ns=nτ ¼ 4.

β0 ¼ 10=g20 ams T (MeV) #TUsðT ≠ 0Þ #TUsðT ¼ 0Þ
6.515 0.0604 182 7300 6400
6.575 0.0564 193 8650 6800
6.664 0.0514 211 10000 5000
6.95 0.0386 277 10000 5950
7.28 0.0284 377 10000 6550
7.5 0.0222 459 10000 5000
7.596 0.0202 500 10000 9400
7.825 0.0164 611 10000 7900
8.2 0.01167 843 10000 5000

TABLE IV. The parameters to generate pure SU(3) gauge
ensembles using Wilson’s pure SU(3) gauge action for lattice
size nτ ¼ 4 with aspect ratio ns=nτ ¼ 4.

β0 ¼ 6=g20 T (MeV) #TUsðT ≠ 0Þ #TUsðT ¼ 0Þ
5.6 209 10000 10000
5.7 271 10000 10000
5.8 336 10000 10000
5.9 406 10000 10000
6.0 482 10000 10000
6.2 658 10000 10000
6.35 816 10000 10000
6.5 1003 10000 10000
6.6 1146 10000 10000

TABLE V. The parameters to generate pure SU(3) gauge
ensembles using Wilson’s pure SU(3) gauge action for lattice
size nτ ¼ 6 with aspect ratio ns=nτ ¼ 4.

β0 ¼ 6=g20 T (MeV) #TUsðT ≠ 0Þ #TUsðT ¼ 0Þ
5.60 139 10000 10000
5.85 247 10000 10000
5.90 271 10000 10000
6.00 321 10000 10000
6.10 377 10000 10000
6.25 472 10000 10000
6.45 625 10000 10000
6.60 764 10000 10000
6.75 929 10000 10000
6.85 1056 10000 10000

TABLE VI. The parameters to generate pure SU(3) gauge
ensembles using Wilson’s pure SU(3) gauge action for lattice size
nτ ¼ 8 with aspect ratio ns=nτ ¼ 4.

β0 ¼ 6=g20 T (MeV) #TUsðT ≠ 0Þ #TUsðT ¼ 0Þ
5.70 135 10000 10000
5.95 221 10000 10000
6.00 241 10000 10000
6.10 283 10000 10000
6.20 329 10000 10000
6.35 408 10000 10000
6.55 536 10000 10000
6.70 653 10000 10000
6.85 792 10000 10000
6.95 899 10000 10000

KUMAR, MAJUMDER, and WEBER PHYS. REV. D 106, 034505 (2022)

034505-6



vanishes within the statistical error as naively expected (in
the one gluon exchange approximation, the vacuum con-
tribution corresponds to the difference of the transverse
electric and magnetic field squared of a radiated on-shell
gluon, which is identically zero).
The operator Ô0 exhibits a rapid transition near the

temperature T ∈ ð150; 250Þ MeV for full QCD case and
T ∈ ð250; 350Þ MeV for pure SU(3) gauge theory. The
operators with derivatives Δ are scaled by the factor 10−4

and 10−8 to illustrate the ordering of operators as an overall
factor of ðT=q−Þ2n appears in the q̂ expression [Eq. (16)];
it corresponds to a hard parton, i.e., T ∼ 1 GeV and
q− ∼ 100 GeV. Looking at the operators Ô1 and Ô2 for
pure SU(3) case where the statistics of the T ¼ 0 ensembles
is much better, one observes an upward movement of data
points as one goes from coarser to finer lattices, i.e., from
nτ ¼ 4 to nτ ¼ 8 (note the log-scale).
This enhancement might be indicative of a divergence

due to mixing with lower-dimensional operators. With rare
exceptions higher-dimensional operators suffer linearly
divergent mixing with lower-dimensional operators in
lattice regularization [52]. In our setup these persist for
Ôn; n ≥ 1 after vacuum subtraction [Eq. (16)] due to
temperature dependence of the lower-dimensional opera-
tors. Both higher-twist operators also increase as the
temperature is reduced; however, once the powers of
temperature in the prefactors are taken into account,
T2Ô1 and T4Ô2 decrease instead.
Whether the bump at low temperatures could be a

signature of sensitivity to critical behavior near the tran-
sition region is an open question. The full QCD result
exhibits a similar pattern, albeit with large errors for nτ ¼ 8.
Since we have not worked out the mixing of Ô1 and Ô2

operators with the respective lower-dimensional operators,
we estimate q̂ in the limit of the hard parton energy

q− → ∞, where the higher-twist terms do not contribute
at all. Given this restriction to the leading-twist operator,
we switch, in the following, to the more suggestive
notation

Ô0 ≡ FF
T4

≡ Tr½F3jF3j − F4jF4j�
T4

: ð34Þ

C. Renormalization in quenched QCD

The expression for q̂ [Eq. (16)] applies after appropriate
renormalization of the coupling and the field strength
operators, for the hard quark traversing either the pure
glue plasma, or a QGP. While the field strength operators
mix in QCD with corresponding sea quark operators, the
latter do not contribute in Eq. (16), besides this mixing. In
quenched QCD, the renormalized leading-twist operator
FF=T4 is trivially related to components of the renormal-
ized EMT, here in the triplet representation Tð3Þ. The same
relation holds for the bare variables: FF≡ ½FF�B ¼
TFTð3ÞB (with TF ¼ 1=2). Both undergo multiplicative

renormalization with a (finite) factor Zð3Þ
T [Eq. (37)] fixed

by finite-momentum Ward identities, i.e.,

Tð3ÞR ¼ Zð3Þ
T Tð3ÞB and ½FF�R ¼ Zð3Þ

T ½FF�B: ð35Þ

While Zð3Þ
T ¼ 1 is trivial in the continuum theory, it

explicitly depends on the particular discretization of the
gauge field operator (in our case, a separate clover-leaf
operator for each field strength tensor) and of the lattice
gauge action that determines the background gauge field.
For the combination of the clover-leaf operator [Eq. (32)]
and Wilson’s plaquette action this renormalization factor
has been obtained in pure gauge theory [53–55] using the
shifted boundary condition approach [56–58]. This
approach also carries over to QCD with sea quarks.
Using published data [54] we renormalize (in MS [59])

FF=T4 in pure gauge theory by converting the sextet
renormalization factorZð6Þ

T ðg20Þ [55] (clover leaf) to triplet via

Zð3Þ
T ðg20Þ ¼ zTðg20ÞZð6Þ

T ðg20Þ: ð36Þ

The Zð3Þ
T renormalization factor is given by

Zð3Þ
T ¼

�
1 − 0.509g20
1 − 0.4789g20

�
×

�
1 − 0.4367g20
1 − 0.7074g20

− 0.0971g40

þ 0.0886g60 − 0.2909g80

�
: ð37Þ

The renormalization factor has an error of up to 1% for
g0 ≤ 1.While its error for g0 > 1 is not known, it is certainly
larger. We account for it indirectly when performing the

continuum extrapolation. We interpolate Zð3Þ
T FF=T4 on

the coarser ensembles (nτ ≤ 6) linearly to the temperatures
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FIG. 2. Temperature dependence of vacuum-subtracted field-
strength correlators on quenched and unquenched SU(3) lattices.
The operators are unrenormalized and have been computed for
lattice sizes nτ ¼ 4, 6 and 8.
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of the finest ensemble (nτ ¼ 8), and then extrapolate at each
temperature the two finest ensembles linearly [∝ 1=n2τ ] or all
three ensembles with a further quadratic term [∝ 1=n4τ ] to
the continuum. The linear fit provides the central value and
the statistical error, while the spread between the central
value from the linear fit and the quadratic fit give us the
systematic error. Both the errors are added in quadrature and
shown in green vertical bar in Fig. 3. Our results agree with
the TF-rescaled entropy density using the shifted boundary

condition approach [55], while estimating Zð3Þ
T ðg20Þ as

1=u40ðg20Þ—with tadpole factor

u0ðg20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hTr½Uμ;ν�i

Nc

4

s
ð38Þ

—yields roughly 10% higher values (Fig. 3).

D. Renormalization of leading-twist
operator in full QCD

The calculation of q̂ is substantially more involved in
QCD than in the quenched approximation. In pure gauge
theory, on the one hand, the renormalized leading-twist
operator FF=T4 is a genuine observable that is trivially
related to the triplet component Tð3Þ of the renormalized
EMT. In the rest frame, the EMT’s triplet component
coincides with the entropy density times the temperature,
Tð3ÞR ¼ sT, underscoring the status of ½FF�R as a scheme-
independent observable in the pure gauge theory. In QCD,
on the other hand, the leading-twist operator is not scheme
independent, and the previous relation to the entropy
density s does not hold. Instead, the renormalized lead-
ing-twist operator satisfies ½FF�R ¼ TFT

ð3ÞR
G , i.e., only the

renormalized gauge field operator’s contribution to the
EMT is considered, while the gauge background and higher

order terms contain explicit contributions from the quark
sea. The full entropy density s is indeed a scheme-
independent observable, and its renormalization is fixed
by finite-momentum Ward identities, i.e.,

sT ¼ Tð3ÞR
GþQ ¼ Zð3Þ

G Tð3ÞB
G þ Zð3Þ

Q Tð3ÞB
Q ð39Þ

in the rest frame. Both Zð3Þ
G and Zð3Þ

Q are finite, and can be
fixed by two different finite momentum Ward identities
using two different values of imaginary chemical potential.
Here, Tð3ÞB

G ¼ ½FF�B is the same bare gauge field operator
as in pure gauge theory (but on a QCD background), while
Tð3ÞB
Q is its valence quark counterpart (Nf explicit contri-

butions, i.e., from each of the sea quarks). We note that the
choice of the regularization of Tð3ÞB

Q does not have to
coincide with the choice of the quark action of the QCD
background fields. In lattice-regularized QCD, the renor-
malized gauge field and quark operators are related to the
bare ones by a mixing matrix Z as 

Tð3ÞR
G

Tð3ÞR
Q

!
¼Z

 
Tð3ÞB
G

Tð3ÞB
Q

!
; Z≡

 
Zð3Þ

GG Zð3Þ
GQ

Zð3Þ
QG Zð3Þ

QQ

!
; ð40Þ

where Zð3Þ
GG ≡ Zð3Þ

G þ zG and Zð3Þ
QQ ≡ Zð3Þ

Q þ zQ. The off-

diagonal components Zð3Þ
GQ ≡ −zQ or Zð3Þ

QG ≡ −zG diverge
as the regulator is removed, and so do the bare operators.
Moreover, the coefficients zG;Q cannot be fixed using Ward
identities, such that additional renormalization conditions
need to be chosen to fix these in some particular scheme.

Hence, Tð3ÞR
G (and Tð3ÞR

Q ) are renormalization scheme
dependent in QCD. Without such a scheme being fixed
before the regulator is removed, or without including the

bare quark operator Tð3ÞB
Q , Tð3ÞR

G and its continuum limit
cannot be defined in QCD at all. For our lattice setup in
QCD, neither the renormalization factors are known, nor
the bare quark operators have been computed.
For these reasons we currently can only produce an

estimate of the renormalized leading-twist operator ½FF�R
for (2þ 1)-flavor QCD based on various complementary
arguments. The first set of such considerations are of a
purely quantitative nature, and concern reasonable esti-
mates of the nonperturbative renormalization factors and
cutoff effects in pure gauge theory that are transferred to the
full QCD case. In pure gauge theory, the FF=T4 with
tadpole factor yields a 10% shift from the renormalized
result. Also, the magnitude of the bare FF=T4 for nτ ¼ 6 is
about 10% higher than the nτ ¼ 8 due to the cutoff effects
in pure gauge theory. A similar trend is observed for

Zð3Þ
T FF=T4, when comparing to the continuum limit. For

full QCD case, based on 1-loop considerations (see below),
we estimate that mixing with quark operators, not
accounted for, may be at most an effect of commensurate
size. Thus, we expect a deviation of no more than 30%
(adding all three sources of systematic uncertainty)
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FIG. 3. Bare and renormalized leading-twist operator
hTr½F3iF3i − F4iF4i�i=T4 in pure SU(3) gauge theory. Our result
agrees with the entropy density obtained in shifted boundary
condition approach [55] after rescaling by TF ¼ 1=2.
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between FF=ðT4u40Þ [nτ ¼ 6] and the correctly renormal-
ized continuum limit.
The second set of considerations relies on properties of

the equation of state. The nonperturbative entropy density
sðTÞ or pressure PðTÞ [50,60] are about 30% below the
Stefan-Boltzmann (SB) limit at T ∼ 2Tpc, with the
deviation diminishing by almost half at T ∼ 1 GeV. For
these and higher temperatures, the nonperturbative results
are bracketed by electrostatic QCD (EQCD) at Oðg6Þ [61]
and HTL-resummed perturbation theory at 3-loop order
[62] with less than 10% deviation. This justifies assuming
that the relative size of the (renormalized) gluon fraction of
the full nonperturbative result can be estimated in the weak-
coupling limit, i.e., the gluon fraction of sðTÞ (and thus
Tð3Þ) in (2þ 1)-flavor QCD being approximately RSB ¼
32=95 ≈ 0.337 (of the SB limit). Thus, scaling down TFsT
by this factor we may arrive at a QCD estimate of the
renormalized leading-twist operator ½FF�R that is quanti-
tatively similar to the previous estimate.
The aforementioned spread of up to 30% between the

nonperturbative result and the SB limit appears to be a
fairly cautious estimate of the uncertainty associated with
this estimate of ½FF�R for T ≳ 2Tpc. Defining the ratio
REQCDðT=TpcÞ between the Nf ¼ 0 to Nf ¼ 3 EQCD
results at Oðg6Þ and fixed value of T=Tpc, and rescaling
the (2þ 1)-flavor QCD lattice result is expected to be an
even better estimate, since the EQCD results are even more
similar to the lattice data. In Fig. 4 we show that both
estimates of the gluon fraction of the entropy density in full
QCD yield similar results that are within the 30% uncer-
tainty margin, and confirm the expectation of a downward
correction for the continuum limit.
Alternatively, we may take a closer look at an instance of

the mixing matrix Z in QCD, which is known—for some
particular set of discretized gauge field and quark operators,
with QCD background fields in terms of some particular
combination of lattice actions—at the 1-loop level. Its
Nf-independent coefficients Z

ð3Þ
G;Q atOðg20Þ are one order of

magnitude larger [∼10%] (×Nc) than the Nf-dependent
ones [∼1%] (×Nf) for the combination of Wilson’s
plaquette action and (unimproved) Wilson fermion action
[63,64]. Similar statements (in terms of magnitudes) hold
for the coefficients zG;Q at the 1-loop level (and typical
couplings g0 ∼ 1). The magnitudes of the coefficients
change somewhat with the discretization, e.g., the Nf
dependent 1-loop coefficients change within a factor of
4 between unimproved or improved Wilson fermions
[63,64]; for improved Wilson fermions the sum of the
Nf-dependent coefficients is as large as the sum of the
Nf-independent ones. As there is no obvious reason why
the magnitudes of such coefficients should not be similar
for the combination of discretizations in our case, i.e.,
HISQ action and Symanzik gauge action, we anticipate that
these findings apply within a factor of 2 to our combination
of tree-level Symanzik gauge and HISQ action.

The smallness of the Nf-dependent coefficients (both for
unimproved or improved Wilson fermions) at Oðg20Þ
suggests that the error (for any given bare coupling g0)
due to neglecting the mixing with quark contributions from
Nf light flavors is below 10%, and while use of a
multiplicative renormalization factor for FF=T4 based
on a different gauge action may be off at the 30%
(≈10% × Nc) level, which constitutes (for any given bare
coupling g0) the quantitatively dominant uncertainty.
Since bare ½FF�B operators at similar T=Tpc ≳ 2 [i.e.,
T ≈ 300 MeV in (2þ 1)-flavor QCD corresponding to
T ≈ 500 MeV in pure gauge theory] are within 20% of
each other for the pure gauge and full QCD ensembles
despite their major differences (different background fields
and choices of the lattice action), the uncertainty related to
the renormalization factor may be considered as dominant.
Concluding this line of reasoning, one might expect that

we could also multiply the bare ½FF�Bðg20Þ determined in
(2þ 1)-flavor QCD by Zð3Þ

T ðg20Þ (determined in pure gauge
theory) and obtain yet another estimate, which is quanti-
tatively similar to the first one. However, this approach does
not work in practice, since the pure gauge theory para-
metrization of the renormalization factor for the Wilson
plaquette action has a pole in the middle of the range of
bare gauge coupling for the Symanzik gauge action used in
the (2þ 1)-flavor QCD simulations. Nevertheless, based
on these 1-loop considerations we expect that an overall
30% uncertainty is justified as a reasonably cautious
assessment for our estimate of ½FF�R in full QCD.

IV. RESULTS

In Fig. 5 we present the resulting q̂=T3 based on Eq. (16).
The coupling at the vertex to gluons absorbed by the
mediummust be at the temperature scale. We vary this scale
as ð2 − 4ÞπT to account for the truncation error and use of
the 1-loop gauge coupling. While the nonperturbative
renormalization factors for the (2þ 1)-flavor QCD result
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are unknown, we have used several means to obtain well-
justified estimates. As we expect a deviation of no more
than 30% between FF=ðT4u40Þ [nτ ¼ 6] and the correctly
renormalized continuum limit, we attach a symmetric
relative uncertainty of 30% to this lattice QCD estimate.
We multiply by the 1-loop gauge coupling (same scale
variation) for Nf ¼ 3.
Due to the OGE approximation [Eqs. (5) and (8)],

truncation at leading twist [Eq. (16)], and the coupling
gðTÞ at the temperature scale, q− dependence is absent in
our result for q̂=T3. Hence, this result applies in the limit
q− → ∞ of an infinitely hard parton. The temperature
dependence of the resulting q̂=T3 is shown in Fig. 5 for the
continuum limit of pure SU(3) gauge theory (blue) or for
our estimate in (2þ 1)-flavor lattice QCD (red).
The transport coefficient q̂=T3 exhibits a rapid rise in the

transition region and slightly above, i.e., in the temperature
range 150 MeV≲ T ≲ 250 MeV for (2þ 1)-flavor QCD
or 250 MeV≲ T ≲ 350 MeV for the pure SU(3) gauge
theory, and is flat within errors above 400MeV. The change
of the gauge coupling gðTÞ with T partially compensates
the temperature dependence of the leading-twist operator at
temperatures well above Tpc. Interestingly, the nonpertur-
bative stochastic vacuum model result [39] exhibits a very
similar behavior.
Expectedly, the lattice results do not show any log-like

rise at lower T, as one observes in leading-order (LO) HTL
calculations [67] (for the HTL bands in Fig. 5 q− ¼
100 GeV is assumed). This arises from the dominant
diagram with OGE in the perturbative calculation, which

leads to a logarithm in q−=T. Interestingly, no such
logarithm arises at next-to-leading-order (NLO) in the
HTL expansion of q̂ [68]. The finite part of the NLO result
is much larger than the LO result and far above the scale in
Fig. 5. Similar contributions may appear once some approx-
imations used in this paper are lifted, e.g., if emission of
gluons is considered, or if the higher-twist operators become
non-negligible as q− → ∞ is relaxed. Whether such terms
will dominate remains to be determined. The 3D lattice
simulation [36] exhibits a behavior quite similar to pertur-
bative HTL; the result at T ¼ 400 MeV is far above the
scale in Fig. 5.
In Fig. 5, we also present a comparison with phenom-

enological extractions of q̂=T3 obtained by the JET [3] and
JETSCAPE [65] collaborations. The JET collaboration
applied several disparate models of energy loss with either
a sole T dependence of the ratio q̂=T3, or one obtained from
HTL effective theory [68]. The JETSCAPE extraction
applied an amalgam of theories for different epochs of the
jet shower, with a data-driven (Bayesian) determination
of q̂=T3, allowed to depend on T, the energy and scale of
a given parton in the shower. A log-like rise at low T is
allowed in both frameworks; both work with the OGE
approximation.

V. CONCLUSION

In this paper, we carried out the first rigorous first-
principles 4D calculation of the jet quenching parameter q̂,
which is the leading coefficient affecting jet modification in
the QGP. We computed q̂ for a single parton undergoing a
single scattering off the medium, utilizing lattice gauge
theory in the quenched approximation. We outlined the
specific challenges of a corresponding (2þ 1)-flavor lattice
calculation, while providing a first theoretically motivated
lattice estimate of q̂ in (2þ 1)-flavor QCD.
While the proximity of the lattice calculations with

phenomenological extractions is very encouraging, several
caveats need to be considered: The full QCD result is only
an estimate, due to lack of rigorous control of the
renormalization factors and the mixing with still unknown
quark operators on the lattice.
As the q− → ∞ limit is relaxed, the perturbative portions

of the current calculation will have to be extended to higher
order, allowing for multiple scattering and emission in the
medium. While we do not expect multiple scattering to
yield contributions that cannot be factorized into indepen-
dent scatterings (as is the case in all perturbative QCD
based jet quenching calculations and phenomenology,
including the extractions from the JET and JETSCAPE
collaborations), emissions in the process of scattering may
lead to shifts (in q̂=T3) of the order of the width of the
bands in our QCD estimates. As discussed in Appendix B,
applying known perturbatively calculated renormalization
factors [69–71] will bring down the phenomenological
extractions by about 33%, dramatically increasing the
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agreement with our calculations. Future efforts which
expand Eq. (16) as a power series in T=q− will encounter
mixings with novel quark operators at order T=q−. At order
ðT=q−Þ2, one will encounter mixing with possible linearly
divergent, temperature dependent operators, which cannot
be straightforwardly canceled via vacuum subtraction.
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APPENDIX A: GAUGE ENSEMBLES AND
LATTICE SETUP

In this section, we list the parameters used in generating
gauge ensembles for pure SU(3) and (2þ 1)-flavor QCD
lattices. In the presented lattice calculations, the unquenched
lattices were generated at the physical value of the strange
quark mass ms and the light sea quark masses of ml ¼
ms=20 using the HISQ [46] and tree-level Symanzik
improved gauge action [47,48]. We employed the rational
hybrid Monte Carlo algorithm [45]. In Tables I–III, we
present the strange quark mass (ams) in units of lattice
spacinga, temperature (T) and time units (TU) for nτ ¼ 4, 6,
8 and their vacuum analog T ¼ 0. The temperatures for
different β0 ¼ 10=g20s have been fixed using the r1 scale and
taken from Refs. [48].
In Tables IV–VI, we provide β0, temperature and the

collected statistics for pure SU(3) lattices. The scale setting
was done using the 2-loop perturbative renormalization
group equation with nonperturbative correction factor
[fðβ0Þ] given as

a ¼ fðβ0Þ
ΛL

�
11g20
16π2

�−51
121

exp
�
−8π2

11g20

�
; ðA1Þ

where ΛL is a lattice parameter. We estimated the non-
perturbative factor by adjusting the function fðβ0Þ such that
Tc=ΛL is independent of bare coupling constant g0. In this
calculation, ΛL was set 5.5 MeV [72–74] and the critical
temperature to Tc ≈ 265 MeV [75].

APPENDIX B: RADIATIVE
RENORMALIZATION FACTORS

As we relax the q− → ∞ limit, there are four categories
of new contributions that will modify the results obtained in
the current calculation. First are the quark operators which
will mix with the gluon operators in the process of
renormalization in (2þ 1)-flavor QCD. The determination
of the magnitude and mixing with these operators is the
next step for full QCD simulations for q̂. While the
magnitude, mixing and eventual effect of these terms on
q̂ are expected to be small, these terms may have other
phenomenological effects on jets. Next is the appearance of
higher twist terms. These have already been described
above. The other contributions would include processes
that involve flavor change [Fig. 6(a)], multiple scattering or
emission inside the lattice itself [Fig. 6(b)].
Every calculation of jet modification, other than in

AdS=CFT, assumes that multiple scattering can be factor-
ized into multiple independent scatterings, and we do not
expect a different result here. The more interesting case is
the modification to the collision kernel due to radiative
effects. Of course, such calculations have never been
carried out on the lattice. However, these have been
evaluated in continuum perturbation theory [69–71], for
media whose length is shorter than the formation time of a
radiation as

q̂R ¼ q̂þ δq̂ ¼ q̂

�
1þ αSNc

4π
log2

�
L2

l20

��
: ðB1Þ

In the equation above, L is the length of the medium and l0
is the approximate size of a scattering center, which in a
thermal medium is approximately the thermal wavelength.
Thus, l0 ∼ 1=T and as a result L=l0 ∼ 4, for the lattices used
in this paper. Using αS ≃ 0.25, we obtain the additional
corrections to be δq̂ ∼ 0.5q̂. Thus the perturbatively cor-
rected magnitude of the transport coefficient q̂ engenders an
approximate 50% excess in the value of q̂. One should note
that the above estimate hinges on the knowledge of the exact
value of αS, as well as the numerical factor n in the equality
l0 ¼ n=T. While we have assumed n ¼ 1, this can easily
vary up or down by about 100%, as the exact size of a
scattering center is not well defined in a QGP. Such

FIG. 6. Forward scattering diagrams for future outlook.
(a) Transverse broadening due to flavor changing process.
(b) A typical single scattering and single emission diagram.

JET TRANSPORT COEFFICIENT q̂ IN LATTICE … PHYS. REV. D 106, 034505 (2022)

034505-11



variations can lead to noticeable shifts in our estimate of δq̂.
If δq̂were to become comparable to q̂ then additional higher
order terms neglected in the equation above will have to
be considered. The reader is directed to Refs. [69–71]
1for extended discussion on these issues.
Accepting our estimate for δq̂ above, we should further

clarify what this 50% excess means and how it should be
applied to the comparison plot in Fig. 5. Note that while q̂ is
defined as a transverse broadening coefficient, it is typically
extracted from experimental data by comparing the energy
lost by jets and leading hadrons, due to excess radiation
caused by the transverse exchanges with the medium. The
δq̂ factor above, describes a perturbatively calculated shift
that should be applied to q̂when it is extracted from energy
loss calculations. Thus, this factor should be used to reduce
the values of q̂ extracted by the JET and JETSCAPE
collaborations, which obtained q̂ by comparing energy loss

calculations to data (without the δq̂ factor). This will bring
the JET points and the JETSCAPE band in Fig. 5 to about
66% of their current values, in complete agreement with the
lattice calculation, which measures q̂ from transverse
broadening, without any emissions.
In a future calculation of q̂ on the lattice, which will

include emissions [Fig. 6(b)], we will likewise encounter a
shift in the final measured value of q̂, due to the larger
phase space available for the transverse momentum
exchange. A large portion of this will be perturbative,
equivalent to the factor δq̂ above, as we will continue to
assume that the jet and its emissions can be treated
perturbatively. It is possible that there will also be a small
nonperturbative renormalization, which would be obtained
by comparing with the q̂ calculated in the current study
(without emissions), identifying the excess δq̂, and sub-
tracting the perturbative correction from this.
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