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Taylor expansion of the thermodynamic potential in powers of the (baryo)chemical potential μB is a
well-known method to bypass the sign problem of lattice QCD. Due to the difficulty in calculating the
higher order Taylor coefficients, various alternative expansion schemes as well as resummation techniques
have been suggested to extend the Taylor series to larger values of μB. Recently, a way to resum the
contribution of the first N charge density correlation functions D1;…; DN to the Taylor series to all orders
in μB was proposed in [Phys. Rev. Lett. 128, 022001 (2022)]. The resummation takes the form of an
exponential factor. Since the correlation functions are calculated stochastically, the exponential factor
contains a bias which can be significant for large N and μB. In this paper, we present a new method to
calculate the QCD equation of state based on the well-known cumulant expansion from statistics. By
truncating the expansion at a maximum order M, we end up with only finite products of the correlation
functions which can be evaluated in an unbiased manner. Although our formalism is also applicable for
μB ≠ 0, here we present it for the simpler case of a finite isospin chemical potential μI for which there is no
sign problem. We present and compare results for the pressure and the isospin density obtained using
Taylor expansion, exponential resummation and cumulant expansion, and provide evidence that the
absence of bias in the latter actually improves the convergence.
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I. INTRODUCTION

The equation of state (EoS) of strongly interacting matter
is an important input in the hydrodynamical modeling of
heavy-ion collisions [1–4]. Unfortunately lattice QCD,
which is the preferred method of calculating observables
in the nonperturbative regime of QCD, breaks down when
the baryon chemical potential μB is nonzero. This is thewell-
known sign problem of lattice QCD [5]; despite recent
progress [6–10], the current state-of-the-art results for the
QCD EoS have been obtained by using either analytical
continuation from imaginary to real μB [11,12], or by
expanding the EoS in a Taylor series in the chemical
potential μB and calculating the first N coefficients
[13,14]. In the latter case, a knowledge of the first several
coefficients is necessary, not only to obtain the EoS for a
fairly wide range of chemical potentials but also to determine
the radius of convergence of the Taylor series beyond

which the Taylor expansion must break down [15–18].
Unfortunately, the calculation of the higher order Taylor
coefficients is computationally very challenging and it is
natural to ask whether something can be learned about them
from a knowledge of the first few Taylor coefficients. It turns
out that this is indeed possible because the firstN derivatives
D1;…; DN of ln detMðμBÞ, where MðμBÞ is the fermion
matrix, also contribute to the higher order Taylor coefficients
through products such as D2

N , DND1, etc. In fact, the
contribution of the nth derivative Dn to all higher orders
can be shown to take the form of an exponential
expðDnμ

n
B=n!Þ [19]. Thus, if Dn is known exactly, then

its contribution to the Taylor series can be resummed to all
orders through exponentiation. Exponential resummation, as
we will refer to it from here on, can be shown to have several
advantages compared to the original Taylor series: First, the
resummed EoS converges faster than the Taylor series.
Moreover, since the odd derivatives D1; D3;… are purely
imaginary, the resummed expression directly gives us a
phase factor whose expectation value approaches zero as μB
is increased, leading to a breakdown of the calculation. This
breakdown is physical and related to the presence of poles
or branch cut singularities of the QCD partition function in
the complex μB plane. The resummed expression for the
partition function also makes it possible to calculate these
singularities directly. Some of these advantages have been
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recently demonstrated through analytical calculations in a
low-energy model of QCD [20].
Despite its advantages, a technical drawback of expo-

nential resummation is that the derivatives D1;…; DN are
not known exactly in an actual lattice calculation. As is
easily seen from the identity ln detM ¼ tr lnM, the Dn
can be expressed in terms of traces of various operators, all
of which involve the inverse of the fermion matrixM. Since
M is typically of size 108 or greater, calculating its exact
inverse is prohibitively expensive. Instead the various
traces, and hence the derivatives Dn, are estimated stochas-
tically using Oð102–103Þ random volume sources per
gauge configuration. Now, the products of such stochas-
tically estimated quantities e.g.,D2

N , need to be evaluated in
an unbiased manner, i.e., estimates coming from the same

random vector must not be multiplied together. If DðiÞ
N , i ¼

1; 2;…; Nrv are the Nrv stochastic estimates of the trace
DN , then the unbiased estimate (UE) of D2

N is given by

UE½D2
N � ¼

2

NrvðNrv − 1Þ
XNrv

i¼1

XNrv

j¼iþ1

DðiÞ
N DðjÞ

N : ð1Þ

By contrast, the naïve biased estimate (BE) is given by

BE½D2
N � ¼

�
1

Nrv

XNrv

i¼1

DðiÞ
N

�2
: ð2Þ

Equations (1) and (2) can both be readily generalized to any
finite power or to the product of a finite number of traces.
In the Appendix, we present formulas for evaluating the
unbiased estimate of such finite products in an efficient
manner. However we do not know of any corresponding
formula to calculate the unbiased estimate of an infinite
series such as an exponential.
In this paper, we will present a new way of calculating the

QCD EoS based on the well-known cumulant expansion
from statistics. The cumulant expansion method is inter-
mediate between a strict Taylor series expansion and
exponential resummation in the sense that the contribution
of D1;…; DN are resummed only up to a maximum order
M. However, since the order is finite it is possible to evaluate
the terms of the expansion in an unbiased manner. The
cumulant expansion agrees exactly with the Taylor series
expansion to OðμNB Þ provided that M ≥ N [21]. However, it
also contains additional contributions at OðμNþ2

B ;…; μMN
B Þ

which are exactly the contributions of D1;…; DN to the
higher order Taylor coefficients χBNþ2;…; χBMN .
Although the cumulant expansion method also works for

μB ≠ 0, in this paper we will present the formalism for the
simpler case of finite isospin chemical potential μI instead.
For μI ≠ 0, the fermion determinant is real and one has no
sign problem. Thus one only works with real quantities
which in turn simplifies the presentation. Moreover, the
absence of the sign problem allows us to calculate

observables for much larger values of μI than would be
possible for the μB case, and it is precisely for these large
values that bias can become significant. Lastly, the QCD
phase diagram in the T − μI plane is known from several
studies to be interesting in its own right [22–26], and we
hope to be able to apply this formalism to its study in the
future.

II. FORMALISM

We consider lattice QCD with 2þ 1 flavors of rooted
staggered quarks. The partition function at nonzero isospin
chemical potential μI is given by

ZðT; μIÞ ¼
Z

DUe−SGðTÞ detMðT; μIÞ; ð3Þ

where detMðT; μIÞ is shorthand for

detMðT; μIÞ ¼
Y

f¼u;d;s

½detMfðmf; T; μfÞ�1=4; ð4Þ

with mu ¼ md, μu ¼ −μd ¼ μI and μs ¼ 0. The excess
pressure ΔPðT; μIÞ≡ PðT; μIÞ − PðT; 0Þ is given by

ΔPðT; μIÞ
T4

¼ 1

VT3
ln

�
ZðT; μIÞ
ZðT; 0Þ

�
; ð5Þ

where V is the spatial volume and T is the temperature. By
employing the same arguments as in Ref. [19], we can write

ZðT; μIÞ
ZðT; 0Þ ¼

�
exp

�X∞
n¼1

DI
2nðTÞ
ð2nÞ!

�
μI
T

�
2n
��

; ð6Þ

where the expectation value h·i is taken over a gauge field
ensemble generated at μu ¼ μd ¼ μs ¼ 0, and

DI
nðTÞ ¼

∂
n½ln detMðμIÞ�

∂ðμI=TÞn
����
μI¼0

: ð7Þ

The presence of only even powers is because the odd μI
derivatives vanish identically. Since even derivatives of the
quark determinant are purely real, we see that detMðμIÞ is
purely real and hence there is no sign problem. Note that
this is true even when μI is purely imaginary.
The DI

n can be expressed as traces of various operators
[27,28]. In lattice calculations, the first N derivatives
DI

1;…; DI
N are calculated stochastically using Nrv random

vectors, where Nrv is typically of order 102–103. Then
ΔPðT; μIÞ=T4 is approximately equal to

ΔPR
NðT; μIÞ
T4

¼ N3
τ

N3
σ
ln

�
exp

�XN=2

n¼1

D̄I
2nðTÞ
ð2nÞ!

�
μI
T

�
2n
��

: ð8Þ

Here Nσ and Nτ are the number of lattice sites in the space
and time directions respectively, while D̄I

2n is the average
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of the Nrv stochastic estimates of DI
2n. Equation (8) is

the Nth order exponential resummation formula for
ΔPðT; μIÞ=T4. In the limit Nrv → ∞, it accurately resums
the contribution of the first N derivatives DI

1;…; DI
N to all

orders in μI [19]. For Nrv < ∞ however, the formula
contains bias. This is easily seen if one writes the
exponential as an infinite series. The series expansion
leads to terms such as ðD̄I

2mÞpðD̄I
2nÞq � � �, and we have

already seen that such products are biased due to multi-
plication of estimates coming from the same random
vector.
The well-known cumulant expansion formula from

statistics states that

lnhetXi ¼
X∞
k¼1

tk

k!
CkðXÞ: ð9Þ

The coefficients CkðXÞ are known as the cumulants of X
[29–31]. The first four cumulants are given by

C1ðXÞ ¼ hXi;
C2ðXÞ ¼ hX2i − hXi2;
C3ðXÞ ¼ hX3i − 3hXihX2i þ 2hXi3;
C4ðXÞ ¼ hX4i − 4hXihX3i − 3hX2i2

þ 12hX2ihXi2 − 6hXi4: ð10Þ
In our case t ¼ 1, which we assume lies within the
radius of convergence of the cumulant expansion, and
X ≡ XNðT; μIÞ, where

XNðT; μIÞ ¼
XN=2

n¼1

DI
2nðTÞ
ð2nÞ!

�
μI
T

�
2n
: ð11Þ

Truncating Eq. (9) at k ¼ M ≥ N=2 [32] gives us yet
another way to estimate ΔP=T4, namely

ΔPC
N;MðT; μIÞ
T4

¼ N3
τ

N3
σ

XM≥N=2

k¼1

1

k!
CkðXNðT; μIÞÞ: ð12Þ

Equation (12) may be compared to the familiar Taylor
series expansion of ΔP=T4, which in our case is given by

ΔPE
NðT; μIÞ
T4

¼
XN=2

n¼1

χI2nðTÞ
ð2nÞ!

�
μI
T

�
2n
: ð13Þ

The restriction M ≥ N=2 in Eq. (12) ensures that the
cumulant and Taylor expansions of the pressure agree
term-by-term up to OðμNI Þ. However, the cumulant expan-
sion also contains additional terms proportional to
μNþ2
I ;…; μMN

I . These extra terms are the same terms that
appear in the calculation of the higher order Taylor coef-
ficients χINþ2;…; χIMN . The cumulant expansion thus

manages to capture some of the higher order contributions
to ΔP=T4, although it is not an all orders resummation like
Eq. (8). Unlike Eq. (8) however, only finite products of
traces appear in Eq. (12). As we show in the Appendix, there
exist formulas [Eqs. (A4) and (A10)] for evaluating these
products efficiently in an unbiased manner. Thus, the
cumulant expansion is free of the bias that can affect
exponential resummation.
Finally, we will also present results for the net isospin

density N ðT; μIÞ which is given by

N ðT; μIÞ
T3

¼ ∂

∂ðμI=TÞ
�
ΔPðT; μIÞ

T4

�
: ð14Þ

The Taylor series expression N E
NðT; μIÞ for the same is

straightforward. The resummed and cumulant expansion
expressions N R

NðT; μIÞ and N C
N;MðT; μIÞ can be obtained

by differentiating Eqs. (8) and (12) respectively. We do not
write down the explicit expressions here. Note however that
the resummed formula, unlike the cumulant expansion
expression, involves a ratio of expectation values.

III. RESULTS

To verify our formalism, we made use of the data
generated by the HotQCD collaboration for their calcu-
lations of the finite-density EoS, finite-density chiral
crossover temperature and conserved charge cumulants
using Taylor series expansions [13,17,33]. The data
consists of 2þ 1-flavor gauge configurations with
Nτ ¼ 8, 12 or 16 and Nσ ¼ 4Nτ in the temperature range
125 MeV ≲ T ≲ 178 MeV. The configurations were gen-
erated using a Symanzik-improved gauge action and the
highly improved staggered quark (HISQ) action [34–36]
for fermions. The lattice spacing was determined using both
the Sommer parameter r1 as well as the decay constant fK .
The temperature values quoted in this paper were obtained
using the fK scale. For each lattice spacing, the light and
strange quark bare masses were tuned so that the pseudo-
Goldstone meson masses reproduced the physical pion and
kaon masses. A description of the gauge ensembles and
scale setting can be found in Ref. [14].
The results presented here were obtained with around

20,000 Nτ ¼ 8 configurations for T ¼ 135 MeV. On each
gauge configuration, the first eight derivatives Df

1 ;…; Df
8

for each quark flavor were estimated stochastically using
around 2000 Gaussian random volume sources for Df

1 and
around 500 sources for the rest. We used the exponential-μ
formalism [37] to calculate the first four derivatives, while
the linear-μ formalism [38,39] was used in calculating all
higher derivatives.
We calculated the excess pressure ΔPðT; μIÞ and net

isospin density N ðT; μIÞ using (i) Taylor series expansion
[Eq. (13)] for N ¼ 2, 4 and 6; (ii) exponential resummation
[Eq. (8)] for N ¼ 2 and 4; and (iii) a fourth order cumulant
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expansion [Eq. (12) with M ¼ 4] for N ¼ 2 and 4. We
calculated these observables for both real as well as
imaginary μI, in the range 0 ≤ jμI=Tj ≤ 2.
We present our results for ΔPðT; μIÞ and N ðT; μIÞ in

Figs. 1 and 2 respectively. The upper plots in each figure
compare second order resummation and an ðN;MÞ ¼
ð2; 4Þ cumulant expansion results with second and fourth
order Taylor expansions, while the lower plots compare
fourth order resummation and ðN;MÞ ¼ ð4; 4Þ cumulant
expansion results with fourth and sixth order Taylor
expansions respectively.
Focussing first on the upper plots, we see that the second

and fourth order Taylor expansion results (green and blue
bands) start to differ significantly around jμI=Tj ¼ 1. For
real μI, this difference is seemingly captured by the
resummed results (red band) which agree with the fourth
order Taylor results for both observables over nearly the
entire range of μI=T. For imaginary μI however, the

resummed results lie below the fourth order Taylor results.
By contrast, the cumulant expansion results (blue inverted
triangles) are in good agreement with the fourth order
Taylor results for imaginary μI, while they are only slightly
less than the fourth order Taylor results for real μI.
One explanation for the difference between the

resummed and cumulant results is the higher order con-
tributions that are present in the former but not in the latter.
Another possibility is the bias that is present in the
resummed but not in the cumulant results. To distinguish
between the two possibilities, we recalculated the cumu-
lant results using the biased formulas for the trace products
rather than the unbiased ones [Eq. (A2) rather than
Eq. (A3)]. We found that the biased results (upright red
triangles) agree well with the resummed results, thus
suggesting that bias, rather than the contribution from
higher orders, is responsible for the difference between the
resummed and the cumulant expansion results.
To further confirm that this is the case, we also recalcu-

lated the resummed results using only 250 random vectors
instead of 500. Since bias decreases as Nrv is increased,
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FIG. 1. Comparison of the results for the excess pressure
ΔPðT; μIÞ obtained using Taylor series expansion, exponential
resummation and cumulant expansion. The resummed results
were obtained for Nrv ¼ 500 and Nrv ¼ 250 (red and yellow
bands). The cumulant expansion was calculated using both
biased and unbiased estimates (upright and inverted triangles).
Top: comparison between 2nd and 4th order Taylor expansions,
2nd order resummation and ðN;MÞ ¼ ð2; 4Þ cumulant expan-
sion. Bottom: comparison between 4th and 6th order Taylor
expansions, 4th order resummation and ðN;MÞ ¼ ð4; 4Þ cumu-
lant expansion.
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FIG. 2. Comparison of the results for the isospin density
N ðT; μIÞ obtained using Taylor series expansion, exponential
resummation and cumulant expansion. All symbols and colors
are the same as in Fig. 1. Top: comparison between 2nd and 4th
order Taylor expansions, 2nd order resummation and ðN;MÞ ¼
ð2; 4Þ cumulant expansion. Bottom: comparison between 4th and
6th order Taylor expansions, 4th order resummation and
ðN;MÞ ¼ ð4; 4Þ cumulant expansion.
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conversely we should expect the bias to increase when we
use fewer random vectors. From Figs. 1 and 2, we see that
the Nrv ¼ 250 results (yellow band) lie further from the
Taylor and unbiased cumulant results than the Nrv ¼ 500
results for jμI=Tj≳ 1. Thus we see that the resummed
results are indeed affected by bias for large values of the
chemical potential.
The presence of bias must especially be accounted for

when comparing higher order results (lower plots in Figs. 1
and 2). We see that the sixth order Taylor correction (blue
band) to the fourth order results (green band) is small over
the entire range of μI considered here. By contrast the
resummed results, although not containing the contributions
of the operatorDI

6, nonetheless suggest that the higher-order
contributions ofDI

2 and D
I
4 are large for both real as well as

imaginary μI. However, both the biased cumulant expansion
results as well as the Nrv ¼ 250 resummed results once
again suggest that at least some of this difference is due to
bias. On the other hand, the unbiased cumulant results agree
well with the Taylor series results for both real and
imaginary μI. We note that while the cumulant expansion
too does not include the contribution of the operator DI

6,
it does contain higher order corrections that appear at
Oðμ6I ;…; μ16I Þ. In fact, the (4,4) cumulant expansion is
exactly equal to a fourth order Taylor expansion, plus the
contributions of the operators DI

2 and DI
4 to the Taylor

coefficients χI6;…; χI16. The agreement between the
unbiased cumulant and Taylor series results thus suggests
that the contribution ofDI

2 and D
I
4 at higher orders is in fact

small. All this goes to show that bias needs to be properly
accounted for before one can identify the genuine higher-
order corrections.

IV. CONCLUSIONS

In this paper, we presented a new way of resumming the
QCD Taylor series EoS based on the well-known cumulant
expansion from statistics. Our approach is a finite order
truncation of the all orders resummation of the first N
charge density correlation functions that was presented in
Ref. [19]. The resummation presented there is susceptible to
bias when the correlation functions are calculated stochas-
tically. By contrast, the cumulant expansion contains only
finite products of traces that can be evaluated efficiently
in an unbiased manner. Moreover, while not an all orders
resummation, the Mth order cumulant expansion still
captures the contributions of the lower order derivatives
D1;…; DN to the higher order Taylor coefficients up to a
maximum order χMN.
Although our formalism is also applicable to μB ≠ 0, in

this paper we presented results for finite isospin chemical
potential μI instead. Our reason for this was that the
absence of a sign problem in the latter case meant that all
quantities were real and this simplified the presentation.
The μI ≠ 0 case is also of interest in its own right. We
presented results for the excess pressure and net isospin

density using Taylor series, resummation and cumulant
expansion. We found evidence for bias in the resummed
results at large ðμI=TÞ2. We showed this by (a) calculating
the cumulant expansion using biased rather than unbiased
products, and (b) recalculating the resummed results using
fewer random vectors. The cumulant expansion is a
truncation of the resummed formula and when the terms
of the expansion were calculated using biased products of
traces, they were in good agreement with the resummed
result, while they were closer to the Taylor series results
when they were calculated using unbiased products.
There have been several proposals recently to extend

the QCD EoS to larger values of the chemical potential
[16,17,40–42]. Exponential resummation is one such
approach, which can be connected to reweighting-based
approaches. By generalizing it to resummation in T and μB,
it can be also connected with the alternative expansion
scheme proposed in Ref. [40]. The cumulant expansion
approach that we have outlined here provides yet another
way to extend the QCD EoS. The precise relation between
this approach and the other proposals remains to be studied.
All data presented in the figures of this paper can be

found in Ref. [43].
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APPENDIX: ON THE CALCULATION
OF UNBIASED ESTIMATORS OF THE TRACE

OF AN OPERATOR

Consider a set of Nrv independent and identically
distributed random estimates O1;O2;…;ONrv

of the trace
of an operator O [44]. We have

trO ¼ lim
Nrv→∞

1

Nrv

XNrv

i¼1

Oi: ðA1Þ

In practice, the limit Nrv → ∞ is usually dropped and the
trace is estimated by the arithmetic mean over a finite
number of estimates Oi, which bears potential danger for
the estimation of powers of the trace ðtrOÞn, with n ≥ 1.
The naïve estimate
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BE½ðtrOÞn�≡
�
1

Nrv

XNrv

i¼1

Oi

�n
; ðA2Þ

is a biased estimate since it receives contributions from
products of the same estimates Ok

i ; k ≤ n, which lead to a
finite bias in the estimator (A2). The bias can be quite
significant in the regime of large n, even when we take
Nrv ∼Oð1000Þ. An unbiased estimator for ðtrOÞn can be
obtained by rejecting all diagonal contributions and con-
sidering only mutually distinct estimates in each product.
We define

UE½ðtrOÞn�≡ n!Q
n−1
k¼0ðNrv − kÞ

XNrv

i1¼1

� � �
XNrv

in¼in−1þ1

Oi1…Oin

¼ n!Q
n−1
k¼0ðNrv − kÞ enðO1;O2;…;OnÞ; ðA3Þ

where en denotes the elementary symmetric polynomial
of degree n ≤ Nrv, in Nrv variables. For later use, we
define e0ðOi;…ONrv

Þ≡ 1.

Although Eq. (A3) provides us with a valid unbiased
estimator, its evaluation requires OðNn

rvÞ elementary oper-
ations due to the nested sums. Fortunately, it is possible to
rearrange the above sum so that it can be evaluated in only
OðNrvÞ operations by utilizing the Girard-Newton iden-
tities, which relate the elementary symmetric polynomials
to the power sums pkðO1;O2;…;ONrv

Þ ¼ PNrv
i¼1O

k
i . Supp-

ressing the arguments of the polynomials, the Girard-
Newton identities read

nen ¼
Xn
k¼1

ð−1Þk−1en−kpk; ðA4Þ

which can be readily used to obtain a recursive schema for
the evaluation of the unbiased estimators in Eq. (A3). We
can also use the tower of identities (A4) to completely
erase the elementary symmetric polynomials from the
right-hand side and express the unbiased estimator by
power sums only,

UE½ðtrOÞn� ¼ ð−1ÞnBnð−p1;−1!p2;…;−ðn − 1Þ!pnÞQ
n−1
k¼0ðNrv − kÞ ;

1

n!
Bnðp1; p2;…; pnÞ ¼

X
k1þ���þnkn¼n
k1 ;…;kn≥0

Yn
i¼1

1

ki!

�
pi

i!

�
ki
: ðA5Þ

In this case the sum is taken over all partitions of n, which
makes the connection to the complete exponential Bell
polynomials Bn and is made explicit with the second
equality. Below we give the final formulas in the form
of Eq. (A5), which are required up to n ¼ 4,

UE½ðtrOÞ2� ¼ p2
1 − p2

NrvðNrv − 1Þ ;

UE½ðtrOÞ3� ¼ p3
1 − 3p1p2 þ 2p3

NrvðNrv − 1ÞðNrv − 2Þ ;

UE½ðtrOÞ4� ¼ p4
1 − 6p2

1p2 þ 3p2
2 þ 8p1p3 − 6p4

NrvðNrv − 1ÞðNrv − 2ÞðNrv − 3Þ : ðA6Þ

Although there are several (power) sums to be evaluated,
these are not nested sums as in Eq. (A3). Therefore, the
unbiased product can be calculated in only OðNrvÞ time.

1. Unbiased estimators for combinations
of traces of multiple operators

Quite often we encounter a situation where we need to
estimate expressions involving combinations of traces of
several operators Oð1Þ;Oð2Þ;…;OðmÞ, which are estimated

on the same set of random vectors and are thus correlated.
The evaluation of different operators on the same set of
random vectors might seem to be avoidable at the first glance
but could—as in the case of the derivative operators of the
pressure discussed above—gain computational advantages,
e.g., due to a recursive definition of the operators [27,45].
A biased estimator of a general expression of this kind is
given by

BE½ðtrOð1ÞÞγ1ðtrOð2ÞÞγ2 � � � ðtrOðmÞÞγm �

¼ 1

N
P

i
γi

rv

	XNrv

k¼1

Oð1Þ
k


γ1

� � �
	XNrv

k¼1

OðmÞ
k


γm

: ðA7Þ

In order to construct an unbiased estimator for this more
general case, we extend the framework of elementary
symmetric polynomials and power sums presented
above as follows: We introduce the multi-index notation
α; β; γ ∈ Nm with non-negative integer coefficients and
define the metric jαj≡P

i αi. We further define the two
types of symmetric polynomials as
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pα ¼
XNrv

i¼1

fOð1Þ
i gα1fOð2Þ

i gα2…fOðmÞ
i gαm

eβ ¼
X

i1<i2<���<ijβj
Oð1Þ

i1
� � �Oð1Þ

iβ1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
β1-times

Oð2Þ
iβ1þ1

� � �Oð2Þ
iβ1þβ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

β2-times

� � �

×OðmÞ
iβ1þ���þβm−1þ1

� � �OðmÞ
ijβj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

βm-times

: ðA8Þ

The analogs of the Girard-Newton identities (A4) are than
given as

jγj · eγ ¼
X

αþβ¼γ;jαj>0
ð−1Þjαj−1

�jαj
α

�
pαeβ; ðA9Þ

where the addition of multi-indices αþ β is understood by
components, the summation is over the product of all
partitions of the components of γ and ðjαjα Þ denote the
multinomial coefficients. We can now define an unbiased
version of (A7) based on the symmetric polynomial eγ as

UE½ðtrOð1ÞÞγ1 � � � ðtrOðmÞÞγm � ¼ jγj! · eγ
Nrv � � � ðNrv − jγj þ 1Þ :

ðA10Þ

For the practical calculation of eγ we use the recursive
definition (A9). To reduce the computational efforts we
manually cache previously computed values of pα and eβ.
We stress again that the main computational effort goes
into the evaluation of the power sums. Each power sum has
complexity OðNrvÞ. The number of distinct power sums
given by

Q
iðγi þ 1Þ − 1. Even though the power sum

number increases also drastically with the order jγj, the
values we encounter in this calculation are still of the order
Oð100Þ and thus an order of magnitude lower than the
costs of a single power sum evaluation. For convenience
we give in Table I some examples for cases with jγj ¼ 8,
which we identified as the cases with the maximum
number of power sums, for a given number of operators
m. Note that for three-quark flavors (u, d, s) and jγj ≤ 8,
the maximum number of distinct operators we encounter in
and unbiased estimator is m ¼ 5.
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