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Smearing the bare quantum fields in lattice calculations before applying composite hadron creation
operators has a long record of substantially improving overlaps onto low-lying energy eigenstates. A
technique called distillation which defines smearing for quark fields as a low-rank linear projection
operator into a small vector space of smooth gauge-covariant fields has proven to be both effective and
versatile in hadron spectroscopy calculations albeit with significant computational cost. In this paper, more
general operators in this space of smooth fields are introduced and optimized, which enhances the
performance of the method when tested on systems of heavy quark-antiquark pairs close to the charmonium
energy scale.
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I. INTRODUCTION

In hadron spectroscopy, quark smearing is widely used
to improve the overlap between the creation operators
applied and the desired state by including quark wave
functions that are not pointlike and instead have an
extended spatial distribution. A well-known technique
called distillation was first proposed in [1] and has been
widely used thanks to numerous advantages. First, it
provides a cutoff of the high eigenmodes of the 3D lattice
covariant Laplacian, which are exponentially suppressed by
the Jacobi smearing [2], by serving as a projector onto the
subspace spanned by low eigenmodes. Second, lattice
quark propagation is represented via a low-dimensional
matrix, called the perambulator. Since the lattice propa-
gator is the inverse of a large-but-sparse matrix, practical
calculations of correlation functions usually require point-
to-all methods or stochastic estimations, and these are
simplified in calculations involving smeared fields when
written in terms of the perambulator. The subspace is small
enough to enable direct manipulation in many cases. Third,
since perambulators are independent of the creation oper-
ators, the inversion cost invested in their construction is
fixed and correlation functions of many arbitrary operators
can be calculated efficiently.
Unfortunately, this method also comes with disadvan-

tages. Apart from the additional cost of calculating a
number of eigenvectors of the Laplacian for each value

of time in the lattice, the Dirac operator must be inverted a
significant number of times using these eigenvectors.
Namely, for a total Nv of eigenvectors per time slice of a
lattice of temporal extent Nt and NU gauge configura-
tions, 4 × Nv × Nt × NU inversions must be performed.
The choice of Nv is related to the level of smearing and,
although commonly used values of Nv are very small
compared to the total number of eigenvectors the
Laplacian has, this can still be of the order of 100, which
requires many inversions when large lattices and statistics
are considered. Additionally, when the same level of
smearing is desired on two different lattices, Nv scales
with the physical volume. This expense led to the
introduction of stochastic estimation in the space of
the Laplacian eigenvectors opposed to the actual calcu-
lation involving a large number of inversions [3]. While
greatly reducing the number of inversions required, this
method uses approximations to the perambulators which
depend on the estimation done and the dilution scheme of
choice, therefore requiring a tuning of the parameters
involved. The ultimate goal of this modification is to
obtain results of comparable statistical quality to the
exact case while keeping the number of inversions at a
manageable level.
In this work an improvement of the distillation method is

proposed which still allows for the exact calculation of the
perambulators, keeping the number of inversions needed
untouched, yet taking advantage of a degree of freedom that
neither standard distillation, nor its stochastic version, have
exploited in detail before; the use of distillation profiles.
The original formulation of the distillation operator allowed
it to be expressed as

S½t� ¼ V½t�J½t�V½t�†; ð1Þ
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where V½t� has the eigenvectors on time slice t as columns
and the diagonal matrix J½t� defines the restriction in the
space spanned by V½t�. In Ref. [1], the matrix J½t� is set to
unity. By construction, S½t� has support only on time slice t
so creation operators have explicit temporal locality. The
spatial locality of the smeared fields has been explored [1]
and established empirically when J ¼ 1. It seems reason-
able to expect using a smooth function of the eigenvalues to
set diagonal entries in J, while all off-diagonal entries are
kept fixed to zero will similarly result in a local smearing
profile. By exploring the effects of J½t� ≠ 1 and general-
izing this freedom at the meson creation, it is expected that
states with better overlap with the ones of interest can be
constructed. The rest of this paper is organized as follows:
Section II explores the use of J½t� ≠ 1 combined with a
generalized eigenvalue problem to find the optimal J½t�.
Section III displays the results of the charmonium spectrum
in a model of QCD with Nf ¼ 2 degenerate heavy quarks
whose mass is about half of the value for the charm quark
in nature. We find significant advantages of using the
optimal distillation profiles when compared to standard
distillation. Section IV presents the conclusions of this
work and future directions of the method are proposed here.
Appendix shows how the optimal smearing profile can be
equivalently expressed as an optimal creation operator for
a meson.

II. OPTIMAL USE OF QUARK
DISTILLATION PROFILES

The starting point is the most general distillation operator
S½t� at a fixed time t given by Eq. (1). V½t� is a matrix with
4 × Nv columns constructed from eigenvectors of the
covariant 3D Laplace operator △½t�. Since the operator
does not act on Dirac components, V½t� is a block identity in
Dirac space and each block contains the first Nv eigen-
vectors vi½t�, sorted by magnitude of the corresponding
eigenvalue λi½t� in ascending order. A given column Vði;αÞ½t�
has entries given as

Vði;αÞ½t�x⃗;t0;β ¼ vi½t�x⃗δtt0δαβ: ð2Þ

J½t� is a 4Nv × 4Nv matrix, also block diagonal in Dirac
space. Its entries are given as

J½t� ij
αβ
¼ gðλi½t�Þδijδαβ; ð3Þ

where gðλÞ is the quark distillation profile and α; β ¼
0;…; 3 are Dirac indices. S½t� can be written as

S½t�x⃗;y⃗
αβ
¼ δαβ

XNv

i¼1

vi½t�x⃗gðλi½t�Þvi½t�†y⃗ ð4Þ

and the role of J½t�, and therefore gðλÞ, becomes apparent; it
serves as the modulation of the contribution from each of

the eigenvectors. The choice gðλÞ ¼ 1 turns S½t� into an
orthogonal projector onto the range of V½t� and is the most
commonly used one [4–9]. In [6] also a single Gaussian
profile was tested. It should be noted that, while remarkable
results are obtained with this choice, the exponential
suppression caused by the Jacobi smearing, the inspiration
for distillation, indicates that it is not a requirement that
all vi½t� contribute with the same weight that they have in
the original quark field when constructing an optimally
smeared quark field. With this in mind, a step to improve
over the standard distillation projector commonly used
consists on taking advantage of the freedom of choice of
gðλÞ to build an optimal meson operator based on distilled
quark fields. The strategy to follow consists of fixing an
operator and building a basis of size NB with different
gkðλÞ, k ¼ 1;…; NB, from which a variational formulation
[10] helps to extract the optimal meson operator.

A. Quark distillation profile in meson
two-point correlations

Following the procedure in [1], consider the meson
operator

Oðx⃗; tÞ ¼ q̄ðx⃗; tÞΩΓqðx⃗; tÞ; ð5Þ

where q is a doublet of mass-degenerate quarks q ¼
ðq1; q2Þ, Ω ∈ fI; τ3g is a 2 × 2 flavor matrix and Γ is an
operator that fixes the symmetry channel. The quark fields
qi are replaced in Eq. (5) by their distilled counterparts q̃i
defined as

q̃iðx⃗; tÞα ¼
X
y⃗;β

S½t�x⃗;y⃗
αβ
qiðy⃗; tÞβ; ð6Þ

to build the distilled meson operator

Õðx⃗; tÞ ¼ ¯̃qðx⃗; tÞΩΓq̃ðx⃗; tÞ: ð7Þ

This operator can then be projected to zero spatial
momentum using

ÔðtÞ ¼
X
x⃗

Õðx⃗; tÞ; ð8Þ

and the two-point meson correlation functionCðt0; tÞ can be
written as

Cðt0; tÞ ¼ hÔðt0Þ ¯̂OðtÞiU;F; ð9Þ

where the subscripts U and F denote the averaging over
gauge and fermion fields. The integration over the fermion
fields can be done analytically, yielding1

1when ÔðtÞ has nonzero vacuum expectation value the
replacement ÔðtÞ → ÔðtÞ − hÔðtÞiF;U is done.
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Cðt0; tÞ ¼ −2hTrðΦðΓÞ½t0�τ½t0; t�Φ̄ðΓÞ½t�τ½t; t0�ÞiU
þ TrðΩÞ2hTrðΦ̄ðΓÞ½t�τ½t; t�ÞTrðΦðΓÞ½t0�τ½t0; t0�ÞiU;

ð10Þ

where TrðΩÞ can either be 2 forΩ ¼ I, the isoscalar case, or
0 for Ω ¼ τ3, the isovector case. The modulated elementals
ΦðΓÞ½t� have entries

ΦðΓÞ
αβ
ij
½t� ¼ Hαβgðλi½t�Þ�vi½t�†D½t�vj½t�gðλj½t�Þ ð11Þ

and the perambulators τ½t; t0� have entries

ταβ
ij
½t0; t� ¼ vi½t0�†D−1

t0t
αβ

vj½t�; ð12Þ

where the quark propagator D−1 includes the dependence
on the mass of the degenerate quarks. For clarity the
operator Γ½t� is explicitly separated into an operator H that
acts on spin space and an operator D½t� that acts on color
and coordinate space, the latter being the one that can act on
the eigenvectors. These definitions can be written in matrix
form as

ΦðΓÞ½t� ¼ J½t�†V½t�†Γ½t�V½t�J½t�
¼ HJ½t�†V½t�†D½t�V½t�J½t� ð13Þ

and

τ½t0; t� ¼ V½t�†D−1V½t�; ð14Þ

It can be seen that the modulated elementals contain a
factor independent of the choice of (λ); the elementals of
Γ ¼ HD

ΛðΓÞ
αβ
ij
½t� ¼ Hαβvi½t�†D½t�vj½t�: ð15Þ

There is a two-fold advantage in defining and calculating
these elementals. On one hand, once they are calculated it is
possible to introduce the factor gðλi½t�Þ�gðλj½t�Þ for different
choices of distillation profiles. This represents a notable
gain as expensive operations, such as the application of an
arbitrary number of lattice derivatives, have to be per-
formed only once while the factor including the distillation
profile defines the different NB operators. On the other
hand, the elementals of operators that contain linear
combinations of an arbitrary number of lattice derivatives
are a linear combination of derivative elementals defined as

Λ½m…n…l�
ij ½t� ¼ vi½t�†∇m½t�…∇n½t�…∇l½t�vj½t�; ð16Þ

where ∇i½t� is the symmetric gauge covariant lattice
derivative in direction i. These derivative elementals need
to be calculated once and can then be combined in different

ways depending on the operator and scaled according to the
chosen distillation profile. Additionally, the number of
derivatives involved in these derivative elementals leads to
further simplifications. For the case where there are no
derivatives, no elemental needs to be calculated due to the
orthogonality of the eigenvectors for a fixed time, i.e.,
vi½t�†vj½t� ¼ δij. The elemental in such a case is given by

ΦðΓÞ
αβ
ij
½t� ¼ Hαβδijgðλi½t�Þ�gðλj½t�Þ: ð17Þ

For the case with a single derivative, the elemental is
given by

Λ½m�
ij ½t� ¼ vi½t�†∇m½t�vj½t� ð18Þ

and satisfies Λ½m�
ij ½t� ¼ −Λ½m�

ji ½t��, i.e it is anti-Hermitian.
This means that for a fixed time t only 1

2
NvðNv þ 1Þ entries

must be calculated, instead of N2
v, via only Nv lattice

derivatives and 1
2
NvðNv þ 1Þ inner products. The case with

two derivatives yields a derivative elemental

Λ½mn�
ij ½t� ¼ vi½t�†∇m½t�∇n½t�vj½t� ð19Þ

that satisfies Λ½mn�
ij ½t� ¼ Λ½nm�

ji ½t��, i.e Λ½mn�½t� ¼ Λ½nm�½t�†.
Due to the fact that lattice derivatives in different directions
do not commute, all the entries of Λ½mn�½t� must be
calculated for fixed t, m and n if m ≠ n. However, the
aforementioned property means that only three pairs ½mn�
satisfying m ≠ n out of the possible six need to be
calculated. For the case m ¼ n this same property dictates
that only 1

2
NvðNv þ 1Þ entries must be calculated. The case

with three or more derivatives is not treated here yet similar
relationships between the derivative elementals and their
Hermitian conjugates are expected.

B. Determination of the optimal meson
distillation profile

We consider a variational basis of meson operators Oi
with different quark smearing profiles giðλÞ in a fixed
symmetry channel Γ ¼ HD. From such a basis, operators
can be constructed that have the best overlap with a given
energy eigenstate in this channel. The starting point is the
correlation matrix

CijðtÞ ¼ hOiðtÞŌjð0ÞiF;U: ð20Þ

For a fixed value tG the generalized eigenvalue problem
(GEVP) given by

CðtÞweðt; tGÞ ¼ ρeðt; tGÞCðtGÞweðt; tGÞ ð21Þ

is solved for t > tG and e ¼ 0;…; NB − 1 for the gener-
alized eigenvalues ρeðt; tGÞ and eigenvectors weðt; tGÞ. As
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shown in [10–12], the generalized eigenvalues ρeðt; tGÞ,
when periodic boundary conditions in the gauge field are
used, behave in the large t limit as

ρeðt; tGÞ ¼ 2cee−
T
2
me cosh

��
T
2
− t

�
me

�
; ð22Þ

where ce is a constant,me is the mass of the state of interest
and T is the temporal extent of the lattice in physical units.
Ordering the generalized eigenvalues from largest to
smallest, e ¼ 0 corresponds to the ground state and e ¼
1;…; NB − 1 to the further excited states. The effective
mass meðtÞ can be extracted for t ¼ tG þ a;…; T

2
− a via a

root finding method as shown in [12]. This GEVP
formulation allows access to excited states but it may
suffer from numerical instabilities when many similar
operators are considered for the construction of CðtÞ.
This issue can be attenuated by following the strategy
presented in [13,14]. At a chosen time separation tS a
singular value decomposition of CðtSÞ is performed. The
first NS singular vectors corresponding to the largest NS
singular values are used to define a pruned correlation
matrix

CSðtÞij ¼ u†i CðtÞuj; ð23Þ

where ui are the selected singular vectors for i¼ 0;…;
NS−1. The pruned correlation matrix is better conditioned
by construction, and less prone to the numerical instabil-
ities mentioned above. Generalized eigenvalues obtained
from solving the GEVP of CSðtÞ are then used to extract the
effective mass [12]. Another use of the GEVP formulation
is the fact that the entries of the generalized eigenvectors
give the coefficients of an optimal linear combination ofOi
that achieves the best possible overlap with the energy state
of interest. The first step to find the explicit form of the
optimal operators is to transform the original basis into the
basis of the pruned matrix CSðtÞ. The original meson
profile basis is

fkðλi; λjÞ ¼ gkðλiÞ�gkðλjÞ; ð24Þ

for k ¼ 0;…; NB − 1 and the pruned profile basis is
constructed from the singular vectors uj as

fðp;ΓÞn ðλi; λjÞ ¼
XNB−1

m¼0

un;mfmðλi; λjÞ; ð25Þ

with n ¼ 0;…; NS − 1 and where un;m denotes the mth
entry of the nth singular vector. Note that at this point a
dependence on Γ is introduced via the matrix CSðtÞ. The
second and final step is to linearly combine the pruned
profiles using the generalized eigenvectors wðΓ;eÞ which
yields

f̃ðΓ;eÞðλi; λjÞ ¼
XNS−1

m¼0

wðΓ;eÞ
m fðp;ΓÞm ðλi; λjÞ: ð26Þ

Here wðΓ;eÞ
k denotes the kth entry of the eth generalized

eigenvector in the channel Γ and the t; tG dependence is
suppressed. With the optimal meson profile f̃ðΓ;eÞðλi; λjÞ
the optimal meson elemental can be defined, now including
the time dependence, as

ΦðΓ;eÞ
αβ
ij

½t� ¼ f̃ðΓ;eÞðλi½t�; λj½t�ÞΦðΓÞ
αβ
ij
½t�; ð27Þ

or in matrix form as

ΦðΓ;eÞ½t� ¼ ΦðΓÞ½t� ⊛ FðΓ;eÞ½t�; ð28Þ

where ⊛ denotes the element-wise product and FðΓ;eÞ½t� is
given by

FðΓ;eÞ½t�ij ¼ f̃ðΓ;eÞðλi½t�; λj½t�Þ: ð29Þ

Equation (28) shows the main difference between distil-
lation using a quark profile and a meson profile: in the first
case the profile is inserted manually at quark level via the
distillation operator V½t�J½t�V½t�† while in the second case
the profile is inserted manually at meson level in the
elemental via F½t� yet at quark level just a projection is done
via V½t�V½t�†. This meson distillation profile can be thought
of as the meson’s wave function in distillation space and
modulates the coupling between vi½t� andD½t�vj½t� based on
the corresponding eigenvalues, spin structure H and the
energy level e. The resulting optimal meson distillation
profile has the special feature of not being separable in
general for NB > 1, i.e there is no quark smearing profile

gðΓ;eÞq ðλÞ such that

f̃ðΓ;eÞðλi½t�; λj½t�Þ ¼ gðΓ;eÞq ðλi½t�Þ�gðΓ;eÞq ðλj½t�Þ ð30Þ

and therefore it is not possible to define an optimal quark

smearing profile JðΓ;eÞq ½t� with entries given by

JðΓ;eÞq ½t�ij ¼ δijg
ðΓ;eÞ
q ðλi½t�Þ: ð31Þ

With this in mind it is more convenient to not attempt to
translate these meson profiles to quark ones but rather keep
the analysis at meson level. One can shift the attention to
the Γ structure that is in the meson operator and define an
optimal Γ̃D½t� ¼ V½t�Φ̃½t�V½t�† structure which couples the
quark fields, includes in its definition the optimal meson
profile of the desired energy state of the channel of interest
and yields the same correlation function as the one obtained
from the GEVP described above (See the Appendix).
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III. CHARMONIUM SPECTRUM

All the calculations are performed on an ensemble with a
48 × 243 lattice generated with two dynamical nonpertur-
batively OðaÞ improved Wilson quarks [15] with a mass
equal to half of the physical charm. We use periodic
boundary conditions except for antiperiodic boundary con-
ditions for the fermions in the temporal direction. The bare
gauge coupling is g20 ¼ 6=5.3 and the hopping paramater is
κ ¼ 0.13270. The lattice spacing is a¼ 0.0658ð10Þ fm
[16,17] and the flow scale [18] t0

a2 ¼ 1.8486ð7Þ. A total of
Nv ¼ 200 eigenvectors of the 3D covariant Laplacian are
used in each time slice of the lattice. These are calculated
with a Chebyshev accelerated [19] Thick-Restart Lanczos
algorithm [20] with periodic reorthogonalization [21,22] in
the first run and full reorthogonalization in the restarts. The
Chebyshev acceleration uses a carefully chosen Chebyshev
polynomial as a spectral filter which shifts and spreads out
the segment of the spectrum one is interested in, therefore
accelerating the convergence of the Lanczos algorithm. The
periodic reorthogonalization reduces the computational cost
of the algorithmwhile still keeping its precision. In thiswork
the lower end of the spectrum is subjected to the filtering,
however one could choose the upper end of the spectrum as
well since there is a one-to-one relationship between the
eigenvalues and eigenvectors of the 3D covariant Laplacian
at both sides of the spectrum [23]. A total of 20 3D APE
smearing [24] steps with αAPE ¼ 0.5 are applied on each
gauge field before the eigenvector calculation so as to
smooth the link variables that enter the Laplacian operator.
These parameters were found to yield the best results in a
study of the static potential on the same ensemble. No
smearing is applied to the gauge field used for the derivatives
∇i. All calculations are performed by a code based on
QCDlib, a library written by us in CþMPI that facilitates
massively parallel QCD calculations. The inversions of the
Dirac operator are performed by calling the package
openQCD2 [25], namely a deflated SAP GCR solver with
improvements based on the two-grid method of [26]. The
error analysis in this work is done using the Γ method
[27,28]. The NB quark distillation profiles gkðλÞ used are
given by

gkðλÞ ¼ exp

�
−

λ2

2σ2k

�
; ð32Þ

where the σk define the width of the Gaussians. This basis
was chosen due to two reasons. First of all, each gkðλÞ
enforces a suppression of large eigenvalues, just as Jacobi
smearing does, and follows distillation’s intuition that small
eigenvalues contribute more than large ones. Second of all,
different basis functions, such as the monomials λk, were
triedwith low statistics and theGaussian basis resulted in the

most numerically stable GEVPs. The values σk are chosen
such that a wide range of widths is covered.NB ¼ 7 is fixed
and the widths are equally spaced between σ1 ¼ 0.0924=t0
and σ7 ¼ 0.7949=t0. This choice means that the broadest
profile still allows for a non-negligible contribution from the
200th eigenvalue while the thinnest has already majorly
suppressed it. This way the entire range of the 200
eigenvalues is covered and can be either enhanced or
suppressed. The resulting quark distillation profiles can
be seen in Fig. 1. The pruning of the correlation matrix
mentioned in the previous section is done by takingNS ¼ 4
singular vectors for all the operators studied in this work at a
time tS ¼ 3a which also corresponds to the value of tG
which is fixed for the GEVP formulation.
For the charmonium spectrum the JPC of interest are

0−þ, 1−−, 0þþ, 1þþ, 1þ−, 2þþ, and 1−þ, with the last one
being a spin-exotic quantum number. Table I shows the
operators that transform according to the irreducible
representations of the cubic group that contain a contribu-
tion from the JPC of interest. Local operators are used due
to their ease of computation. Derivative based operators,
here taken from [29], are used to sample different spatial
structures [1,6,30,31], explore JPC not available via local
operators [6,29,31] and also ones that might include
gluonic degrees of freedom [4,29,32]. One example is
the operator ϵijkγjBk, where Bi ¼ ϵijk∇j∇k is proportional
to ϵijkFjk in the continuum and therefore explicitly contains
the field-strength tensor. An important difference between
local and derivative-based operators should be mentioned at
this point: while for local operators the elementals are
diagonal in distillation space, for derivative-based operators
this is not the case. This is due to the fact that the latter act
on coordinate/color space and therefore act directly on the
eigenvectors that are used. In this sense the elementals
retain the information of the original derivative-based
operator that exists only in the span of these eigenvectors,

FIG. 1. Input quark distillation profiles used for the GEVP.

2http://luscher.web.cern.ch/luscher/openQCD/.
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just as the perambulators do with respect to the inverse of
the Dirac operator. All operators were measured on 4080
gauge configurations. Some of the following results were
already presented in [33].

A. Using quark-connected correlations

The first results to be presented correspond to the
isovector spectrum and are obtained when Ω ¼ τ3 in
Eq. (5). The results for different JPC using local operators
will be presented first, followed by derivative-based oper-
ators. The first channel of interest to be studied is JPC ¼
0−þ and Fig. 2 displays a zoomed-in plot of the effective
masses obtained for the ground state of the local operator γ5
built using both standard distillation and the optimal meson
distillation profile from the GEVP analysis. The use of the
optimal meson profile results in a notable suppression of
excited state contamination and therefore an earlier mass
plateau. Figure 3 shows the effective masses of the lowest
three states generated by the GEVP using the basis of
operators formed from the seven smearing profiles in the
bilinear Γ ¼ γ5 alone. Clear signals for the first- and
second-excited states are resolved using this single spin
bilinear in with multiple meson profiles. Figure 3 includes
the result of a fit of the correlation functions to a single
hyperbolic cosine. Given this improvement, the form of the
optimal meson profile that corresponds to this ground state
is of interest. It can be easily obtained from the formulation
presented in the previous section. Since the operator is
pointlike, the elemental is diagonal in distillation space and
only the values of f̃ðγ5;eÞðλi; λjÞwith λi ¼ λj are relevant. As

a result, this profile can be plotted as a function of only one
variable. Figure 4 displays this optimal meson profile. It is
only known in the interval in which the eigenvalues are
contained, which in the plot corresponds to the region
between the two gray shaded areas. The error of this profile,
which is also a function of the eigenvalues, has values of
order 10−3 so the corresponding error bars are omitted since
they would not be clearly visible at the scale of the plot.
Two important pieces of information can be taken from
Fig. 4. First, this optimal profile is not a constant, as
standard distillation enforces, which implies that, apart
from the truncation of Laplacian eigenmodes, a modulated

TABLE I. JPC channels studied with their corresponding
creation operators.

JPC Γ Particle

0−þ γ5 ηc, ηcð2SÞ;…
γ0γ5γi∇i
γiBi

1−− γi J=Ψ, Ψð2SÞ;…
∇i
γ5Bi

0þþ I χc0;…
γi∇i

1þþ γ5γi χc1;…
ϵijkγj∇k

1þ− ϵijkγjγk hc;…
γ5∇i

2þþ jϵijkjγj∇k (T2) χc2;…
Qijkγj∇k (E)

1−þ γ0∇i …
ϵijkγjBk

FIG. 2. Effective mass of ground state for Γ ¼ γ5 using both
constant (f̃ðλi; λjÞ ¼ 1) and optimal f̃ðγ5;0Þðλi; λjÞmeson profiles.

FIG. 3. Effective mass of ground, first- and second-excited
states for Γ ¼ γ5 using the optimal f̃ðγ5;eÞðλi; λjÞ (e ¼ 0, 1, 2)
meson profiles generated by the GEVP. Single hyperbolic cosine
fit results are included for the ground and first-excited states.
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filtering of these remaining eigenmodes can significantly
improve the results. Second, this filter, given here by the
meson distillation profile, is not arbitrary but rather obeys
one of the ideas behind distillation; low eigenmodes
contribute considerably more than higher ones and there-
fore the weights they have in the entries of the elemental
must enhance them accordingly.
It is interesting to see whether such a picture emerges for

the excited states as well. Therefore the first excited state
for this channel is also analyzed. The optimal meson
distillation profile for that state is shown in Fig. 5 together
with a scaled version of the profile for the ground state for
comparison. The error bars for this excited state profile are
also omitted since the corresponding errors are at the
percent level. Similar observations as for the ground state
can be made regarding the importance of low eigenmodes
compared to high ones and the need for further filtering.
However, and unlike the case of the ground state, the profile
for this first excited state displays a node. The magnitude of
the profile has a second local maximum at larger eigen-
values, indicating that for excited states higher modes are

more important than for the ground state. Moreover the
suppression of the highest modes is not as pronounced as it
was for the ground state. Profiles like these can serve as a
guide for the choice of a reasonable number of eigenmodes
to work with.
The second excited state was also analyzed and although

the effective mass data becomes rather noisy it is still
possible to extract the optimal meson distillation profile for
this state. In this case it displays two nodes, and even higher
modes contribute significantly. In addition to the profiles in
“eigenvalue-space,” it is interesting to visualize the corre-
sponding spatial profiles of the optimal Γ̃½t� for both ground
and first excited state. They can be constructed from the
optimal elementals and their explicit form is

Γ̃ðγ5;eÞ½t� ¼ V½t�Φ̃ðγ5;eÞ½t�V½t�†; ð33Þ

where Φ̃γ5;e½t� is the optimal elemental built from the
optimal profile as given by Eq. (28) and e ¼ 0, 1 denote
the ground and first excited states. In the quark model this
particular operator corresponds to a spin singlet and for this
reason it is convenient to define the projected operator

Γ̃ðγ5;eÞ
S ½t� ¼ Tr½γ5Γ̃γ5;e½t��; ð34Þ

where γ5 is chosen to reflect the fact that this is a spin
singlet state and the trace is taken only over the Dirac

indices, so that Γ̃ðγ5;eÞ
S ½t� only has space and color indices.

For a fixed time t and a pointlike source at an arbitrary 3D
position z⃗ given by ϕx⃗ ¼ h0δx⃗;z⃗ (h0 ∈ C3, jjh0jj2 ¼ 1) one
can define the vector

Φðγ5;eÞðx⃗; tÞ ¼
X
y⃗

Γ̃ðγ5;eÞ
S ½t�x⃗;y⃗ϕy⃗: ð35Þ

The spatial distribution of interest is obtained by averaging
its norm squared over all time slices

Ψðγ5;eÞðx⃗Þ ¼ 1

Nt

XNt−1

t¼0

jjΦðγ5;eÞðx⃗; tÞjj22; ð36Þ

where the norm is taken in color space such that Ψðγ5;eÞðx⃗Þ
is only a function of position that can be calculated
for each gauge configuration and normalized so thatP

x⃗Ψðγ5;eÞðx⃗ Þ¼1. Since the spin singlet has S ¼ 0 then
the angular momentum must satisfy L ¼ 0within the quark
model, giving it an S-wave classification and justifying the
subscript “S” in Eq. (34). One would therefore expect
the spatial distribution of the resulting vector to have an
S-wave behavior. This is tested by setting the pointlike
source to be in z⃗ ¼ ð12a; 12a; 12aÞ and explicitly calcu-
lating Ψðγ5;eÞðx⃗Þ. Figure 6 shows Ψðγ5;eÞðx⃗Þ (e ¼ 0, 1 for
ground and first excited state) in the xy-plane at z ¼ 12a
averaged over 2 gauge configurations, which agrees quite

FIG. 4. Optimal meson distillation profile for the ground state
of the isovector Γ ¼ γ5 operator, f̃ðγ5;0Þðλi; λjÞ, evaluated at
λi ¼ λj ¼ λ.

FIG. 5. Optimal meson distillation profile for the first excited
state of the Γ ¼ γ5 operator. The scaled profile corresponding to
the ground state is also included for comparison.
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well with the mentioned expectation in terms of spherical
symmetry and number of nodes.
The extraction of effective masses for the different states,

together with the corresponding optimal profiles, is first
studied for the local operators listed in Table I. Figure 7
shows the ground state effective masses of some of these
operators using three different methods; standard distilla-
tion, distillation with optimal meson profiles and stochastic
trace estimation. The latter is done by evaluating the
expression

�
X
x⃗;y⃗

hTr½ΓD−1ðx; yÞΓ̄D−1ðy; xÞ�iU ð37Þ

using 16Uð1Þ noise sources per configuration and a total of
2000 configurations. The source vectors are non-zero only
on the source time slice y0, chosen randomly on each
configuration. The Γ ¼ γ5 correlator requires one inversion
per noise vector and configuration and for every additional
Γ one more such set of inversions is needed. This method of
evaluating mesonic correlators is commonly used, e.g.,
recently in [17]. The calculation is carried out using a
variant of the program MESONS.3 For all local operators
standard distillation leads to a significant decrease of
excited state contamination compared to the traditional
stochastic estimation and the optimal profile further
improves on this. For Γ ¼ I; γ5γi; ϵijkγiγj the use of both
variants of distillation also reduces the notorious presence
of noise that the stochastic estimation displays after the
excited state contamination seems to have been suppressed.
Table II shows the corresponding plateau averages4 for
standard and optimized distillation. For all cases, use of
distillation allows access to an effective mass plateau and in
addition, the use of the optimal meson profiles notably
decreases excited state contamination, leading to earlier
plateaus. Notable examples are the γ5 and γi operators,
where the length of the plateaus more than doubles. This
improvement clearly speaks in favor of such profiles over
standard distillation, especially since the number of neces-
sary inversions remains unchanged.
The resulting profiles for the ground states of the local

operators are displayed in Fig. 8. All display the previously
mentioned main characteristic: a modulated suppression of
higher Laplacian eigenmodes. Although the heights of the
different profiles differ, their overall shapes seem to be very
similar, especially for the I, γ5γi and ϵijkγjγk operators
which suppress higher modes less than the γ5 and γi
operators. The latter two have very similar profiles. In

FIG. 6. Spatial distributions Ψðγ5;0Þðx⃗Þ and Ψðγ5;1Þðx⃗Þ. The
coloring changes from dark (zero) to light as the values of the
profile increase.

TABLE II. Ground state effective mass plateau averages for the
local operators. The first row corresponds to the case with optimal
meson distillation profiles while the second row corresponds to
using standard distillation.

JPC Γ Plateau interval am

0−þ γ5 12–22 0.74986(8)
19–22 0.74986(8)

1−− γi 10–22 0.8590(1)
19–22 0.8590(1)

0þþ I 7–12 1.0796(4)
10–13 1.080(7)

1þþ γ5γi 9–12 1.1291(7)
11–13 1.130(1)

1þ− ϵijkγjγk 11–13 1.130(2)
16–18 1.123(7)

FIG. 7. Ground state effective masses of the local operators
studied in this work using standard distillation, f̃ðλi; λjÞ ¼ 1,
distillation with the optimal profiles f̃ðΓ;0Þðλi; λjÞ and stochastic
trace estimation for each operator Γ. Plateaus of the ones using
the optimal meson profiles are displayed. Different channels are
displaced for clarity. Points of later times of the estochastic
estimation results are omitted as to emphasize only their slower
approach to the plateau.

3Available at https://github.com/to-ko/mesons.
4Plateau averages are weighted by the inverse errors squared.
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all cases the profiles are different from the flat Heaviside
function of standard distillation.
Figure 9 shows the optimal meson profiles for the first

excited states created by the local operators, where again
increased dependence on higher eigenmodes is observed.
As for the ground state, the I, γ5γi and ϵijkγjγk are very
similar in shape just as the γ5 and γi are to each other, the
latter group more strongly suppressing the higher eigen-
modes than the former and having an earlier node. For the
case of the second excited state the same similarity between
groups of operators is observed regarding shape, location of
the two nodes and the level of suppression of eigenmodes.
The effective masses and optimal meson distillation

profiles are also extracted for the derivative-based oper-
ators. As with the local operators, these profiles yield
a significant improvement over standard distillation.
Figure 10 shows the ground state effective masses for
some of the derivative-based operators studied. The gain
from the optimal profiles can be seen as clearly as for the
local operators. Table III shows the corresponding plateau

averages. Notable improvement can be seen for example
with the operator γ0γ5γi∇i, where the length of the plateau
more than doubles compared to standard distillation. This
speaks for the importance of these profiles to make sure the
relevant elementals use the eigenvectors in an optimal way.
As was done for the γ5 operator for the S-wave, the spatial
distribution of the optimal Γ̃½t� corresponding to the spin
singlet P-wave, JPC ¼ 1þ− can be visualized. It is studied
via Γ ¼ γ5∇i when one derivative is used. The same
procedure used for the γ5 operator is employed for γ5∇i,
yielding the spatial distributions shown in Fig. 11 for i ¼ 1.
Of special interest is the 1−þ channel, an exotic quantum

number that can be modeled as a hybrid meson which

FIG. 8. Optimal meson distillation profile for the ground state
of the local operators.

FIG. 9. Optimal meson distillation profile for the first excited
state of the local operators.

FIG. 10. Ground state effective masses of some of the deriva-
tive-based operators using both standard distillation, f̃ðλi;λjÞ¼ 1,
and the one with the optimal profiles f̃ðΓ;0Þðλi; λjÞ for each
operator Γ. Plateaus of the optimal meson profiles are displayed.
Different channels are displaced for clarity.

TABLE III. Ground state effective mass plateau averages for
some of the derivative-based operators used. The first row
corresponds to the case with optimal meson distillation profiles
while the second row corresponds to using standard distillation.

JPC Γ Plateau interval am

0−þ γ0γ5γi∇i 12–21 0.74989(8)
20–22 0.74987(8)

1−− ∇i 13–16 0.8589(3)
17–20 0.8592(1)

1þþ ϵijkγj∇k 9–13 1.1290(7)
13–15 1.129(9)

1þ− γ5∇i 9–11 1.1348(8)
13–15 1.134(2)

2þþ jϵijkjγj∇k 9–11 1.152(2)
11–12 1.154(2)
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includes explicit gluonic degrees of freedom combined
with quark and anti-quark components [4]. The operators
γ0∇i and ϵijkγjBk are used to study this channel, where the
latter operator includes the field-strength tensor via Bk for
gluonic excitation. Figure 12 shows the ground state
effective mass for both operators with and without the
optimal meson distillation profiles. Results corresponding
to the optimal profiles are plotted starting at tG þ a and
shown only when the error is smaller than the signal. As
expected, the optimal profile leads to a decrease of excited
state contamination, more substantial for the ϵijkγjBk

operator than for the γ0∇i one. Second, when considering
the optimal profile for both operators there is a clear
difference in behavior of the effective mass which points
to ϵijkγjBk having most overlap with the lowest energy
eigenstate. Since ϵijkγjBk has an explicit gluonic excitation,
unlike γ0∇i, this operator would intuitively have better
overlap with the energy eigenstate if the state is indeed a

hybrid. This scenario is favored in other studies of this
channel [4–6,32,34].
Optimal meson profiles are extracted for all derivative-

based operators used. The first optimal profile shown in
Fig. 13 corresponds to the ground state created by the
operator jϵijkjγj∇k. The main contribution to the profile
comes clearly from pairs of low eigenvalues, as expected in
distillation, and exhibits an approximately radially sym-
metric decay with increasing eigenvalues. As with the local
operators, no nodes are observed for the ground state.
Figure 14 shows the optimal profile for the first excited
state, where a single node can be seen and, while higher

FIG. 11. Spatial distributions Ψðγ5∇1;0Þðx⃗Þ and Ψðγ5∇1;1Þðx⃗Þ. The
coloring changes from dark (zero) to light as the values of the
profile increase.

FIG. 12. Ground state effective masses of 1−þ operators using
both standard distillation and the optimal meson profiles. The
data points are displaced horizontally for clarity and omitted if the
signal is lost to the noise.

FIG. 13. Optimal meson distillation profile for the ground state
of the jϵijkjγj∇k operator.

FIG. 14. Optimal meson distillation profile for the first excited
state of the jϵijkjγj∇k operator.
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values of eigenvalues are less suppressed than in the ground
state profile, the overall tendency of lower eigenmodes
contributing more than higher ones still remains. To com-
pare these profiles with those obtained for local operators
one can take the one-dimensional profiles f̃ðjϵijkjγj∇k;0Þðλi; λiÞ
and f̃ðjϵijkjγj∇k;1Þðλi; λiÞ, shown in Fig. 15 with error bands.
The notation f̃ðjϵijkjγj∇k;0ÞðλÞ should be understood as
f̃ðjϵijkjγj∇k;0Þðλ; λÞ and the same for the first excited state.
The suppression of higher eigenmodes, together with the
node for the first excited state, are clearly visible with
notable resemblance to the local operators.
At this point it is possible to gather the results obtained

with both local and derivative-based operators to get a clear
picture of the charmonium spectrum accessible through the
use of the optimal meson distillation profiles when con-
sidering only the connected correlations. Table IV displays
the plateau averages of the ground and first excited state
effective masses for all the operators studied in this work,
complementing the contents of Tables II and III. The 1−þ
channel only includes the ground state since it was the only
clearly accessible one. The remarkable agreement between
different operators of the same JPC serves as a non-trivial
test. The slight tension between the Eþþ and Tþþ

2 ground
states can be explained via lattice artifacts since these two
should coincide when taking the continuum limit. Figure 16
displays the ground and first excited state for each fixed
irrep, where the values come from the operators that
displayed the best signal, and the spin assignment for
the ground state is given by the label under each data point.
The access to a first excited state purely by the inclusion of
meson distillation profiles further demonstrates their use-
fulness. Note the hierarchy of states computed matches the
pattern seen in nature, where there are eight narrow
charmonium resonances below the DD̄ threshold. In this
investigation, which has no light dynamical quarks, this

threshold is absent. The ground state for the 1−þ channel is
shown in red to emphasize its spin-exotic nature.
A set of quantities of interest are the mass splittings.

Their definitions are taken from [35] and are

FIG. 15. Optimal meson distillation profiles for the ground and
first excited state of the jϵijkjγj∇k operator when λi ¼ λj.

FIG. 16. Charmonium spectrum for all the studied channels.

TABLE IV. Mass plateau averages for all operators with
optimal distillation profiles f̃ðΓ;eÞðλi; λjÞ used in this work. The
first row of each operator corresponds to the ground state (e ¼ 0)
while the second line corresponds to the first excited state
(e ¼ 1).

JPC Γ Plateau interval am

0−þ γ5 12–22 0.74986(8)
5–9 1.2363(6)

γ0γ5γi∇i 12–21 0.74989(8)
6–9 1.238(2)

γiBi 10–22 0.74991(9)
7–8 1.21(2)

1−− γi 10–22 0.8590(1)
5–8 1.2898(7)

∇i 13–16 0.8589(3)
6–8 1.325(4)

γ5Bi 11–17 0.8587(6)
5–6 1.43(1)

0þþ I 7–12 1.0794(4)
6–7 1.443(3)

γi∇i 7–13 1.0792(3)
6–7 1.448(3)

1þþ γ5γi 9–12 1.1287(9)
7–9 1.477(6)

ϵijkγj∇k 9–13 1.1290(7)
5–7 1.479(2)

1þ− ϵijkγjγk 11–13 1.130(2)
6–8 1.506(3)

γ5∇i 9–11 1.1348(8)
5–7 1.479(2)

2þþ jϵijkjγj∇k 9–11 1.153(1)
5–7 1.493(2)

Qijkγj∇k 8–10 1.1560(8)
5–7 1.496(2)

1−þ ϵijkγjBk 5–7 1.498(4)
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ΔmHF ¼ mJ=Ψ −mηc ð38Þ

Δm1P−1S ¼ m1P −m1S ð39Þ

m1P ¼ 1

9
ðmχc0 þ 3mχc1 þ 5mχc2Þ ð40Þ

m1S ¼
1

4
ðmηc þ 3mJ=ΨÞ ð41Þ

ΔmS−O ¼ 1

9
ð5mχc2 − 3mχc1 − 2mχc0Þ ð42Þ

Δmtensor ¼
1

9
ð3mχc1 −mχc2 − 2mχc0Þ ð43Þ

Δm1PHF ¼ m1P −mhc; ð44Þ

where ΔmHF is the 1S hyperfine splitting, Δm1P−1S is the
spin-average 1P − 1S splitting, ΔmS−O is the spin-orbit
splitting, Δmtensor is the tensor splitting and Δm1PHF is the
P-wave hyperfine splitting. They are calculated using the
assignment shown in Table I and from the operator that
yields the mass with smallest error in lattice units. In all
cases only isovector masses are considered. Table V shows
the mass splittings obtained for the ground and first excited
states. Good precision is achieved in both cases thanks to
the use of the optimal distillation profiles. The last row in
Table V gives the hyperfine splitting in physical units along
with two uncertainties. The first indicates solely the
statistical precision while the second includes the system-
atic uncertainty arising from scale setting, which relates the
lattice spacing to physical units. Recall the quark mass is
about one half of the physical charm-quark mass so this
comparison is made to emphasise the difference between
the precision obtained by this lattice calculation and the
overall scale setting. The scale uncertainty is significantly
higher in both cases.

Finally, it is important to numerically quantify how much
the use of the optimal distillation profiles helps to create a
state closer to the desired energy eigenstate for the different
channels. To do this one first looks at the correlation
function calculated for a given Γ using standard distillation.
It has a large t limit given by

CðtÞ ¼ 2c0e−m0
T
2 cosh

��
T
2
− t

�
m0

�
; ð45Þ

where m0 is the ground state mass for the chosen channel
and the coefficient c0 is the amplitude squared of the
overlap between the state created by the meson operator
involving Γ and the lowest energy eigenstate in the channel.
However, to compare it with the obtained data one must
take into account the presence of excited state contamina-
tion. The correlation function is then given by

CðtÞ ¼ 2c0e−m0
T
2 cosh

��
T
2
− t

�
m0

�
þ B1ðtÞ; ð46Þ

where B1ðtÞ contains the excited state contamination. One
can define a normalized correlator C0ðtÞ that satisfies
C0ðtGÞ ¼ 1 as

C0ðtÞ ¼ CðtÞ
CðtGÞ

¼
�

1þ B2ðtÞ
1þ B2ðtGÞ

�
cosh ððT

2
− tÞm0Þ

cosh ððT
2
− tGÞm0Þ

ð47Þ

with B2ðtÞ defined as

B2ðtÞ ¼
B1ðtÞem0

T
2

2c0 cosh ððT2 − tÞm0Þ
: ð48Þ

From the spectral decomposition it is known that B1ðtÞ <
B1ðtGÞ if tG < t < T

2
, which is the regime which is

analyzed, so it holds that AðtÞ ¼ 1þB2ðtÞ
1þB2ðtGÞ < 1 in this regime.

In the mass plateau interval where B1ðtÞ ¼ 0 one obtains
AG ¼ 1

1þB2ðtGÞ < 1 and this parameter quantifies the pres-

ence of excited state contamination at early times. If there is
none then B1ðtGÞ ¼ 0 and AG ¼ 1, however BðtGÞ > 0
means 0 < AG < 1. The closer AG is to 1 the larger the
suppression of excited state contamination, which is the
goal of the optimized operators used in this work. To get
the value of AG one can fit the normalized correlation data
to the form of Eq. (47) in the plateau region where B1ðtÞ is
considered to be 0. This way only one fit parameter must be
found. To simplify the analysis one can solve for an
effective parameter AeffðtÞ as

AeffðtÞ ¼
CðtÞ
CðtGÞ

cosh ððT
2
− tGÞm0Þ

cosh ððT
2
− tÞm0Þ

ð49Þ

TABLE V. Different mass splittings in lattice units studied in
this work for the ground and first excited states. The last row
corresponds to the hyperfine splitting in physical units where the
first error ignores the error of the lattice spacing while the second
one takes it into account.

ΔM Ground state 1st excited state

ΔmHF 0.10916(7) 0.0535(3)
Δm1P−1S 0.3066(6) 0.208(3)
ΔmS−O 0.0261(5) 0.018(3)
Δmtensor 0.0079(3) 0.005(2)
Δm1PHF 0.0035(8) 0.005(3)

ΔM Ground state [MeV] 1st excited state [MeV]

ΔmHF 327.3� 0.2� 5 160.5� 0.9� 2.6

KNECHTLI, KORZEC, PEARDON, and URREA-NIÑO PHYS. REV. D 106, 034501 (2022)

034501-12



and estimate AG as the average of AeffðtÞ in the previously
mentioned plateau region. A similar procedure can be done
for the generalized eigenvalues from the GEVP defined in
Eq. (22). They have a large t limit given by [12]

ρeðt; tGÞ ¼ 2cee−me
T
2 cosh

��
T
2
− t

�
me

�
; ð50Þ

which is an identical form to the normalized correlation in
the case of standard distillation. One can again account for
the presence of excited state contamination and perform a
fit of the data to the form of Eq. (47) by taking e ¼ 0 and

replacing CðtÞ
CðtGÞ with

ρeðt;tGÞ
ρeðtG;tGÞ, which is equal to ρeðt; tGÞ due

to normalization. By doing so via an average of AeffðtÞ in
the region of the effective mass plateau where B1ðtÞ is 0 one
gets the value that quantifies the suppression of excited
state contamination just as for the case of standard
distillation. Once the value of AG is known for the ground
state of every operator analyzed in this work via both
standard distillation and the one with the optimal profile it
is possible to compare them as to quantify the improvement
that the optimal profile brings. These values are displayed
in Table VI, where AG is denoted as the fractional overlap.
For the γ5 bilinear, the fractional overlap from fitting the
first-excited state is included. Again, a value close to unity
indicates the profiles also accurately represent excited-state
wave functions. Note no comparison with the standard
distillation method is available, since only a single corre-
lation function is generated from the γ5 bilinear. As
expected this fractional overlap is larger when using

the optimal profiles compared to standard distillation.
Remarkable improvement is obtained for a majority of
the operators studied, with notable examples being
γ0γ5γi∇i, γi, ϵijkγjγk and ∇i where the fractional overlaps
increase by factors of approximately 1.25, 1.13, 1.2 and
1.56 respectively. The case of ∇i is also particularly special
since the fractional overlap goes from being below 0.5 with
standard distillation, which one might consider small, to
around 0.742 with the optimal profile, which is around the
values that other operators have for the standard distillation
case. While this shows that this operator has significant
contributions from excited states compared to others of the
same JPC and therefore might not be the best one to use to
access the ground state, it also holds that the use of the
optimal profile significantly decreases such contributions
and puts the operator in approximately equal standing to the
others with standard distillation. The case of the operators
involving Bi also display an interesting behavior. Both γiBi
and γ5Bi present a rather small increase in their fractional
overlaps when the optimal profiles are used. This could be
explained by the fact that these operators are expected to
have considerable contributions from excited states, includ-
ing members of hybrid supermultiplets with the same
JPC [4], given the combination of derivatives they contain.
Because of this the optimal profile might not be able to
suppress these contributions significantly or otherwise
enhance too much the one from the ground state already
present. However, the contribution to these excited states is
expected to be enhanced by the optimal meson profile
corresponding to them which is of course different than the
one of the ground state.

B. Using quark-connected and
quark-disconnected correlations

The use of distillation also grants access to the
quark-disconnected correlations essential for isoscalar
spectroscopy, seen as the second term in Eq. (10). To
repeat the GEVP analysis to find the optimal distillation
profiles requires a calculation of these disconnected pieces.
However the presence of significant noise in these quark-
disconnected correlations represents a major problem for
the GEVP both in terms of numerical stability and the small
number of points that contain a discernible signal. To avoid
such complications the optimal profiles for the isovector
operators are used to build corresponding isoscalar oper-
ators. Two reasons motivate such a choice: first, if the
isovector and isoscalar states are not too different in mass
then it is not unreasonable to expect their optimal meson
distillation profiles might also be not too different. Second,
even if they are not very similar, the isovector profile might
still constitute an improvement over the constant profile of
standard distillation. With these considerations in mind, all
optimal profiles for different operators Γ described in this
section keep the label f̃ðΓ;eÞðλi; λjÞ and it is understood that
they correspond to those used for the isovector analysis.

TABLE VI. Fractional overlaps with the ground state using
standard distillation [f̃ðΓ;0Þðλi; λjÞ ¼ 1) and the optimal meson
profiles (Optimal f̃ðΓ;0Þðλi; λjÞ]. For the Γ ¼ γ5 bilinear, data for
the first-excited state is included.

JPC Γ f̃ðΓ;0Þðλi; λjÞ ¼ 1 Optimal f̃ðΓ;0Þðλi; λjÞ
0−þ γ5 0.9272(3) 0.9858(2)

0.980(1)
γ0γ5γi∇i 0.7035(4) 0.8776(3)
γiBi 0.8228(4) 0.8473(3)

1−− γi 0.8743(10) 0.9900(5)
∇i 0.4758(7) 0.742(2)
γ5Bi 0.556(1) 0.578(4)

0þþ I 0.944(4) 0.986(1)
γi∇i 0.946(5) 0.978(1)

1þþ γ5γi 0.907(8) 0.982(5)
ϵijkγj∇k 0.86(1) 0.972(3)

1þ− ϵijkγjγk 0.77(7) 0.93(1)
γ5∇i 0.84(1) 0.970(5)

2þþðT2Þ jϵijkjγj∇k 0.850(8) 0.969(5)

2þþðEÞ Qijkγj∇k 0.858(8) 0.981(3)

1−þ ϵijkγjBk 0.81(1) 0.952(9)
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The first operator analyzed is Γ ¼ γ5. Figure 17 shows the
resulting effective masses for both isoscalar and isovector
operators when using both standard distillation and the
optimal meson profile of the isovector operator. Results
corresponding to the optimal profiles are plotted starting at
tG þ a and only shown when the error is smaller than the
signal. Both profiles display a non-negligible mass differ-
ence between isoscalar and isovector channels at early
enough times where the error is manageable. The use of the
optimal profile leads to a considerable reduction of excited
state contamination compared to the constant profile. This
confirms the intuition that a reasonable profile is a better
choice than the constant. From these improved mass data
for the isoscalar one can establish a rather early plateau
whose average has a difference of 99� 14 MeV with
respect to the improved isovector mass plateau average.
Initial estimates of this quantity have pointed to relatively
small values in lattice studies [36–38] and perturbative
NRQCD [39–43], albeit with conflicting signs. Recent
lattice calculations of this splitting, either indirectly [39] or
directly [8,9], also point to small-yet-positive values. In
both cases the value was significantly lower, albeit at a
much higher quark mass close to its physical value for the
charm quark. Other possible reasons for this disagreement
include different flavor content, finite lattice spacing,
model assumptions and residual contamination from
excited states. Nonetheless it is still clear that the use of
an optimal meson profile improves the quality of the result
obtained for this mass splitting.
The disconnected pieces for all other operators used were

calculated to assess two main aspects: the presence of a
signal at small time-separations and how much statistical
noise it has. These dictate the feasibility of calculating the
correlators of isoscalar operators. Figure 18 shows the
disconnected pieces for the operators that display the best
signal when using the corresponding optimal isovector

meson distillation profiles. Results are shown until the error
becomes larger than the signal. The clear signal for the γ5
operator is shown in Fig. 17 and serves as evidence for the
advantage of using distillation.
The clear signal for the disconnected correlation function

for operator I seen in Fig. 18 motivates a more detailed
study of the isoscalar JPC ¼ 0þþ channel. Figure 19 shows
the effective masses for the 0þþ isovector and isoscalar
operators using standard distillation, distillation with the
optimal profile obtained from the isovector data only and
operators built from unsmeared quark fields evaluated via
stochastic trace estimation. The traces

FIG. 17. Effective mass of the ground state for the isoscalar and
isovector γ5 operators using standard distillation, f̃ðλi; λjÞ ¼ 1,
and the optimal profile built from the isovector data,
f̃ðγ5;0Þðλi; λjÞ. Data points are displaced horizontally for clarity.

FIG. 18. Quark-disconnected piece of the correlation of the
ground state for some of the operators studied using the profiles
fðΓ;0Þðλi; λjÞ. Data points are displaced horizontally for clarity
and omitted if the signal is lost to the noise.

FIG. 19. Effective masses extracted from the isovector and
isoscalar operators defined by Γ ¼ I using standard distillation
(f̃ðλi; λjÞ ¼ 1), distillation with the optimal profile obtained from

the isovector data [f̃ðI;0Þðλi; λjÞ] and stochastic trace estimation.
Data points are displaced horizontally for clarity and omitted if
the signal is lost to the noise.
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X
x⃗

Tr½D−1ðx; xÞΓ� ð51Þ

required for the latter method are evaluated on every time
slice using 64Uð1Þ noise vectors per time slice and
configuration. ΦðΓÞ for all Γ matrices can be evaluated
using the same inversions. Isovector correlators built from
unsmeared and from both types of distilled operators lead
to the same effective mass at large temporal separations,
with distillation using the optimal profile performing
considerably better. Meanwhile, the isoscalar effective
masses tend to values significantly lower than the isovector
case. Not only this, but the use of the optimal profile from
the isovector for the isoscalar operator considerably
increases the noise. These two observations are not
independent. The first indicates that there exists an iso-
scalar state, probably a glueball, with quantum numbers
0þþ which is much lighter than the isovector 0þþ pre-
dominantly created by quark-antiquark excitation. This
explains the second fact: such a mass difference indicates
the optimal profile for the heavier state is not sufficiently
close to the true optimal profile of the lighter one and
therefore is a bad choice to build an operator to create this
lighter state. A better approach would include glueball
operators together with the isoscalar Γ ¼ I in the GEVP but
this is beyond the scope of the current work.
It is also useful to compare the signal of the disconnected

correlation obtained with local operators with the deriva-
tive-based operators. Since this data has the largest noise,
the operators which reduce this noise are the natural choice.
A priori, it is not known if the local or derivative-based
operators will perform best. Figure 20 shows the discon-
nected correlation for the 0þþ, 0−þ and 1þþ channels using
both types with their corresponding profile f̃ðΓ;0Þðλi; λjÞ.
These channels exhibit the best signal for this correlation.

It is clear that both types show a significant signal with only
the 0þþ case where there is a major difference in noise
between local and derivative operators while the other two
channels exhibit somewhat similar errors. This indicates the
derivative based operators can also be used to analyze
isoscalar operators reliably. Since the quark-disconnected
correlation functions of derivative-based operators were
analyzed on a smaller subset of gauge configurations a
robust test would first match the statistics of the calculation
with local operators. This not only improves the signal for
the γi∇i compared to the I operator but also for the 0−þ and
1þþ operators. Since the last two already seem to match the
error from local operators, an increase of statistics can only
provide better results, which could point to promising
results when mixing these different types of operators
together.

IV. CONCLUSIONS AND OUTLOOK

In this work, the distillation framework for quark-field
smearing in lattice QCD was extended and techniques for
optimizing the resulting creation operators were developed
and tested. The extension applies arbitrary scalar functions
of each of the eigenvalues of the gauge-covariant Laplacian
on each time slice inside the smearing kernel. As a
consequence of this extension, meson profile functions
are also introduced and investigated. The procedure to build
optimal meson distillation profiles via the GEVP formu-
lation was presented explicitly, making the best use of the
Laplace eigenvectors which form the basis for the distil-
lation method. Although only meson operators were
examined in this work, the method can be extended
naturally to other hadrons such as baryons and tetraquarks.
Tests were performed in QCD with Nf ¼ 2 degenerate
quarks, with a mass close to half that of the physical charm-
quark. Results for the spectrum of the quark-anti-quark
system were determined using local and derivative-based
operators and the comparison between standard distillation
and the optimization proposed here was made.
Several advantages were observed. First, comparing the

effective mass plots obtained with standard distillation to
the optimal profiles, a remarkable decrease in excited state
contributions is seen. This effect is graphically seen in
Figs. 7 and 10 for some operators and quantified in
Table VI for all operators considered in this work. Only
some of the operators involving a chromomagnetic com-
ponent exhibit a small improvement, serving as indication
that other aspects not influenced by the distillation profile
should be improved, such as their gluonic excitations. The
increased suppression of excited state contamination in all
others yields earlier plateaus with at least five more data
points in several cases. Additionally, even where the mass
plateaus have equal length those generated from the
optimal profiles occur earlier, benefiting studies of
quark-disconnected correlation functions. These notori-
ously suffer from a signal-to-noise problem which sets

FIG. 20. The quark-disconnected correlation function of the
ground-state for some of the local and derivative-based operators
with fixed JPC studied in this work using the profiles
fðΓ;0Þðλi; λjÞ. Data points where the signal is lost to the noise
are omitted.
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in at early times. So achieving a mass plateau at early times
for the quark-connected correlations gives more precise
information to combine with the quark-disconnected cor-
relation. Second, this improvement does not significantly
increase the computational work since no additional
solutions of the Dirac equation or lattice derivatives must
be calculated beyond those required for the perambulator
and standard elementals. Third, the appropriate choice of
the number of eigenvectors which is crucial to distillation
can be approached more systematically. Should too few be
chosen, not enough useful information is kept and the
resolution is poor. With too many, insufficient quark-field
smearing is applied and the computational cost increases.
The optimal distillation profiles studied here provide a very
useful guide; eigenvectors that are important for a given
state have a large contribution in the profile while less
important ones are suppressed. For a fixed distillation-
space size, eigenvectors beyond those included might
contain important structure that is subsequently neglected.
Introducing profile functions does not correct for this defect
however it does maximally use the data in the basis of
smooth fields and so can make up in part for the limited
resolution given by a fixed number of modes. The use of
too few eigenvectors is detected by monitoring whether the
profile is small for the largest eigenvalue included. At the
same time the contributions of higher modes in a very large
basis is regulated automatically via the optimal distillation
profile. Fourth, the optimal meson distillation profiles can
be used to visualize the spatial distributions of the resulting
meson operators. These distributions provide not only an
estimate of the physical extent of the mesons but also
suggest if there are notable finite-volume effects when the
spatial distribution has sizable contributions near the edges
of the lattice. Fifth and final, this improvement is in
principle applicable in the stochastic distillation frame-
work, where the perambulators are not calculated exactly.
In this case the noise introduced by the estimation may
affect the GEVP formulation and therefore the accuracy of
the determined profiles. It could be preferable to perform a
small statistics, exact calculation of the perambulators to
determine the optimal meson profiles for use in a full-
statistics study.
A natural next step is to extend the GEVP basis by not

only varying the quark distillation profiles of a single fixed
Γ structure but also including multiple structures, each with
a different profile. This should allow not only access to
further excited states but also to potentially improve the
signal obtained for the ground and first excited states. As
pointed out in Sec. III from the results displayed in Fig. 19,
a further step is to build a GEVP basis of isoscalar operators
resembling both mesons and glueballs to explore their
possible mixing. Such studies are under way, both using the
ensembles studies in this work and with a finer lattice
spacing and larger volume to explore the effects of the
lattice spacing.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. [44] for supporting this project with
computing time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre [45]. The work is
supported by the LatticeHadrons network of STRONG-
2020 [46], funded by the European Union Horizon 2020
research and innovation programme under Grant
Agreement No. 824093. The authors also acknowledge
fruitful discussions with Andreas Frommer, Karsten Kahl,
Gustavo Ramirez and Artur Strebel within the DFG
research unit FOR5269 “Future methods for studying
confined gluons in QCD” and thank Roman Höllwieser
for help tuning the APE parameters used in this work.

APPENDIX: OPTIMAL Γ̃ STRUCTURE

To define an optimal Γ̃ðΓ;eÞ structure that includes the
optimal meson distillation profile Eq. (28) at meson level
one starts with the original Γ structure in the channel of
interest. Assuming the decomposition into an operator H
acting on Dirac space and an operator D½t� acting on
coordinate/color space, one can perform a change of basis
to express D½t� in terms of VN ½t�, a matrix whose columns
are all the Laplacian eigenvectors at time t. Doing this
results in

Γ½t� ¼ HD½t� ðA1Þ

¼ HVN ½t�VN ½t�†D½t�VN ½t�VN ½t�† ðA2Þ

¼ HVN ½t�ΦN ½t�VN ½t�†; ðA3Þ

where ΦN ½t� corresponds to the elemental of D½t� when all
eigenvectors are known. If one now considers the meson
operator

OðtÞ ¼ q̄ðtÞΓqðtÞ ðA4Þ

it corresponds to applying standard distillation to the quark
fields using all of the Laplacian eigenvectors, which is
known to have no effect. However, one can exploit this
formulation of the Γ structure to manually insert at meson
level an arbitrary meson distillation profile just as one could
introduce at quark level the quark distillation profile via the
matrix J½t�. To do this, one replaces ΦN ½t� with

Φ̃N ½t� ¼ ΦN ½t� ⊛ FN ½t�; ðA5Þ

where the entries ðFN ½t�Þij ¼ fðλi½t�; λj½t�Þ include the
meson profile f one chooses and ⊛ denotes the element-
wise product. Γ̃½t� is now given by

Γ̃½t� ¼ HVN ½t�Φ̃N ½t�VN ½t�† ðA6Þ
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and a meson operator built using Γ̃ is given by

ÕðtÞ ¼ q̄ðtÞΓ̃qðtÞ: ðA7Þ

The two-point correlation function of such an operator,
considering for now only the quark-connected piece for
simplicity, will be given by

CðtÞ ¼ hð�ÞTrðΦ̃N ½t�τN ½t; 0�Φ̃N ½0�τN ½0; t�Þi; ðA8Þ

where the sign depends on Γ and τN ½t1; t2� corresponds to
the perambulator involving all eigenvectors. Such a corre-
lation function is not tractable since one would need to
know all the eigenvectors and eigenvalues of the Laplacian
at every value of time and perform an unfeasible amount of
inversions of the Dirac operator. However, one can avoid
such a problem by using standard distillation, where the
quark fields are replaced by their distilled counterparts
using a manageable number of eigenvectors. The distilled
meson operator will be given by

ÕDðtÞ ¼ q̄ðtÞV½t�V½t�†Γ̃V½t�V½t�†qðtÞ ðA9Þ

and the corresponding correlation function is given by

CDðtÞ ¼ hð�ÞTrðΦ̃½t�τ½t; 0�Φ̃½0�τ½0; t�Þi; ðA10Þ

where Φ̃½t� is the sub-block of Φ̃N ½t� corresponding to the
chosen lowest eigenpairs and the same for τ½t1; t2� with
respect to τN ½t1; t2�. Two observations can be made at this
point. First, if one chooses the function that defines FN ½t� to
be the optimal meson profiles calculated from the GEVP
described in Sec. II then CDðtÞ corresponds to the same
correlation function that one would obtain from the
eigenvalues of said GEVP. This can be seen first by
replacing CðtÞ with CSðtÞ [See Eq. (23)] in Eq. (21) and
then multiplying from the left by wkðt; tGÞ†, yielding

wkðt;tGÞ†CSðtÞweðt;tGÞ¼ρeðt;tGÞwkðt;tGÞ†CSðtGÞweðt;tGÞ
¼ρeðt;tGÞδke; ðA11Þ

where the orthonormality condition

wkðt; tGÞ†CSðtGÞweðt; tGÞ ¼ δe;k ðA12Þ

has been used. On the right hand side of Eq. (A11)
are the generalized eigenvalues of the GEVP while on
the left hand side is the projected correlation matrix
wkðt; tGÞ†CSðtÞweðt; tGÞ. To relate this projected correla-
tion to CDðtÞ it is important to note that even though the
vectors weðt; tGÞ have time indices they are expected to be
independent of time up to noise effects. The results
presented in this work are built using weðt; tGÞ for a fixed
value of t where there is no significant change between
consecutive times so this time independence is assumed

and the t; tG pair is omitted in the following treatment.
Expressing the entries of CðtÞ for a fixed Γ as

CðtÞmn ¼ hOmðtÞŌnð0ÞiF;U ðA13Þ

one can express the entries of CSðtÞ as

CSðtÞa;b ¼ hPaðtÞP̄bð0ÞiF;U; ðA14Þ

where the pruned operator PaðtÞ is given by

PaðtÞ ¼
X
m

u�a;mOmðtÞ ðA15Þ

and ua;m denotes the mth entry of the ath singular vector
used for the pruning. This pruned meson operator can be
examined in more detail by explicitly writing the original
meson operators Om in terms of the quark fields. This
yields

PaðtÞ ¼ q̄ðtÞV½t�Φðp;aÞ½t�V½t�†qðtÞ; ðA16Þ

where the pruned elemental Φðp;Γ;aÞ½t� is defined as

Φðp;Γ;aÞ½t� ¼
X
m

u�a;mJm½t�†V½t�†ΓV½t�Jn½t� ðA17Þ

and has entries given by

Φðp;Γ;aÞ
αβ
ij

½t� ¼ ΛðΓÞ
αβ
ij
½t�fðp;ΓÞa ðλi½t�; λj½t�Þ; ðA18Þ

where ΛðΓÞ½t� is as defined in Eq. (15) and the pruned

profile fðp;ΓÞa ðλi½t�; λj½t�Þ is as defined in Eq. (25) (u�a;m is
real). Now the projected correlation for k ¼ e for a fixed e
in Eq. (A11) can be written as

wðΓ;eÞ†
e CSðtÞwðΓ;eÞ

e ¼ hAðΓ;eÞðtÞĀðΓ;eÞð0ÞiF;U ðA19Þ

where the operator AðΓ;eÞðtÞ is given by

AðΓ;eÞðtÞ ¼
X
a

wðΓ;eÞ
a PaðtÞ: ðA20Þ

It is clear from Eq. (A19) that the projected correlation

wðΓ;eÞ†
e CSðtÞwðΓ;eÞ

e is the correlation of the meson operator
AðΓ;eÞ, which is built from the basis of pruned operators Pa
via a linear combination whose coefficients are the entries

of the GEVP eigenvector wðΓ;eÞ
e . One can now simplify

AðΓ;eÞðtÞ as

AðΓ;eÞðtÞ ¼ q̄ðtÞV½t�ΦðΓ;eÞ
A ½t�V½t�†qðtÞ; ðA21Þ

where the elemental ΦðΓ;eÞ
A ½t� is defined as
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ΦðΓ;eÞ
A ½t� ¼

X
a

wðΓ;eÞ
a Φðp;Γ;aÞ½t� ðA22Þ

and has entries given as

ΦðΓ;eÞ
A ½t� ij

αβ
¼ ΛðΓÞ

αβ
ij
½t�f̃ðΓ;eÞðλi½t�; λj½t�Þ; ðA23Þ

where f̃ðΓ;eÞðλi½t�; λj½t�Þ is as defined in Eq. (26). Clearly

ΦðΓ;eÞ
A ½t� is equal to the optimal meson elemental obtained

from the GEVP as given in Eq. (28), which means that the

projected correlation wðΓ;eÞ†
e CSðtÞwðΓ;eÞ

e from the GEVP is
equal to CDðtÞ since they are built using identical ele-
mentals. However, while in the GEVP case the distillation
profiles were introduced at quark level independently of the
Γ structure and different optimal meson distillation profile
was obtained for every choice of Γ and energy state, here
the optimal meson profile is inserted via a redefinition of
the Γ structure while standard distillation, i.e., a constant
profile, is used for the quarks. The second observation is the
fact that even though Γ̃ cannot be explicitly built without an

excessive amount of computational work one can construct
an approximation with a limited number of eigenvectors
which is given by

Γ̃D½t� ¼ V½t�V½t�†Γ̃V½t�V½t�† ðA24Þ

¼ HV½t�Φ̃½t�V½t�†; ðA25Þ

where it can be seen that when all eigenvectors are used one
recovers Γ̃½t�. The distilled meson operator in Eq. (A9) can
now be written as

ÕDðtÞ ¼ q̄ðtÞΓ̃DqðtÞ ðA26Þ

and corresponds to the closest one can get to the meson
operator defined in Eq. (A7). Furthermore, if Γ̃D leads to
improved correlation functions, as is the case in this work,
then it probably conserves useful properties of Γ̃ that can be
studied without the need for excessive computational work.
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