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The double-charm tetraquark meson Tþ
ccð3875Þ can be produced in high-energy proton-proton collisions

by the creation of the charm mesons D�þD0 at short distances followed by their binding into Tþ
cc. The Tþ

cc

can also be produced by the creation of D�þD�þ at short distances followed by their rescattering into
Tþ
ccπ

þ. A charm-meson triangle singularity produces a narrow peak in the Tþ
ccπ

þ invariant mass
distribution 6.1 MeV above the threshold with a width of about 1 MeV. Well beyond the peak, the
differential cross section decreases with the invariant kinetic energy E of Tþ

ccπ
þ as E−1=2. The fraction of

Tþ
cc that are accompanied by πþ with E < mπ is estimated to be roughly 3%. The fraction of Tþ

cc events with
Tþ
ccπ

þ in the narrow peak from the triangle singularity could be comparable.

DOI: 10.1103/PhysRevD.106.034033

I. INTRODUCTION

The discoveries since the beginning of the 21st century of
dozens of exotic heavy hadrons not predicted by the quark
model have resulted in a second revolution in hadron
spectroscopy [1–7]. This second revolution began with the
discovery of the Xð3872Þ (also known as χc1ð3872Þ or,
more concisely, X) by the Belle Collaboration in 2003 [8].
The X has a remarkably narrow width, and it has other
properties consistent with a hidden-charm tetraquark
meson. A new front in the revolution was recently opened
up by the discovery of the first double-charm tetraquark
meson Tþ

ccð3875Þ (or more concisely, Tþ
cc) by the LHCb

Collaboration [9]. The width of Tþ
cc may be even narrower

than that of the J=ψ [10], whose discovery in 1974
launched the first revolution in hadron spectroscopy
[11,12]. The quark model introduced in 1964 provides a
simple explanation for the patterns of most of the hadrons
discovered in the 20th century, both light hadrons and
heavy hadrons that contain charm and bottom quarks
[13,14]. The development of quantum chromodynamics
(QCD) provided a fundamental explanation for these

patterns. The patterns of exotic heavy hadrons discovered
in the second revolution are not yet understood.
They present a major challenge to our understanding
of QCD.
Until the discovery of Tþ

cc, X was unique among the
exotic heavy hadrons not only in its narrow width but also
in how close it is to the threshold for a pair of hadrons to
which it can couple. The mass of X is extremely close to the
D�0D̄0 scattering threshold. Recent precise measurements
of its energy εX relative the D�0D̄0 threshold by the LHCb
Collaboration give εX ¼ −0.07� 0.12 MeV [15,16]. The
JPC quantum numbers of X were determined by the LHCb
Collaboration in 2013 to be 1þþ [17]. They imply that X
has an S-wave coupling toD�0D̄0. The universality of near-
threshold S-wave resonances for particles with short-range
interactions is therefore applicable [18]. This remarkable
aspect of quantum mechanics guarantees that X has
universal properties determined by εX [19]. The dominant
component of the wave function of X is a loosely bound
charm-meson molecule with flavor ðD�0D̄0 þD0D̄�0Þ= ffiffiffi

2
p

.
If εX < 0 so that X is a bound state, the mean separation of
the charm mesons is hri ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8μjεXj

p
, where μ is the

reduced mass of D�0D̄0. The measured value of εX implies
hri > 4.7 fm at the 90% confidence level. Thus the radius
of X is probably an order of magnitude larger than that of
most hadrons.
The Tþ

cc is a second exotic heavy hadron to which the
universality of near-threshold S-wave resonances is appli-
cable. The mass of Tþ

cc is extremely close to the D�þD0

scattering threshold. The energy εT relative to the D�þD0

threshold measured by the LHCb Collaboration assuming a
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Breit-Wigner line shape is −273� 63 keV [9]. The real

part εT of the pole energy assuming a line shape that takes
into account the nearby D�þD0 threshold is [10]

εT ¼ −360� 40 keV: ð1Þ

The analysis by the LHCb Collaboration suggests that
its JP quantum numbers are 1þ. This implies that Tþ

cc

has an S-wave coupling to D�þD0. Universality then
implies that the dominant component of the wave function
of Tþ

cc is a loosely bound charm-meson molecule with
flavor D�þD0. The mean separation of the charm mesons is
hri ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8μjεT j

p
, where μ is the reduced mass of D�þD0.

The measured value of εT implies hri ¼ 3.7� 0.2 fm,
which is almost an order of magnitude larger than the
radius of most hadrons.
Universality identifies the dominant components of the

wave functions of X and Tþ
cc to be a loosely bound charm-

meson molecule. The universal wave function has the form
ψðrÞ ¼ ð1=rÞ expð−γrÞ. This universal wave function is
applicable only at separations r larger than the size of a
charm meson. Universality says nothing about the wave
function at shorter distances. The wave function of X at
shorter distances has a smallD�þD− þD�−Dþ component.
It could also have a charmonium component (cc̄) or a
compact tetraquark component (cc̄qq̄). The wave function
of Tþ

cc at shorter distances has a smallD�0Dþ component. It
could also have a compact tetraquark component (ccq̄q̄) or
a component with q̄q̄ bound to a heavy diquark (cc).
A physicist who is skeptical about the relevance of

universality to the X and Tþ
cc could ask for direct exper-

imental evidence for the large size of the loosely bound
charm-meson molecule. One might hope to find evidence
for the nature of X and Tþ

cc from their decays. However the
only decays sensitive to the long-distance wave function are
those with contributions from the decay of a constituentD�

or D̄�. In the case of the X, the only such decay modes are
D0D̄0π0 and D0D̄0γ. In the case of the Tþ

cc, the only such
decay modes are D0D0πþ, DþD0π0, and DþD0γ. There
have been several theoretical calculations of the partial
decay rates into these three decay modes [20–24]. If the
decay rates can be calculated sufficiently precisely, mea-
surements of the three branching fractions could provide
evidence that Tþ

cc is a loosely bound charm-meson mol-
ecule. There have also been several theoretical calculations
of the line shape in the D0D0πþ channel [25–28] and the
invariant mass distributions for D0D0 and DþD0 [23,28].
Precise measurements of these distributions could also
provide evidence that Tþ

cc is a loosely bound charm-meson
molecule.
One might also hope to find evidence for the nature of X

and Tþ
cc from their production. The production of the Tþ

cc at
the LHC has been studied under the assumption that it
proceeds by the fragmentation of a cc diquark jet [29,30] or

by the coalescence of D� and D charm mesons [30]. The
production of X and Tþ

cc in heavy ion collisions may also
provide information about their nature [31–40].
One way in which the production of a hadron can reveal

its nature is through triangle singularities. A triangle
singularity is a kinematic singularity that arises if three
virtual particles that form a triangle in a Feynman diagram
can all be on their mass shells simultaneously [41,42]. A
triangle singularity can produce a double-log divergence in
a reaction rate. The effects of triangle singularities on the
production of exotic heavy mesons has been studied in
Refs. [43,44]. A Feynman diagram for the production of a
charm-meson molecule can have a triangle in which the
vertices are (a) the creation of two charm mesons at short
distances, (b) a transition between two charm mesons in
which a pion or photon is emitted, and (c) the coalescence
of two charm mesons into the molecule. The two charm
mesons at vertex (c) can both be on shell in the limit as the
binding energy goes to zero. The other charm meson in the
triangle can brought on shell by tuning the momentum of
the pion or photon that is emitted at vertex (b). The log2

divergence in the invariant mass distribution of the mol-
ecule and the recoiling pion or photon is smoothed out into
a narrow peak by the binding energy of the molecule and by
the decay widths of the charm mesons in the triangle.
The effects of triangle singularities on the production of

X were first studied in Refs. [45–47]. Reference [45]
showed that in the exclusive decays of a B meson into
KXπ, there is a narrow peak in the Xπ invariant mass from a
triangle singularity. A later study of that reaction in
Ref. [48] took into account only one of the three possible
Lorentz structures in the short-distance amplitude.
Reference [46] showed that in the inclusive prompt
production of Xπ at a high-energy hadron collider, there
is a narrow peak in the Xπ invariant mass from a triangle
singularity. In both B decay and prompt production, the
peak in the Xπþ invariant mass is predicted to be about
6.1 MeV above the Xπþ threshold with a width of about
1 MeV. The peak in the Xπ0 invariant mass is predicted to
be about 7.3 MeV above the Xπ0 threshold. In Ref. [47],
Guo emphasized that the triangle singularity makes the line
shape in Xγ strongly sensitive to the mass of X. In Ref. [49],
the effect of the triangle singularity was studied in eþe−

annihilation into Xγ þ π0 and in pp̄ annihilation into Xγ.
Back in 2006, Dubynskiy and Voloshin pointed out that in
eþe− annihilation into Xγ, there should be a narrow peak at
a center-of-mass energy near the D�0D̄�0 threshold [50].
The narrow peak comes from a charm-meson triangle
singularity [51]. The peak is predicted to be at a center-
of-mass energy near 4016 MeV with a width of about
5 MeV [51,52]. Other studies involving triangle singular-
ities and X have appeared in Refs. [53–55].
In this paper, we study the effects of a charm-meson

triangle singularity on the inclusive production of Tþ
ccπ

from the rescattering of D�D� created at short distances in
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high-energy hadron collisions, such as proton-proton colli-
sions at the Large Hadron Collider (LHC). In Sec. II we
summarize some universal aspects of loosely bound
S-wave molecules. In Sec. III we describe the effective
field theory XEFT for charm mesons and pions that is
applicable to loosely-bound charm-meson molecules. We
give Feynman rules for the double-charm sector relevant to
Tþ
cc. In Sec. IV we discuss production of loosely bound

charm-meson molecules at a hadron collider. In the
subsequent sections, we apply XEFT to various cross
sections at a high-energy hadron collider. In Sec. V we
consider the production of two charm mesons with small
relative momentum in channels without a resonance near
the threshold. In Sec. VI we consider the production of
D�þD0 with small relative momentum and the production
of Tþ

cc without an accompanying soft pion. In Sec. VII we
calculate the cross sections for producing Tþ

ccπ
þ and Tþ

ccπ
0.

We show that a charm-meson triangle singularity produces
narrow peaks in their invariant mass distributions about
6.1 MeV and 7.3 MeV above their thresholds, respectively.
We summarize our results and discuss their implications in
Sec. VIII. In Appendix A we determine the charm-meson
triangle amplitudes in various limits. In Appendix B
we give expressions for the triangle amplitudes in a
coupled-channel model that takes into account the
D�0Dþ component of Tþ

cc.

II. LOOSELY BOUND S-WAVE MOLECULES

If two particles with short-range interactions have an
S-wave resonance extremely close to their scattering
threshold, the few-body physics of those particles has
universal aspects that are determined by their scattering
length 1=γ [18]. In this section we describe the universal
wave function for a bound state extremely close to the
scattering threshold, and we present a coupled-channel
model for the wave functions at shorter distances.

A. Universal wave function

If the resonance is a bound state with a negative energy ε
relative to the scattering threshold, the inverse scattering
length or binding momentum is γ ¼ ffiffiffiffiffiffiffiffiffiffi

2μjεjp
, where μ is the

reduced mass of the two particles. The normalized univer-
sal wave function of the bound state is

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
γ=2π

p
r

expð−γrÞ: ð2Þ

This wave function diverges at the origin. The correspond-
ing normalized momentum-space wave function is

ψðkÞ ¼
ffiffiffiffiffiffiffiffi
8πγ

p
k2 þ γ2

: ð3Þ

The spatial wave function at the origin can be expressed
as an integral of the momentum-space wave function

ψðr ¼ 0Þ ¼ R d3kψðkÞ=ð2πÞ3. This integral is ultraviolet
divergent: it can be regularized by imposing a sharp
momentum cutoff jkj < ðπ=2ÞΛ with Λ ≫ γ. The resulting
expression for the wave function at the origin, up to
corrections that go to 0 as Λ → ∞ is

ψðr ¼ 0Þ ¼ ðΛ − γÞ
ffiffiffiffiffiffiffiffiffiffi
γ=2π

p
: ð4Þ

The ultraviolet cutoff Λ can be interpreted as the momen-
tum scale beyond which ψðkÞ decreases more rapidly than
the prediction 1=k2 from the universal wave function in
Eq. (3). The wave function at the origin can be used to take
into account short-distance components of the bound state
that are not described explicitly.
The universal aspects of the low-energy scattering of the

two particles can be described by a simple function of the
complex energy E relative to the scattering threshold,

fðEÞ ¼ 1

−γ þ ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p : ð5Þ

The universal elastic scattering amplitude at relative
momentum k is obtained by evaluating fðEÞ at
E ¼ k2=ð2μÞ þ iϵ. By the optical theorem, the inclusive
production rate from the creation of the two particles
at short distances is proportional to the imaginary part
of fðEÞ,

Im½fðEþ iϵÞ� ¼ πγ

μ
δðEþ γ2=2μÞ þ

ffiffiffiffiffiffiffiffiffi
2μE

p
γ2 þ 2μE

θðEÞ: ð6Þ

The delta function comes from the production of the bound
state and the theta function comes from the production of
the two particles above the threshold. Given an ultraviolet
cutoff Λ, the corresponding energy Λ2=ð2μÞ can be
interpreted as the energy scale beyond which the inclusive
production rate no longer decreases as E−1=2 as predicted
by Eq. (6).
In the case of Tþ

cc, the resonant S-wave channel consists
of the charm mesons D�þD0. The energy εT of Tþ

cc relative
to the D�þD0 threshold is given in Eq. (1). Its binding
momentum is γT ¼ 26.4� 1.5 MeV. An order-of-magni-
tude estimate for the ultraviolet cutoff Λ is the pion
mass mπ .

B. Model wave function at shorter distances

A sharp ultraviolet cutoff on the momentum k gives
unphysical results for some observables. A simple model
that is equivalent to a smooth ultraviolet cutoff can be
defined by the normalized momentum-space wave function

ψ ðΛÞðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πðΛþ γÞΛγp

Λ − γ

�
1

k2 þ γ2
−

1

k2 þ Λ2

�
: ð7Þ
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This regularized wave function was first applied to
Xð3872Þ by Suzuki [56]. Its leading behavior at large k is

ψ ðΛÞðkÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πðΛþ γÞ3Λγ

q
=k4: ð8Þ

The spatial wave function at the origin is

ψ ðΛÞðr ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛþ γÞΛγ=2π

p
: ð9Þ

The sharp cutoff jkj < ðπ=2ÞΛ used to calculate ψðr ¼ 0Þ
in Eq. (4) was chosen so it would have the same limit for
Λ ≫ γ as ψ ðΛÞðr ¼ 0Þ in Eq. (9).
The regularized wave function in Eq. (7) is at best a

model with the same momentum dependence as the
universal wave function ψðkÞ at small k and more physical
qualitative behavior at large k. In this model, the coefficient
of 1=k4 in Eq. (8) and the wave function at the origin in
Eq. (9) are both determined by the same parameter Λ. In
general, there is no simple relation between these two
quantities. Sensitivity to Λ in this model can reveal aspects
of a problem that are sensitive to momenta much larger than
γ. If the momentum scale where the EFT breaks down is
identified, the model can be used to estimate the order of
magnitude of short-distance effects by replacing Λ by that
momentum scale.

C. Model wave function for coupled channel

There could be another S-wave channel coupled to the
resonant channel that has a scattering threshold higher by
an energy δ. In this case, the bound state will also have a
component in the coupled channel with a smaller proba-
bility. For simplicity, we consider the case of a coupled
channel consisting of particles with the same masses and a
symmetry relating the two channels that is broken by the
energy difference δ. We assume the symmetry requires the
wave functions in the two channels to be equal at
short distances. Note that this condition is not identical
to requiring the wave functions in the two channels to be
equal at large momenta.
The binding momentum for the coupled channel is

γcc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðδþ jεjÞp

. A simple model for the coupled-
channel wave function is

ψ ccðkÞ ¼
Λ − γ

Λ − γcc

ffiffiffiffiffiffiffiffi
8πγ

p
k2 þ γ2cc

: ð10Þ

We have chosen its normalization so that the wave function
at the origin defined by a sharp ultraviolet cutoff jkj <
ðπ=2ÞΛ is equal to that for the resonant channel in Eq. (4),
ψ ccðr ¼ 0Þ ¼ ψðr ¼ 0Þ. Note that this symmetry condition
at short distances is not equivalent to requiring ψ ccðkÞ to
approach ψðkÞ at large k except in the limit Λ → ∞.
An alternative model for the coupled-channel wave

function that corresponds to a smooth ultraviolet cutoff is

ψ ðΛÞ
cc ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πðΛþ γÞΛγp
Λ − γcc

�
1

k2 þ γ2cc
−

1

k2 þ Λ2

�
: ð11Þ

We have chosen its normalization so that the wave function
at the origin is equal to that for the resonance channel
in Eq. (9),

ψ ðΛÞ
cc ðr ¼ 0Þ ¼ ψ ðΛÞðr ¼ 0Þ: ð12Þ

This condition could be required by a symmetry between
the two channels at short distances. The relative probability
for the coupled-channel wave function is

Zcc ≡
Z

d3k
ð2πÞ3 jψ

ðΛÞ
cc ðkÞj2 ¼ ðΛþ γÞγ

ðΛþ γccÞγcc
: ð13Þ

This is less than 1 provided γ < γcc.
The coupled-channel wave function ψ ðΛÞ

cc ðkÞ in Eq. (11)
can be used in conjunction with the regularized wave
function ψ ðΛÞðkÞ in Eq. (7) as a qualitative model for the
bound state in which these two components are described
explicitly and all others are taken into account through the
wave function at the origin. The total probability in the two
channels can be normalized to 1 by multiplying both

ψ ðΛÞðkÞ in Eq. (7) and ψ ðΛÞ
cc ðkÞ in Eq. (11) by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zcc

p
.

In the case of Tþ
cc, the coupled S-wave channel consists

of the charm mesons D�0Dþ. We sometimes denote this
coupled channel simply by 0þ. We will assume that at short
distances the resonance is in the isospin-0 combination
ðD�þD0 −D�0DþÞ= ffiffiffi

2
p

of the two coupled channels. This
is consistent with the observation by the LHCb
Collaboration of a peak near threshold in the D0Dþ
invariant mass distribution, which can come from the
D�0Dþ component of Tþ

cc. The possibility that the reso-
nance has isospin 1 is disfavored by the nonobservation of
peaks in the DþDþ and DþD0πþ invariant mass distribu-
tions, which could come from D�þDþ. In many of the
analyses of the decays of Tþ

cc, the resonance was assumed
to be a linear combination of isospin 0 and isospin 1
[20,22,23,25]. In Ref. [25] a fit to the D0D0πþ energy
distribution was used to infer that the Tþ

cc resonance is
mostly isospin 0.
The energy difference between the D�0Dþ and D�þD0

scattering thresholds is δ ¼ 1.41� 0.03 MeV. The
two channels are related by isospin symmetry, which is
broken by the energy difference δ. The binding energy of
Tþ
cc for theD�0Dþ channel is δþ jεT j ¼ 1.77� 0.05 MeV.

The binding momentum for that channel is γ0þ ¼ 58.5�
0.8 MeV. A simple coupled-channel model defined by
wave functions analogous to Eqs. (3) and (10) was used in
Refs. [20,22]. We introduce a coupled-channel model
defined by wave functions analogous to Eqs. (7) and
(11), which have more physical behavior at large momen-
tum. We assume that isospin symmetry requires the wave
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functions at the origin in the two channels to be equal, as in
Eq. (12). If Λ is varied from mπ=2 to mπ to 2mπ , the ratio
Z0þ of the probabilities for the D�0Dþ and D�þD0

components from Eq. (13) ranges from 0.34 to 0.38 to 0.41.

III. XEFT FOR THE DOUBLE-CHARM SECTOR

In this section we describe the effective field theory
XEFT for low-energy charm mesons and pions, and we
give the Feynman rules for XEFT relevant to Tþ

cc.

A. Effective field theories for charm mesons and pions

The universal wave function in Eq. (2) and the scattering
amplitude in Eq. (5) can be derived from a zero-range
effective field theory (ZREFT) with a single scattering
channel [18]. The simplest single-channel ZREFT has been
applied previously to the Xð3872Þ and its constituents
D�0D̄0 and D0D̄�0 [18]. Its region of validity extends at
most up to the D�þD− scattering threshold, which is
8.2 MeV above the D�0D̄0 threshold. ZREFT cannot
describe accurately the effects of D0D̄0π0 states, which
can be reached by the decay of a constituentD�0 or D̄�0. An
analogous ZREFT can describe Tþ

ccð3875Þ and its con-
stituentsD�þD0. Its region of validity extends at most up to
the D�0Dþ scattering threshold, which is 1.4 MeV above
the D�þD0 threshold. ZREFT cannot describe accurately
the effects of D0D0πþ or DþD0π0 states, which can be
reached by the decay of a constituent D�þ.
Fleming et al. developed an effective field theory called

XEFT that describes X and its meson constituents with a
much larger region of validity [57]. XEFT is a non-
relativistic effective field theory for charm mesons Dð�Þ

and D̄ð�Þ and pions π. The states described explicitly by
XEFT are D�D̄, DD̄�, DD̄π, and X with total energy in the
region near the D�D̄ thresholds. XEFT can equally well be
applied to Tþ

cc and its meson constituents. The states
described explicitly by XEFT are D�D, DDπ, and Tþ

cc
with total energy in the region near the D�D thresholds.
The region of validity of XEFT is limited by the

nonrelativistic approximation for the pion to momenta less
than the pion mass mπ . The natural scale for the ultraviolet
momentum cutoff Λ of XEFT is therefore mπ . The
corresponding scale for the kinetic energy of a pion is
mπ . The corresponding scale for the kinetic energy of two
charm mesons is m2

π=M, where M is the charm-meson
mass, which is about 10 MeV.
A Galilean-invariant formulation of XEFT that exploits

the approximate conservation of mass in the transitions
D� ↔ Dπ was developed in Ref. [58]. In Galilean-invariant
XEFT, the spin-0 charm mesons D0 and Dþ have the same
kinetic mass M and the pions π0 and πþ have the same
kinetic mass m. Conservation of kinetic mass requires the
spin-1 charm mesonsD�0 andD�þ to have the same kinetic
mass M þm. The difference between the physical mass

and the kinetic mass of a particle is taken into account
through its rest energy. In XEFT, the number of charm
mesons with a charm quark and the number of charm
mesons with a charm antiquark are both conserved. In
Galilean-invariant XEFT, the pion number defined by the
sum of the numbers of D�, D̄�, and π mesons is also
conserved. The conservation of pion number simplifies
calculations in XEFT by reducing the number of diagrams.
Galilean invariance also simplifies the analytic expressions
for loop diagrams. Furthermore, it simplifies the renorm-
alization of XEFT by constraining ultraviolet divergences.
An improved formulation of Galilean-invariant XEFT that
is particularly convenient for calculations beyond leading
order was developed in Ref. [59].
In Ref. [60], Braaten, Hammer, and Mehen pointed out

that XEFT could also be applied to sectors with pion
number larger than 1. It was applied specifically to the
sector with pion number 2 consisting of D�D̄�, D�D̄π,
DD̄�π, DD̄ππ, and Xπ with total energy in the region near
the D�D̄� thresholds [60]. The states in the pion-number
2 sector with double charm described explicitly by XEFT
are D�D�, D�Dπ, DDππ, and Tþ

ccπ with total energy in the
region near the D�D� thresholds.

B. Feynman rules

We denote the masses of the spin-0 charm mesons D0

and Dþ by M0 and Mþ, the masses of the spin-1 charm
mesons D�0 and D�þ by M�0 and M�þ, and the masses of
the pions π0 and πþ by m0 and mþ (or collectively by mπ).
We choose the kinetic mass M of the spin-0 charm mesons
to be M0 and the kinetic mass m of the pions to be mþ.
Galilean invariance then requires the kinetic mass of the
spin-1 charm mesons to be M� ¼ M þm and the kinetic
mass of Tþ

cc to be MT ¼ 2M þm. The Galilean-invariant
reduced masses of D�D and Dπ are μ ¼ MM�=MT and
μπ ¼ Mm=M�. The reduced mass of Tþ

cc and a pion
is μπT ¼ MTm=ð2M�Þ.
We proceed to give the Feynman rules for Galilean-

invariant XEFT at leading order (LO) applied to the DDπ
and DDππ sectors of QCD. Our Feynman rules are
essentially those in Ref. [59], in which the geometric
series of D�þD0 bubble diagrams have been summed up
into a Tþ

cc propagator. The Feynman rule for the propagator
of D�þ with energy E relative to the D0πþ threshold,
momentum p, and vector indices i and j is

iδij

E − p2=ð2ðM þmÞÞ − δ0þ þ iΓ�þ=2
; ð14Þ

where δ0þ ¼ M�þ −M0 −mþ ¼ 5.9 MeV and Γ�þ ¼
83.4� 1.8 keV is the measured decay width of D�þ.
The Feynman rule for the complete propagator of Tþ

cc with
energy E relative to the D0D0πþ threshold, momentum P,
and vector indices i and j is
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−iδij

−γT þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μðEcm − δ0þ þ iΓ�þ=2Þ

p ; ð15Þ

where Ecm ¼ E − P2=½2ð2M þmÞ� is the Galilean-
invariant combination of E and P. The real binding
momentum γT is a significant simplification over XEFT
applied to X, whose binding momentum γX must be
complex to take into account short-distance decay channels
such as X → J=ψπþπ−. The external-line factor for an
outgoing Tþ

cc with polarization vector ε and vector index i isffiffiffiffiffiffiffiffiffiffi
γT=μ

p
εi�: ð16Þ

The vertex connectingD�þD0 lines to the Tþ
cc propagator is

−i
ffiffiffiffiffiffiffiffiffiffi
2π=μ

p
δij; ð17Þ

where i and j are the vector indices of Tþ
cc and D�þ. In

Ref. [59], the factor
ffiffiffiffiffiffiffiffiffiffi
2π=μ

p
was removed from this vertex

in favor of multiplying the propagator in Eq. (15) by 2π=μ
and multiplying the external line factor in Eq. (16) byffiffiffiffiffiffiffiffiffiffi
2π=μ

p
. Because the complete Tþ

cc propagator is obtained
by summing a geometric series ofD�þD0 bubble diagrams,
the D�þD0 lines emerging from the vertex in Eq. (17) are
not allowed to close into a bubble before some other
interaction, such as the emission of a pion.
The Feynman rule for the D�þ ↔ D0πþ vertex in

Galilean-invariant XEFT is [58,59]

� gffiffiffiffiffiffiffi
2m

p
fπ

ðMq −mp0Þi
M þm

; ð18Þ

where i is the vector index for D�þ and q and p0 are the
momenta of πþ and D0. The overall sign is þ if the D0πþ
lines are outgoing and − if they are incoming. The
Feynman rules for the D�0 ↔ D0π0, D�þ ↔ Dþπ0, and
D�0 ↔ Dþπ− vertices differ by the Clebsch-Gordan factors
þ1=

ffiffiffi
2

p
, −1=

ffiffiffi
2

p
, and þ1, respectively. In the prefactor in

Eq. (18), fπ ¼ 130.5 MeV is the pion decay constant and g
is a dimensionless coupling constant that can be determined
from the decay width ofD�þ and its branching fraction into
D0πþ. Having chosen m ¼ mþ, the value of g is given by
g2 ¼ 0.329� 0.008. In the center-of-momentum (CM)
frame defined by p0 þ q ¼ 0, the momentum-dependent
factor in Eq. (18) reduces to qi. In original XEFT, the
momentum-dependent factor is qi in all frames.
A coupled-channel model for a loosely bound molecule

with two coupled channels related by a symmetry at short
distances was introduced in Sec. II. The wave functions for
the two coupled channels in Eqs. (7) and (11) satisfy the
symmetry condition in Eq. (12). If an amplitude in XEFT
for producing Tþ

cc is expressed in a form with a factor of
1=ðk2 þ γ2Þ from a D0 propagator, where k is the relative

momentum of the constituents D�þ and D0, then the
corresponding amplitude in the coupled-channel model
can be obtained by making the substitution

1

k2 þ γ2
→

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z0þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþ γÞΛp
Λ − γ

�
1

k2 þ γ2
−

1

k2 þ Λ2

�
;

ð19Þ

where Z0þ ¼ ðΛþ γÞγ=½ðΛþ γ0þÞγ0þ� is the relative prob-
ability of the D�0Dþ channel. This is equivalent to

replacing the universal wave function ψTðkÞ by ψ ðΛÞ
T ðkÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Z0þ
p

. If an amplitude for producing Tþ
cc through the

D�0Dþ channel is expressed in a form with Eq. (17) as the
D�0Dþ-to-Tþ

cc vertex and with a factor of 1=ðk2 þ γ20þÞ
from aDþ propagator, where k is the relative momentum of
D�0 and Dþ, then the amplitude in the coupled-
channel model can be obtained by making the substitution

1

k2þγ20þ
→−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þZ0þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþγÞΛp
Λ−γ0þ

�
1

k2þγ20þ
−

1

k2þΛ2

�
:

ð20Þ

The relative minus sign compared to Eq. (19) comes from
the isospin-0 combination ðD�þD0 −D�0DþÞ= ffiffiffi

2
p

. The
integrals over k of the right sides of Eqs. (19) and (20)
differ only by a minus sign. This is consistent with our
assumption that isospin symmetry at short distances
requires the wave functions at the origin for the channels
D�þD0 and D�0Dþ to be equal, as in Eq. (12). The ratio of
the integrals over k of the squares of the right sides of
Eqs. (20) and (19) is equal to the relative probability Z0þ of
the D�0Dþ channel.

IV. PRODUCTION AT A HADRON COLLIDER

In this section we consider the production of Tþ
ccð3875Þ

at a high-energy hadron collider such as the LHC. We
compare various aspects of its production with that
of Xð3872Þ.

A. Production mechanisms

The production of X at a hadron collider has two
contributions that can be resolved experimentally: bottom
hadron decay and prompt production. In bottom hadron
decay, a b or b̄ is created at the primary vertex for the
colliding hadrons. It hadronizes into a bottom hadron,
which travels a measurable distance before decaying
through the weak interaction at a secondary vertex into a
final state that includes X. The decay products of X, such as
J=ψπþπ−, emerge from that secondary vertex. In the
prompt production of X, the cc̄ constituents of X are
created at the primary vertex by QCD interactions and the
decay products of X emerge from the primary vertex.
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Bottom hadron decay can be distinguished from prompt
production by the distribution of the measured distance
between the X decay vertex and the primary collision
vertex. In the production of Tþ

cc at a hadron collider, there is
no significant production mechanism analogous to bottom
hadron decay. The production of Tþ

cc is entirely prompt. Its
decay products, such as D0D0πþ, emerge from the primary
vertex.
At a hadron collider, there are two distinct mechanisms

for the prompt production of X or the production of Tþ
cc:

single-parton scattering (SPS) and double-parton scatter-
ing (DPS). In SPS, the cc̄ constituents of X and the cc
constituents of Tþ

cc are created with small relative momen-
tum by a single gluon-gluon collision. At leading order in
the QCD coupling constant αs, the parton reaction that
produces the cc̄ constituents of X is gg → cc̄þ g, with
diagrams like that on the left side of Fig. 1. This reaction,
whose cross section is order α3s, also produces a gluon jet
recoiling against the collinear cc̄ pair. At leading order in
αs, the parton reaction that produces the cc constituents of
Tþ
cc is gg → ccc̄c̄, with diagrams like that on the right side

of Fig. 1. This reaction, whose cross section is order α4s,
also produces two charm antiquark jets recoiling against the

collinear cc. In DPS, the cc̄ constituents of X and the cc
constituents of Tþ

cc are created with small relative
momentum by two separate gluon-gluon collisions, such as
gg → cc̄ whose cross section is order α2s. The Feynman
diagrams for X and Tþ

cc include those on the left and right
side of Fig. 2. There is a small probability that the c from
one gluon-gluon collision and the c̄ or c from the other have
small relative momentum, in which case they can become
constituents of X or Tþ

cc.
An intermediate step between the creation of a charm

quark or charm antiquark and its becoming a constituent of
X or Tþ

cc is the hadronization of c or c̄ into a charm meson.
A cc̄ pair created with small relative momentum can
hadronize into a pair of charm mesons Dð�ÞD̄ð�Þ with small
relative momentum. If the charm mesons are D�0D̄0 or
D0D̄�0, they may bind to form X. Two charm quarks
created with small relative momentum can hadronize into
two charm mesonsDð�ÞDð�Þ with small relative momentum.
If the charmmesons areD�þD0, they may bind to form Tþ

cc.
An alternative intermediate step between the creation of

a cc̄ pair with small relative momentum and the formation
of X is the hadronization of cc̄ into a more compact meson
that is a component of the wave function of X at short

FIG. 1. Feynman diagrams for the prompt production of X (left) and Tþ
cc (right) through SPS.

FIG. 2. Feynman diagrams for the prompt production of X (left) and Tþ
cc (right) through DPS.
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distances. The X is likely to have a short-distance compo-
nent that is the χc1ð2PÞ charmonium state, whose mass was
expected to be less than 100 MeV above the D�0D̄0

threshold. Quantitative calculations of the prompt produc-
tion rate of X at the LHC through the χc1ð2PÞ component of
its wave function starting from SPS reactions have been
carried out using NRQCD factorization at next-to-leading
order [61–63]. The probability for the χc1ð2PÞ component
of X is a multiplicative factor in the cross section. It can be
adjusted to bring the calculated prompt production rate of X
into agreement with measurements at the LHC. One
cannot, a priori, exclude the possibility that X also has
a short-distance component that is a compact cc̄qq̄ tetra-
quark meson, although the production rate of X through
such a component is much more difficult to quantify. The
formulation of the production rate of X entirely in terms of
the production of charm mesons does not require its
production through χc1ð2PÞ or a compact tetraquark state
to be ignored. That contribution can be taken into account
through the wave function at the origin ψXðr ¼ 0Þ of X.
An alternative intermediate step between the creation of

cc with small relative momentum and the formation of Tþ
cc

is the hadronization of cc into a tetraquark meson that is a
component of the wave function of Tþ

cc at short distances.
Such a meson could be a compact ccq̄q̄ meson or it could
consist of q̄q̄ bound to a cc diquark core. The production
rate of Tþ

cc through such a component would be difficult to
quantify. The formulation of the production rate of Tþ

cc
entirely in terms of the production of charm mesons does
not require its production through a more compact tetra-
quark meson to be ignored. That contribution can be taken
into account through the wave function at the origin
ψTðr ¼ 0Þ of Tþ

cc.

B. Short-distance production

A charm-meson triangle singularity can be relevant to the
production of X or Tþ

cc only if the process involves the
creation of two charm mesons at points whose separation is
much smaller than the radius hri of the loosely bound
molecule. There is a significant difference between the SPS
and DPS mechanisms in the distance between the points
where the charm mesons are created. With the SPS
mechanism, the points where the collinear cc̄ or cc are
created can be localized to within the reciprocals of their
transverse momenta to a single point where the gluon-gluon
collision occurs. Their subsequent hadronization can pro-
duce two charm mesons emerging from that point. With the
DPS mechanism, the points where the collinear cc̄ or cc are
created can be localized to within the reciprocals of their
transverse momenta to two separate points where the
gluon-gluon collisions occur. Their subsequent hadroniza-
tion can produce two charm mesons emerging from points
separated by a distance comparable to the radius of the
proton. Thus the two charm mesons from the SPS mecha-
nism are created at significantly shorter distances than those

from the DPS mechanism. However the DPS mechanism
may still create charm mesons at short enough distances for
a charm-meson triangle singularity to be relevant.
The charm mesonDð�Þ has four spin states (1 forD and 3

for D�) and three light-flavor states (ū, d̄, and s̄). Because
the available energy in pp collisions at the LHC is so large,
a charm quark has approximately equal probabilities to
hadronize at short distances into each of the 12 Dð�Þ flavor/
spin states. At longer distances, the D�s all decay into Dπ
or Dγ, and the resulting probabilities for D0, Dþ and Dþ

s
are roughly in the proportions 6∶2∶4. A charm quark and
antiquark created with small relative momentum have
approximately equal probabilities to hadronize at short
distances into each of the 144 Dð�ÞD̄ð�Þ flavor/spin states.
Because of the effects of identical bosons, two charm
quarks created with small relative momentum have approxi-
mately equal probabilities to hadronize at short distances
into each of the 78Dð�ÞDð�Þ flavor/spin states. For example,
the short-distance hadronization probabilities for each of the
six spin states ofD�þD�þ and each of the nine spin states of
D�þD�0 are approximately equal to those for each of the
three light-flavor states DþDþ, DþD0, and D0D0. The
production rates of two charm mesons with small relative
momentum may be modified at longer distances in channels
with a resonance near the threshold. The existence of the Tþ

cc
implies that there is an S-wave resonance near the threshold
in the D�þD0 channel.
At a high-energy proton-proton collider like the LHC,

the reactions that produce Tþ
cc or two charm mesons

Dð�ÞDð�Þ also produce hundreds or even thousands of
additional particles. It is convenient to consider the reaction
in the CM frame of Dð�ÞDð�Þ. In this frame, the colliding
protons and most of the additional particles have very large
momenta. If all the additional particles have momenta
larger than qmax in that frame, the two charm mesons
Dð�ÞDð�Þ are guaranteed to be created at points separated by
less than 1=qmax. For reactions involving the charm mesons
that involve momenta less than qmax, they might as well be
created at a point. An effective field theory for charm
mesons and pions, such as XEFT, can be applied to the
short-distance production of Dð�ÞDð�Þ by introducing local
operators that create two charm mesons at a point. The
amplitude for producing a given set of final-state particles
from the creation of Dð�ÞDð�Þ at a point can be expressed as
a sum of Feynman diagrams whose initial state is the
creation of the charm mesons at a point with a vertex
ADð�ÞDð�Þ determined by the local operator. The vertices
ADð�ÞDð�Þ must be such that the short-distance production
rates for each of the 78 Dð�ÞDð�Þ flavor/spin states are
approximately equal.
A local operator can create particles with arbitrarily large

energies. In an effective field theory, the inclusive produc-
tion rate from a local operator that creates two charm
mesons is ultraviolet divergent and it therefore requires
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regularization. A possible ultraviolet cutoff is an upper limit
qmax on the momenta of particles in the CM frame of the
two charm mesons. Renormalization may require the
vertices ADð�ÞDð�Þ to depend on qmax. If the effective field
theory is XEFT, its results for all production amplitudes can
be accurate only if qmax is at most of order mπ. If the
effective field theory is Galilean-invariant XEFT, the
particles that can be produced by the local operator are
strongly constrained by the conservation of charm-quark
number and pion number. Avertex of the formADD,AD�D,
or AD�D� produces final states with pion number 0, 1, or 2,
respectively. A final state with pion number 1 or 2 can
consist of a pion with large relative momentum and a
recoiling system with pion number lower by 1. The
recoiling system can be created by a vertex of the form
ADD or AD�D. Final states that include a pion with relative
momentum q < qmax are described explicitly in the effec-
tive field theory. The effects of pions with q > qmax can be
taken into account through the dependence on qmax of
vertices of the form ADD and AD�D. Vertices of the form
AD�D� do not acquire any dependence on qmax from the
interactions of Galilean invariant XEFT.
It has been argued that the prompt production rates of X

at the Tevatron and the LHC are orders of magnitude too
large for a charm-meson molecule [64]. The argument is
based on the assumption that an order-of-magnitude
estimate of the production rate of a molecule is the
production rate of its constituents with relative momentum
less than its binding momentum γ. The production rate of a
molecule whose constituents are produced at short dis-
tances is actually proportional to the square jψðr ¼ 0Þj2 of
its wave function at the origin [65]. For a generic molecule,
jψðr ¼ 0Þj2 can be expressed as Λ3 for some momentum
scale Λ of order γ. The production rate of the molecule can
therefore be approximated by the production rate of its
constituents with relative momentum less than Λ. Since the
production rate of the constituents scales as Λ3, this gives at
best an order-of-magnitude estimate of the production rate
of the molecule. This estimate does not apply to a loosely
bound S-wave molecule, because the universal wave
function in Eq. (2) is ultraviolet divergent at the origin.
In this case, jψðr ¼ 0Þj2 can be expressed as Λ2γ for some
momentum scale Λmuch larger than γ. The production rate
of a loosely bound S-wave molecule can therefore be
approximated by the production rate of its constituents with
relative momentum less than ðΛ2γÞ1=3. If Λ is taken to be of
ordermπ, the resulting order-of-magnitude estimates for the
prompt production rates of X are compatible with the
observed production rates at the Tevatron and the LHC
[65–67].

C. Multiplicity dependence

The total number of light hadrons in the final state is the
multiplicity. At the LHC, the total multiplicity of an event is
often in the thousands. An additional hard-parton scattering

can increase the multiplicity. The multiplicities of X or Tþ
cc

events produced by DPS are therefore expected to be larger
than those produced by SPS. An additional jet produced by
a hard scattering can increase the multiplicity. The multi-
plicities of Tþ

cc events produced by SPS are therefore
expected to be larger than those for X events produced
by SPS. However, the increase in the multiplicity from an
additional hard scattering or from an additional jet are
probably small compared to the total multiplicity. The
dominant effect of the multiplicity on the production rate
for X or Tþ

cc could be through the environment a charm
meson or a loosely bound charm-meson molecule must
propagate through after it is produced. One possible effect
of a higher multiplicity is a higher probability for particles
produced by a hard scattering to interact with comoving
partons or hadrons. Esposito et al. have considered the
effects on the production of X from its breakup by
collisions with comovers and from its formation through
recombination reactions involving comovers [68]. Once a
loosely bound charm-meson molecule has formed, almost
any interaction with a comover will break it up. It is
possible that the formation of the molecule from the two
charm mesons created by DPS occur most often after they
have traveled beyond the reach of comovers. In this case, its
production by DPS would be less suppressed by inter-
actions with comovers than its production by SPS.
The LHCb Collaboration has studied the multiplicity

dependence of the prompt production of X and ψð2SÞ and
their production from bottom hadron decays [69]. They
measured the yields as functions of the number of charged
tracks Ntracks in the vertex detector, which has a range of
several units of rapidity. The prompt fraction of X decreases
with Ntracks from about 94% in the lowest bin near Ntracks ¼
30 to about 71% in the highest bin near 120. The decreasing
prompt fraction suggests that the prompt production of X
may be dominated by SPS. A theoretical analysis by
Esposito et al. showed that the prediction of the comover
interaction model for the multiplicity dependence of the
X-to-ψð2SÞ ratio is in good agreement with the LHCb data
if X has a size consistent with a compact tetraquark [68].
They used a coalescence model that takes into account the
recombination of charm-meson pairs to calculate the
multiplicity dependence of the production of X if it is a
molecule. Their result for the X-to-ψð2SÞ ratio is a rapidly
increasing function of Ntracks. The analysis in Ref. [70]
showed that a good fit to all the LHCb data on the
multiplicity dependence of the production of X and
ψð2SÞ can be obtained if the break-up cross section of
X with comoving pions is roughly 3 mb. This value is
plausible, given that the break-up cross section for a loosely
bound charm-meson molecule should be approximately
equal to the cross section for scattering from a charm-
meson constituent.
The LHCb Collaboration has also studied the multipli-

city dependence of the inclusive production of Tþ
cc [10].
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The ratio of the yield of Tþ
cc in the decay channel D0D0πþ

to the yield of D0D̄0 seems to be about two or three times
larger at values of Ntracks greater than about 80 than at
smaller values of Ntracks. It is possible that the increased
yield at larger Ntracks arises from the DPS mechanism. In
this case, the restriction to Ntracks < 80 could produce a
sample of Tþ

cc events in which a larger fraction is produced
by the SPS mechanism.

V. PRODUCTION OF TWO CHARM MESONS

In this section we consider the production of two spin-1
charm mesonsD�D� without any accompanying soft pions.
Our treatment is similar to that for the prompt production of
D�D̄� in Ref. [46], but there are additional complications
associated with identical bosons.

A. Distinguishable charm mesons

We consider the production of two charm mesons
Dð�ÞDð�Þ plus additional particles y that all have large
momenta in the Dð�ÞDð�Þ CM frame. The short-distance
amplitude for creating D�D� is represented in XEFT by the
vertex in Fig. 3, in which the solidþ dashed lines of the
D�s emerge from a point. The amplitudes for creating D�D
and DD can be represented by analogous Feynman dia-
grams with a solid line for a D. A spin-0 charm meson is
described by a scalar field D. A spin-1 charm mesons is
described by a vector field D�i with vector index i ¼ 1, 2,
3. We denote the short-distance vertex factor for creating
DD at a point with small relative momentum while
producing additional particles y with large momentum in
the DD CM frame by iADDþy. We denote the analogous
short-distance vertex factor for creating D�D at a point by
iAi

D�Dþy. We denote the analogous short-distance vertex

factor for creating D�D� at a point by iAij
D�D�þy. If the two

D�s have the same light flavor, then Aij
D�D�þy is symmetric

in the indices i and j. We take the relative momentum k of
the charm mesons in their CM frame to be smaller than
some ultraviolet cutoff qmax of order mπ. Since the
momenta of all the additional particles y in that frame
are larger than qmax, we take the limit k → 0 in the short-
distance vertex factors.

We first consider the short-distance production of the
two distinguishable spin-1 charm mesons D�þD�0. Under
the assumption that there is no resonance near threshold in
that channel, the matrix element for producing the final
state D�þD�0 þ y is obtained by contracting the short-
distance amplitude Aij

D�þD�0þy
with the polarization vectors

εi� and ε0j� for the D�s. The inclusive differential cross
section for producingD�þD�0 with relative momentum k in
their CM frame can be expressed as

dσ½D�þD�0� ¼
X

D� spins

hAij
D�þD�0ðAkl

D�þD�0Þ�i

× ðεiε0jÞ�ðεkε0lÞ d3k
ð2πÞ3M�

: ð21Þ

The factor in angular brackets involves only short dis-
tances,

hAij
D�þD�0ðAkl

D�þD�0Þ�i≡ 1

flux

X
y

Z
dΦðD�D�Þþy

×Aij
D�þD�0þyðAkl

D�þD�0þyÞ�: ð22Þ

The product of the short-distance amplitude and its com-
plex conjugate is integrated over the relativistic differential
phase space dΦðD�D�Þþy for the additional particles y plus a
composite particle with mass 2M� denoted by ðD�D�Þ,
summed over the additional particles y (including their
spins), and multiplied by the flux factor 1/flux for the
colliding protons. The differential phase space for D�D�

has been expressed as the product of d3P=½ð2πÞ32P0� for
the composite particle ðD�D�Þ, which is included in
dΦðD�D�Þþy, and d3k=½ð2πÞ3M��, where M� is twice the
D�D� reduced mass.
We next consider the short-distance production of the

two distinguishable spin-0 charm mesonsDþD0. Under the
assumption that there is no resonance near threshold in that
channel, the matrix element for producing DþD0 plus
additional particles y is just the short-distance amplitude
ADþD0þy. The inclusive differential cross section for
producing DþD0 with relative momentum k in their CM
frame can be expressed as

dσ½DþD0� ¼ hADþD0ðADþD0Þ�i d3k
ð2πÞ3M : ð23Þ

The factor in angular brackets involves only short dis-
tances:

hADþD0ðADþD0Þ�i≡ 1

flux

X
y

Z
dΦðDDÞþy

×ADþD0þyðADþD0þyÞ�: ð24Þ
FIG. 3. Feynman diagram in XEFT for the production of D�D�
from their creation at a point. A D� is represented by a double
(solidþ dashed) line with an arrow.

BRAATEN, HE, INGLES, and JIANG PHYS. REV. D 106, 034033 (2022)

034033-10



The product of the short-distance amplitude and its com-
plex conjugate is integrated over the relativistic differential
phase space dΦðDDÞþy for the additional particles y plus a
composite particle with mass 2M denoted by ðDDÞ. The
cross section in Eq. (23) is for the production of DþD0 at
short distances. It does not include the feed down from the
production of D�D� or D�D at short distances followed by
decays D� → Dπ; Dγ.
In the CM frame of D�þD�0, the short-distance ampli-

tude Aij
D�þD�0þy is a Cartesian tensor with vector indices ij.

The indices ij can be carried by the metric tensor δij, by
momentum vectors of additional particles y or the colliding
protons, or by polarization vectors, spinors, or tensors
associated with their spins. The indices ij cannot be carried
by the relative momentum vector k of the two D�s, because
the limit k → 0 has been taken in the short-distance
amplitude. The weighted average hAij

D�þD�0ðAkl
D�þD�0Þ�i of

the product of short-distance amplitudes in Eq. (22) is a
Cartesian tensor with vector indices ijkl. The indices
cannot be carried by the momentum vector of any of the
additional particles y, because they have been integrated
over. They cannot be carried by the polarization vector,
spinor, or tensor associated with one of their spins, because
the spins have been summed over. The indices can however
be carried by the momentum vector of one of the colliding
protons or by its polarization spinor. That possibility can be
removed by averaging over the spins of the colliding
protons and by averaging over the directions of their
momenta in the CM frame of the two charm mesons.
Averaging over the directions of the proton momenta in the
charm-meson CM frame has the same effect as averaging
over the directions of the total momentum P of the charm
mesons in the pp CM frame. From now on, it will be
understood that the weighted average of an amplitude and
its complex conjugate, such as that in Eq. (22) or Eq. (24),
is also averaged over the spins of the colliding protons and
averaged over the directions of their momenta in the CM
frame of the two charm mesons. The weighted average in
Eq. (22) must then be a linear combination of δikδjl, δilδjk,
and δijδkl. The condition that the 78 flavor/spin states of
Dð�ÞDð�Þ are produced equally often at short distances can
be implemented by keeping only the δikδjl term. The
weighted average in Eq. (22) can be related to the weighted
average in Eq. (24). Since the difference between the
masses 2M� and 2M of the composite particles ðD�D�Þ
and ðDDÞ in the phase-space integrals in Eq. (22) and
Eq. (24) is tiny compared to the collision energy, it can be
ignored. The resulting relation between the weighted
averages has the form

hAij
D�þD�0ðAkl

D�þD�0Þ�i ¼ hADþD0ðADþD0Þ�iδikδjl: ð25Þ

After multiplying by the polarization vectors in Eq. (21)
and summing over the spin states of D�þD�0, we obtain

X
D� spins

hAij
D�þD�0ðAkl

D�þD�0Þ�iðεiε0jÞ�ðεkε0lÞ

¼ 9hADþD0ðADþD0Þ�i: ð26Þ

The prefactor in Eq. (25) was chosen so the prefactor in
Eq. (26) is the number of D�þD�0 spin states.
Our final result for the D�þD�0 cross section is obtained

by inserting Eq. (26) into Eq. (21),

dσ½D�þD�0� ¼ 9hADþD0ðADþD0Þ�i d3k
ð2πÞ3M�

: ð27Þ

The differential cross section dσ=d3k for D�þD�0 differs
from that for DþD0 from Eq. (23) by the spin factor 9 and
the mass ratio M=M�.

B. Identical charm mesons

We next consider the short-distance production of the
two identical spin-1 charm mesons D�þD�þ. Under the
assumption that there is no resonance near threshold in that
channel, the matrix element for producing the final state
D�þD�þ þ y is obtained by contracting the short-distance
amplitude Aij

D�þD�þþy with the polarization vectors εi� and

ε0j� for the D�s. The inclusive differential cross section for
producing D�þD�þ with relative momentum k in their CM
frame can be expressed as

dσ½D�þD�þ� ¼ 1

2

X
D� spins

hAij
D�þD�þðAkl

D�þD�þÞ�i

× ðεiε0jÞ�ðεkε0lÞ d3k
ð2πÞ3M�

: ð28Þ

The short-distance factor is defined by a weighted average
analogous to that in Eq. (22). The prefactor of 1=2 in
Eq. (28) compensates for overcounting the states of the
identical bosons D�þD�þ.
We next consider the short-distance production of the

two identical spin-0 charm mesons DþDþ. Under the
assumption that there is no resonance near threshold in
that channel, the matrix element for producing DþDþ plus
additional particles y is just the short-distance amplitude
ADþDþþy. The inclusive differential cross section for
producing DþDþ with relative momentum k in their CM
frame can be expressed as

dσ½DþDþ� ¼ 1

2
hADþDþðADþDþÞ�i d3k

ð2πÞ3M : ð29Þ

The short-distance factor is defined by a weighted average
analogous to that in Eq. (24). The prefactor of 1=2 in
Eq. (29) compensates for overcounting the states of the
identical bosonsDþDþ. The cross section in Eq. (29) is for
the production of DþDþ at short distances. It does not
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include the feed down from the production ofD�D� orD�D
at short distances followed by decays D� → Dπ; Dγ.
In the CM frame of D�þD�þ, the short-distance ampli-

tude Aij
D�þD�þþy is a Cartesian tensor with vector indices ij.

The weighted average hAij
D�þD�þðAkl

D�þD�þÞ�i analogous to
that in Eq. (22) is a Cartesian tensor with vector indices ijkl
that can only be carried by the metric tensor. Because the
D�þD�þ are identical bosons, the indices must be sym-
metric under interchange of i and j and under interchange
of k and l. It must therefore be a linear combination of
δikδjl þ δilδjk and δijδkl. The condition that the 78 flavor/
spin states of Dð�ÞDð�Þ are produced equally often at short
distances can be implemented by keeping only the δikδjl þ
δilδjk term. The weighted average in Eq. (28) can be related
to the weighted average in Eq. (29),

hAij
D�þD�þðAkl

D�þD�þÞ�i ¼ 1

2
hADþDþðADþDþÞ�i

× ðδikδjl þ δilδjkÞ: ð30Þ

After multiplying by the polarization vectors in
Eq. (28) and summing over the spin states of D�þD�þ,
we obtain

X
D� spins

hAij
D�þD�þðAkl

D�þD�þÞ�iðεiε0jÞ�ðεkε0lÞ

¼ 6hADþDþðADþDþÞ�i: ð31Þ

The prefactor in Eq. (30) was chosen so the prefactor in
Eq. (31) is the number of D�þD�þ spin states.
Our final result for the D�þD�þ cross section is obtained

by inserting Eq. (31) into Eq. (28),

dσ½D�þD�þ� ¼ 6hADþDþðADþDþÞ�i d3k
2ð2πÞ3M�

: ð32Þ

The differential cross section dσ=d3k for D�þD�þ differs
from that for DþDþ from Eq. (29) by the spin factor 6 and
the mass ratio M=M�.
The short-distance cross sections for the two identical

bosons DþDþ in Eq. (29) and the two distinguishable
bosonsDþD0 in Eq. (23) must be equal. The short-distance

factors in those cross sections must therefore differ by a
factor of 2,

hADþDþðADþDþÞ�i ¼ 2hADþD0ðADþD0Þ�i: ð33Þ

The cross sections for the two identical bosons D�þD�þ in
Eq. (32) and the two distinguishable bosons D�þD�0 in
Eq. (27) therefore differ by the ratio 2=3 of the numbers of
their spin states.

VI. PRODUCTION OF D�+D0 AND T +
cc

In this section, we consider the production of D�þD0

and Tþ
cc without any accompanying soft pions. Our

treatment is similar to that for the prompt production of
D�0D̄0, D0D̄�0, and X in Ref. [46]. The results are
consistent with factorization formulas first derived
in Ref. [71].

A. Production of D�+D0

The existence of Tþ
cc implies that there is an S-wave

resonance near threshold in the D�þD0 channel. The
resonance must be taken into account in the production
of D�þD0 with small relative momentum as well as in the
production of Tþ

cc. We first consider the production of
D�þD0. The two Feynman diagrams in XEFT for the
production of D�þD0 by their creation at a point are shown
in Fig. 4. The blob on the left side of each diagram is the
vertex iAi

D�þD0þy
for creating the charm mesons at a point

while producing additional particles y with large momenta
in the D�þD0 CM frame. The first diagram in Fig. 4 is the
tree amplitude for producing D�þD0 without any sub-
sequent interaction between the charm mesons. The second
diagram in Fig. 4 is the loop amplitude for producing
D�þD0 with one or more subsequent rescatterings of the
charm mesons. These rescattering amplitudes form a geo-
metric series that can be summed up in terms of the
complete propagator for Tþ

cc in Eq. (15). We take the
relative momenta of the charm mesons in their CM frame to
be l for the D�þD0 that are created and k for the final-state
D�þD0. The loop integral over l should be evaluated at a
total energy E ¼ δ0þ − iΓ�þ=2þ k2=ð2μÞ given by the
sum of the complex energy of the D�þ and the real energy

FIG. 4. Feynman diagrams in XEFT for the production of D�þD0 from the creation of the charm mesons at a point. A D0 is
represented by a solid line with an arrow. The Tþ

cc is represented by a triple (solidþ dashedþ solid) line.
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of the D0. The resulting expression for the sum of the two
diagrams is

AD�þD0þyðkÞ ¼ Ai
D�þD0þy

�
1þ 4π

−γT − ik

×
Z

d3l
ð2πÞ3

1

l2 − ðk2 þ iϵÞ
�
εi�; ð34Þ

where γT ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2μjεT j

p
. The ultraviolet-divergent loop inte-

gral can be evaluated analytically after imposing a sharp
ultraviolet cutoff jlj < ðπ=2ÞΛ on the loop momentum.
The amplitude for producing D�þD0 with polarization
vector ε for the D�þ is

AD�þD0þyðkÞ ¼ Ai
D�þD0þy

Λ − γT
−γT − ik

εi�: ð35Þ

The factor Λ − γT in the numerator can be expressed asffiffiffiffiffiffiffiffiffiffiffiffi
2π=γT

p
ψTðr ¼ 0Þ, where ψTðr ¼ 0Þ is the universal wave

function at the origin for Tþ
cc given by Eq. (4) with γ ¼ γT .

The inclusive differential cross section for producing
D�þD0 with small relative momentum k in their CM frame
can be expressed as

dσ½D�þD0� ¼ 1

flux

X
D� spins

X
y

Z
dΦðD�DÞþy

× jAD�þD0þyðkÞj2
d3k

ð2πÞ32μ ; ð36Þ

where dΦðD�DÞþy is the relativistic differential phase space
for all the additional particles y plus a composite particle
denoted by ðD�DÞ with mass M� þM. The relativistic
differential phase space for D�þD0 has been expressed as
the product of the differential phase space d3P=½ð2πÞ32P0�
for the composite particle ðD�DÞ and d3k=½ð2πÞ32μ�, where
μ is the D�D reduced mass. The cross section in Eq. (36)
does not include the feed down from the production of
D�D� at short distances followed by decays D� → Dπ; Dγ.
In the CM frame of D�þD0, the amplitude Ai

D�þD0þy
is a

Cartesian vector with index i. The weighted average
hAi

D�þD0ðAj
D�þD0Þ�i of the product of amplitudes can be

defined as in Eq. (22), except that the composite particle is
ðD�DÞ with mass M� þM. The weighted average is a
Cartesian tensor whose vector indices ij can only be
carried by the metric tensor δij. This weighted average
can be related to the corresponding weighted average
hADþD0ðADþD0Þ�i for two spin-0 charm mesons. Since
the difference between the masses M� þM and 2M of the
composite particles ðD�DÞ and ðDDÞ in the phase-space
integrals in Eqs. (23) and (36) is tiny compared to the
collision energy, it can be ignored. After multiplying the
weighted average hAi

D�þD0ðAj
D�þD0Þ�i by the polarization

vectors for D�þ and summing over its spin states, we
obtainX
D�þ spins

hAi
D�þD0ðAj

D�þD0Þ�iεi�εj ¼ 3hADþD0ðADþD0Þ�i:

ð37Þ
The prefactor is the number of D�þ spin states.
After inserting the amplitude in Eq. (35) into Eq. (36)

and then using Eq. (37), the inclusive differential cross
section for producing D�þD0 with small relative momen-
tum k in their CM frame reduces to

dσ½D�þD0� ¼ 3hADþD0ðADþD0Þ�i

× jψTðr ¼ 0Þj2 2π=γT
k2 þ γ2T

d3k
ð2πÞ32μ : ð38Þ

B. Production of T +
cc

We now turn to the production of Tþ
cc. The Feynman

diagram in XEFT for the production of Tþ
cc from the

creation ofD�þD0 at a point is shown in Fig. 5. The blob on
the left side of the diagram is the vertex iAi

D�þD0þy
for

creating the charm mesons at a point while producing
additional particles y with large momenta in the D�þD0

CM frame. The loop integral should be evaluated at the
complex pole energy of Tþ

cc. In XEFT at LO, the imaginary
part of its pole energy is −Γ�þ=2. The complex pole energy
of Tþ

cc in its rest frame relative to the D0D0πþ threshold is
therefore δ0þ þ εT − iΓ�þ=2. Upon evaluating the loop
integral at this complex energy, the amplitude for producing
Tþ
cc with polarization vector ε is

ATþ
ccþy ¼ −ðAi

D�þD0þy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT=2M�M

p
Þ
ffiffiffiffiffiffiffiffiffiffi
8πγT

p
εi�

×
Z

d3l
ð2πÞ3

1

l2 − 2μðεT þ iϵÞ : ð39Þ

The factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT=2M�M

p
takes into account the difference

between relativistic and nonrelativistic normalizations of
states. The ultraviolet-divergent loop integral can be evalu-
ated analytically after imposing a sharp ultraviolet cutoff
jlj < ðπ=2ÞΛ,

ATþ
ccþy ¼ −ðAi

D�þD0þy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT=2M�M

p
ÞψTðr ¼ 0Þεi�; ð40Þ

FIG. 5. Feynman diagram in XEFT for the production of Tþ
cc

from the creation of D�þD0 at a point.
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where ψTðr ¼ 0Þ is the wave function at the origin in
Eq. (4) with γ ¼ γT .
The inclusive cross section for producing Tþ

cc from the
creation of D�þD0 at short distances can be expressed as

σ½Tþ
cc;noπ�¼

1

flux

X
Tþ
cc spins

X
y

Z
dΦðD�DÞþyjATþ

ccþyj2: ð41Þ

We have denoted this cross section by σ½Tþ
cc; no π� to

emphasize that it is the cross section for producing Tþ
cc

without any pion with momentum less than the ultraviolet
cutoff qmax used to define the short-distance vertices. After
inserting the expression for the amplitude in Eq. (40) and
then using Eq. (37), the cross section for Tþ

cc reduces to

σ½Tþ
cc; no π� ¼ hADþD0ðADþD0Þ�i 3

2μ
jψTðr ¼ 0Þj2: ð42Þ

The short-distance factor in angular brackets in the cross
section for Tþ

cc in Eq. (42) is the same as that in the
differential cross section for producing D�þD0 in Eq. (38).
Those short-distance factors can therefore be eliminated to
get a relation between the cross sections. The factors of
jψTðr ¼ 0Þj2 are also eliminated in that relation. The
invariant kinetic energy of D�þD0 is its total kinetic energy
E ¼ k2=ð2μÞ in the D�þD0 CM frame. The cross section
for D�þD0 differential in E is

dσ
dE

½D�þD0� ¼ σ½Tþ
cc; no π�

μ=ðπγTÞ
2μEþ γ2T

ð2μEÞ1=2: ð43Þ

Note that σ½Tþ
cc; no π� has a factor of γT that cancels the

explicit factor of 1=γT . This relation between the cross
sections is consistent with the imaginary part of the
universal scattering amplitude in Eq. (6).
The Tþ

cc can also be produced from the creation of
D�0Dþ at short distances, with the subsequent formation of
Tþ
cc proceeding through the D�0Dþ component of its wave

function. This contribution can be taken into account in the
coupled-channel model introduced in Sec. II, which can be
implemented by using the prescriptions in Eqs. (19) and
(20). The amplitudes for producing Tþ

cc through its D�þD0

and D�0Dþ components have different short-distance
factorsAi

D�þD0þy
andAi

D�0Dþþy
. The cross section therefore

has interference terms with the short-distance factors
hAi

D�þD0ðAj
D�0DþÞ�i and hAi

D�0DþðAj
D�þD0Þ�i. They are sup-

pressed by the random phases in the sum over the many

additional particles y. The terms with short-distance factors
hAi

D�þD0ðAj
D�þD0Þ�i and hAi

D�0DþðAj
D�0DþÞ�i are not sup-

pressed, because they are sums of positive quantities.
The contribution to the Tþ

cc cross section from its
D�þD0 and D�0Dþ components can be obtained by

replacing jψTðr ¼ 0Þj2 in Eq. (42) by jψ ðΛÞ
T ðr ¼ 0Þj2=

ð1þ Z0þÞ and jψ ðΛÞ
0þ ðr ¼ 0Þj2=ð1þ Z0þÞ, respectively.

Isospin symmetry at short distances implies that these
two contributions are equal. The total cross section in the
coupled-channel model for producing Tþ

cc without an
accompanying soft pion is therefore

σðΛÞ½Tþ
cc; no π� ¼ hADþD0ðADþD0Þ�i 3

ð1þ Z0þÞμ
× jψ ðΛÞ

T ðr ¼ 0Þj2: ð44Þ

The coefficient of jψ ðΛÞ
T ðr ¼ 0Þj2 is larger than the

coefficient of jψTðr ¼ 0Þj2 in Eq. (42) by the factor
2=ð1þ Z0þÞ, which is 1.45 if Λ ¼ mπ .

VII. PRODUCTION OF T +
cc AND A SOFT PION

In this section, we consider the production of Tþ
cc and a

soft pion. Our treatment of the triangle-singularity peaks is
similar to that for the prompt production of X and a soft
pion in Ref. [46]. We also consider the production of Tþ

cc
and a pion with larger relative momentum.

A. Triangle-Singularity Peaks

1. Amplitude for T +
ccπ +

Charm mesons D�þD�þ created at short distances can
rescatter into Tþ

ccπ
þ. The Feynman diagram in XEFT for

the production of Tþ
ccπ

þ from the creation of D�þD�þ at a
point is shown in Fig. 6. The blob on the left side is the
vertex factor iAij

D�þD�þþy for creating D�þD�þ at a point
while producing additional particles y with large momenta
in theD�þD�þ CM frame. The vertex factor is symmetric in
the vector indices ij. The D�þ-to-D0πþ vertex is given in
Eq. (18). The D�þD0-to-Tþ

cc vertex is given in Eq. (17).
We take the relative momentum of Tþ

ccπ
þ in their CM

frame to be q. The integral over the loop energy in the
diagram in Fig. 6 is conveniently evaluated by contours
using the pole of the propagator for theD�þ line attached to
the Tþ

cc. The resulting amplitude for producing Tþ
ccπ

þ is

ATþ
ccπ

þþyðqÞ ¼ i

�
Aij

D�þD�þþy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTm=M2�

q �
4πGπM�

ffiffiffiffiffi
γT

p
εi�
Z

d3k
ð2πÞ3

1

ðkþ ðμ=MÞqÞ2 þ γ2
qj þ ðm=M�Þkj

k2 − ðμ=μπÞq2 þM�Eþ
; ð45Þ
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where ε is the polarization vector for Tþ
cc and

Gπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=4πmf2π

p
. The factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTm=M2�

p
takes into

account the difference between relativistic and nonrelativ-
istic normalizations of states. The integral is over the loop
momentum k of the D�þ that becomes a constituent of Tþ

cc.
In the first denominator in the integrand, γ is the complex
binding momentum, γ2 ¼ −2μðεT þ iΓ�þ=2Þ, where
Γ�þ ¼ 83 keV is the D�þ decay width. In the second
denominator, Eþ is the complex energy

Eþ ¼ δ0þ − εT − iΓ�þ; ð46Þ

where δ0þ ¼ M�þ −M0 −mþ ¼ 5.9 MeV. A necessary
(but not necessarily sufficient) condition for the validity
of the amplitude in Eq. (45) is that the integral should be
dominated by regions in which the relative momentum
between the two charm mesons connected to Tþ

cc is less
than order mπ. If we require the relative momentum
to be less than mπ=2, mπ , or 2mπ, the total kinetic energy
E ¼ q2=ð2μπTÞ of Tþ

ccπ
þ is required to be less than 7, 12, or

32 MeV.
The two denominators in Eq. (45) can be combined into

a single denominator by introducing an integral over a
Feynman parameter. After evaluating the integral over the
loop momentum, the amplitude for producing Tþ

ccπ
þ can be

reduced to the form

ATþ
ccπ

þþyðqÞ ¼ −Gπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTmγT=4

p
Aij

D�þD�þþyε
i�qjTþðq2; γ2Þ:

ð47Þ

The triangle amplitude Tþðq2; γ2Þ depends on its two
explicit arguments and also on the complex energy Eþ
in Eq. (46). It can be expressed as a Feynman parameter
integral of the form

Tþðq2; γ2Þ ¼
Z

1

0

dx
1 − ðm=MTÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bxþ cx2

p : ð48Þ

The integral over x in Eq. (48) can be evaluated ana-
lytically,

Tþðq2;γ2Þ¼
�
1þ mb

2MTc

�
1ffiffiffi
c

p log
ffiffiffi
a

p þ ffiffiffi
c

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbþc

p
ffiffiffi
a

p
−

ffiffiffi
c

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbþc

p

þ m
MTc

ð ffiffiffi
a

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbþc

p Þ: ð49Þ

The coefficients in these equations are

a ¼ ðμ=μπÞq2 −M�Eþ; ð50aÞ
b ¼ −2ðμ=μπÞðμ=MÞq2 þM�Eþ − γ2; ð50bÞ
c ¼ ðμ=MÞ2q2: ð50cÞ

Note that aþ bþ c does not depend on q2, and it
approaches 0 in the limits εT → 0, Γ�þ → 0. Its square
root is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ c

p ¼ iγ.
The denominator of the argument of the logarithm in

Eq. (49) has a zero at a complex value of q2 that approaches
the real axis in the limit where the binding energy jεT j and
the width Γ�þ both go to zero. This is the triangle
singularity. It is convenient to express the singularity in
terms of the total kinetic energy E ¼ q2=ð2μπTÞ of Tþ

ccπ
þ.

The triangle amplitude Tþðq2; γ2Þ has a logarithmic branch
point at the triangle-singularity energy

EΔþ ¼ M�
4μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μEþ − γ2

q
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=MT

p
γ

�
2

: ð51Þ

This is the complex energy where the three charm-meson
lines that form a triangle in the Feynman diagram in Fig. 6
are all simultaneously on shell. The limit of the triangle-
singularity energy as εT → 0, Γ�þ → 0 is

EΔþ → ðMT=2MÞδ0þ ¼ 6.1 MeV: ð52Þ

The triangle amplitude Tþðq2; γ2Þ also has a square-root
branch point at E ¼ Eþ from the

ffiffiffi
a

p
terms in Eq. (49). The

limiting behavior of Tþðq2; γ2Þ near the triangle singularity
is determined by the interplay between the singularities at
EΔþ and Eþ, as discussed in Appendix A.

2. Amplitude for T +
ccπ0

Charm mesons D�þD�0 created at short distances can
rescatter into Tþ

ccπ
0. In the Feynman diagram in Fig. 6, the

vertex factor for the creation of D�þD�0 at a point is
iAij

D�þD�0þy
. The amplitude for producing Tþ

ccπ
0 with small

relative momentum q in their CM frame is

ATþ
ccπ

0þyðqÞ ¼ −Gπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTmγT=8

p
Aij

D�þD�0þyε
i�qjT0ðq2; γ2Þ:

ð53Þ

The triangle amplitude T0ðq2; γ2Þ is given by the right side
of Eq. (49) with Eþ in the coefficients a and b replaced by
the complex energy

FIG. 6. Feynman diagram in XEFT for D�D� created at a point
to rescatter into Tþ

ccπ. The pion is represented by a dashed line.
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E0 ¼ δ00 − εT − iðΓ�0 þ Γ�þÞ=2; ð54Þ

where δ00 ¼ M�0 −M0 −m0 ¼ 7.0 MeV and Γ�0 ≈
55 keV is the predicted decay width of D�0.
The amplitude T0ðq2; γ2Þ has a triangle singularity from

the logarithm in Eq. (49). The logarithmic branch point is at
the complex triangle-singularity energy

EΔ0 ¼
M�
4μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE0 − γ2

q
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=MT

p
γ

�
2

: ð55Þ

The limit of the triangle-singularity energy as εT → 0,
Γ�þ → 0, Γ�0 → 0 is

EΔ0 → ðMT=2MÞδ00 ¼ 7.3 MeV: ð56Þ

The triangle amplitude T0ðq2; γ2Þ also has a square-root
branch point at E ¼ E0.

3. Cross sections

The inclusive differential cross section for producing
Tþ
ccπ

þ with small relative momentum q in their CM frame
can be expressed as

dσ½Tþ
ccπ

þ� ¼ 1

flux

X
Tþ
cc spins

X
y

Z
dΦðD�D�ÞþyjATþ

ccπ
þþyðqÞj2

×
d3q

ð2πÞ32μπT
; ð57Þ

where dΦðD�D�Þþy is defined after Eq. (22). The relativistic
differential phase space for Tþ

ccπ
þ has been expressed as the

product of the differential phase space d3P=½ð2πÞ32P0� for
the composite particle ðD�D�Þ and d3q=½ð2πÞ32μπT �, where
μπT is the Tþ

ccπ
þ reduced mass. The differential cross

section for producing Tþ
ccπ

0 is obtained by replacing
ATþ

ccπ
þþyðqÞ in Eq. (57) by ATþ

ccπ
0þyðqÞ. The weighted

average hAij
D�D�ðAkl

D�D� Þ�i of the product of short-distance
amplitudes is defined by Eq. (22) followed by the average
over the spin states of the colliding protons and over the
directions of their momenta in the Tþ

ccπ rest frame. After
multiplying by ðεiqjÞ�ðεkqlÞ, the weighted averages can be
simplified using Eqs. (25) and (30). The sum over the spin
states of Tþ

cc results in a factor q2,X
Tþ
cc spins

hAij
D�þD�þðAkl

D�þD�þÞ�iðεiqjÞ�ðεkqlÞ

¼ 2q2hADþDþðADþDþÞ�i; ð58aÞ
X

Tþ
cc spins

hAij
D�þD�0ðAkl

D�þD�0Þ�iðεiqjÞ�ðεkqlÞ

¼ 3q2hADþD0ðADþD0Þ�i: ð58bÞ

The total kinetic energy E ¼ q2=ð2μπTÞ of Tþ
ccπ in their

CM frame is called the invariant kinetic energy, because it
is invariant under Galilean boosts. The differential cross
sections for Tþ

ccπ
þ and Tþ

ccπ
0 as functions of E are

dσ
dE

½Tþ
ccπ

þ� ¼ hADþD0ðADþD0Þ�iG
2
πMTmγT
4π2

× ð2μπTEÞ3=2jTþð2μπTE; γ2Þj2; ð59aÞ

dσ
dE

½Tþ
ccπ

0� ¼ hADþD0ðADþD0Þ�i 3G
2
πMTmγT
32π2

× ð2μπTEÞ3=2jT0ð2μπTE; γ2Þj2; ð59bÞ

where G2
π ¼ g2=ð4πmf2πÞ. We have used Eq. (33) to

express both cross sections in terms of the same short-
distance factor hADþD0ðADþD0Þ�i that appears in the cross
section for Tþ

cc in Eq. (42). These cross sections depend on
εT through the explicit factor of γT and through the triangle
amplitudes Tþ and T0.
The dependence of the differential cross sections dσ=dE

for Tþ
ccπ

þ and Tþ
ccπ

0 on the invariant kinetic energy E is
illustrated in Fig. 7 for three values of the Tþ

cc binding
energy: jεT j ¼ 320, 360, and 400 keV. The differential cross
sections forTþ

ccπ
þ andTþ

ccπ
0 each has a narrowpeak near the

limiting triangle-singularity energyEΔþ in Eq. (52) andEΔ0
in Eq. (56), respectively. The full width at half maximum of
the peak is about 1MeV. As jεT j decreases, the energy at the
peak approaches the limiting triangle-singularity energy. It
decreases through that energy when jεT j decreases below
about 0.1 MeV. The shape of dσ=dE near the peak is
determined by the interplay between the logarithmic

FIG. 7. Differential cross sections dσ=dE from Eqs. (59) as
functions of the invariant kinetic energy E for Tþ

ccπ
þ (left blue

curves) and for Tþ
ccπ

0 (right red curves). The binding energies of
Tþ
cc are 320 keV, 360 keV, and 400 keV in order of increasing

energy at the peak. The vertical dotted lines are at the limiting
triangle-singularity energies in Eqs. (52) and (56). The scale on
the vertical axis is arbitrary.
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singularity and the square-root singularity in the triangle
amplitude. Beyond the triangle-singularity peaks, the cross
sections predicted by Eqs. (59) decrease to a local minimum
and then begin to increase. The energy at the local minimum
is insensitive to εT : Emin;þ ¼ 17.5 MeV for Tþ

ccπ
þ and

Emin;0 ¼ 21.2 MeV for Tþ
ccπ

0.
We would like quantitative estimates of the contributions

to the cross sections for Tþ
ccπ

þ and Tþ
ccπ

0 from the triangle-
singularity peaks. To quantify such a cross section, it is

necessary to make a model for the background under the
peak. A simple model for the background for dσ=dE can be
obtained by interpolating between the leading power of E at
small E, which is E3=2, and a constant at large E equal to the
value of dσ=dE at the local minimum. The factor
q3jTþðq2; γ2Þj2 in the differential cross section dσ=dE
for the production of Tþ

ccπ
þ has a local minimum at a

momentum qmin;þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μπTEmin;þ

p
well above the triangle-

singularity peak. Our model for the background function
for Tþ

ccπ
þ is

q3jTðbgÞ
þ ðq2;γ2Þj2¼ nððE−MTδ0þ=2MÞ=Γ×Þq3jTþð0;γ2Þj2þ½1−nððE−MTδ0þ=2MÞ=Γ×Þ�q3min;þjTþðq2min;þ;γ

2Þj2; ð60Þ

where nðxÞ ¼ 1=ðex þ 1Þ and E ¼ q2=ð2μπTÞ. Our model
for the background function for Tþ

ccπ
0 can be obtained from

Eq. (60) by replacing Tþðq2; γ2Þ by T0ðq2; γ2Þ, δ0þ by δ00,
and qmin;þ by qmin;0. The adjustable parameter Γ× in
Eq. (60) controls the width of the crossover from
q3jTþð0; γ2Þj2 to the constant q3min;þjTþðq2min;þ; γ

2Þj2. We
choose Γ× ¼ 1 MeV. The resulting background curves for
Tþ
ccπ

þ and Tþ
ccπ

0 are shown in Fig. 8.
We denote the peaks in the cross sections above the

background curves by ðTþ
ccπ

þÞΔ and ðTþ
ccπ

0ÞΔ. The cross
sections for ðTþ

ccπ
þÞΔ and ðTþ

ccπ
0ÞΔ can be estimated by

integrating over the regions below the curves given by
Eqs. (59) and above the corresponding backgrounds from
the threshold to the local minimum. The integrated cross
sections for producing ðTþ

ccπÞΔ can be expressed in terms

of the cross section for producing Tþ
cc without an acco-

mpanying soft pion by eliminating the short-distance factor
using Eq. (42),

σ½ðTþ
ccπ

þÞΔ�≈ ð8.6� 0.5Þ× 10−3
m2

πγT=2π
jψTðr¼ 0Þj2 σ½T

þ
cc;noπ�;

ð61aÞ

σ½ðTþ
ccπ

0ÞΔ�≈ ð4.8� 0.2Þ× 10−3
m2

πγT=2π
jψTðr¼ 0Þj2 σ½T

þ
cc;noπ�:

ð61bÞ

The errors in the numerical prefactors come from the
uncertainty in the binding energy jεT j ¼ 360� 40 keV.
The largest uncertainty comes from the factor
ðm2

πγT=2πÞ=jψTðr ¼ 0Þj2. Using the expression for the
universal wave function at the origin in Eq. (4), this
factor can be approximated by ðmπ=ΛÞ2, where Λ is the
ultraviolet cutoff. If Λ is larger or smaller than mπ by a
factor of 2, that factor is smaller or larger than 1 by a
factor of 4.

B. Coupled-channel model

1. Cross sections

The limiting behavior of the triangle amplitude
Tþðq2; γ2Þ at large q2 is determined in Eq. (A3) of
Appendix A: Tþðq2; γ2Þ → 0.724=q. The triangle ampli-
tude T0ðq2; γ2Þ has the same limiting behavior. The differ-
ential cross sections dσ=dE for Tþ

ccπ
þ and Tþ

ccπ
0 in

Eqs. (59) therefore increase asymptotically as E1=2 at large
E. This unphysical behavior is an artifact of using the
universal approximation for Tþ

cc beyond its range of
applicability.
The coupled-channel model introduced in Sec. II is a

simple model with universal behavior at long distances and
more physical qualitative behavior at short distances. The
model is specified by wave functions for both the D�þD0

FIG. 8. Differential cross sections dσ=dE from Eqs. (59) as
functions of the invariant kinetic energy E for Tþ

ccπ
þ (left blue

curves) and for Tþ
ccπ

0 (right red curves). The binding energy of
Tþ
cc is jεT j ¼ 360 keV. The dashed curves are simple models for

the backgrounds. The vertical dotted lines are at the limiting
triangle-singularity energies in Eqs. (52) and (56). The scale on
the vertical axis is arbitrary.
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and D�0Dþ components of Tþ
cc, whose parameters are the

binding momenta γT and γ0þ and a larger momentum scale
Λ that we assume to be order mπ. The model can be
implemented by making the substitutions in Eqs. (19) and
(20) in amplitudes from XEFT. The model gives predic-
tions for the production of not only Tþ

ccπ
þ and Tþ

ccπ
0 but

Tþ
ccπ

− as well. The amplitudes in the coupled-channel
model are given in Appendix B. They are expressed in
terms of simple triangle amplitudes Tþ, T0, and T− that do
not depend on Λ. The amplitude for Tþ

ccπ
þ has a con-

tribution only from the D�þD0 component of Tþ
cc. The

amplitude for Tþ
ccπ

− has a contribution only from the
D�0Dþ component of Tþ

cc. The amplitude for Tþ
ccπ

0 has
contributions from both the D�þD0 and D�0Dþ compo-
nents of Tþ

cc with short-distance factors Aij
D�þD�0þy

and

Aij
D�0D�þþy

, respectively. The cross section for Tþ
ccπ

0 has

interference terms with the short-distance factors
hAij

D�0D�þðAkl
D�þD�0Þ�i and hAij

D�þD�0ðAkl
D�0D�þÞ�i. They are

suppressed by the random phases in the sum over the many
additional particles y. The terms with the short-distance
factors hAij

D�þD�0ðAkl
D�þD�0Þ�i and hAij

D�0D�þðAkl
D�0D�þÞ�i are

not suppressed, because they are sums of positive quan-
tities. The short-distance factors in the cross sections for
Tþ
ccπ

þ, Tþ
ccπ

0, and Tþ
ccπ

− can be reduced to the same factor
hADþD0ðADþD0Þ�i as in the cross section for Tþ

cc in
Eq. (44).

The differential cross sections for Tþ
ccπ

þ, Tþ
ccπ

0, and
Tþ
ccπ

− in the coupled-channel model as functions of the
invariant kinetic energy E are

dσ
dE

½Tþ
ccπ

þ� ¼ hADþD0ðADþD0Þ�iG
2
πMTmγT
4π2

ð2μπTEÞ3=2jTðΛÞ
þ ð2μπTE; γ2Þj2; ð62aÞ

dσ
dE

½Tþ
ccπ

0� ¼ hADþD0ðADþD0Þ�i 3G
2
πMTmγT
32π2

ð2μπTEÞ3=2ðjTðΛÞ
0 ð2μπTE; γ2Þj2 þ jT 0ðΛÞ

0 ð2μπTE; γ20þÞj2Þ; ð62bÞ

dσ
dE

½Tþ
ccπ

−� ¼ hADþD0ðADþD0Þ�iG
2
πMTmγT
4π2

ð2μπTEÞ3=2jTðΛÞ
− ð2μπTE; γ20þÞj2: ð62cÞ

The triangle amplitudes TðΛÞ
þ , TðΛÞ

0 , T 0ðΛÞ
0 , and TðΛÞ

− are given
in Appendix B in Eqs. (B1), (B7), (B9), and (B6). The
differential cross sections dσ=dE are shown in Fig. 9 for
jεT j ¼ 360 keV and three values of the momentum scale Λ:
Λ=mπ ¼ 1=2, 1, and 2. The cross sections for Tþ

ccπ
þ and

Tþ
ccπ

0 with the universal triangle amplitudes are also
shown. The triangle-singularity peaks for Tþ

ccπ
þ and

Tþ
ccπ

0 in the coupled-channel model have essentially the
same shape as those with the universal triangle amplitudes.
The height of the peak for Tþ

ccπ
þ in the coupled-channel

model is smaller by the multiplicative factor 1=ð1þ Z0þÞ,
which is 0.73 for Λ ¼ mπ. The height of the peak for Tþ

ccπ
0

in the coupled-channel model is approximately equal to
that with the universal triangle amplitude. This is the result

of a fortuitous compensation between the multiplicative
factor 1=ð1þ Z0þÞ and the additional contribution from the
D�0Dþ component of Tþ

cc. The limiting behaviors of
T0ðq2; γ2Þ and T0ðq2; γ20þÞ near the triangle singularity
can be deduced from the limiting behavior of Tþðq2; γ2Þ
determined in Eq. (A2) of Appendix A. The ratio of the
contributions to the cross section at the triangle-singularity
peak from the D�0Dþ and D�þD0 components of Tþ

cc can
be approximated by the absolute square of the ratio of the

logarithms in TðlogÞ
0 ðq2; γ20þÞ and TðlogÞ

0 ðq2; γ2Þ at q2 ¼ q2Δ0,
which is equal to 0.36 for jεT j ¼ 360 keV. This ratio is
close to the value Z0þ ¼ 0.38 for Λ ¼ mπ. There is no
triangle singularity in the production of Tþ

ccπ
−, because the

mass of D�0 is 2.4 MeV below the threshold for decay into

FIG. 9. Differential cross sections dσ=dE as functions of the
invariant kinetic energy E for Tþ

ccπ
þ (left blue curves), Tþ

ccπ
0

(right red curves), and Tþ
ccπ

− (lower black curves). The binding
energy of Tþ

cc is jεT j ¼ 360 keV. The thicker curves for Tþ
ccπ

þ

and Tþ
ccπ

0 were calculated using Eqs. (59). The thinner curves for
the coupled-channel model were calculated using Eqs. (62), with
Λ=mπ ¼ 1=2, 1, and 2 in order of increasing cross sections at
small E and at large E. The vertical dotted lines are at the limiting
triangle-singularity energies in Eqs. (52) and (56). The scale on
the vertical axis is arbitrary.
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Dþπ−. This prevents the D�0 and Dþ lines in the triangle
diagram from being simultaneously on shell. The cross
sections for Tþ

ccπ
− are therefore small and slowly increasing

in the region where the cross sections for Tþ
ccπ

þ and Tþ
ccπ

0

have narrow peaks. At energies above the peaks, there is a
significant decrease in all three cross sections as Λ
decreases. The dependence on Λ demonstrates that the
cross sections above the triangle-singularity peaks are
model dependent.

2. High-energy limits

The asymptotic behavior at large q2 of the triangle

amplitude TðΛÞ
þ ðq2; γ2Þ is determined in Eq. (B11) of

Appendix B. It decreases asymptotically as 1=q2, with a

coefficient that has a factor of ψ ðΛÞ
T ðr ¼ 0Þ. The other

triangle amplitudes TðΛÞ
0 , T 0ðΛÞ

0 , and TðΛÞ
− have the same

asymptotic behavior up to a sign. The differential cross
sections for Tþ

ccπ
þ, Tþ

ccπ
0, and Tþ

ccπ
− in Eqs. (62) therefore

all decrease asymptotically as E−1=2 at large E. The
multiplicative short-distance factors in the cross sections
for Tþ

ccπ in Eqs. (62) can be eliminated in favor of the cross
section for Tþ

cc in Eq. (44). This also eliminates the factors

of jψ ðΛÞ
T ðr ¼ 0Þj2. The resulting expressions for the asymp-

totic behaviors of the differential cross sections for Tþ
ccπ

þ,
Tþ
ccπ

0, and Tþ
ccπ

− are

dσ
dE

½Tþ
ccπ

þ�→σðΛÞ½Tþ
cc;noπ�

8G2
πμ

2
πTμπ

3π
ð2μπTEÞ−1=2; ð63aÞ

dσ
dE

½Tþ
ccπ

0�→σðΛÞ½Tþ
cc;noπ�

2G2
πμ

2
πTμπ
π

ð2μπTEÞ−1=2; ð63bÞ

dσ
dE

½Tþ
ccπ

−�→σðΛÞ½Tþ
cc;noπ�

8G2
πμ

2
πTμπ

3π
ð2μπTEÞ−1=2: ð63cÞ

In Fig. 10, the differential cross section for Tþ
ccπ

þ in
Eq. (62a) divided by σðΛÞ½Tþ

cc; no π� is compared with the
asymptotic cross section in Eq. (63a) for Λ=mπ ¼ 1=2, 1,
and 2. The height of the triangle-singularity peak depends
dramatically on Λ, but the curves all approach the asymp-
totic cross section as E increases.
The cross section σðΛÞ½Tþ

cc; no π� on the right sides of
Eqs. (63) should not be interpreted literally as the cross
section for Tþ

cc without any pion. It is actually the cross
section for Tþ

cc without any pion with relative momentum
smaller than the ultraviolet cutoff qmax used to define the
short-distance amplitudes. The momentum qmax is an
arbitrary scale separating states described explicitly by
the effective field theory from states described implicitly
through the dependence of short-distance amplitudes on
qmax. A pion with relative momentum less than qmax is
described explicitly. The effects of pions with relative
momentum larger than qmax must be taken into account

through the short-distance amplitudes. In the case of Tþ
ccπ

states, the corresponding invariant kinetic energy is
Emax ¼ q2max=ð2μπTÞ. As Emax is increased, there are Tþ

cc

events with no pion that are resolved into Tþ
ccπ

þ, Tþ
ccπ

0, and
Tþ
ccπ

− events, so σðΛÞ½Tþ
cc; no π� must decrease accordingly.

The sum of σðΛÞ½Tþ
cc; no π� and the cross sections for Tþ

ccπ
þ,

Tþ
ccπ

0, and Tþ
ccπ

− integrated over E < Emax should not
depend on Emax. This condition requires short-distance
factors of the form hAD�DðAD�DÞ�i to be multiplied by a
factor whose difference from 1 is orderG2

πμπTμπqmax. Since
G2

πμπTμπmπ ¼ 0.027, the multiplicative factor is close to 1
if qmax < mπ . We have therefore not implemented the
multiplicative factors that guarantee that cross sections
are independent of qmax.
We would like quantitative estimates of the integrated

cross sections for Tþ
cc accompanied by a soft pion. The

differential cross sections for Tþ
ccπ

þ, Tþ
ccπ

0, and Tþ
ccπ

−

in the coupled-channel model are given in Eqs. (62).
Their high-energy limits in Eqs. (63) show that the cross
sections integrated over the energy E up to some maximum
Emax increase asymptotically as E1=2

max. As shown in
Appendix B 4, this is the correct asymptotic behavior for
a general wave function. The cross sections integrated up to
an energy Emax much larger than the limiting triangle-
singularity energies can be expressed as

σ½Tþ
ccπ

þ� ≈
 
3.2

ffiffiffiffiffiffiffiffiffiffi
Emax

mπ

s
− 0.0þ1.8

−1.3

!
× 10−2σðΛÞ½Tþ

cc; no π�;

ð64aÞ

FIG. 10. Differential cross sections dσ=dE divided by
σðΛÞ½Tþ

cc; no π� as functions of the invariant kinetic energy E
for Tþ

ccπ
þ. The binding energy of Tþ

cc is jεT j ¼ 360 keV. The

solid curves are calculated using the triangle amplitude TðΛÞ
þ with

Λ=mπ ¼ 1=2, 1, and 2 in order of decreasing cross sections. The
dashed curve is the asymptotic result from Eq. (63a). The scale on
the vertical axis is in units of 1=MeV.
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σ½Tþ
ccπ

0� ≈
 
2.4

ffiffiffiffiffiffiffiffiffiffi
Emax

mπ

s
− 0.0þ1.3

−1.0

!
× 10−2σðΛÞ½Tþ

cc; no π�;

ð64bÞ

σ½Tþ
ccπ

−� ≈
 
3.2

ffiffiffiffiffiffiffiffiffiffi
Emax

mπ

s
− 1.3þ0.3

−0.5

!
× 10−2σðΛÞ½Tþ

cc; no π�:

ð64cÞ

The coefficients of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emax=mπ

p
were determined from

the asymptotic behaviors of dσ=dE in Eqs. (63).
The numerical coefficients with error bars were deduced
by fitting the subleading behavior at large Emax with
Λ ¼ 20�1mπ .
Near the triangle-singularity peak in dσ=dE for Tþ

ccπ
þ,

the differential cross section for Tþ
ccπ

− is much smaller, as
is evident in Fig. 9. In experimental measurements of
dσ=dE for Tþ

ccπ
þ, subtracting dσ=dE for Tþ

ccπ
− would also

remove the background from random pions from the pp
collision that have nothing to do with the creation of charm
mesons. The difference between the cross sections in the
coupled-channel model in Eqs. (62a) and (62c) is shown as
a function of E in Fig. 11. Since the differential cross
sections for Tþ

ccπ
þ and Tþ

ccπ
− have the same limiting

behavior at large E, the difference between their integrated
cross sections is independent of Emax,

σ½Tþ
ccπ

þ� − σ½Tþ
ccπ

−� ≈ ð1.3þ1.5
−0.8Þ × 10−2σðΛÞ½Tþ

cc; no π�:
ð65Þ

This difference is dominated by the triangle-
singularity peak. It is roughly compatible with the esti-
mate of the cross section for ðTþ

ccπ
þÞΔ in Eq. (61a), but it

has a smaller error bar from varying Λ. We can use the
difference in Eq. (65) as an estimate of the contribution to
the integrated cross section for Tþ

ccπ
þ from the triangle-

singularity peak.

C. LHCb data

The production of Tþ
cc in pp collisions at the LHC has

been studied by the LHCb Collaboration [9,10]. The Tþ
cc

was observed as a peak in the D0D0πþ invariant mass
distribution below the D�þD0 threshold. The number of
events in the peak was 117� 16. There is also evidence for
the decay of Tþ

cc into DþD0π0 in the form of a narrow peak
in the invariant mass distribution for DþD0 near its
threshold.
At a hadron collider, it is much easier to detect a charged

pion than a neutral pion. Thus the production rates for Tþ
cc

accompanied by a πþ or π− can be measured. The creation
ofD�þD�þ at short distances can produce Tþ

cc accompanied
by a soft πþ. The creation of D�0D�0 at short distances can
produce Tþ

cc accompanied by a soft π−. There may also be
Tþ
ccπ

þ and Tþ
ccπ

− events with random pions produced by
the pp collision that have nothing to do with the creation of
charm mesons at short distances.
The inclusive cross section for Tþ

cc is the sum of the
cross section σðΛÞ½Tþ

cc; no π� for Tþ
cc without any pion

with relative momentum less than qmax and the cross
sections σ½Tþ

ccπ
þ�, σ½Tþ

ccπ
0�, and σ½Tþ

ccπ
−� integrated

over the invariant kinetic energy up to Emax ¼
q2max=ð2μπTÞ. The fraction of Tþ

cc events accompanied by
a soft πþ or a soft π− can be estimated using the results in
Eqs. (64). The fractions of events having Tþ

ccπ
þ and Tþ

ccπ
−

with invariant kinetic energy less than mπ are estimated to
be ð3.0þ1.5

−1.2Þ% and ð1.8þ0.2
−0.4Þ%, respectively. Our estimates

suggest that a few of the Tþ
cc events observed by the LHCb

Collaboration should be accompanied by a soft πþ

with relative momentum less thanmπ , and that there should
be a smaller but comparable number accompanied by a
soft π−.
The fraction of Tþ

cc events with a πþ in the peak from the
triangle singularity can be estimated using the result in
Eq. (65). Our estimate ð1.2þ1.3

−0.7Þ% suggests that a few of the
Tþ
cc events observed by the LHCb Collaboration could have

a πþ in the peak from the triangle singularity. While the
number of these events is small, they all have invariant
kinetic energy E of Tþ

ccπ
þ within 1 MeVof 6.1 MeV. The

creation of charm mesons at short distances should produce
essentially no Tþ

ccπ
− events in that region of E. The

production of Tþ
ccπ

− can therefore be used to measure
the background from Tþ

ccπ
þ events with a random πþ from

the pp collision.

FIG. 11. Difference between the differential cross sections
dσ=dE for Tþ

ccπ
þ and Tþ

ccπ
− in the coupled-channel model as

functions of the invariant kinetic energy E. The binding energy of
Tþ
cc is jεT j ¼ 360 keV. The curves were calculated using

Eqs. (62a) and (62c) with Λ=mπ ¼ 1=2, 1, and 2 in order of
increasing cross sections at small E and at large E. The vertical
dotted line is at the limiting triangle-singularity energy in
Eq. (52). The scale on the vertical axis is arbitrary.
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VIII. SUMMARY

We have studied the inclusive production of Tþ
cc at a

high-energy hadron collider through the creation of two
charm mesons at short distances. The formation of Tþ

cc was
described by the effective field theory XEFT. The Tþ

cc can
be produced by the creation of its constituents D�þD0 at
short distances followed by the binding of the charm
mesons into Tþ

cc. The Tþ
cc can also be produced by the

creation of spin-1 charm mesons D�D� at short distances
followed by the rescattering of the charm mesons into Tþ

ccπ.
The universality of near-threshold S-wave resonances
guarantees that there are aspects of the production that
are determined by the binding momentum γT of Tþ

cc. There
are also aspects that involve larger momenta comparable to
the ultraviolet cutoff Λ of XEFT. Those aspects were
studied using a coupled-channel model for the D�þD0

and D�0Dþ components of Tþ
cc with isospin symmetry at

short distances. The coupled-channel model can be defined
by the prescriptions in Eqs. (19) and (20).
The Tþ

cc can be produced without an accompanying soft
pion by the creation of D�þD0 at short distances. The cross
section σ½Tþ

cc; no π� is expressed in Eq. (42) as the product
of a short-distance factor and the square jψTðr ¼ 0Þj2 of the
universal wave function at the origin for Tþ

cc. The factor
jψTðr ¼ 0Þj2 is sensitive to the binding energy of Tþ

cc
through a multiplicative factor of γT . It is more sensitive to
the ultraviolet cutoff Λ, scaling approximately as Λ2.
The cross section σðΛÞ½Tþ

cc; no π� in the coupled-
channel model is given in Eq. (44). It differs from the
cross section in Eq. (42) by replacing jψTðr ¼ 0Þj2
by jψ ðΛÞ

T ðr ¼ 0Þj2=ð1þ Z0þÞ and multiplying by 2 to take
into account the D�0Dþ component of Tþ

cc. The factor

jψ ðΛÞ
T ðr ¼ 0Þj2 could in principle be determined from other

reactions involving Tþ
cc, such as the differential cross

section for producing Tþ
ccπ

þ with large invariant kinetic
energy.
The Tþ

cc can be produced with an accompanying soft πþ

or π0 by the creation of D�þD�þ or D�þD�0 at short
distances, respectively. In Eqs. (59) the differential cross
sections for Tþ

ccπ
þ and Tþ

ccπ
0 are expressed in a form with

the same short-distance factor as in σ½Tþ
cc; no π�. The

differential cross sections dσ=dE are shown in Fig. 7 as
functions of the invariant kinetic energy E for Tþ

ccπ. They
have a narrow peak from a triangle singularity about
6.1 MeV above the threshold for Tþ

ccπ
þ and about

7.3 MeV above the threshold for Tþ
ccπ

0. Since the peak
is near the onset of a D�D� threshold, the calculation of the
cross section integrated over the peak requires the con-
struction of a smooth background, such as that shown in
Fig. 8. Our results for the cross sections for Tþ

ccπ
þ and

Tþ
ccπ

0 integrated over the triangle-singularity peaks are
given in Eqs. (61). The factor jψTðr ¼ 0Þj2 in the denom-
inator gives a very large uncertainty.

We used the coupled-channel model to calculate the
cross sections for Tþ

ccπ
þ, Tþ

ccπ
0, and Tþ

ccπ
− at energies near

the triangle-singularity peaks and at higher energies. The
differential cross sections at E above the triangle-
singularity peaks are sensitive to the momentum scale Λ,
as illustrated in Fig. 9. For E well above the peak, the
dependence of dσ=dE on Λ reduces to a multiplicative

factor proportional to jψ ðΛÞ
T ðr ¼ 0Þj2. The short-distance

factor and the factor jψ ðΛÞ
T ðr ¼ 0Þj2 can be eliminated from

dσ=dE in favor of σðΛÞ½Tþ
cc; no π�. The resulting differential

cross sections for Tþ
ccπ

þ, Tþ
ccπ

0, and Tþ
ccπ

− at large E are
given in Eqs. (63). Simple approximations for the cross
section integrated over E up to Emax are given in Eqs. (64).
In the case of Tþ

ccπ
þ and Tþ

ccπ
0, the subleading term

includes a contribution from the triangle-singularity peak.
The production of Tþ

cc accompanied by a soft πþ can be
studied at the LHC, because the charged pion provides a
clean signature. Our estimate of the fraction of Tþ

cc events
accompanied by a πþ with invariant kinetic energy less than
mπ is ð3.0þ1.5

−1.2Þ%. The LHCb Collaboration discovered Tþ
cc

as a peak in the D0D0πþ invariant mass distribution [9,10].
The number of events in the peak was 117� 16. Our
estimate suggests that several of those events should be
accompanied by an additional πþ with relative momentum
less than mπ . Our estimate for the fraction of Tþ

cc events
with Tþ

ccπ
þ in the narrow peak from the triangle singularity

near E ¼ 6.1 MeV is ð1.2þ1.3
−0.7Þ%. All of these events would

be within 1 MeV of the triangle-singularity energy. There
may be some Tþ

ccπ
þ events near that peak with a random

pion from the proton-proton collision that is unrelated to
the creation of charm mesons. The background from this
contribution can be determined experimentally by meas-
uring Tþ

ccπ
− events.

Our calculation of the peak in the cross section for Tþ
ccπ

þ
from a charm-meson triangle singularity is based on the
assumption that the charm mesons are created at short
distances much smaller than the mean radius hri of Tþ

cc.
This assumption is very well justified for the production of
Tþ
cc from single-parton scattering. It is less well justified for

the production of Tþ
cc from double-parton scattering,

because the charm mesons may be created at distances
comparable to the radius of a proton. The triangle-
singularity peak could stand out more clearly above the
background in the contribution from SPS. The LHCb
Collaboration has observed a larger yield of Tþ

cc relative
to D0D̄0 at larger values of the number Ntracks of tracks in
the vertex detector [10]. If the increased yield at larger
multiplicity arises from the DPS mechanism, the restriction
to Ntracks < 80 could produce a sample of Tþ

cc events in
which a larger fraction comes from the SPS mechanism.
Such a restriction could make the triangle-singularity peak
stand out more clearly above the background.
We calculated the cross sections for Tþ

ccπ
þ and Tþ

ccπ
0 at

low energies near the triangle-singularity peaks using

TRIANGLE SINGULARITY IN THE PRODUCTION OF … PHYS. REV. D 106, 034033 (2022)

034033-21



XEFT at LO. The coupled-channel model we used to
calculate the cross sections for Tþ

ccπ
þ, Tþ

ccπ
0, and Tþ

ccπ
− at

higher energies agrees with XEFT at leading order at low
energy, and at high energy it has power-law behavior
compatible with XEFT. It smoothly connects the ampli-
tudes in the intermediate energy region, but in this region it
is just a model. It would be worthwhile to extend the
accuracy of our calculations to XEFT at next-to-leading
order. This effective field theory has been applied to decays
of the Tþ

cc at leading order in Refs. [22,23] and some next-
to-leading order corrections were calculated in Ref. [22].
The calculation of the cross section for Tþ

ccπ
þ near the peak

from the triangle singularity in XEFT at next-to-leading
order should be straightforward. A systematically impro-
vable calculation of the cross section at higher energies is a
more challenging problem.
We have discussed the effect of the triangle singularity

on the production of Tþ
cc accompanied by a pion. The

triangle singularity also affects the production of the
constituents D�þD0 accompanied by a pion. This reaction
proceeds through the tree diagram in Fig. 13 and also
through the loop diagram obtained from the triangle
diagram in Fig. 6 by attaching D�þ and D0 lines to the
outgoing Tþ

cc line. The two diagrams produce an interesting
interference effect called the Schmid cancellation [72]. A
convenient choice of Dalitz-plot variables is the invariant
mass s of D�þD0 and the invariant mass t of D0πþ. The
triangle singularity appears along the line s ¼ sΔ, where
sΔ ¼ ðM�þ þM0 þ EΔÞ2. In the limit where the charm
mesons in the triangle are all on shell, the differential cross
section as a function of s and t has a log2 js − sΔj
divergence along that line for all values of t inside the
Dalitz plot. The Schmid cancellation is that the differential
cross section integrated over t has only a single-log
divergence log js − sΔj. The cancellation can be most
easily observed through a local minimum as a function
of t in the differential cross section integrated over the
region s < sΔ [55].
At energies well above the triangle singularity energyEΔ,

the differential cross section dσ=dE for producing Tþ
ccπ

þ is
predicted to decrease asE−1=2. This behavior provides away
of discriminating between a loosely bound charm-meson
molecule and a compact tetraquark. A compact tetraquark T
would have to have a suppressed coupling to D�þD0;
otherwise the resonant interactions of D�þD0 would trans-
form T into a large charm-meson molecule. The Goldstone
nature of the pion requires the production amplitude ofTπ to
be proportional to the relative momentum of the pion. The
differential cross section dσ=dE should therefore increase
like E3=2. Measurements of the production rate of Tþ

ccπ
þ at

energies well above EΔ would therefore provide important
clues to the nature of Tþ

cc.
Loosely bound S-wave charm-meson molecules like X

and Tþ
cc have universal properties determined by their

binding energies. One of these properties is a narrow peak

from a charm-meson triangle singularity in the rate for their
production accompanied by a pion. Our estimate of the
cross section for Tþ

ccπ
þ from the triangle-singularity peak is

large enough to encourage the effort to observe the peak at
the LHC. The observation of such a peak would provide
strong support for the identification of Tþ

cc as a loosely
bound charm-meson molecule.
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APPENDIX A: LIMITING BEHAVIOR OF
TRIANGLE AMPLITUDES

An analytic expression for the triangle amplitude
Tþðq2; γ2Þ is given in Eq. (49), where a, b, and c are
the coefficients in Eqs. (50). In this appendix we give
limiting expressions for this triangle amplitude.
The triangle singularity in Tþðq2; γ2Þ comes from the

logarithm in Eq. (49). In the simultaneous limits εT → 0,
Γ�þ → 0, the triangle singularity is at the real value
q2Δþ ¼ ðMT=2μÞmδ0þ. Near the triangle singularity, the
square roots

ffiffiffi
a

p
and

ffiffiffi
c

p
in the argument of the logarithm

are both comparable to ðμ=MÞqΔþ. This can be made more
obvious by expressing the coefficient a in Eq. (50a) in the
form

a ¼ ðμ=MÞ2q2Δþ þ ðμ=μπÞðq2 − q2ΔþÞ þM�ðεT þ iΓ�þÞ:
ðA1Þ

The difference
ffiffiffi
a

p
−

ffiffiffi
c

p
can be comparable in magnitude

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ c

p ¼ iγ, which is approximately i
ffiffiffiffiffiffiffiffiffiffiffiffi
2μjεT j

p
.

Near the triangle singularity, Tþðq2; γ2Þ can be approxi-
mated by simplifying the coefficient of the logarithm in
Eq. (49) and the additive term by setting q2 ¼ q2Δþ and
taking the limits εT → 0, Γ�þ → 0,

TðlogÞ
þ ðq2;γ2Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=MT

μπTδ0þ

s �
2M
M�

log
ffiffiffi
a

p þðμ=MÞqþiγffiffiffi
a

p
−ðμ=MÞqþiγ

þ m
M�

�
:

ðA2Þ

The triangle amplitude Tþðq2; γ2Þ and the logarithmic
approximation in Eq. (A2) are compared in Fig. 12 by

BRAATEN, HE, INGLES, and JIANG PHYS. REV. D 106, 034033 (2022)

034033-22



showing the differential cross section dσ=dE for Tþ
ccπ

þ as a
function of the invariant energy E. The differential cross
section has been divided by σ½Tþ

cc; no π� to ensure that the
limit as εT → 0 is nonzero. The logarithmic approximation
gives a good fit to the exact curve near the peak not only for
jεT j ¼ 360 keV, Γ�þ ¼ 83 keV but also in the limit
εT → 0, in the limit Γ�þ → 0, and in the simultaneous
limits εT → 0, Γ�þ → 0. In the limit Γ�þ → 0, dσ=dE
develops a cusp at E ¼ δ0þ − εT . For jεT j ¼ 360 keV, the
cusp coincides with the peak, as is evident in Fig. 12. For
εT ¼ 0, the cusp at E ¼ δ0þ is well separated from the log2

divergence at E ¼ MT=ð2MÞδ0þ.
The triangle amplitude Tþðq2; γ2Þ has a logarithmic

branch point at the complex triangle-singularity energy
EΔþ in Eq. (51) and a square-root branch point at the
complex energy Eþ in Eq. (46). These nearby singularities
both approach the real axis in the simultaneous limits
εT → 0, Γ�þ → 0. The leading behavior of Tþðq2; γ2Þ near
the square-root and logarithmic singularities have the forms
Aþ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − Eþ

p
and CþD logðE − EΔþÞ, respectively,

where A, B, C, and D are complex constants that depend
on εT and Γ�þ. In the simultaneous limits εT → 0, Γ�þ → 0,
the differential cross section dσ=dE has a cusp at E ¼ δ0þ
and a log2 divergence at E ¼ MT=ð2MÞδ0þ that are both
well described by the leading singularities. If jεT j is
increased to 360 keV or Γ�þ is increased to 83 keV, the
peak in dσ=dE is not described well by the leading
singularities. The leading square-root singularity gives a
cross section that is mononotically increasing. The leading
logarithmic singularity gives a cross section with a peak
whose height is larger by a factor of 3 or more and whose

position is at an energy lower by at least 0.3 MeV than that
from the complete triangle amplitude. An accurate descri-
ption of the peak requires the logarithm in Eq. (A2), which
involves an interplay between the two singularities.
The triangle amplitude Tþðq2; γ2Þ at large q2 can be

expanded in powers of 1=q. The expansion to next-to-
leading order is

Tþðq2; γ2Þ →
�
M
M�

log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MT=m

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
MT=m

p
− 1

þ
ffiffiffiffiffiffiffiffiffiffiffi
MTm

p
M�

�
1

q

−
2iMTmγ

M2�q2
: ðA3Þ

The numerical value of the dimensionless prefactor of 1=q
is 0.724.

APPENDIX B: TRIANGLE AMPLITUDES IN THE
COUPLED-CHANNEL MODEL

In this appendix, we determine the triangle amplitudes in
the coupled-channel model using the prescriptions in
Eqs. (19) and (20).

1. Amplitude for T +
ccπ +

The amplitude for the production of Tþ
ccπ

þ from the
creation ofD�þD�þ at short distances is expressed as a loop
integral in Eq. (45). Its reduction to the form in Eq. (47)
defines the triangle amplitude Tþðq2; γ2Þ. The first denom-
inator in the loop integral in Eq. (45) can be identified as the
denominator of the universal wave function ψTðkrelÞ given
by Eq. (3), with γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μðjεT j − iΓ�þ=2Þ
p

and the shifted
relative momentum krel ¼ kþ ðμ=MÞq. The universal
wave function at the origin is ultraviolet divergent. The

regularized wave function ψ ðΛÞ
T ðkrelÞ given by Eq. (7) is a

simple model with the same momentum dependence as
ψTðkrelÞ at small krel but a finite wave function at the origin.
The replacement of ψTðkrelÞ in the loop integral in Eq. (45)

by ψ ðΛÞ
T ðkrelÞ can be implemented by making the substitu-

tion in Eq. (19). The resulting triangle amplitude for Tþ
ccπ

þ
in the coupled-channel model is

TðΛÞ
þ ðq2;γ2Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþγÞΛp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þZ0þ

p ðΛ−γÞ½Tþðq2;γ2Þ−Tþðq2;Λ2Þ�;

ðB1Þ

where Z0þ ¼ ðΛþ γÞγ=½ðΛþ γ0þÞγ0þ� is the relative prob-
ability of the D�0Dþ channel. In the expression for
Tþðq2;Λ2Þ, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ bþ c
p

reduces to iΛ.

2. Amplitude for T +
ccπ −

Charm mesons D�0D�0 created at short distances can
rescatter into Tþ

ccπ
− through the D�0Dþ component of the

FIG. 12. Differential cross sections dσ=dE divided by
σ½Tþ

cc; no π� as functions of the invariant kinetic energy E for
Tþ
ccπ

þ. The cross sections are calculated using the complete
triangle amplitude Tþðq2; γ2Þ (solid curves) and the logarithmic
approximation in Eq. (A2) (dashed curves). The four cases of
ðjεT j;Γ�þÞ in order of increasing height of the peak are
(a) (360 keV, 83 keV) (blue curves), (b) (360 keV, 0) (purple
curves), (c) (0, 83 keV) (red curves), and (d) (0, 0) (black curves).
The scale on the vertical axis is arbitrary.
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Tþ
cc wave function. The amplitude for the reaction in XEFT can be represented by the Feynman diagram in Fig. 6 with an

appropriate D�0Dþ-to-Tþ
cc vertex. If that vertex is taken to be the same as the D�þD0-to-Tþ

cc vertex in Eq. (17), the
amplitude for producing Tþ

ccπ
− with relative momentum q in their CM frame is

ATþ
ccπ

−þyðqÞ ¼ i

�
Aij

D�0D�0þy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTm=M2�

q �
4πGπM�

ffiffiffiffiffi
γT

p
εi�
Z

d3k
ð2πÞ3

1

ðkþ ðμ=MÞqÞ2 þ γ20þ

qj þ ðm=M�Þkj
k2 − ðμ=μπÞq2 þM�E−

; ðB2Þ

where ε is the polarization vector for Tþ
cc. In the first

denominator in the integrand, γ0þ is the binding momen-
tum of the D�0Dþ channel: γ20þ ¼ 2μðδ − εTÞ, where δ ¼
ðM�0 þMþÞ − ðM�þ þM0Þ ¼ 1.41 MeV is the energy
difference between the D�0Dþ and D�þD0 thresholds.
Since the real part of that denominator is always greater
than 2μδ, we have omitted its imaginary part. In the second
denominator, E− is the complex energy

E− ¼ δþ δþ− − εT − iΓ�0; ðB3Þ
where δþ− ¼ M�0 −Mþ −m− ¼ −2.38 MeV.
After evaluating the integral over the loop momentum,

the amplitude for producing Tþ
ccπ

− can be reduced to the
form

ATþ
ccπ

−þyðqÞ¼−Gπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTmγT=4

p
Aij

D�0D�0þy
εi�qjT−ðq2;γ20þÞ:

ðB4Þ
The triangle amplitude T−ðq2; γ20þÞ is given by the right
side of Eq. (49) with the coefficients

a ¼ ðμ=μπÞq2 −M�E−; ðB5aÞ

b ¼ −2ðμ=μπÞðμ=MÞq2 þM�E− − γ20þ; ðB5bÞ

c ¼ ðμ=MÞ2q2: ðB5cÞ

The square root of their sum is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ c

p ¼ iγ0þ. The
triangle amplitude T−ðq2; γ20þÞ can be obtained from
Tþðq2; γ2Þ by replacing γ2 by γ20þ and replacing Eþ by E−.
The first denominator in the integrand in Eq. (B2) can be

identified as the denominator of the simple wave function
ψ0þðkrelÞ for the D�0Dþ component of Tþ

cc given by
Eq. (10), with γcc ¼ γ0þ and the shifted relative momentum
krel ¼ kþ ðμ=MÞq. The simple wave function at the origin

is ultraviolet divergent. The wave function ψ ðΛÞ
0þ ðkrelÞ given

by Eq. (11) has the same momentum dependence as
ψ0þðkrelÞ at small krel, and it has a finite wave function

at the origin that is equal to that for ψ ðΛÞ
T ðkrelÞ. The

replacement of ψ0þðkrelÞ by ψ ðΛÞ
0þ ðkrelÞ can be implemented

by making the substitution in Eq. (20) in the amplitude in
Eq. (B2). The resulting triangle amplitude in the coupled-
channel model is

TðΛÞ
− ðq2; γ20þÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþ γÞΛp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z0þ

p ðΛ − γ0þÞ
× ½T−ðq2; γ20þÞ − T−ðq2;Λ2Þ�: ðB6Þ

3. Amplitude for T +
ccπ0

The amplitude in XEFT for the production of Tþ
ccπ

0

from the creation of D�þD�0 at short distances can be
expressed as a loop integral analogous to that for Tþ

ccπ
þ in

Eq. (45). The amplitude can be reduced to the expression in
Eq. (53), which defines the triangle amplitude T0ðq2; γ2Þ.
The first denominator in Eq. (45) can be identified as the
denominator of the universal wave function ψTðkrelÞ for the
D�þD0 component of the Tþ

cc. The replacement of ψTðkrelÞ
in the loop integral by the regularized wave function

ψ ðΛÞ
T ðkrelÞ can be implemented by making the substi-

tution in Eq. (19). The resulting contribution to the tri-
angle amplitude for Tþ

ccπ
0 in the coupled-channel

model from the D�þD0 component of the Tþ
cc wave

function is

TðΛÞ
0 ðq2;γ2Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþγÞΛp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þZ0þ

p ðΛ−γÞ½T0ðq2;γ2Þ−T0ðq2;Λ2Þ�:

ðB7Þ

The production of Tþ
ccπ

0 can also proceed by the creation
of D�0D�þ at short distances and their rescattering into
Tþ
ccπ

0 through the D�0Dþ component of the Tþ
cc wave

function. The amplitude for the reaction can be represented
by the Feynman diagram in Fig. 6 with an appropriate
D�0Dþ-to-Tþ

cc vertex. If that vertex is taken to be the same
as the D�þD0-to-Tþ

cc vertex in Eq. (17), the contribution
A0

Tþ
ccπ

0þyðqÞ to the amplitude for producing Tþ
ccπ

0 with

relative momentum q in their CM frame has a form
analogous to that in Eq. (B2). It can be reduced to

A0
Tþ
ccπ

0þyðqÞ ¼ Gπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTmγT=8

p
Aij

D�0D�þþy
εi�qjT0ðq2; γ20þÞ:

ðB8Þ

The triangle amplitude T0ðq2; γ20þÞ can be obtained from
T0ðq2; γ2Þ by replacing γ2 by γ20þ.
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The first denominator in the integrand analogous to that
in Eq. (B2) can be identified as the denominator of the
simple wave function ψ0þðkrelÞ for the D�0Dþ component

of Tþ
cc. The replacement of ψ0þðkrelÞ by ψ ðΛÞ

0þ ðkrelÞ can be
implemented by making the substitution in Eq. (20). The
triangle amplitude for Tþ

ccπ
0 in the coupled-channel model

from the D�0Dþ component of the Tþ
cc wave function is

T 0ðΛÞ
0 ðq2; γ20þÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþ γÞΛp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z0þ

p ðΛ − γ0þÞ
× ½T0ðq2; γ20þÞ − T0ðq2;Λ2Þ�: ðB9Þ

It can be obtained from TðΛÞ
0 ðq2; γ2Þ in Eq. (B9) by

replacing T0ðq2; γ2Þ by T0ðq2; γ20þÞ, replacing 1=ðΛ − γÞ
by 1=ðΛ − γ0þÞ, and multiplying by an overall minus sign.

4. Large q2

The behavior of the triangle amplitude TðΛÞ
þ ðq2; γ2Þ

defined in Eq. (B1) at large q2 can be determined by
inserting the asymptotic result for Tþðq2; γ2Þ in Eq. (A3).
The subtraction cancels the terms that decrease as 1=q, so
the triangle amplitude decreases as 1=q2,

TðΛÞ
þ ðq2; γ2Þ → i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛþ γÞΛp

MTmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z0þ

p
M2�q2

: ðB10Þ

This can be expressed in a form with a factor of the

regularized wave function at the origin ψ ðΛÞ
T ðr ¼ 0Þ given

by Eq. (9),

TðΛÞ
þ ðq2; γ2Þ → i

4μπT
M�

ffiffiffiffiffiffiffiffiffiffiffiffi
γT=2π

p ψ ðΛÞ
T ðr ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z0þ

p 1

q2
: ðB11Þ

Weverify below that this gives the large-q2 limit for a general
wave function with a finite wave function at the origin.
The triangle amplitude Tþðq2; γ2Þ for Tþ

ccπ
þ in Eq. (49)

was derived from the loop diagram in Fig. 6. An alternative
expression for Tþðq2; γ2Þ can be derived from the tree
diagram for the production of D�þD0πþ in Fig. 13 along
with thewave functionψðkÞ for the Tþ

cc bound state.We take
themomentum of πþ in theD�þD0πþ CM frame to be q.We
take the relative momentum ofD�þD0 in their CM frame to
be k. The momentum of D�þ and D0 in the D�þD0πþ CM
frame are then −ðM�=MTÞqþ k and −ðM=MTÞq − k. The
amplitude for producing Tþ

ccπ
þ with polarization vector ε

plus additional particles y can be obtained from the
amplitude for producing D�þD0πþ by multiplying it by
the wave function ψðkÞ and integrating over k,

ATþ
ccπ

þþyðqÞ ¼ i

�
Aij

D�þD�þþy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTm=M2�

q � ffiffiffiffiffiffi
8π

p
GπμπTε

i�
Z

d3k
ð2πÞ3 ψðkÞ

qj þ ðm=2μÞkj
ðqþ ðm=2μÞkÞ2 − ðm=2μÞMTðδ0þ − iΓ�þ=2Þ

:

ðB12Þ

A similar expression involving the universal wave function
in Eq. (3) can be obtained from Eq. (45) by making the
momentum shift k → k − ðμ=MÞq. The terms in the de-
nominator of the integrand proportional to q2, q · k, and δ0þ
agree with those in Eq. (B12). The terms proportional to k2,
εT , and Γ�þ have different coefficients. The amplitude
therefore agrees with Eq. (B12) through next-to-leading
order in the expansion in power of 1=q.
We now consider the amplitude in Eq. (B12) at large q2.

We assume ψðkÞ decreases rapidly enough for k beyond
some momentum scale Λ that its integral over k converges.
We take q2 to be much larger than Λ2 and also much larger
than mδ0þ. In that case, we can take the limit k → 0 in the

denominator of Eq. (B12) and in the pion emission factor.
The amplitude reduces to

ATþ
ccπ

þþyðqÞ → i

�
Aij

D�þD�þþy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTm=M2�

q �

× εi�qj
ffiffiffiffiffiffi
8π

p
GπμπT
q2

ψðr ¼ 0Þ: ðB13Þ

By comparing this to Eq. (47), we can verify that the large-
q2 limit of Tþðq2; γ2Þ is given up to a sign by Eq. (B11)

with ψ ðΛÞ
T ðr ¼ 0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Z0þ
p

replaced by ψðr ¼ 0Þ.

FIG. 13. Feynman diagram in XEFT for D�þD�þ created at a
point to produce D�þD0πþ.
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