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The electromagnetic form factor of the pion is calculated within the use of functional formalism.
We develop integral representation for the minimal set of Standard Model Green’s functions and derive the
dispersion relation for the form factor in the two-flavor QCD isospin limit mu ¼ md. We use the dressed
quark propagator as obtained from the gap equation in Minkowski space and within the Dyson-Schwinger
equations formalism to derive the approximate dispersion relation for the form factor for the first time.
We evaluate the form factor for the spacelike as well as for the timelike momentum in the presented
formalism. A new Nakanishi-like form of integral representation is proved on the basis of the vector Bethe-
Salpeter equation for the quark-photon vector with a ladder-rainbow kernel. The gauge technique turns out
to be a part of the entire structure of the vertex. In the analytic approach presented here, it is shown that a
large amount of the ρ-meson peak in the cross section eþe− → πþπ− is governed by the gauge invariance of
QED/QCD—i.e., by a gauge-technique-constructed quark-photon vertex. This approximation naturally
explains the broad shape of the ρ-meson peak.
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I. INTRODUCTION

The understanding of QCD as a quantum field theory
would not be complete without mastering all domains—the
perturbative calculation of high-energy processes—as well
as by achieving success in nonperturbative evaluations of
low-energy hadronic production processes. In the latter
case, the timelike character of transferred momenta is an
additional challenge. Developing a new nonperturbative
technique opens new prospects in this last and not yet well
theoretically mastered area. In this respect, the charged
meson form factors and the transition meson form factors
constitute rather precise data on the electromagnetic struc-
ture of the light meson. Simultaneously, both processes are
simple enough for theoretical description based on quark
and gluon degrees of freedom. The pion form factor FðsÞ in
a timelike region of momenta (s ¼ q2 > 0) carries non-
trivial information in amplitudes for the production of the
two lightest hadrons: a πþπ− pair. It has been measured
with unprecedented accuracy (0.5% [1]) in the domain of
the appearance of a striking resonant structure. Using a
phenomenological description based on Breit-Wigner fits,

the resonant structure corresponds to a 775 MeV heavy ρ
meson, where very nearby at s ¼ 780 MeV, a small (≃5%)
admixture of very narrow ω resonance is also observed [2].
The physical neutral ρ, having charged partners also, is
hence effectively considered as a neutral component of the
vector isotriplet, while the physical ω is, within a good
approximation, a strong isosinglet. Moreover, vector mes-
ons could be practically untouched by theQCDnon-Abelian
anomaly, and both aforementioned light electrically neutral
vectors could be practically identical in the isospin limit
defined asmu ¼ md. However, light vectormeson couplings
to other mesons are quite different, providing their cross-
section shapes differ very dramatically in various processes.
We brought some new hints, supported by quantitative
results, which offer the fact that various components of
QCD/QED vertices contribute very differently in different
processes. More concretely, facing the amount of the pion
peak obtained, it is very likely that seven out of the eight
components of transverse quark-photon vertices could
contribute by only a limited amount, suppressed in the
vicinity of the ρ-meson peak, and its shape is dictated by the
gauge invariance more then we expected.
In a spacelike region ½FðtÞ; t ¼ −q2; t > 0�, the available

data [3–7] are represented by a smooth decreasing curve for
which the perturbative QCD prediction [8–12] reads

FπðtÞ →
64π2f2π

ð11 − 2=3nfÞtLðtÞ
× ½1þ B2L

− 50
581

t þ B4L
−364
405

t þOðL−1
t Þ�2; ð1:1Þ
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where Lt ¼ lnðt=Λ2
QCDÞ and the coefficients Bi are related

to the nonperturbative part—the pion distribution and
the light-cone Bethe-Salpeter wave function. The actual
asymptotic predictions within today’s available experimen-
tal rangeQ2 ≃ 100 GeV2 moves the validity of perturbative
QCD predictions more toward the deep spacelike scale.
New interesting resonant structures—e.g., the deep dip at

1.5 GeV—and other heavier resonances have been found in
the shape of F by using the initial photon state method in the
BABAR2012experiment [7].With increasing energy, a theory
like vector meson dominance rapidly becomes a tautology of
what is observed in the experiment: the experimental masses
of ground-state and excited mesons becomemass parameters
of the theory,while thewidths of resonances verymuch reflect
the introduced effective couplings among various mesons.
Chiral perturbation theory [13] has calculated the electro-
magnetic form factors near the threshold in various approx-
imations [14–25], while the evaluation at higher energy,
Q > 0.5 GeV, is out of convergence with the theory, and
further phenomenological degrees of freedom need to be
added in order to continue to higher energy [26]. The func-
tional approach provides good results for spacelike mesonic
form factors [27–37],where the approach connects all lengths
naturally: it is nonperturbative at lowQ2whereQCDis strong,
and it complies with perturbation theory at spacelike asymp-
totic region of momenta. Due to known limitations and
obstacles, only a few studies [38–40] based on the quantum
field theory functional formalismoffer a result for the function
F in the entireMinkowski space. A new approach [37] for the
evaluation ofF based on the integral representation of Bethe-
Salpeter functions is employed at the level of the constituent
quark model (in this approximation, the running of quark
masses, as well as the momentum dependence of the quark
renormalization function, is ignored), and the authors restrict
themselves to only the spacelike argument of photon
momenta. In the presented study, we follow similar lines as
the authors in Ref. [37], but we take the momentum depend-
ence in the quark propagator into account. Consequently, for
the first time, we calculate the electromagnetic pion form
factor in the entire Minkowski space.
The distinct shapes of ρ and ω resonances appearing in

processes where they dominate [say, the former in the
functionFðsÞ and the latter in the3π production, for instance]
are a known striking feature. The ρ meson is a broad
resonance, while the ω peak is 20 times more narrow. The
70% contribution of the two-pion production cross section
σðee → ππÞ to themuonanomalousmagneticmomentumaμ
is an integral quantitative expression of the above statement.
Single-pion or three-pion productions dominated by the
exchange of ω (and not ρ) mesons in eþe− collisions
contribute to aμ by a remarkably smaller amount. To explain
this, new terms with new couplings related with ρ-ω-π
mixing are incorporated in the effective theories of
QCD [26,41–44]. These new effective couplings ensure
the tree-level decay of both mesons: the decay of

ρ → ππ happens at a point, while the decay of ω happens
through the radiation of pions and the subsequent decay of
virtualρ → ππ, soρ participates virtually, and its propagation
slows the decay of the ωmeson. Although less effective and
more demanding in practice, it is also worthwhile to under-
stand this origin from amicroscopic explanation based on the
quark and gluon degrees of freedom.Anunderstanding of the
detailed shape ofρ-meson resonancewith nomore thanQCD
Lagrangian parameters is certainly not equivalent to an
empirical introduction of different phenomenological cou-
plings between light vectors and pseudoscalars.
It is useful [12,19–25,45–48] to consider the pion form

factor as the boundary value of an analytical function which
has a cut on the timelike axis of the q2 variable, which starts
in the branch point sth ¼ q2th ¼ 4m2

π , the production thresh-
old. Thus, the electromagnetic form factor FπðtÞ and the
production form factor FðsÞ can be evaluated from the
dispersion relation for F:

Fðq2Þ ¼
Z

∞

0

dω
gðωÞ

q2 − ωþ iϵ
; ð1:2Þ

with the unique spectral function g, which represents the
imaginary part of FðsÞ itself, ℑFðsÞ ¼ −πgðsÞ, and which
vanishes below sth, provided that FðsÞ is the real function
there. We will simply write FπðxÞ for any momentum,
either for spacelike x < 0 or for the timelike argument
x ¼ s > 0, and for the Euclidean scalar product we have
q2E ¼ −t in the convention used in this paper.
We present the technique, which within the use of quark

and gluon degrees of freedom, leads to the form of the
dispersion relation in Eq. (1.2). It does not use predeter-
mined properties of vector mesons; they appear as a
solution of Schwinger-Dyson equations for propagators
and vertices. Vector meson masses are not an input any-
more; furthermore, the ρ meson is not taken as a stable
hadron—it has no associated real pole in the S-matrix,
and therefore it does not come from the solution of the
homogeneous bound state BSE at all. The function g in
Eq. (1.2) is then given by a multidimensional integral over
the spectral functions of quark propagators and Nakanishi
weight functions for the Bethe-Salpeter pion vertex func-
tion, as well as over the weight functions which appear in
the integral representation for the quark-photon vertex.
Wewill report on an exploratory study of the timelike pion

electromagnetic form factor using integral representations
(IRs) of QCD Green’s functions, which are derived from
nonperturbative truncation of QCD/QED Dyson-Schwinger
equations (DSEs). The IR is introduced in Sec. IV, and the
proof is relegated to the appendixes. Proposed IRs for
vertices instantly offer the analytical continuation of
Euclidean solutions for QCD Green’s functions, as well as
for hadronic form factors. In order to get the necessary
functions for calculation of the pion form factorF, we use the
solution of a combination of DSEs and the Bethe-Salpeter
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equation (BSE), which was employed recently for the
purpose of calculation of the pion transition form factor
[39] and hadron vacuum polarization [38]. Furthermore, we
derive a formula for the form factor F in this limit and
calculate the integral in Eq. (1.2) numerically.

II. THE ELECTROMAGNETIC PION FORM
FACTOR FOR TIMELIKE ARGUMENTS AND THE

MINIMAL SET OF EQUATIONS OF MOTION

The evaluation of the pion form factor is a typical
quantum field theory problem which involves bound

states as final or initial states. How to calculate such a
transition in the BSE approach is generally known [49].
Since we deal with gauge theory, which has the additional
approximate global symmetries, the Green’s function we
used as a building block should respect the vectorial as
well as axial Ward identities as a constraint. In the case of
electromagnetic form factors, the working expansion is
known [29,50], and here we will consider only the
first term, which defines the so-called (dressed) relativ-
istic impulse approximation (RIA). This matrix element
reads

J μðp;QÞ ¼ eFπðQ2Þpμ

¼ 2Nc

3
ie
Z

d4k
ð2πÞ4 tr½G

μ
EM;uðkþQ=2; k −Q=2ÞΓπðkrπ− ; pþQ=2ÞSdðkþ pÞΓ̃πðkrπþ ; Q=2 − pÞ�

þ 2Nc

3
ie
Z

d4k
ð2πÞ4 tr½G

μ
EM;uðk −Q=2; kþQ=2ÞΓπðkrπ− ; pþQ=2ÞSdðk − pÞΓ̃πðkrπþ ; Q=2 − pÞ�

þ Nc

3
ie
Z

d4k
ð2πÞ4 tr½G

μ
EM;dðkþQ=2; k−Q=2ÞΓ̃πðkrπ− ; Q=2þ pÞSuðkþ pÞΓπðkrπ− ; Q=2 − pÞ þ � � ��;

þ Nc

3
ie
Z

d4k
ð2πÞ4 tr½G

μ
EM;dðkþQ=2; k−Q=2ÞΓ̃πðkrπ− ; Q=2þ pÞSuðkþ pÞΓπðkrπ− ; Q=2 − pÞ þ � � ��; ð2:1Þ

where the expressions in the first (second) two lines
correspond with diagrams where the photon with momen-
tum Q couples to the up (down) quark with electric charge
2=3e ð1=3eÞ. In Eq. (2.1), Su stands for the up-quark
propagator,Q is the photon momentum, and Γπða; bÞ is the
pion vertex function, with aðbÞ being the relative (total)
momentum of the quark-antiquark pair. The second line
represents the triangle diagram, which has the opposite
circulation of momentum (compared to the first one, and
we also flip the sign by taking k → k). Although we write
them explicitly here, it is not difficult to show they
contribute equivalently, being individually proportional
to the relative momentum of the pionic pair p and the
pionic form factor F. Thus, up to the charge prefactor, there
are four identical contributions in the isospin limit, for
which the propagators of light quarks are equal by
definition, Su ¼ Sd. All propagators and vertices are
dressed. For a diagrammatic representation of the above,
see for instance Ref. [37]. The bare BSE vertices are
solutions of BSEs with the vertex function on the right-
hand side of the BSE, being in fact identical to the BSE
vertex in the approximation employed here.
The matrix Gμ

EM at each line in Eq. (2.1) is the quark-
photon semiamputated vertex defined as

Gμ
EM;qðk−; kþÞ ¼ Sqðk−ÞΓμ

EM;qðk;QÞSqðkþÞ; ð2:2Þ

where k� ¼ k�Q=2 stands for the momenta of fermionic
lines, and where the proper vertex Γμ

EM is determined by its
own inhomogeneous BSE, which reads

Γμ
EMðk;PÞ¼ γμþ i

Z
d4l
ð2πÞ4SðlþÞΓ

μ
EMðl;PÞSðl−ÞKðl;k;PÞ;

ð2:3Þ

where we have omitted the quark flavor q. Different flavor
combinations enter various form factors of the meson, and
since flavor is not mixed by our choice of interacting
kernels K, we will always mean a single-quark flavor
quark-photon vertex.
Thus, in order to evaluate the form factor in Eq. (2.1),

one needs to know the quark propagator S, the pion Bethe-
Salpeter vertex function Γπ , as well as the quark-photon
vertex [Eq. (2.3)]. In the isospin limit, the propagators of u
and d as well as the quark-photon vertices of the u and d
quarks are identical, and by applying charge conjugation,
one can show that the second line, up to a different
prefactor, which turns out to be þ1=3e, is equal to the
first one. The approximated set of equations for the pion
vertex and the quark propagator we used here were
obtained in Refs. [38,39] and will be described in the
following section.
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III. LIGHT QUARK PROPAGATORS
AND THE PION VERTICES

To get the solution for the functions SðkÞ and Γπðk; PÞ,
we use the simultaneous solution of a DSE for the quark
and a BSE for the pion, and thus we follow quite a common
practice used in Refs. [38,51–66].
The BSE for the vertex function Γπ reads

Γπðp;PÞ ¼ i
Z

d4k
ð2πÞ4 γμSqðkþÞΓπðk; PÞSqðk−Þ

× γν

�
−gμνVgðqÞ − CΓ

qμqν

ðq2Þ2
�
; ð3:1Þ

where the momentum q¼k−p, and we labelCΓ ¼ 4=3ξg2,
being thus identified with the longitudinal part of the gluon
propagator in a class of linear covariant gauges. The first
term should not be confused with the propagator at all,
albeit its momentum dependence of the above kernel was
chosen to mimic the so-called ladder-rainbow approxima-
tion with a one-gluon exchange and reads

VgðqÞ ¼
Z

dω
ρgðωÞ

q2 − ωþ iϵ
;

ρgðωÞ ¼ cg½δðω −m2
gÞ − δðω −m2

LÞ�; ð3:2Þ

and it is inspired by a solution of DSEs for the gluon DSE
in the Landau gauge [67]. This model was found particu-
larly useful for a relatively large region of nontrivial
couplings CΓ requiring a certain departure from the popular
Landau gauge, which is our convenient strategy. Obviously,
for nontrivial ξ, the effective kernel Vg is gauge-fixing
dependent.
We found that the presence of nontrivial longitudinal

modes improves the convergence of the solution in the form
of the integral representation (IR) for the quark propagator.
This IR reads

SðkÞ ¼
Z

∞

0

dx
=kρvðxÞ þ ρsðxÞ
k2 − sþ iϵ

; ð3:3Þ

where two functions ρv and ρs fully characterize the quark
propagator.
Notably, the longitudinal part of the kernel is the only

source of UV divergence in the presented model, which
was removed by dimensional renormalization.
In Eq. (3.1), P is the total momentum of the meson

satisfyingP2 ¼ M2,M ¼ 140 MeV for the ground state, and
the arguments in the quark propagator are k�¼k�P=2. The
DSE/BSE system provides a precise solution for the quark
propagator calculated in the gauge CΓ=ð4πÞ2 ¼ 0.18, and
the kernel couplings (3.2) cg=ð4πÞ2 ¼ −1.8 and m2

g=m2
L ¼

2=7.5, where mg in physical units is mg ¼ 556 MeV.

The pion BSE vertex function ΓπðP; pÞ is composed
from the four scalar functions:

ΓπðP; pÞ ¼ γ5ðΓEðP; pÞ þ pΓFðP; pÞ þ PΓGðP; pÞ
þ ½p;P�ΓHðP; pÞÞ; ð3:4Þ

where all of them are used to determine the pion mass, and
all of them contribute to the electromagnetic form factor. In
our exploratory study presented here, we simplify and use
only the first component formally.

IV. IRs DERIVED FROM DSEs AND THEIR USE
IN CALCULATION OF THE FUNCTION Fπ

A sort of Nakanishi IRs, originally developed for scalar
theories [68], is slowly getting more use in nonperturbative
settings of QCD [37–39,69,70]; needless to say, a certain
controversy on existing actual analytical forms exists [71].
Independently of the detailed form of IRs for Green’s
functions in QCD and the Standard Model, their important
property is their great role in the performance of analytical
integration in momentum space.
IRs for Green’s functions in quantum field theory play an

important role, since they allow analytical integration. We
perform momentum integration in Eq. (2.1) analytically by
using the well-known formula for the Euclidean space
momentum integral. For this purpose, we employ IRs for
all functions needed; more concretely, we use the IR for the
quark propagators in Eq. (3.3) with the solution for ρv;s as
obtained, for instance, in Ref. [38]. This is motivated by the
following chiral limit Goldberger-Treiman-like identity:

ΓEð0; pÞ ¼
BðpÞ
fπ

; ð4:1Þ

where the scalar function B appears in the inverse of the
quark propagator:

SðpÞ−1 ¼ pAðpÞ − BðpÞ: ð4:2Þ

Hence, we use a simplified version of the BS vertex, which
reads

Γπðp;PÞ ¼ γ5
1

N

Z
∞

0

do
ρBðoÞ

p2 − oþ iϵ
ð4:3Þ

and was used with N being the normalization factor
satisfying approximately N ¼ fπ, with its exact value
dictated by the canonical normalization of the BSE vertex.
The last missing ingredient is the quark-antiquark-

photon vertex Γμ
EM;f, for which we derive its own IR in

Appendix A. The version for the semiamputated vertex
[Eq. (2.2)] reads
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Gμ
EMðp−; pþÞ ¼

X8
i¼1

Vμ
i Tiðp2; p:Q;Q2Þ þ

Z
∞

0

dω
Z

1

−1
dz

ρvðωÞ½p−γμpþ þ ωγμ� þ ρsðωÞ½p−γ
μ þ γμpþ�

½p2 þ p:QzþQ2=4 − ωþ iϵ�2 ; ð4:4Þ

where, as we show in Appendix A, the second line is in fact
equivalent to the gauge technique ansatz, and the first line
completes the entire expression by adding all transverse
components independently. The eight transverse compo-
nents satisfy the condition of transversality V:Q ¼ 0, and
their concrete form is a matter of convention. Their
convenient representation can be chosen in the following
way:

Vμ
1 ¼ γμT; V5 ¼ pμ

T;

Vμ
2 ¼ pμ

Tp; V6 ¼ ½γμT; p�;
Vμ
3 ¼ pμ

T=Q; V7 ¼ ½γμT; =Q�;
Vμ
4 ¼ γμT ½=Q;p�; V8 ¼ pμ

Tp=Q; ð4:5Þ

and the associated scalar functions Ti satisfy the three-
dimensional integral representation

Tiðp2; p:Q;Q2Þ ¼
Z

∞

0

dω
Z

∞

1

dα

×
Z

1

−1
dz

ρi;½2�ðω;α; zÞ
½p2 þ p:Qzþ Q2

4
α − ωþ iϵ�2

:

ð4:6Þ

We recall that all functions Ti are for a given gauge
uniquely determined by the theory (by the solution of
DSEs) through the solution for ρi. Also, note that somehow
arbitrary momentum-dependent prefactors used elsewhere
in decomposition [Eq. (4.4)] are not allowed here, unless
they fulfill the herein proposed IR.
There exist obviously a set of equivalent choices,

depending on which part of the transverse components
is added to the term which is fixed by gauge covariance.
Other definitions of IR are possible, and even the single
longitudinal component γμ →

QμQ
Q2 can be used to express

the IR, which is fixed by Ward identities. We do not know
yet which choice is more advantageous from other per-
spectives—e.g., which is more suited for numerical sol-
ution. As shown in the Appendixes, we have chosen the
gauge-technique-inspired form as a tribute to the first
nonperturbative solution of DSE for the gauge vertex
appearing in the literature [72–75]. Another advantage is
that the gauge technique reduces the proper vertex to the γ
matrix in the limit of vanishing gauge couplings (all of
them in our case).
The value N ¼ 2 was chosen to derive the form of IR

[Eq. (4.4)] from the DSE [Eq. (2.3)]. Since the DSE is the
equation for the proper vertex, the appropriate IR for this

vertex is derived in the first step. Only then is it shown
that the derived IR for the proper function Γμ

EM is equivalent
to the proposed IR [Eq. (4.4)] for the semiamputated
vertex Gμ

EM.

A. Calculation of F

In order to get the form factor, we use a quite primitive,
albeit not easy approach, and as we use the IRs for all
vertices, we match their denominators by using Feynman
parametrization. This allows the shifting of the loop
integration momentum, and we integrate analytically in
momentum space. After the momentum integration, the
resulting integral involves nine dimensional integral over
the variables of various IRs. The integrand is highly
singular for Q2 > 0, thus being not useful in its instant
form that we arrive in after momentum integration. Hence,
in order to reduce the number of numerical integrations, we
use a further “gauge technique approximation,” which
reduces identical pairs of IR weight functions to the same
number of single functions. Thus, for instance,

Z
dadbρvðaÞρvðbÞ →

Z
daρvðaÞ; ð4:7Þ

with all b’s replaced by a’s in the integral kernel. It allows
further integration over auxiliary Feynman variables, pro-
vided we are left with a five-dimensional integral at the end.
The appropriate derivation is related in the Appendixes.
Furthermore, since the weight of the BSE vertex function is

1 1000
s [GeV

2
]

1e-08

0.0001

1

F(
s)

F
* (s

)

ADR F(0)=1
Experiments
ADR rescaled

FIG. 1. Calculated magnitude of the pion electromagnetic form
factor for Q2 > 0 and comparison with experiments. The error
bars are not shown; they are within the visible size of the line and
are much smaller than the deviation of presented calculations.
The solid line is rescaled by a constant, as described in the text.
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much less known then the spectral function of the quarks,
we ignore its details and use the integral reduction further
for the purpose of numerical evaluation here. The numeri-
cal results are presented in Fig. 2 for spacelike momentum,
where we compare with the experiment. The systematic
error is estimated to be around a few percentage at a few
GeV; however, adjusting Fð0Þ ¼ 1 is needed, as the
proper renormalization does not lead to the correct value
automatically.
Using some further approximations, we derive the

dispersion relation (DR) [Eq. (1.2)] and provide the first
estimate for the resulting spectral functions of the pion
electromagnetic form factor. The result is valid for low
momentum, and it consists of the following two terms:

Fðq2Þ ¼
Z

∞

0

dω
g1ðωÞ

q2 − ωþ iϵ
þ q2

Z
∞

0

dω
g2ðωÞ

q2 − ωþ iϵ
;

ð4:8Þ

where the first term could be responsible for correct
normalization Fð0Þ ¼ 1 if no approximation (linearization)
is made. The functions g1 and g2 are given by an expression
involving only a single integration due to the approxima-
tion employed. The result is not exact, and it suffers from
systematic error due to some ignored terms; however, it is
enough to show that the form factor develops the ρ-meson
peak. In fact, the gauge-technique-approximated vertex is
enough to get almost the entire structure of the ρ-meson

peak, and we ignore all other transverse vertices at this
stage. In order to support this statement quantitatively, the
dominant contribution to FπðQ2Þ has been calculated
numerically, and its square is compared with world
averaged experimental data in Fig. 1. The averaged data
of the BABAR, BESS, CMD/SND, and KLOE experiments
[1] were fitted as described in Ref. [76], noting that there
is negligibly small experimental error 0.5% on the
ρ-meson peak.
Within the used approximation, the derivation of the

desired dispersion relation [Eq. (4.8)] is quite straightfor-
ward, albeit a bit lengthy, and it is delegated to Appendix C
of this work.
The phase δ of the form factor F ¼ jFjeiδ is shown in

Fig. 3. It overestimates the phase obtained by other
methods, but it is still a satisfactory representative in our
initial study. From the obtained phase, we estimate that the
systematical error can be as much as 30%, which is caused
by linearization and other cruel approximations we made.
We assume the magnitude posses the same systematics and
that it overestimates the experimentally measured magni-
tude F, if a naive condition Fð0Þ ¼ 1 were imposed on the
approximated form factor. We lower F by a scale factor

ffiffiffi
3

p
for the purpose of better comparison. Hence, there are two
lines representing the identical result obtained by our
approximate dispersion relations: the dashed line corre-
sponds to the standard normalization Fð0Þ ¼ 1, and the
solid line represents the same calculated result, but shifted
down due to rescaling. For higher Q2, the result obtained
from the dispersion relation becomes untrustworthy due to
our pure approximation. Obviously, the first line is correct
at zero momenta, while the second one reasonably approx-
imates the peak. The difference is systematic error, which is
quite large in the present example. This error suppression is
an open task and remains a future challenge.
Furthermore, we use the approximated DR and evaluate

the form factor in the spacelike domain as well. We recall

0.1 1 10 100
-Q

2 
[GeV

2
]

0

0.2

0.4

0.6

0.8

1

1.2

F(
Q

2 )

asym.
theory
CEA
ADR theory
Cor1
Cor2
Bebek

FIG. 2. Calculated pion electromagnetic form factor for Q2 < 0
and comparison with experiment and asymptotic prediction. The
line labeled by ADR stays for evaluation based on further
approximations needed to evaluate the spectral function in the
dispersion relation for F. For the asymptotic prediction (upper red

line),we have chosen the functionFasymðtÞ¼ 64π2f2π
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a correct asymptotic, given in Eq. (1.1). The sources for the
experimental points are Ref. [77] for crosses, Ref. [78] for squares,
Ref. [79] for stars, and Ref. [80] for triangles.
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FIG. 3. Phase of the pion form factor F as obtained here.
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that this approximation differs with the previous one, and
we add this result to Fig. 2 for comparison.
Needless to say, the inclusion of transverse quark-

photon form factors could improve the picture, and going
beyond isospin approximation could leave some nontrivial
imprints on the form factor shape. Some part of the
systematical error could be due to this missing contribu-
tion; however, the missing off-peak contribution is difficult
to explain as due only to the absence of transverse quark-
photon components. To get rid of this uncertainty, the
developed IR in the previous section could be used. We
expect that the first interesting solution for vertices will be
found in the next decade. Beyond our isospin approxima-
tion, further integrations (at least two) should appear in
practice due to the necessity to use a more sophisticated,
but unluckily also a more dimensional, IR [69,70] in order
to evaluate the electromagnetic form factor in the non-
symmetric case.
We do not use IRs for the transverse vertices in the part

devoted to the numerical study of F due to our simplified
approximation. However, the revelation of their entire
structure represents an important theoretical hint for future
studies.

B. Renormalization within IRs

The use of the proposed IRs allows the dimensional
regularization to be used to regularize four-dimensional
momentum integrals when they show UV divergence.
Regarding the renormalization of the vertex, the only

allowed UV infinities could be associated with γ matrix
structure, since transverse form factors have no associated
terms in the Lagrangian of the Standard Model. However,
note that the second and the eighth transverse components
in the list [Eq. (4.5)] can, in principle, spoil the renorm-
alization properties for our (till now preferred) choice of
power N ¼ 2 in the denominator of the IR. Actually, such
naive UV divergences appear, and it turns out that they
cancel neither mutually nor against the UV term generated
by the gauge technique.
One possibility to get rid of UV divergences from the

beginning is that a more general N can be equivalently
considered. Assuming a different N is allowed and
describes the same form factor:

Tjðk2; k:Q;Q2Þ ¼
Z

∞

0

dω
Z

∞

1

dα

×
Z

1

−1
dz

ρj;½Nj�ðω; α; zÞ
½k2 þ k:Qzþ Q2

4
α − ωþ iϵ�Ni

:

ð4:9Þ

Then Nakanishi’s distributions ρN with a different
integer parameter N are related through the following
relation:

ρT½N−1�ðω; α; zÞ ¼
−1

ðN − 1Þ
dρT½N�ðω;α; zÞ

dω
;

ρT½Nþ1�ðω; α; zÞ ¼ −N
Z

ω

0

doρT½N�ðo; α; zÞ; ð4:10Þ

where we assume that the Nakanishi weights vanish at
boundaries.
Higher values of N are formally allowed; however, they

would complicate the future evaluation of the hadronic
form factor, so we stay with N ¼ 2 here. To make our
calculation meaningful for such a low N, we need to
prevent this theory from unwanted UV divergences another
way. For this purpose, one needs to impose the following
sum rules:

Z
Γ
dðω; α; zÞρ2;½2�ðω; α; zÞ ¼

Z
Γ3

dðω; α; zÞρ8;½2�ðω; α; zÞ

¼ 0; ð4:11Þ

for two weight functions of potentially dangerous trans-
verse form factors.
In Eq. (4.11), we have introduced the abbreviation for the

three-dimensional integration

Z
Γ3

dðω; α; zÞf ≡
Z

∞

0

dω
Z

∞

1

dα
Z

1

−1
dzf; ð4:12Þ

which will be used for the purpose of brevity.
Actually, the combination of T2 components with the

gauge term of the interaction kernel then produces UV
divergence, which is proportional to γμT—i.e., to the first
component of the proper vertex. Similarly, the eighth
component, which is quadratic in the relative momentum
p of the quark-antiquark pair (≃pμp=Q), provides linear
divergence in the proper vertex. In the dimensional regu-
larization scheme, it has the form

ξg2

12π2
ðγμ=Q −QμÞðϵ−1 þ finiteÞ

Z
Γ3

dðω;α; zÞρ8;½2�ðω;α; zÞ:

ð4:13Þ

The derivation of the entire contribution to the quark-
photon vertex due to the gauge interaction is shown in the
Appendixes. Quite generally, within the condition (4.11),
one makes our vertex DSE finite within all transverse
components properly accounted for.

V. SUMMARY AND DISCUSSION

Our results are a strong hint that there exists a consistent
integral representation of QCD Green’s functions. If so, it is
of great interest to explore the physical predictions or their
use to calculate physical processes that were already
experimentally measured, but were beyond theoretical
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capabilities due to the timelike character of momenta in the
nonperturbative low-energy strong regime of QCD. We
have already derived integral representations for the quark-
photon gauge vertex showing it contains a part which is
identical with the gauge technique. Within two approx-
imations, we obtained the result for the pion form factor,
yet without the inclusion of other transverse components of
the vertex. The spectral function of the pion electromag-
netic form factor has been obtained from the applications of
integral representation to Dyson-Schwinger equations for
the first time. Up to the norm, the form factor agrees with
the experimental data at low Q2 in both the spacelike as
well as the timelike domain of momenta. To this point, let
us mention that the gauge technique was used in the so-
called spectral quark model studies in Refs. [81–83],
wherein no further transverse vertices were needed to
describe the broad shape of the ρ-meson peak in calculated
electromagnetic pion form factors. Although the spectral
model does not solve the equations of motion for propa-
gators, nor does it use the lattice predictions for this
purpose, nevertheless a prognostic feature of spectral
models was that the simple vertex solely dictated by the
Abelian gauge invariance could be enough for a gross
description. In this paper, we extend the study of Ref. [81]
in the sense that the quark propagators were calculated
from the set of QCD DSEs, and within a certain ambiguity
we confirm that the gauge technique is enough to provide
the gross shape of the pion form factor.
Of course, deficiencies are due to the missing ω meson

and due to the absence of an isospin-symmetry-violating
contribution. Further shortcomings—e.g., the incorrect rate
Fπð0Þ=FpiðmρÞ—appear due to the approximations—e.g.,
due to the linearization we have used at this stage. Also, the
phase follows the Watson theorem very freely. In our case,
we get δ ¼ 250 at 1 GeV, which overestimates the values of
others (δ ¼ 150). Actually, the number of numerical
integrations required for the evaluation of any hadronic
form factor is the main weakness of the proposed method. It
is not the nonperturbative evaluation of building blocks:
QCD vertices and propagators where the calculations is
stuck, but the evaluation of form factors, where a large
number of entering Green’s functions limit the evaluation.
Further improvement of calculation technology—e.g.,
avoiding a cumbersome number of auxiliary Feynman
integrations till now needed for the evaluation of hadronic
form factors—is a great theoretical challenge for the future.
Perhaps a possible generalization of old fashioned
Cutkosky rules would be a promising theoretical direction
to deal with the problem more efficiently.
We expect an improvement after the smooth and

more realistic version of the kernel [Eq. (3.2)] is used.
More improvements can be achieved when a correct weight
function ρπðaÞ, or rather its two-dimensional form ρπða; zÞ,
of the pion BS vertex IR

ΓEðp; PÞ ¼ γ5
1

N

Z
∞

0

do
Z

1

−1
dz

×
ρEðo; z;mπÞ

p2 þ p:Pzþm2
π=4 − oþ iϵ

; ð5:1Þ

is included.
To get the desired analytical form factor in the

Minkowski space, recall that at least quark propagator
needs to satisfy a standard two body dispersion—a gen-
eralized Källén-Lehmann representation, although the
quark spectral function does need to be positive definitive
function. Most importantly, no other singularities but the
single cut is allowed. Nontrivially, here we achieve this goal
by our choice of the quark-antiquark interaction kernel.
In this respect, for many other DSE/BSE studies pre-

sented in the literature [51–58,60,61,63,64,84], which are
based on the popular version of the Maris-Tandy (MT)
interaction kernel introduced in Ref. [85], the proof of the
dispersion relation could be more complicated. And at least
the derivation of desired dispersion relation used here
would invalidate at very beginning.
Recall, due to the Gaussian kernel used in MTs, the

interaction strength of the MT BSE kernel blows up at
timelike infinity. This leads to the known behavior: the
analytical continuation of quark propagators exhibits an
infinite number of complex conjugated poles [55,59,62,86].
Such propagators are not analytic in the domain required
for the existence of the IR [Eq. (3.3)], and one can repeat
again, the derivation presented here would invalidate from
the very beginning.
Our modeled DSE/BSE interacting kernel is certainly

very primitive, but it includes the important ingredient:
purely longitudinal interaction. While there should not be
too much interesting physics contained in it, its numerical
presence ensures that the ladder-rainbow approximation
will work in the entire domain of Minkowski momentum
space. Identifying a concrete numerical value of the gauge
parameter requires further knowledge about other QCD
vertices, which is out of model reach. However newly, in
order to exhibit approximate gauge-fixing independence of
the presented model, we have changed the gauge-fixing
parameters (the entire coupling CΓ). Thus, we solve the
system numerically in a new gauge once again, determine a
gauge-dependent coupling cg, and in a new gauge we
calculate the function F. In all cases, only this single
parameter was varied in order to meet the pionic observ-
ables: the pion mass and pionic weak decay constant. The
shape of the function F has been reproduced in several
different gauges, showing that the model is actually the
model of quantum gauge theory: the QCD. We plan to
perform a similar study within an improved setup of BSE
vertices.
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APPENDIX A: INTEGRAL REPRESENTATION
FOR QUARK-PHOTON VERTICES

The form of the IR for the proper and semiamputated
photon-quark vertex is derived in this appendix. Both
integral representations are related, and the appropriate
forms are derived as a self-consistent solution of the DSE
for the vertex [Eq. (2.3)]. The reason to keep the IR for both
the proper as well as for the semiamputated vertex is
theoretical and practical. While the DSEs are more con-
veniently solved in terms of the proper Green’s function,
the hadronic form factors are more easily evaluated in terms
of semiamputated vertices.
Using the labeling of momentum as described in the

main text, the form of integral representation we are going
to derive for the proper vertex reads as follows:

Γμ
EMðp;QÞ ¼ Cγμ þ Γμ

EM;Lðp;QÞ þ Γμ
EM;Tðp;QÞ;

Γμ
EM;Lðp;QÞ ¼

X4
i¼1

Wμ
i Liðp2; p:Q;Q2Þ;

Γμ
EM;Tðp;QÞ ¼

X8
i¼1

Vμ
i Tiðp2; p:Q;Q2Þ;

Tiðp2; p:Q;Q2Þ ¼
Z

∞

0

dω
Z

∞

1

dα
Z

1

−1
dz

τi;½1�ðω;α; zÞ
Fðp;Q;ω;α; zÞ ;

ðA1Þ

where

Fðp;Q;ω; α; zÞ ¼ p2 þ p:QzþQ2

4
α − ωþ iϵ ðA2Þ

for short, and the individual quark momenta associated with
the quark legs are p� ¼ p�Q=2, which is the variable
used to label the semiamputated vertex in the main text.
Here, Wi are longitudinal matrices chosen as 1Qμ, Qμp,
Qμ=Q, andQμðp=Q − =QpÞ, respectively. The capital letter Vi
stands for the transverse matrix satisfying V:Q ¼ 0, and γμ

has been taken out for calculation convenience. The IR for
scalar form factors Li satisfies exactly the same IR as the
one for Ti, but with the distribution τ replaced by its own
Nakanishi weight function, say λ.
The bracketed index “[1]” means that the first power of

the denominator appearing in the last line in Eq. (A1) has
been chosen, and if it is not different, the label will be
omitted. T and L are scalar form factors, while V are for
times-four matrices, wherein their Dirac index is not shown
for brevity, and the unit (i.e., δα;β) in the case of the
component V5 will not be shown either. Recall that τ, λ are

distributions; they may involve the product of smooth
functions with delta functions.

1. IR based on DSEs and the relation
with Nakanishi’s PTIR

For pedagogical reasons, we mention the connection
with the PTIR [68] and the IR used herein. First of all, let us
recall here that the PTIR has been derived inductively by
using perturbation theory from Feynman rules for scalar
theories, and for various forms of PTIR we refer to
Nakanishi’s original textbook.
Since the form of IR for a Feynman diagram is dictated

by the structure of denominators, it is very natural to
assume that a sort of PTIR does exist for any renormaliz-
able quantum field theory in 3þ 1 dimensions.
Furthermore, it is useful to assume (at least for a while)
that the only difference is that there are as many various
Nakanishi weight functions as the number of independent
vector/tensor matrices needed to describe a given Feynman
diagram. In our case of a triple fermion-gauge vertex, there
can be as many as 12 such Nakanishi weight functions ρi.
Thus, for each single component, the associated form factor
T or L in 4.4 could satisfy the following PTIR:

T; Lðp;QÞ ¼
Z

∞

0

dω
Z

dx1dx2dx3

×
ρðx1; x2; x3;ωÞ

½p2x1 þ p:Qx2 þQ2x3 − ωþ iϵ� : ðA3Þ

The polynomial structure and matrices which appear in the
numerator of any Feynman diagrams for the gauge theory
vertex are dictated by Lorentz invariance and are crucial for
the number of components, but not for the number of integral
variables. Three x variables are known to be bounded as
the Nakanishi weight function carries the delta function
δð1 −P

i xiÞ, which is almost the entirety of the information
we can get from analyses of Feynman diagrams in general.
Obviously, by dividing by x1 in the kernel and defining a
new variable, our proposed IR [Eq. (4.4)] is included in the
PTIR-inspired form of the gauge vertex; however, this is far
from saying that it is derivable from PTIR.
In this respect, one can only say that the form of

Nakanishi weight functions—i.e., the 12 distributions of
τ and λ—can be inspected from the perturbation theory
expansion by studying each individual Feynman diagram in
separation. There would be a very limited benefit of doing
so in a strong coupling theory like QCD. Therefore, our
proof of the IR [Eq. (A1)] does not follow from perturba-
tion theory, but relies on the self-consistent solution of DSE
within the suggested form of IR implemented. This, when
embedded into the rhs of the DSE for the vertex [Eq. (2.3)],
after the integration over the momentum in the Euclidean
space, reappears on the lhs of the DSE again and has an
exactly identical form that has entered—i.e., the form of IR
[Eq. (A1)]. The set of weight functions ρi (or equivalently,
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τi and λi) must obey certain conditions: they satisfy a new
coupled set of integrodifferential equations into which the
vertex DSE [Eq. (2.3)] is transformed. These equations do
not depend on the momenta, but on the three spectral/
integral variables ω, α, and z, with their domain self-
consistently determined by the DSEs for vertices and
propagators.
For clarity, we should mention here that the gauge

technique form of the vertices [72–75], which was employed
in the calculation of meson form factors [38,39,81], repre-
sents an approximate subset of IR [Eq. (4.4)]. While gauge
technique vertices are derived Ward identities, they are not
fully self-consistent, since they, at any known approximation
ofDSE, dogenerate richer structure involving longitudinal as
well as transverse vertices. Their entire form is captured by
three parametric IRs [Eq. (4.4)].
We do not know yet whether the new integrodifferential

equations for Nakanishi weights provide a unique solution;
however, we assume it is the case. We do not even know
whether functions ρi exist at all, since the numerical solution
is yet out of our reach at the moment. However, when
keeping the solution at hand, as has been already checked in
the case of more simple truncation of DSE systems [87,88],
the consistencywith the standard Euclidean formulation can
be straightforwardly inspected by the comparison.
In the next subsection of this appendix, we will illustrate

the proof on the example of the contribution stemming
from the product of the gauge technique vertex and the
gauge part of the propagator, as well as deriving the IR
[Eq. (4.4)] for the particular example of the T5 component.
In the subsequent subsection, we write down the relation
between IR for proper and semiamputated vertices, which
closes the proof. We do not provide the entire list of all
contributions, since we do not need them in our approxi-
mation. Note especially that the conversion of transverse
pieces of Gμ

EM is a quite straightforward task and is
illustrated enough in the single-component example.

2. IR for proper vertices

The IR has two pieces: the first is governed by gauge
covariance, and the second involves all transverse compo-
nents independently. Here we show that both terms give rise
to an IR for the proper vertex with the same structure of
transverse components, as well as giving rise to longi-
tudinal components in Γ. Four later longitudinal terms are
in fact completely dictated by the gauge term. We begin
with transverse vertices due to the calculation simplicity. In
the second part, we derive IR for Γ as it follows from
our DSEs.

a. Contributions to and due to the transverse vertices

Contributions from transverse vertices are exemplified
for the most important cases. These are the ones due to the
first and the fifth components; the latter is known to be

dominant, at least in the Landau gauge. Thus, in fact, here
we show their contributions due to other gauges.
Further, for the purpose of discussion of the renormal-

ization, we also review the contribution due to the second as
well as due to the eighth component of the transverse part
of the vertex.
V5 (g): We start with the contribution governed by the

fifth component in Eq. (4.4)—i.e., by kT, where the
momentum k is the relative momentum of the produced
quark-antiquark pair. The contribution due to the metric
tensor γ × γ part of the kernel [and hence due to the
γμab × γμ;cd=ðq2 − μ2Þ matrices] and the contribution due to
the gauge part proceed similarly, and we will describe the
details for the first example. The first contribution to the
proper vertex in our DSE thus reads

− icg

Z
d4k
ð2πÞ4

Z
Γ3

dðω;α;zÞ
ρ5ðω;α;zÞγνðkμ−Qμk:Q

Q2 Þγν
½Fðk;Q;ω;α;zÞ�2ðq2−μ2gþ iϵÞ

− � � � ; ðA4Þ
where three dots represent the identical integral with the
phenomenological parameter μg replaced as μg → Λg.
Using the Feynman variable x to match two denominators,
making a standard square completion, shifting the integral
variable and integrating over the momentum, we get, after
some algebra, for the considered contribution

4cg
ð4πÞ2

Z
Γ3

dðω;α; zÞ
Z

1

0

dx
ρ5ðω; α; zÞpμ

T

p2 þ p:Qzþ Q2

4
α−z2x
1−x − ω

1−x −
μ2g
x

− � � � ; ðA5Þ
where we have factorized the prefactor xð1 − xÞ out of the
numerator and canceled it against the same factor in the
numerator, and where the meaning of the three dots is just as
above in Eq. (A4). We do not write the Dirac index, and we
also omit the explicit writing of the Feynman infinitesimal
term iϵ in most denominators for the purpose of brevity.
In what follows, we perform the substitution ω → ω̃ and

then x → α̃, such that

ω̃ ¼ ω

1 − x
þ μ2g

x
; ðA6Þ

α̃ ¼ α − z2x
1 − x

; ðA7Þ

which provides the following result for the contribution of
Eq. (A4):

pμ
T

4cg
ð4πÞ2

Z
1

−1
dz

Z
∞

1

dα
Z

∞

α
dα̃

Z
∞

μ2g
x

dω̃

×
xð1 − xÞ2
α̃ − α

ρ5½ðω̃ − μ2g
x Þð1 − xÞ; α; z�

Fðp;Q; ω̃; α̃; zÞ − � � � ; ðA8Þ
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where the ordering of integrals is important. To avoid
complicated explicit notation, in case the measure dx is not
explicitly written, the letter x will be kept for the following
function:

x ¼ α̃ − α

α̃ − z2
: ðA9Þ

Also, as follows from the inverse transformation
[Eq. (A7)], the variable ωg ¼ ω, which reads

ωg ¼
�
ω̃ −

μ2g
x

�
ð1 − xÞ; ðA10Þ

will be kept for purpose of brevity.
In order to get the desired form of IR for the proper

vertex, we need to change the integration ordering. Also, it
is convenient to send the information about integration
volume into the kernel by using the Heaviside step
function. Performing this correctly, one can write for the
contribution of Eq. (A4) the resulting IR:

pμ
T

Z
Γ3

dðω̃; α̃; zÞ τ5aðω̃; α̃; zÞ
Fðp;Q; ω̃; α̃; zÞ

τ5aðω̃; α̃; zÞ ¼
4cg
ð4πÞ2

Z
α̃

1

dα
xð1− xÞ2θðω̃− μ2g

x Þ
α̃− α

ρ5½ωg;α; z�

− � � � : ðA11Þ

where the three dots remind us that we should change μg
into the parameter Λ appropriately—i.e., one should
introduce a new variable

ωL ¼
�
ω̃ −

Λ2

x

�
ð1 − xÞ ðA12Þ

to define the new variable ωL in the function ρ5½ωL; α; z�.
Here we could stress the difference from the Nakanishi

derivation of PTIR. Blindly following Nakanishi’s deriva-
tion would mean the use of the variable x to give rise to our
variable ω (or ω̃), and we have used a slightly different
strategy here. In our approach here, we avoid numerically
inconvenient square roots otherwise presented in the kernel
(see toy models without confinement [89,90]). Recall that
the trick we use here would be impossible without using the
fact that the quark propagator is entirely described by a
continuous spectral function. In fact, this is the issue of
confinement, which allows us to write the simple equation
for IR.
V5 (L): We continue with the contribution coming from

the transverse vertex V5 matched with the gauge longi-
tudinal interaction part of the kernel K. This particularly
simple contribution reads

−iCΓ

Z
d4k
ð2πÞ4

Z
Γ3

dðω;α; zÞρ5½ω;α; z�
ðkμ − Qμk:Q

Q2 Þ
½Fðk;Q;ω;α; zÞ�2q2 :

ðA13Þ

After a few steps sketched in previous cases, this relation
can be converted into the following IR:

pμ
T

Z
Γ3

dðω̃; α̃; zÞ τ5b½ω̃; α̃; z�
Fðp;Q; ω̃; α̃; zÞ

τ5b½ω̃; α̃; z� ¼
CΓ

ð4πÞ2
Z

α̃

1

dα
α − z2

ðz2 − α̃Þ2 ρ5
�
z2 − α

z2 − α̃
ω; α; z

�
:

ðA14Þ

Thus, for the resulting total contribution due to the fifth
component, one just needs to sum up

Δτ5 ¼ τ5a þ τ5b: ðA15Þ

Amazingly, due to its simplicity, the IR exhibits a self-
reproducing property: the contribution to the fifth compo-
nent Δτ5 is given by the integral over the function ρ5, and
no other component is generated. However, the contribu-
tion is not complete, the contribution is not entire, and other
components (e.g., pμp=Q) can contribute as well. Of course,
one should keep in mind that ρ is the Nakanishi weight
distribution for the semiamputated vertex, while τ is for the
proper vertex. Hence, the relation between proper and
semiamputated vertices needs to be established. This is the
subject of the second part of this appendix. Before that, we
review other important contributions.
The transformation of contributions from terms which

involve combinations of momenta is straightforward, albeit
quite involved. For the purpose of brevity, we write the
results in the form of fractions which include the second
power of F in the numerator, and we also leave polynomial
momentum structure in the numerator (it can be absorbed
by per partes integration, which is not shown here).
V1: In the next part, we will inspect the contribution

which arises due to the first component of the transverse
vertex. As with the others, it is combined with the gauge
part, as well as with the metric phenomenological inter-
action in the DSE for the vertex. Explicitly written, the first
contribution reads

−iCΓ

Z
d4k
ð2πÞ4

Z
Γ3

dðω;α;zÞρ1½ω;α;z�
qðγμ−Qμ=Q

Q2 Þq
½Fðk;Q;ω;α;zÞ�2ðq2Þ2 ;

ðA16Þ

which after repeating similar steps as for the V5 component
above, leads, after some summations and trivial algebra, to
the following form:
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− γμT

Z
Γ3

dðω̃; α̃; zÞ
Z

α̃

1

dα
CΓ

ð4πÞ2
xð1 − xÞð2 − xÞ

ðα̃ − αÞ
ρ1½ω̃ð1 − xÞ; α; z�
Fðp;Q; ω̃; α̃; zÞ

− pμ
T

Z
Γ3

dðω̃; α̃; zÞ
Z

α̃

1

dα
CΓ

ð4πÞ2
ρ1½ω̃; α; z�

½Fðp;Q; ω̃; α̃; zÞ�2
x2ð1 − xÞð=Qzþ 2pÞ

ðα̃ − αÞ ; ðA17Þ

noting the second power of F in the second line.
Assuming the boundary condition ρ1ð0; α; zÞ ¼ 0, we

use per partes integration with respect to ω̃, which
increases the power of F by a unit. The final three-
component IR of the desired form [Eq. (4.4)] then readsZ
Γ3

dðω̃; α̃; zÞ CΓ

ð4πÞ2Fðp;Q; ω̃; α̃; zÞ

×
Z

α̃

1

dα

�
−γμT

xð1− xÞð2− xÞρ1½ω̃ð1− xÞ;α; z�
ðα̃−αÞ

−pμ
T

x2ð1− xÞ d
dω̃ ρ1ðω̃ð1− xÞ;α; zÞ�ð=Qzþ 2pÞ

ðα̃−αÞ
�
: ðA18Þ

V1 g: To calculate the contribution due to the interaction
kernel with the metric tensor is more simple. The appro-
priate contribution reads

− iCΓ

Z
d4k
ð2πÞ4

Z
Γ3

dðω; α; zÞρ1½ω; α; z�

×
γβðγμ − Qμ=Q

Q2 Þγβ
½Fðk;Q;ω;α; zÞ�2ðq2 − μ2gÞ

− � � � : ðA19Þ

Repeating basically the same steps which were used to
transform the T5 contribution, one gets for Eq. (A19) the
following result:

− γμT

Z
Γ3

dðω̃; α̃; zÞ
Fðp;Q; ω̃; α̃; zÞ

CΓ

ð4πÞ2

×
Z

α̃

1

dα
2xð1 − xÞρ1½ωg; α; z�θðω̃ − μ2g

x Þ
α̃ − α

; ðA20Þ

where the substitution of Eq. (A7) was made at the end of
the transformation [x stands for the fraction in Eq. (A9),
and ωg is defined by Eq. (A10)].
V2: The contribution to the proper quark-photon vertex

due to the second transverse component (i.e., kμT=k) and due
to the gauge interaction kernel takes the form

− iCΓ

Z
d4k
ð2πÞ4

Z
Γ3

dðω; α; zÞρ2½ω; α; z�

×
qðkμ − Qμk:Q

Q2 Þ=kq
½Fðk;Q;ω; α; zÞ�2ðq2Þ2 ; ðA21Þ

which can be readily transformed into the following form:

γμT
CΓ

4ð4πÞ2 ð1=ϵd − γEÞ
Z
Γ3

dðω; α; zÞρ2½ω;α; z�

þ γμT
CΓ

2ð4πÞ2
Z
Γ3

dðω̃; α̃; zÞ
Z

α̃

1

dα
x2ð1 − xÞ
α̃ − α

ðR2½ωð1 − xÞ; α; z� − ð1 − xÞðQ:pzþ 2p2Þρ2½ω̃ð1 − xÞ; α; z�Þ
Fðp;Q; ω̃; α̃; zÞ

− pμ
Tp

CΓ

ð4πÞ2
Z
Γ3

dðω̃; α̃; zÞ
Z

α̃

1

dα
xð1 − xÞ2ð1þ xÞ

α̃ − α

ρ2½ωð1 − xÞ; α; z�
Fðp;Q; ω̃; α̃; zÞ

þ 2pμ
T

CΓ

ð4πÞ2
Z
Γ3

dðω̃; α̃; zÞ
Z

α̃

1

dα
x2ð1 − xÞ2
α̃ − α

ρ2½ωð1 − xÞ;α; z�ð−Q:pz=2 −Q2α̃=4þ ω̃Þð=Qz=2þ pÞ
½Fðp;Q; ω̃; α̃; zÞ�2 : ðA22Þ

We plan to publish the details of derivation and further
useful relations in separate Supplemental Material.
The Euler constant γE, which arises in the equation

above, is due to the standard dimensional regularization
and should not be confused with projected gamma matri-
ces. As we can see, the second component of T gives rise to
nontrivial contributions to the four different components,
including the second component itself. The elimination of
momentum from the numerator and adjusting the power of
F to the desired value N2 is matter of standard practice.
Furthermore, let us mention that due to the z dependence,

many terms turn out to be zero, and the equation above is
already in a form suited for the first calculation. Note also
that there is a single term proportional to γT , which is
divergent in the limit d → 4; ðϵd → 0Þ.

b. Contributions due to the gauge technique vertex

In the following part, we will inspect the proper vertex
contribution due to the gauge technique IR. As a part of the
proof, we will show that the gauge technique is equivalent
to the proposed IR for a semiamputated vertex. Then we
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will calculate its contribution to a proper vertex for its
combination with the gauge—i.e., the purely longitudinal
part of the interaction kernel. As is clear from the previous
part devoted to the transverse components, deriving the IR
due to the interaction with a metric tensor is a matter of
practice, where several well-controlled changes in deriva-
tion cannot violate the resulting functional form of the IR.
Considering the DSE with aforementioned inputs on the

rhs of the DSE [Eq. (2.3)] means to evaluate the following
contribution:

−iCΓ

Z
d4k
ð2πÞ4 qG

μ
GTðk−; kþÞ

q
ðq2Þ2 ; ðA23Þ

where again we label CΓ ¼ eqg2ξT2
a, and the momentum

associated with the internal gluon line is q ¼ p − k.
In the first step, we will show that the gauge technique

vertex, in its conventional form

Gμ
GTðk−; kþÞ ¼

Z
∞

−∞
dx

ρðxÞγμ
½=k− − xþ iϵ�½=kþ − xþ iϵ� ðA24Þ

(see Refs. [72–75]), is identical to the second line of IR for
a semiampuated vertex [Eq. (4.4)]. As we prefer to work
with two quark propagator spectral functions ρv and ρs, we
rewrite the above expression into the less familiar form

Gμ
GTðk−; kþÞ

¼
Z

∞

0

da
ρvðaÞ½=k−γμ=kþ þ aγμ� þ ρsðaÞ½=k−γμ þ γμ=kþ�

ðk2− − aþ iϵÞðk2þ − aþ iϵÞ ;

ðA25Þ

where two functions ρv and ρs are defined on Rþ, and they
are related with the single function ρ in the following
manner:

ρvðaÞ ¼
ρð ffiffiffi

a
p Þ þ ρð− ffiffiffi

a
p Þ

2
ffiffiffi
a

p ;

ρsðaÞ ¼
ρð ffiffiffi

a
p Þ − ρð− ffiffiffi

a
p Þ

2
: ðA26Þ

The advantage of our choice is that the function on the lhs
takes a nontrivial value at the positive real axis, which
simplifies many manipulations we will perform and show
in this appendix. In addition, we use the identity

1

k2− − a
1

k2þ − a
¼

Z þ1

−1
dz

1

½k2 þ k:Qzþ Q2

4
− a�2

ðA27Þ

in order to match the denominators in Eq. (A25), getting
thus the desired form that corresponds to the second line of
the entire IR [Eq. (4.4)].
In this way, we have proved that the gauge technique is a

part of the proposed IR in addition to convertingGGT into a
form suited for other evaluation. Substituting Eq. (A25)
into the formula (A23), we get at this stage

X
v¼a;b;c;d

Γμ
vðk; PÞ ¼ −iCΓ

X
v¼a;b;c;d

Z
d4k
ð2πÞ4

Z
∞

0

da
Z þ1

−1
dz

×
Nμ

vðk; p;Q; aÞ
½k2 þ k:Qzþ Q2

4
− a�2ðq2Þ2

; ðA28Þ

Nμ
a ¼ ρvðaÞqð=k − =Q=2Þγμð=kþ =Q=2Þq;

Nμ
b ¼ ρvðaÞqγμq; ðA29Þ

Nμ
c ¼ 2ρsðaÞkμq2; Nμ

d ¼ q½γμ; =Q�q: ðA30Þ

From this point, up to the different matrix structure of the
numerator, the treatment of the rest is easy, as in the case of
the previous study of the transverse contribution. Of course,
the IR is two instead of three dimensional; thus, aside from
a completely continuous part, one can expect the delta
function when one uses three-dimensional write-up
½δðα − 1Þ�. Nevertheless, even so, the IR for the proper
function turns out to be three-dimensional.
To derive the IR, we will use the variable y to match the

result with q2 in the denominator, which leads to the
following result:

Γμ
vðk;PÞ¼−i

Z
d4k
ð2πÞ4

Z
∞

0

Z
1

−1
dz

Z
1

0

dy
3CΓyð1−yÞNμ

v

½ðkþQ
2
zy−pð1−yÞÞ2− ðQ

2
zy−pð1−yÞÞ2þp2ð1−yÞþQ2

4
y−ay�4

ðA31Þ

for each term defined in Eq. (A28).
The rest of the transformation is quite universal, and we

will not repeat it for all terms individually, but we illustrate
it for two scalar cases. The first is the integral where we
replace the functionNμ

v with N1 ¼ fðaÞ, where fðaÞ stands
for some continuous functions. Let us label such an
auxiliary scalar vertex by the index 1. Integrating over
the momentum, we directly get

Γ1ðk; PÞ ¼
CΓ

ð4πÞ2
Z

1

−1
dz

Z
∞

0

dafðaÞ
Z

1

0

dy

×
½yð1 − yÞ�−1

½p2 þQ:pzþ Q2

4
1−z2y
1−y − a

1−y�2
: ðA32Þ

For completeness, we repeat the entire transformation
here.
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Let us perform the substitution y → α such that

α ¼ 1 − z2y
1 − y

; y ¼ α − 1

α − z2
: ðA33Þ

And then, the second substitution a → ω, such that

ω ¼ a
1 − y

; ðA34Þ

obtaining thus for Eq. (A32) the following expression:

Γ1ðk; PÞ ¼
CΓ

ð4πÞ2
Z

1

−1
dz

Z
∞

1

dα
Z

∞

0

dω

×
1−z2

ð1−αÞðz2−αÞ f½ω 1−z2
α−z2�

½p2 þQ:pzþ Q2

4
α − ωþ iϵ�2

: ðA35Þ

As in the previous part, here the variable y, if used
without integral measure in any expression, will be kept
even after the substitutions are performed for the purpose of
brevity. Its meaning will be unique throughout this paper
and is always given by the second equation in (A33).
The scalar function Γ1 is not yet in the desired form, and

for this purpose we perform per partes integration with
respect to the variable ω. Doing this, we can write

Γ1ðk;PÞ¼
Z
Γ3

dðω;α;zÞ
CΓð1−z2Þ

ð4πÞ2ð1−αÞðα−z2Þ
d
dωf½ω 1−z2

α−z2�
Fðp;Q;ω;α;zÞ ; ðA36Þ

where we have assumed the function f is vanishing at
boundaries. Recall that within numerical accuracy, this is
certainly true for the quark spectral function, and we will
repeatably exploit the fact that ½ρv;sð0Þ ¼ ρv;sð∞Þ ¼ 0�.
The assiduous reader can note that there is an infrared log

divergence involved in the α integral in Eq. (A36). These
are standard IF divergences due to massless gauge boson
modes, and actually, similar divergences appear in Γμ and
make the associated form factor procedure dependent. If
this appears numerically, it could be used to cancel against
similar divergences due to the emission of soft real photons
in the physical cross section. This fact, however, does not
bother us yet, since we are not going to solve the DSEs
system in this paper.
Such IF divergence does not appear for a less divergent

kernel. Therefore, by replacing, for instance, the 1=q4

kernel in Eq. (A32) with 1=q2, one can get the IR in the
following regular form:

Z
Γ3

dðω; α; zÞ
CΓ

ð4πÞ2 f½ω 1−z2
α−z2�

Fðp;Q;ω; α; zÞ : ðA37Þ

C: Repeating the game for our vertex in Eq. (A23) is
relatively straightforward. The only complication is that
one is faced with a larger number of momentum integra-
tions over various tensors. Here we start with the simplest
case, say the Nμ

c term in Eq. (A28). Taking changes into
account, one gets two vector contributions: the first
contributes to the transverse component V5 (and by the
same amount to the longitudinal counterpartner), and the
second is purely longitudinal. Explicitly, it reads

Γμ
cðp;QÞ ¼ CΓ

ð4πÞ2
Z

∞

0

dω
Z

∞

1

dα
Z

1

−1
dz

ð1 − z2Þ
ðα − z2Þ3

× ρs

�
ω
1 − z2

α − z2

� ½2pμð1 − z2Þ þQμzð1 − αÞ�
Fðp;Q;ω; α; zÞ :

ðA38Þ

A: The conversion of Γa is technically the most
demanding—not only does this piece involve UV diver-
gence, but a double per partes integration is needed to
convert this part into the desired IR. Hence, we will
comment on some steps in more detail.
Here, the UV divergent terms, which stem from the first

terms of the numerator expansions

q=Qγμ=Qq ¼ γμQ2q2 þ 4qμQ:qq − 2Qμq2=Q − 2qμQ2=Q;

q=kγμ=kq ¼ γμk2q2 þ � � � ðA39Þ

will be concerned here. We will not list all IRs stemming
from other contributions, which are relatively easy to
evaluate; we will publish them when an actual numerical
solution is available.
In order to see how individual terms arise during the

derivation, we will write down a few intermediate steps.
Summing the first terms in the expansions above, we get
after Feynman parametrization [i.e., before the transforma-
tion in Eq. (A34)] the following result:

−iCΓ

Z
daρvðaÞ

Z
1

0

dx
Z

1

−1
dz

Z
d4k
ð2πÞ4

γμ½k2 − Q2

4
�xΓð3Þ

½k̃2 þ p2ð1 − xÞxþ Q2

4
xð1 − z2xÞ þ p:Qzxð1 − xÞ − ax�3

; ðA40Þ

where k̃ ¼ kþQZx=2 − pð1 − xÞ, and we omit some prefactors for the purpose of brevity.
Wewill use the dimensional regularization; thus, we label ϵ−1 ¼ 4 − d as the divergent constant in four dimensions. After

the usual shift, the term proportional to k̃2 gives

V. ŠAULI PHYS. REV. D 106, 034030 (2022)

034030-14



Z
1

0

dx
2γμx
ð4πÞ2

�
−
2

ϵ
− γE þ lnð1 − xÞxþ lnF

�
p;Q;

a
1 − x

;
1 − z2x
1 − x

; z

��
; ðA41Þ

where we omit some unimportant prefactors.
After the substitution of Eq. (A34) (with x instead of y), we get the following entire expression:

Γμ
cðp;QÞ ¼ γμConstþ γμ

CΓ

ð4πÞ2
Z
Γ3

dðω;α; zÞ 2yð1 − yÞð1 − z2Þ
ðz2 − αÞ2 ρv½ωð1 − yÞ� ln ½Fðp;Q;ω; α; zÞ�

þ γμ
CΓ

ð4πÞ2
Z
Γ3

dðω; α; zÞ ð1 − z2Þ
ðz2 − αÞ2 ρv½ωð1 − yÞ�

Q2

4
ðz2y2 − 1Þ þ p2ð1 − yÞy −Q:pzð1 − yÞy

Fðp;Q;ω; α; zÞ ; ðA42Þ

where in order to avoid cluttering notation, we remind the
reader here that the letter y is simply Eq. (A33) (since x is
reserved for a different function in our notational con-
vention). In this process, a constant term (UV divergent) γμ

Const. appears, into which we also sent some constant
pieces which have been generated during the derivation. It
should be kept in mind that the entire vertex—i.e., the finite
as well the infinite part—could be consistent with the
renormalization of the quark DSE due to the WTI.
To transform the first line to the desired IR we use per

partes integration with respect to the variable ω. For this
purpose, we use the following expression for the primitive
function in the numerator:

Rv½ω; α; z� ¼
Z

ω

0

duρv½uð1 − yÞ�: ðA43Þ

Further, irrespective of the value of the boundary term, we
send it into the constant term. The remainder of the first line
then reads

γμ

�
Constþ

Z
Γ3

dðω; α; zÞ ρlogðω; α; zÞ
Fðp;Q;ω; α; zÞ

�
; ðA44Þ

where the contribution to the vertex weight function is

ρlogðω; α; zÞ ¼ 2CΓ
yð1 − yÞð1 − z2Þ

ðα − z2Þ2 Rv½ω; α; z�: ðA45Þ

To convert the second line in Eq. (A42), one can divide
the term with p2 as the first step. Then the term in the
numerator, which is proportional to the variable Q2, can be
treated by per partes integration to cancel it with the price;
we get lnðJÞ instead of J−1. In order to get J back in the
denominator, one can integrate per partes, but now with
respect to the variable ω. The terms involving the scalar
product p:Q in the numerator can be treated analogously,
but instead of the variable α, one needs to use the variable z.
The single resting term has already been derived in this
form of IR. The entire result for the second line is then
given by Eq. (A44), where instead of ρlog we have the
following function:

CΓ
d
dz

� ð1 − z2Þ
ðz2 − αÞ2 zð1 − yÞð2y − 1ÞRv½ω; α; z�

�

þ CΓ
d
dα

� ð1 − z2Þ
ðz2 − αÞ2 ½1 − z2y2 þ αð1 − yÞ2�Rv½ω; α; z�

�

− CΓω
ð1 − z2Þ
ðz2 − αÞ2 ð1 − yÞ2ρv½ωð1 − yÞ�: ðA46Þ

D: Repeating the game for the last numerator in
Eq. (A28) gives us

Γμ
dðp;PÞ ¼

Z
1

−1
dz

Z
∞

1

dα
Z

∞

0

dω
CΓ

ð4πÞ2

×
ð1 − αÞð1 − z2Þ

ðz2 − αÞ3
Mμρsðω 1−z2

α−z2Þ
Fðp;Q;ω; α; zÞ2

Mμ ¼ ðpþ =Q=2Þ½γμ; =Q�ðpþ =Q=2Þ; ðA47Þ

where we do not write the Dirac index for brevity.
Using the identity

Mμ ¼ p2½γμ; =Q� þ 2pμ½p; =Q� þ 2Q:p½p; γμ� − z2

4
Q2½γμ; =Q�

þ zðQμ½=Q;p� þQ2½p; γμ�Þ; ðA48Þ

one can immediately recognize various components of the
quark-photon vertex, and thus, for instance, the last line
when implemented in Eq. (A47) gives ≃zð−1ÞQ2V6 in the
numerator. The last step to get the desired IR is the per
partes contribution with respect to the variable α, which
lowers the power of F in the denominator and cancels out
the unwanted presence of Q2 in the numerator. To convert
other terms of M into IR is a matter of simple algebra and
the repeated use of per partes integration. The result,
together with the numerical solutions, will be published in
the future.

3. Integral representation for a semiamputated vertex

Using an accepted form of the semiamputated vertex
(SAV), we have shown that the proper vertex Γμ satisfies
the integral representation, which up to the power of the
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denominator has an identical form to the assumed form of
the semiamputated vertex itself. What remains is to show
that the IR for the SAV is consistent with the obtained IR
for the proper vertex from the DSE solution.
The first power of F in the denominator of the IR is the

preferable choice for this purpose, as it simplifies some
parts of the calculation. However, recall that N ¼ 2 was the
preferred choice in the preceding sections. Here, we should
therefore note that these two weight functions are simply
related.
Thus, we are going to find a relation between the IRs of

the left and right sides of the following definition:

Gμ
EMðkþ; k−Þ ¼ Sðk−ÞΓμ

EM;Tðk;QÞSðkþÞ; ðA49Þ

with all functions on the rhs expressed through their own
IR. By plugging the IR for the proper vertex, which we
recall here as

Γμ
EM;Tðk;QÞ ¼

X8
i¼1

Vμ
i TΓ;iðk2; k:Q;Q2Þ;

TΓ;iðk2; k:Q;Q2Þ ¼
Z

∞

0

dωΓ

Z
∞

0

dα
Z

1

−1
dzΓ

×
τiðω; α; zÞ

½Fðk;Q;ωΓ;α; zÞ�
; ðA50Þ

together with spectral representations for the quark propa-
gators S, into the rhs of the SAV definition,

Gμ
EMðkþ; k−Þ ¼ Sðk−ÞΓμ

EM;Tðk;QÞSðkþÞ; ðA51Þ

we are prepared to convert the resulting expression,

Z
∞

0

dadbdωdα
Z

1

−1
dzΓ

=k−ρvðaÞ þ ρsðaÞ
ðk2− − aþ iϵÞ

×
τiTðωΓ; α; zΓÞVμ

i

ðk2 þ k:QzΓ þ Q2

4
α − ωΓ þ iϵÞ

ð=kþρvðbÞ þ ρsðbÞÞ
ðk2þ − bþ iϵÞ ;

ðA52Þ
into the form of the suggested IR [Eq. (4.4)] for the lhs of
the definition of the SAV.
Let us first briefly describe the core of the proof. As a

first step, we commute all V’s from the middle position into
the front, and we use the Feynman rules for denominators
to match the propagators S and the proper vertex together.
This gives us the IR with some additional presence of the
scalar product of the momenta in the numerator. If a given
term in the numerator belongs to Ti, we need only adjust a
proper denominator N ¼ 2. If there is additional momen-
tum dependence in the prefactor, we use the per partes
integration to remove it with a simultaneous change of
power of the numerator. At the end, we adjust the power of
the denominator to N ¼ 2 by per partes integration with
respect to the newly defined variable ωnew. From all of V,
we choose the Dirac γT only; the other terms proceed
similarly. In what follows, we will not write the Feynman
iϵ; its presence is assumed implicitly.
Using the formula

1

k2− − a
1

k2þ − b
¼

Z
−1

1

dzG
1

½k2 þ k:QzG þ Q2

4
− ωG�2

;

ωG ≡ a
2
ð1 − zGÞ þ

b
2
ð1þ zGÞ ðA53Þ

and further matching with the denominator of the proper
vertex in Eq. (A52)

1

½k2 þ k:QzG þ Q2

4
− ωG�2

1

½k2 þ k:QzΓ þ Q2

4
α − ωΓ�

¼
Z

1

0

dx
2x

½k2 þ k:QðzGxþ zΓð1 − xÞ þ Q2

4
ðxþ αð1 − xÞÞ − ωGx − ωΓð1 − xÞ þ iϵ�3

; ðA54Þ

one can write the result

Gμ
EMðk;QÞ ¼

Z
∞

0

dαdadb
Z

1

0

dx
Z

1

−1
dzΓdzG

−2x½ρvðaÞρvðbÞγμðQ2=4 − k2Þ þ Rμ�
½k2 þ k:QðzGxþ zΓð1 − xÞ þ Q2

4
ðxþ αð1 − xÞÞ − ωGx − ωΓð1 − xÞ�3

;

Rμ ¼ ð2kμ þQμÞð=k − =Q=2Þ þ γμ=2½=k; =Q� þ ρsðaÞρsðbÞγμ þ ρvðaÞρsðbÞð2kμ þQμÞ
− ρvðaÞρsðbÞγμÞð=kþ =Q=2Þ þ ρsðaÞρvðbÞγμÞð=k − =Q=2Þ: ðA55Þ
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As a next step, we perform the following substitutions:

α̃ ¼ xþ αð1 − xÞ;
z̃ ¼ zGxþ zΓð1 − xÞ;
ω̃ ¼ ωGxþ ωΓð1 − xÞ; ðA56Þ

such that α → α̃, zG → z̃, and x → ω̃; thus, we get the
wanted form of the denominator. Doing this explicitly, we
can write for Eq. (A52)

Gμ
EMðk;QÞ ¼

Z
∞

0

dω̃dα̃
Z

1

−1
dz̃

I

k2 þ k:Qz̃þ Q2

4
α̃ − ω̃

;

I ¼
Z

∞

0

dadbdωΓ

Z
1

−1
dzΓ

×
−2x

Q
θ½ρvðaÞρvðbÞγμðQ2=4 − k2Þ þ Rμ�

ð1 − xÞ½a
2
ð1þ zΓÞ þ b

2
ð1 − zΓ − ωΓ�

;

ðA57Þ

where x is the solution of Eq. (A56)—i.e., it is a function
xða; b; zΓ; z̃; α̃;ωΓÞ. We label

Q
θ the product of step

Heaviside functions which define the integration domain
and straightforwardly stem from the transformation in
Eq. (A56). They ensure that the numerator is zero in the
boundaries of three integrals appearing in Eq. (A57). To get
the form of IR with the desired power of the numerator, one
only needs to employ per partes integrations.

APPENDIX B: EVALUATING THE PION
FORM FACTOR WITHIN THE GAUGE

TECHNIQUE APPROXIMATION

The function FðQ2Þ due to the gauge technique (GT)
vertex in two approximations is derived in this appendix.
Both are based on the GT-like linearization, which reduces
the number of numerical integrations. Further approxima-
tion is made to arrive at the dispersion relation for the form
factor FðQÞ. Both approximations split at the very end. To
begin, we substitute the IR for propagators and vertices,
and by changing the ordering of integrations, we perform
momentum integrations following standard procedures
known from perturbation theory.
Thus, after the Feynman parametrization, we can per-

form integration over the momentum exactly in a way
known for the evaluation of Feynman integrals in pertur-
bation theory. As we are not in perturbation theory, we
remain with a number of integrals over the weight functions
of all integral representations, as well as all those with three
new auxiliary integrals. For the latter, we use the Feynman
variable x to mach the denominators of two IRs for the BSE
vertices; then we use the variable y to match the result with
the denominator of the quark propagator, which connects
these two vertices, and at the end we will use the variable t

in order to match the result of previous matching with the
denominator of the IR for the quark-photon vertex.
The above described steps [for the entire matrix element

J μðQjGTÞ] read explicitly

J μðQÞ ¼ −i2Nc

Z
d4k
ð2πÞ4

Z
s

Γð5Þyt2ð1 − tÞUμ

½ðkþ lÞ2 þ J�5 ; ðB1Þ

Uμ ¼ 4ρvðγÞρvðωÞ
��

ω− k2 þQ2

4

�
ðpμ − kνÞ

þ 2kμðk:p− k2Þ þ 1

2
Qμk:Q

�
8ρsðγÞρsðωÞkμ;

J ¼ −l2 þQ2

4
ð1− tÞ−ωð1− tÞ þp2ð1− yÞt− γð1− yÞt

þ
�
p2

4
þQ2

16
− ax− bð1− xÞ

�
yt;

l2 ¼Q2

4
o2 þp2

�
−1þ y

2

�
2

t2;

o¼ zð1− tÞ− 1− 2x
2

yt; ðB2Þ

where we have used some shorthand notations: mainly, we
have also factorized the weight functions ρπ of the pion
vertex functions into the overall measure—for this, we use
the abbreviation

Z
s
¼

Z
1

0

dxdydt
Z

∞

0

dω
Z

1

−1
dz

Z
da

Z
dbρπðaÞρπðbÞ;

ðB3Þ

but we omit all trivial terms which were proportional to the
product of external momenta Q:p ¼ 0. However, we keep
the p2 variable for the purpose of easier tracking of the
presented derivation. We will use the fact that pions are on
shell—i.e., the equation p2 ¼ m2

π −Q2=4 from the follow-
ing lines.
For the purpose of integration over the momentum,

we perform the standard shift k → k − l, where l ¼
Q
2
oþ pð−1þ y=2Þt, with the polynomial function o

defined by Eq. (B2):

o ¼ zð1 − tÞ þ 1 − x
2

yt; ðB4Þ

which after the integration over the momentum provides
the nontrivial part of our matrix element in the form

J μðp;QÞ ¼ FðQ2Þpμ; ðB5Þ

where the pion form factor F is proportional to the
following expression:
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FðQ2Þ ¼ 2Nc

ð4πÞ2Þ
Z
s
yt2ð1− tÞ4ρvðγÞρvðωÞð4πÞ2J3

×

�
ð1−fÞωþ f

�
−
Q2

4
ð1þo2Þþ 2p2f−p2f2

��

þ 4ρsðγÞρsðωÞ
ð4πÞ2J2 þ 4ρvðγÞρvðωÞ

ð4πÞ2J3 ð1− 3fÞ; ðB6Þ

where we have labeled

f ¼
�
1 −

y
2

�
t: ðB7Þ

The individual prefactors in Eq. (B6) follow from the
standard evaluation performed in Euclidean space,
although we come back to the Minkowski metric con-
vention immediately. We just remind the reader with the
example

−i
Z

d4k
ð2πÞ4

Γð5Þk2
ðk2 þ JÞ5 ¼

2

ð4πÞ2J2 : ðB8Þ

Note here that for purpose of consistency, the variable p2

was also kept Euclidean for a while, and the on-shell
condition p2 ¼ m2

π −Q2=4 is imposed only afterward.
For positive timelikeQ2, the real part of the denominator

J passes zero value, and albeit not written explicitly, the
presence of an infinitesimal Feynman imaginary part is
assumed.
In what follows, it is convenient to split the denominator

J, getting

J ¼ Q2

4
□ − Δ;

Δ ¼ m2
π

��
1 −

3

4
y

�
t − f2

�
− ωð1 − tÞ − γð1 − yÞt

− ðaxþ bð1 − xÞÞyt;
□ ¼ −o2 þ 1 − t − ð1 − yÞtþ f2: ðB9Þ

In Eq. (B6), we do not write trivial terms, including also
those, which are proportional linearly to the variable o.
These terms are zero, as can be inspected by the sub-
stitutions z → −z and x → 1 − x with simultaneous inter-
change of the pion spectral function arguments a → b. In
this way, one gets the identical expression for the appro-
priate contributions to the form factor, but with opposite
sign; hence, it is zero. This, together with the on-shell
condition p:Q ¼ 0, causes the term proportional to the total
momentum Qμ to be absent for each diagram individually,
and the matrix element has an identical Lorentz structure to
a charged pointlike scalar particle.
Before evaluating singular and hence more complicated

Minkowski expressions, we derive the formula suited for
the numerical integrations for spacelike momentum Q.

For this purpose, we integrate over the variable z analyti-
cally. To proceed, furthermore, we use the “gauge tech-
nique” trick again and make linearization in ρπ , which
allows us to reduce the number of integrations further. As a
consequence, xaþ ð1 − xÞb → b, and the integration over
the variable x can be done analytically in closed form.
For the purpose of numeric integration, the same is done
for the product of the quark spectral function integrals,
where after matching by the virtue of gauge technique
linearization, we make linearization in ρv (ρs) such that
ωð1 − tÞ − γð1 − yÞt → γð1 − ytÞ. In what follows, we will
write γ̃ ¼ γð1 − ytÞ þ byt.
There are only two necessary integrals for evaluation of

the function F for the spacelike momentum Q2
E ¼ −Q2.

The first we show here:

Z
1

−1
dz

Z
1

0

dxJ−3

¼ θðaÞ
Q2

E
4
ð1− tÞty

Dx

�
1

4aðx2þaÞ−
3xarctan½ xffiffi

a
p �

4a5=2

�

þ θð−aÞ
Q2

E
4
ð1− tÞty

Dx

�
1

4aðx2þaÞ−
3xtanh−1½ xffiffiffiffiffi

−a
p �

4ð−aÞ5=2
�
; ðB10Þ

with the function ad defined as

ad ¼ −
Q2

E

4
½ð1 − tÞ − ð1 − yÞtþ f2�

þ ð1 − 3=4y − f2Þm2
π − γ̃: ðB11Þ

The second required integral reads

Z
1

−1
dz

Z
1

0

dxJ−2 ¼ −θðaÞ
Q2

E
4
ð1 − tÞty

Dx

�
x
arctan½ xffiffi

a
p �

a3=2

�

−
θð−aÞ

Q2
E
4
ð1 − tÞty

Dx

�
x
tanh−1½ xffiffiffiffiffi

−a
p �

ð−aÞ3=2
�
;

ðB12Þ

where we have introduced the abbreviations

Dx½hðxÞ� ¼ hðxuÞ − hðxdÞ;
xu ¼ QE=2½1 − t − yt=2�;
xd ¼ QE=2½1 − tþ yt=2� ðB13Þ

for some function ½hðxÞ�.
Using the above integrals in Eq. (B6) constitutes the final

expression that we have used for the numerical evaluation
for the spacelike value of Q2.
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APPENDIX C: DERIVATION OF THE
DISPERSION RELATION

The final expression for F based on the formulas derived
above is still not yet in a form suited for numerical
evaluation in the region of Minkowski momentum
Q2 > 0. Recalling the presence of the small Feynman
factor iϵ, the log in inverse hyperbolical tangents, as well as
the function a, is badly singular near the real axis of
momentum Q, and the expression is numerically ill. Since
complete analytical integration is still out of our reach, we
make a further simplification. For this purpose, we go back
into the expression and ignore the presence of the o2 term in
the integrand, which allows the conversion of all terms into
the desired dispersion relation. We show the derivation for
most singular 1=J3 term in Eq. (B6); the conversion of
other terms is straightforward within the method used.
Ignoring o2 terms, as well as ignoring small terms

proportional to mπ , we can integrate over the variables x
and z. The result simply means to replace the integration
symbols

R
dxdz with a factor 2. The remaining relevant

integral we need to evaluate reads

Z
1

0

dt
Z

1

0

dy
ð1 − y=2Þ2yt2ð1 − tÞ

J3
; ðC1Þ

where the denominator reduces as

J ¼ □
Q2

4
− γ̃: ðC2Þ

To proceed further, we perform the last linearization

Z
dγρv;sðγÞ

Z
dbρπðbÞ →

Z
dγρ̃v;sðγÞ; ðC3Þ

where we assume that new functions ρ̃ on the rhs of
Eq. (C3) are such that the resulting form factor F remains
unchanged when taking γ̃ → γ in the denominator—i.e.,
from now,

J ¼ □
Q2

4
− γ;

□ ¼ 1 − t − ð1 − yÞtþ ð1 − y=2Þ2t2; ðC4Þ

and we also assume ρ̃ ≃ ρþ δρ, with the function δρ
representing corrections.
In addition, we introduce the unit in the form

1 ¼
Z

∞

0

dαδðα − γ=□Þ ðC5Þ

into the expression (C1) and integrate over the variable t.
After that we get for Eq. (C1) the following expression:

Z
1

0

dy
Z

∞

0

dα
α

γ2
yt2−ð1 − t−Þθðt−Þθð1 − t−Þ

2ð1 − ð1 − y=2Þt−Þ½Q
2

4
− αþ iϵ�3

; ðC6Þ

where t− is the root of the equation□α − γ ¼ 0. Explicitly,
it reads

t− ¼ 1 −
ffiffiffiffiffiffiffiffi
γ=α

p
1 − y=2

; ðC7Þ

noting that since α > 0, the step function can be equiv-
alently taken as θðα − γÞθð4 γ

y2 − αÞ. Note that the contri-

bution from the second root tþ ¼ 1þ =… is trivial, since
tþ > 1, being thus always outside of the interval for the
original integral variable y.
Let us change the ordering of the integrations and

integrate over the variable y. Theta functions presented
in the kernel imply

Z
1

0

dy
Z

∞

0

dα →
Z

∞

γ
dα

Z
2

ffiffi
γ
α

p

0

dy: ðC8Þ

After the integration, we get

Z
∞

0

dα
4

γ

θð1− ffiffiγ
α

p Þθðα− γÞ
½Q2

4
−αþ iϵ�3

×

�
−2−

�
2

ffiffiffi
α

γ

r
−1

�
ln

�
1−

ffiffiffi
γ

α

r ��� ffiffiffi
α

γ

r
−1

�
2

: ðC9Þ

After that, we perform double per partes integration with
respect to the variable α, such that we get the desired
dispersion relation

FðQ2Þ ¼
Z

∞

0

dα
gðαÞ

½Q2

4
− αþ iϵ�

;

gðαÞ ¼ 4Nc

ð4π2Þ
Z

α

0

dγ
2ρ̂vðγÞ

γ
Kðα; γÞ þ � � � ;

Kðα; γÞ ¼ BA2 þAþB− 1=2

2α3=2γ1=2
−
2þA:B

αγ
−

B

α1=2γ3=2
þ 1

2α2
;

ðC10Þ

where

A ¼ 1 −
ffiffiffi
α

γ

r
; B ¼ ln

�
1 −

ffiffiffi
γ

α

r �
; ðC11Þ

and where the dots represent remaining and not shown
contributions (stemming also from the integration over the
function J−2; we found that these terms can be safely
neglected in the approximation employed here).
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Our approximation leads to some systematical error: it
smoothly overestimates the form factor at medium timelike
Q2, and the dispersion relation does not provide correct
form factor for jQ2j > 2 GeV2; hence, we call the form
factor calculated on the relation (C10) the approximated

dispersion relation (ADR) result. Nevertheless, it offers
reasonable comparison with the approximation derived in
the previous section. Hence, we guess that our ADR does
not cripple the function F below 1 GeV too much, keeping
the shape of ρ-meson resonance not distorted much.
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