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We revisit theD−
s D�0=D�−

s D0 interaction and the Zcsð3985Þ state in chiral effective field theory (EFT) up
to the next-to-leading order. We examine the relative importance of the leading-order contact, one-eta
exchange, next-to-leading-order contact, and two-kaon-exchange contributions. We show that the leading-
order and next-to-leading-order contact contributions play the most important role such that the Zcsð3985Þ
state qualifies as a D−

s D�0=D�−
s D0 resonance. On the other hand, the weak one-eta-exchange and weakly

energy-dependent two-kaon-exchange contributions are less important in dynamically generating the
Zcsð3985Þ state, indicating that chiral EFT is less predictive in the present situation. Furthermore, we apply
the Bayesian method to estimate chiral truncation uncertainties and find that they are of similar magnitude
as their statistical counterparts. Our study shows that if Zcð3900Þ exists, then SU(3)-flavor symmetry also
predicts Zcsð3985Þ with a certain robustness, i.e., both can be accommodated in the chiral EFT with
dominant contact contributions.

DOI: 10.1103/PhysRevD.106.034026

I. INTRODUCTION

In 2020 the BESIII Collaboration reported on the
existence of a hidden-charm state with strangeness,
Zcsð3985Þ, with a significance of 5.3σ [1]. The obtained
mass and width are

MZcs
¼ 3982.5þ1.8

−2.6 � 2.1 MeV; ð1Þ
ΓZcs

¼ 12.8þ5.3
−4.4 � 3.0 MeV: ð2Þ

In 2021 the LHCb Collaboration observed two more
hidden-charm tetraquark states with strangeness in the
J=ψKþ invariant mass spectrum of the Bþ → J=ψϕKþ
decay, Zcsð4000Þþ and Zcsð4200Þþ [2]. Because the width
of Zcsð3985Þ and that of Zcsð4000Þ differ by one order of
magnitude and their production mechanism is also differ-
ent, they are quite unlikely the same state [2,3]. As a result,
in the present work, we only focus on the Z−

csð3985Þ state.

There were quite a number of studies on the likely
existence of a cc̄sq̄ state in the literature before the
experimental discovery [4–11]. In Ref. [9], assuming a
compact tetraquark picture and considering the chromo-
magnetic interaction, the authors found that the lowest cc̄sq̄
tetraquark is about 100 MeV below the DD̄s mass thresh-
old. In the relativistic quark model, the lowest cc̄sq̄ state is
found to be 10 MeV below the DD̄s mass threshold [4]. In

Ref. [7] no Dð�ÞD̄ð�Þ
s bound state was found in the one-

boson-exchange (OBE) model, where only π, σ, ω, and ρ
exchanges were considered. In the chiral unitary approach
constrained by the hidden gauge symmetry and broken SU
(4) symmetry [5], no resonance or bound state near the
DD̄s mass threshold was found. In Ref. [8] an effective
field theory study with constraints from heavy quark spin
symmetry and SU(3)-flavor symmetry predicted several

hadronic molecules near the Dð�ÞD̄ð�Þ
s thresholds.1

After the BESIII discovery [1], many new studies were
performed and some of the earlier studies were updated. As
the Zcsð3985Þ state lies close to the mass thresholds of
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1These results should be taken with caution because there
Xð3915Þ and Yð4140Þ were assumed to be D�D̄� and D̄�

sD�
s

hadronic molecules with quantum numbers JPC ¼ 0þþ. However,
the JPC of Yð4140Þ has now been determined to be 1þþ [12].
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D−
s D�0 and D�−

s D0, the molecular picture has gained a lot
of attention [13–29]. There exist also competing interpre-
tations. For instance, it has been suggested to be either a
compact tetraquark state [24,30–39], a hadro-charmonium
[38], a virtual state [40], a threshold effect [41], a reflection
effect [42], or a recoupling effect [43]. A few remarks are
in order regarding some of these studies. It was shown
that the OBE potential does not support the existence of a
D−

s D�0=D�−D0 molecule [15], while the QCD sum rule
approach cannot distinguish between a molecule and a
compact tetraquark state [18,19,24,32]. There is no candi-
date of either molecular nature or compact tetraquark nature
for the Zcsð3985Þ state in the chiral quark model of
Ref. [44]. The existence of the Zcsð3985Þ state in the
OBE model of Ref. [25] depends on a number of less
known factors, such as the η exchange and the scalar meson
exchange. In addition to its mass and spin-parity, the decay
and production mechanisms [45–48], electromagnetic
properties [49], and even medium modifications [31,50]
of the Zcsð3985Þ state have been extensively studied.
In the molecular picture, it is particularly interesting to

note that in Ref. [20], using the next-to-leading-order chiral
potential, with the two low-energy constants (LECs) and
the cutoff determined from the Zcð3900Þ data [51] and SU
(3)-flavor symmetry, it is shown that the Kþ recoil-mass
spectrum of the eþe− → KþðD−

s D�0 þD�−
s D0Þ reaction

can be well described. With the same three parameters, a
pole is found at ðm;ΓÞ ¼ ð3982.4þ4.8

−3.4 ; 11.8
þ5.5
−5.2Þ MeV,

which can be associated with the Zcsð3985Þ state.
An effective field theory is a low-energy realization of

the underlying (and more fundamental) theory, which
satisfies all the relevant global symmetries and allows
for model-independent descriptions of physical processes
in its validity domain. In the present work, the underlying
theory of the strong interaction is quantum chromo-
dynamics (QCD), while the effective field theory is chiral
effective field theory (ChEFT). It has been successfully
applied to study many low-energy phenomena, in particu-
lar, the nucleon-nucleon interaction [52–55], pioneered by
Weinberg [56,57]. For a review of the application of
ChEFT in the heavy quark sector, see Ref. [58]. A key
issue in any EFT is that it allows for a controlled estimate of
truncation uncertainties in a statistically meaningful way.
In the past, chiral truncation uncertainties at a given order

were usually estimated by the variation of the cutoff needed
to regularize the corresponding scattering equation, e.g., in
Ref. [59]. However, as pointed out in Ref. [60], the
resulting uncertainties are actually the residue effect of
cutoff dependence, which essentially originate from the
missing contact interactions that appear only at even chiral
orders. Meanwhile, the uncertainties obtained in this way
are somehow arbitrary since they depend on the employed
cutoff range. In Ref. [60], the authors proposed to use the
differences between the optimal results obtained at different
orders as an estimate of truncation uncertainties, which are

referred to as the EKM uncertainties [54]. They are
motivated by the expectation that at low energies, trunca-
tion uncertainties are dominated by powers of expansion
quantities such as momentum or light quark masses. For a
short review of the application of the EKM approach in
nuclear physics, see Ref. [61]. The EKM uncertainties are
by construction smaller order by order (given that the EFT
converges). However, since only the known contributions
are taken into account, a statistical interpretation of this
algorithm is missing. More recently, a new method based
on the Bayesian model has been proposed [62–64], in
which by encoding the expectation of the chiral expansion
coefficients in a “prior probability density function,” the
truncation uncertainties for a certain degree-of-belief
(DOB) can be determined by integrating out the coeffi-
cients of omitted orders. The new Bayesian approach and
its modified version have been applied in the latest studies
of pion-nucleon scattering [65], NN and 3N scattering
[55,66,67] and other nuclear physics observables [68–71].
In thiswork, for the first time,we apply theBayesianmodel

to the heavy quark sector and to studies of exotic hadrons. In
particular, we study the D−

s D�0=D�−
s D0 scattering and the

related Zcsð3985Þ state in ChEFT up to the next-to-leading
order (NLO). In particular, we focus on the decomposition of
the NLO chiral potential and apply the Bayesian model to
study the chiral truncation uncertainties. We show that the
expansion converges well up to the breakdown scale of the
cutoff and even taking into account chiral truncation uncer-
tainties, the state remains as a resonance, supporting its
identification as the Zcsð3985Þ state [20].
This work is organized as follows. We briefly explain the

ChEFTapproach and the Bayesian model in Sec. II. Results
and discussions are given in Sec. III, followed by a short
summary in the last section.

II. THEORETICAL FORMALISM

In this section, we introduce the chiral potentials up to
the next-to-leading order and explain the Bayesian model
adopted in the present work.

A. Chiral potentials up to next-to-leading order

In this work, we follow Refs. [20,51] and describe the
eþe− → KþðD−

s D�0 −D�−
s D0Þ reaction in two steps as

shown in Fig. 1: the decay of a virtual photon into
KþðD−

s D�0 þD�−
s D0Þ2 and the rescattering of D−

s D�0=
D�−

s D0. The amplitude of the whole process UðE; pÞ can be
obtained by solving the following Lippmann-Schwinger
equation

2It should be noted that the virtual photon decaying into
KþðD−

s D�0 þD�−
s D0Þ can also proceed via the triangle mecha-

nism (see, e.g., Refs. [13,29]). However, the currently limited
experimental data are not enough to unambiguously distinguish
these two mechanisms. As a result, following Refs. [20,51], we
only consider the mechanism shown in Fig. 1.
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UðE;pÞ¼MðE;pÞþ
Z

d3q
ð2πÞ3VðE;p;qÞ

2μ

p2−q2þiϵ
UðE;qÞ;

ð3Þ

where E, p, and μ are the energy, momentum, and reduced
mass of the D−

s D�0=D�−
s D0 system in Fig. 1, respectively,

and jpj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE −mthÞ

p
with mth the threshold of the

system.MðE; pÞ is the photon decay amplitude, which can
be described by the following effective Lagrangian

Lγ�φVP ¼ gγF μν½ðP̃�†
μ uνP† − P̃�†

ν uμP†Þ
− ðP̃†uμP

�†
ν − P̃†uνP

�†
μ Þ� þ H:c:; ð4Þ

where gγ denotes the effective coupling constant, F μν is the

field strength tensor of the virtual photon, Pð�Þ ¼
ðD0ð�Þ; Dþð�Þ; Dþð�Þ

s Þ collect the charmed vector/pseudo-
scalar meson fields with P̃ð�Þ as the corresponding anti-
meson fields. The uν ¼ i

2
fξ†; ∂μξg is the axial-vector field

in which ξ ¼ expð iϕ
2fϕ

Þ with ϕ the pseudoscalar octet and fϕ
the decay constant.
The potential Vðp; qÞ consists of four parts: the LO and

NLO contact potential, the one-eta-exchange (OEE) poten-
tial, and the two-kaon-exchange (TKE) potential. Their
explicit expressions [20] are

Vct ¼ C̃S þ CSðp2 þ p02Þ; ð5Þ

VOEE ¼ −
g2

18f2η

Z
dϕdðcosðθÞÞ q2

q2 þm2
η
; ð6Þ

VTKE ¼
Z

dϕdðcosðθÞÞV1; ð7Þ

where V1 is

V1 ¼ −
24ð4g2 þ 1Þm2

K þ ð38g2 þ 5Þq2
2304π2f4K

þ 6ð6g2 þ 1Þm2
K þ ð10g2 þ 1Þq2

768π2f4K
ln

m2
K

ð4πfKÞ2

þ 4ð4g2 þ 1Þm2
K þ ð10g2 þ 1Þq2

384π2f4Ky
ϖ arctan

y
ϖ
: ð8Þ

As was demonstrated in Ref. [51], the S-D mixing effect
is insignificant and in the present work, we neglect the
D-wave interaction as was done in Ref. [20]. In the
above chiral potential, fη ¼ 116 MeV, fK ¼ 113 MeV,
g ¼ 0.57, p and p0 represent the momenta of initial
and final state in the c.m. system, q ¼ p0 − p, mη,
and mK are the masses of eta and kaon, θ is the scatte-
ring angle in the c.m. system of D−

s D�0=D�−
s D0, y¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pp0cosθ−p2−p02p
and ϖ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ4m2

K

p
. A Gaussian

form factor, expð−p02=Λ2 − p2=Λ2Þ, is multiplied to the
chiral potential to remove the ultraviolet divergence in
solving the Lippmann-Schwinger equation.
It should be noted that the OEE and TKE potentials are

pure predictions, while the two LECs C̃S and CS need to be
determined by fitting to experimental data. If the OEE and
TKE potentials are attractive and strong enough to allow for
formations of bound states or resonances, then the ChEFT
is predictive. Otherwise, it is not. It is one of our purposes
to check whether this is the case for the D−

s D�0=D�−
s D0

system.

B. Bayesian model

In this subsection, we briefly explain how the Bayesian
model can be extended to study the likely existence of
resonances. For details, please refer to Refs. [62–64].
Consider the EFT expansion for an observable X at fixed

kinematics,

X ¼ Xref

X∞
n¼0

cnQn ¼ Xð0Þ þ ΔXð2Þ þ…; ð9Þ

where fcng are dimensionless expansion coefficients. Xref
is a natural-sized X taken as a reference, which is suggested
[66] to be

Xref ¼ Max

�
jXLOj; jX

LO − XNLOj
Q2

�
: ð10Þ

Q is the expansion parameter, which is assumed to take the
form [54,60,62,63]

Q ¼ Max

�
p
Λ
;
mK=η

Λ

�
; ð11Þ

FIG. 1. Feynman diagram for the eþe− → KþðD−
s D�0 þ

D�−
s D0Þ reaction: tree-level (upper panel) and rescattering proc-

ess (lower panel).
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with p the momentum in the c.m. frame and Λ the
breakdown scale. However, in the present work, as we
show later, the optimal cutoff obtained is less than 0.4 GeV.
Therefore, we could not use the kaon mass or eta mass to
estimate the expansion parameter. Instead we use an
effective mass of 200 MeV to put a lower limit on the
expansion parameter, which is about 0.5. ΔXð2Þ is the
difference between the NLO result and the LO result. If the
series is truncated at order k, then the truncation uncertainty
is defined as the sum of the contributions of chiral orders
higher than k

Δk ¼
X∞

n¼kþ1

cnQn; ð12Þ

removing the dimensional Xref . To estimate Δk, one
has to start from the known fcngðn ≤ kÞ. That is, one
needs to specify the probability distribution function
pðΔkjc0; c1;…; ckÞ, with which the DOB intervals can
be calculated as

p% ¼
Z

dðpÞk

−dðpÞk

pðΔkjc0; c1;…; ckÞdΔk; ð13Þ

with dðpÞk the integral interval corresponding to the DOB
p%. Usually one chooses p% ¼ 68%. The truncation
uncertainty for the observable X is then ΔXðkÞ ¼
Xrefd

ðpÞ
k , which means that the possibility of the value of

observable X in ðXðkÞ − ΔXðkÞ; XðkÞ þ ΔXðkÞÞ is p%.
Following Ref. [63], we ultilize a Gaussian prior

probability distribution function (PDF) with a common
hyperparameter c̄ for the expansion coefficients ci as

pðcijc̄Þ ¼
1ffiffiffiffiffiffi
2π

p
c̄
e−c

2
i =2c̄

2

: ð14Þ

where c̄ itself follows the log-uniform PDF [72] as

prðc̄Þ ¼ 1

lnðc̄>=c̄<Þ
1

c̄
θðc̄ − c̄<Þθðc̄> − c̄Þ; ð15Þ

where c̄<ðc̄>Þ is the lower (upper) limit of c̄ and θðxÞ
here denotes the step function. The posterior PDF
pðΔkjc0; c1;…; ckÞ then takes the following form [66]

pðΔkjc0; c1;…; ckÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
πq̄2c2k

q
�

c2k
c2k þ Δ2=q̄2

�
k=2 Γ

�
k
2
; 1
2c̄2>

�
c2k þ Δ2

q̄2

��
− Γ

�
k
2
; 1
2c̄2<

�
c2k þ Δ2

q̄2

��

Γ
�
k−1
2
;
c2k
2c̄2>

�
− Γ

�
k−1
2
;
c2k
2c̄2<

� ; ð16Þ

where q̄2 ≡Pkþh
i¼kþ1Q

2i with h as the next highest order to
be taken into account, c2k ≡

P
i∈A c

2
i , A≡ fn ∈ N0jn ≤

k ∧ n ≠ 1 ∧ n ≠ mg with cm the expansion coefficient
corresponding to the overall scale Xref defined above. In
the present work, we take k ¼ 2, h ¼ 10, c̄< ¼ 0.5 and
c̄> ¼ 10.0 following Ref. [63].

III. NUMERICAL RESULTS
AND DISCUSSIONS

In this section, we study the decomposition of the chiral
potential up to NLO and perform two types of truncation
uncertainty analyses. In Table I, we tabulate the masses of
the relevant particles.

A. Decomposition of the chiral potential

First, we examine the relative importance of the different
terms of the chiral potential up to NLO. In the nucleon-
nucleon system, it is well known that the one-pion exchange
(OPE) potential provides the longest-range nuclear force,
while the two-pion exchange (TPE) contributions describe
the intermediate part. As a result, for higher partial waves,
e.g., those with angular momentum larger than 3 or 4, the

OPE plus TPE potentials can already describe well
the corresponding partial wave phaseshifts [73,74]. On the
other hand, for those channels of low angular momenta, the
short-range contributions encoded in theLECs are important,
to such an extent that for low energy regions the pions can be
integrated out [75]. The above discussion is relevant because
if the OPE and TPE contributions are dominant, then the
theory ismore predictive.Otherwise, one has to rely on either
experimental data or lattice QCD data or phenomenology
(e.g., resonance saturation) to determine the relevant LECs.
This is particularly relevant to theD−

s D�0=D�−
s D0 interaction

and the corresponding Zcsð3985Þ state. This is because if the

TABLE I. Masses of particles [12] relevant to the present study
(in units of GeV).

Particle Mass Particle Mass

D��
s 2.1122 D�

s 1.9683
D0 1.86484 D� 1.86965
D�0 2.00685 D�� 2.01026
K� 0.493677 η 0.54786
K0 0.497611
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LO OEE potential or the NLO TKE potential is attractive
enough, then without relying on other inputs, the ChEFT
approach is predictive by itself. Otherwise, certain exper-
imental inputs are needed to predict the existence
of Zcsð3985Þ.
In Fig. 2 with the two LECs and the cutoff determined

in Ref. [51] by fitting to the Zcð3900Þ data, i.e., C̃S ¼ 3.6×
102 GeV−2,CS ¼ −76.9× 102 GeV−4, andΛ ¼ 0.33 GeV,
we compare the LO contact, LO OEE, NLO contact, and
NLO TKE contributions around the D−

s D�0=D�−
s D0 thresh-

old. It is clear that the OEE contribution is negligible
compared to the LO contact term. In addition, in the energy
region studied, the TKE contribution is nearly energy
independent and is only about one quarter of the LO contact
contribution. From this, we conclude that the OEE or TKE
contribution alone is not enough to dynamically generate the
Zcsð3985Þ state as aD−

s D�0=D�−
s D0 resonance. On the other

hand, the NLO contact contribution is zero at threshold but
increases quickly as one moves away from the threshold. At
the pole position, its size is about half that of the LO contact
contribution. At 50 MeV above the threshold, it already
becomes four times stronger. As a matter of fact, the NLO
contributions (both contact and TKE) are responsible for the
appearance of a resonant D−

s D�0 −D�−
s D0 state, because

with the energy-independent LO contribution, only bound or
virtual states can emerge.
It is interesting to note that the LO contact potential is

repulsive while the OEE potential is attractive but negli-
gible in magnitude. The TKE potential is moderately
attractive while the NLO contact potential is attractive
above the threshold but repulsive below the threshold.

B. Truncation uncertainty analysis

We perform two types of truncation uncertainty analyses.
One is based on the chiral potential, which itself is not a

physical observable. The other is based on the Kþ recoil-
mass spectrum, which is a more proper observable.

1. Uncertainty analysis based on chiral potential

In Fig. 3, we plot the NLO chiral potential of Ref. [20] as
a function of the D−

s D�0=D�−
s D0 invariant mass and the

corresponding truncation uncertainty for a DOB of 68%.
The chiral truncation uncertainty is relatively small close to
the threshold, but becomes larger around the breakdown
scale. We need to mention that, for the potential below the
threshold, we have replaced p with jpj in the calculation of
the expansion parameterQ. One can translate the truncation
uncertainties of the chiral potential shown in Fig. 3 to
those of the two LECs, C̃S and CS. They now become
C̃S¼3.60þ1.2þ0.5

−1.2−0.5 GeV
−2 and CS ¼ −76.9þ6.2þ10.0

−6.2−10.0 GeV−4,
where the first uncertainty is statistical and the second is
systematic originating from chiral truncations.
With the NLO chiral potential and the corresponding

truncation uncertainty as well as statistical uncertainty,
we search for poles on the second Riemann sheet.
The resulting positions are shown in Fig. 4.3 Clearly, even
with the truncation uncertainties taken into account,
ChEFT still supports the interpretation of the Zcsð3985Þ
state as a D−

s D�0=D�−
s D0 resonance. More specifically,

with both uncertainties, we obtain the position as
ðm;ΓÞ ¼ ð3982.4þ6.7

−5.2 ; 11.8
þ8.9
−7.4Þ MeV, which should be

compared with that obtained in Ref. [20], ðm;ΓÞ ¼
ð3982.4þ4.8

−3.4 ; 11.8
þ5.5
−5.2Þ MeV. Clearly even compared to

the relatively large statistical uncertainty, the systematic
uncertainty is sizable.

FIG. 2. Decomposition of the chiral potential up to NLO as a
function of Kþ recoil-mass RM(Kþ). The vertical dashed line
denotes the real part of the pole position predicted in Ref. [20].

FIG. 3. NLO chiral potential [20] as a function of the D̄sD�
invariant mass. The band represent chiral truncation uncertainties
obtained by the Bayesian model for a DOB of 68%.

3The pole positions are calculated using the LECs randomly
sampled within the one σ regions around their central values.
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2. Uncertainty analysis based on K + -recoil mass
spectrum

The leading order potential of Ref. [20] describes the
Kþ-recoil spectrum very badly (see Fig. 5), therefore to
perform a proper truncation uncertainty analysis, we
perform a new fit to the experimental data of Ref. [1].
At LO, we have two LECs to determine, i.e., C̃S and Λ. At
NLO, the LEC CS also contributes. By fitting to the
experimental data shown in Fig. 5,4 we obtain the LECs
given in Table II together with the corresponding χ2=d:o:f:
The light blue band is generated using the Bayesian method
explained in Sec. II B with Λ ¼ 0.36. It should be men-
tioned that in the spirit of the Bayesian model, we have
fixed the cutoff at its central value in obtaining the
statistical uncertainties of the LECs. For the sake of
comparison, we also show the LO and NLO predictions
of Ref. [20]. It should be noted that the experimental data
we fitted are taken from Fig. 4 of Ref. [1] where the wrong-
sign combinations ofD−

s andK− candidates and the excited
D��þ

s contributions have been subtracted. Our fits indicate
that there is no need to consider K rescattering from either

Dð�Þ−
s or Dð�Þ0, in agreement with Refs. [13,17,20,28,29].

Once more precise data become available, one may need
to examine this part of final-state interactions in more
detail.
A few things are noteworthy. First, the NLO description

of the experimental data is quantitatively better than its LO

counterpart. Nonetheless, both the LO and NLO fits can be
viewed as reasonable given the relatively large experimen-
tal uncertainties. We note that in the literature, EFT studies
have been performed at both LO and NLO, and reasonable
descriptions of the experimental data have been claimed.
Second, the truncation uncertainties increase quickly as one
moves away from the threshold. This is mainly because of
the relatively small optimal cutoff of 0.36 GeV5 obtained
at NLO, which implies that the NLO ChEFT can be trusted
at most up to

ffiffiffi
s

p
D−

s D�0=D�−
s D0 ≈ 4.041 GeV. With the

parameters given in Table II, we search for poles on the
complex plane. There is no bound state or virtual state at
LO, but we find a resonant state at NLO. The position is
ðM;ΓÞ ¼ ð3983.5þ9.8

−6.5 ; 21.3
þ18.5
−12.5Þ MeV, where the uncer-

tainties include both systematic and statistical ones. We
note that the pole position is consistent with that of
Ref. [20] within the relatively large uncertainty.

IV. SUMMARY AND OUTLOOK

We revisited the eþe− → KþðD−
s D�0 þD�−

s D0Þ reaction
in chiral effective field theory up to the next-to-leading
order in the single-channel approximation. We first exam-
ined the relative importance of various contributions in the

FIG. 4. Pole positions corresponding to Zcsð3985Þ with sys-
tematic and statistical uncertainties for the NLO chiral potential
of Ref. [20]. The blue dash-dotted frame defines the uncertainty
boundaries.

FIG. 5. Kþ recoil-mass spectrum of the eþe− → KþðD−
s D�0 þ

D�−
s D0Þ reaction. The light blue band represents chiral truncation

uncertainties obtained using the Bayesian model for a DOB of
68%. The curves labeled by “LO-Wang” and “NLO-Wang” are
the LO and NLO results of Ref. [20]. The solid dots associated
with errors are experimental data after removing the combina-
torial backgrounds from Ref. [1].

4As a matter of fact, only the data points denoted by solid
points are fitted, while those denoted by open circles are not. This
choice is motivated by the following observation. Among the
three data points neglected, two of them have negative central
values and the one at threshold cannot be simultaneously
described together with the others.

5This value or the value of 0.33 GeVobtained in Ref. [51] is a
bit small if one considers that the eta and kaon masses are about
0.5 GeV. On the other hand, considering that the OEE and TKE
contributions are relatively small and almost energy independent
and therefore can be absorbed into the LO contact contribution,
the relatively small cutoff is acceptable.
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chiral expansion and showed explicitly the important role
played by the leading order and next-to-leading-order
contact contributions in describing the BESIII data. This
demonstrates that for the particular case studied, the ChEFT
approach is not very predictive by itself. Experimental
inputs or other symmetries are needed to predict the
existence of the Zcsð3985Þ state. This was done in
Ref. [20] using the Zcð3900Þ data and SU(3) symmetry.
Then we applied the Bayesian method to estimate chiral
truncation uncertainties. We performed two types of
uncertainty analyses, based on either the chiral potential
or the event distribution. For the latter, we have refitted
the BESIII data. Our results showed that because of the

relatively small cutoff obtained from the fitting, the
chiral EFT approach can only be trusted up to 50 MeV
above the D−

s D�0=D�−
s D0 threshold. In either case, our

results showed that even with chiral truncation uncertainties
taken into account, the Zcsð3985Þ state remains a robust
D−

s D�0=D�−
s D0 resonance.

To the best of our knowledge, the present study con-
stitutes the first exploration of the Bayesian model in
studies of exotic hadrons. It is shown that a proper and
statistically meaningful uncertainty analysis can be per-
formed. Such an analysis gives us more confidence in the
prediction and/or results of the chiral effective field
theory studies. We hope that the present study can
stimulate more similar studies in the heavy flavor sector
in the future.
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