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We discuss diffractive processes in proton-proton collisions at small momentum transfers without and
with photon radiation. We consider the soft exclusive reactions pp → pp, pp̄ → pp̄, and pp → ppγ
within the tensor-Pomeron and vector-odderon approach. We compare our results with the data for pp and
pp̄ total cross sections, for the ratio of real to imaginary parts of the forward scattering amplitude, and for
the elastic pp cross sections, especially those from TOTEM. To describe the low-energy data more
accurately, the secondary reggeons must be included. We write down the amplitudes for the photon
bremsstrahlung in high-energy proton-proton collisions using the tensor-Pomeron model. These results are
relevant for the c.m. energies presently available at the Relativistic Heavy Ion Collider and at the LHC. We
present predictions for the proposed measurements of soft photons with the planned future upgrade of the
ALICE experiment at the LHC. We investigate the limits of applicability of the soft-photon approximation
(SPA) based on Low’s theorem. The corresponding SPA results are compared to those obtained from our
complete model. The regions of phase space are given quantitatively where SPA and our complete tensor-
Pomeron results are close to each other. As an example, let k⊥, y, and ω, be the absolute value of the
transverse momentum, the rapidity, and the energy of the photon, respectively, in the overall c.m. system.
For the region 1 MeV < k⊥ < 100 MeV and 3.5 < jyj < 5.0, we find that the SPA Ansatz with only the
pole terms ∝ ω−1 agrees at the percent level with our complete model result up to ω ≅ 2 GeV.
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I. INTRODUCTION

With this article, we continue our investigations of soft-
photon radiation in diffractive hadronic high-energy reac-
tions. In Ref. [1], we treat, as a first example using our
approach, high-energy ππ scattering without and with
photon radiation. In the present paper, we extend these
considerations to pp and pp̄ scattering.
The emission of soft photons, that is, photons of energy

ω approaching zero, was treated in the seminal paper
by Low [2]. In that paper, it was shown that the term of
order ω−1 in the amplitude for the emission reaction can

be obtained from the amplitude without photon emission.
To this order, the emission comes exclusively from the
external particles, and this is a strict consequence of
Quantum Field Theory (QFT). Many soft-photon approx-
imations (SPAs) are based on this result.
Experimental studies trying to verify Low’s theorem

[3–14] have, in many cases, found large deviations from the
SPA calculations. For a review of the experimental and
theoretical situations, see Ref. [15]. Clearly, more exper-
imental and theoretical work is needed in order to clarify
this so-called soft-photon problem.
From the experimental side, there is, for instance, the plan

for a new multipurpose detector at the LHC, ALICE 3 [16].
One physics aim for this new initiative is a measurement of
ultrasoft photons at very low transverse momentum in pp,
pA, and AA collisions; see, e.g., Refs. [17,18].
From the theoretical side, many authors have studied

soft-photon production following Ref. [2]; see, for instance,
Refs. [19–27]. In our paper [1], we have presented two
types of soft-photon studies.
(1) We have studied the amplitude for the reaction ππ →

ππγ in the limit of the photon c.m. energy ω going to
zero. Using only rigorous QFT methods, we have
calculated the terms of order ω−1 and ω0. We found
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agreement with the result of Low [2] for the ω−1

term but, we disagreed with the ω0 term of Ref. [2].
We have analyzed the origin of this disagreement,
and we give a critique of the corresponding results of
the papers [2,20,22–26] in Appendixes A and B
of Ref. [1].

(2) We have discussed the reactions ππ → ππ and ππ →
ππγ at high energies in a specific model, the tensor-
Pomeron model of Ref. [28]. The “standard” results
obtained in this approach were then compared to
various soft-photon approximations.

With the present paper, we continue our line (2) of
research. Further results from the line (1) will be presented
elsewhere.
One class of hadronic reactions one can study at the LHC

is exclusive diffractive proton-proton collisions. Examples
are pp → pp elastic scattering and central exclusive
production of mesons, for instance, pp → ppπþπ−. In
this paper, we present the results of our investigations of the
following soft reactions at small momentum transfer:

pþ p → pþ p;

pþ p̄ → pþ p̄;

pþ p → pþ pþ γ: ð1:1Þ

We shall work within the tensor-Pomeron model as pro-
posed in Ref. [28] for soft hadronic high-energy reactions.
There, the soft Pomeron and the charge conjugationC ¼ þ1
reggeons are described as effective rank-2 symmetric tensor
exchanges, and the odderon and the C ¼ −1 reggeons are
described as effective vector exchanges. Now, our task is to
construct a soft-photon diffractive amplitude of the pp →
ppγ reaction which satisfies all theoretical constraints.
Before coming to our present investigations, we make

remarks on some related works. Exclusive diffractive
photon bremsstrahlung in pp collisions was discussed
earlier in Refs. [29–31] within other approaches. The
bremsstrahlung-type emission of ω and π0 mesons was
calculated in Refs. [32,33]. It is also worth noting that the
pp → ppγ reaction has not yet been measured at high
energies; however, feasibility studies were performed for
RHIC energies [34] and for LHC energies [35,36].
The theoretical methods which we shall develop in the

present paper for soft-photon production can also be used in
a completely different context: for the production of “dark
photons”. Indeed, an interesting proposal of new physics
search was discussed recently in Ref. [37]: to study the
forward production of dark vectors (photons) and scalars
via bremsstrahlung in proton-proton collisions with the
proposed Forward Physics Facility (FPF) at the High-
Luminosity LHC [38]. At the LHC, such weakly coupled
long-lived particles, with masses m ∼ 10 MeV–1 GeV,
could be produced through light meson decays and

bremsstrahlung in the region that would be covered by
the FPF.
Our present paper is organized as follows. In Sec. II, we

discuss the amplitudes for the reactions listed in (1.1)
within the tensor-Pomeron approach. In Sec. III, we
describe two SPAs based on Low’s theorem. The results
of our calculations are presented in Sec. IV. Section IVA is
devoted to a comparison of the model results to the
available data on the total and elastic pp and pp̄ cross
sections. In Sec. IV B, we present our “exact” model or
“standard” results for the pp → ppγ reaction and a
comparison to SPAs. Section IV C contains comments
on the photon radiation in connection with diffractive
excitation of the proton. Section V contains a summary
and our conclusions. Some details of the present model are
given in Appendixes A and B.
Throughout our paper, we use the metric and γ-matrix

conventions of Ref. [39].

II. REACTIONS pp → pp, pp̄ → pp̄, AND pp → ppγ

Here, we discuss the reactions

pðpa; λaÞ þ pðpb; λbÞ → pðp1; λ1Þ þ pðp2; λ2Þ; ð2:1Þ

pðpa; λaÞ þ p̄ðpb; λbÞ → pðp1; λ1Þ þ p̄ðp2; λ2Þ; ð2:2Þ

and

pðpa; λaÞ þ pðpb; λbÞ → pðp0
1; λ1Þ þ pðp0

2; λ2Þ þ γðk; ϵÞ:
ð2:3Þ

The momenta are denoted by pa;…; k; the helicities of the
protons are denoted by λa;…; λ2; and ϵ is the polarization
vector of the photon. The energy-momentum conservation
in (2.1), (2.2), and (2.3) requires

pa þ pb ¼ p1 þ p2; ð2:4Þ

pa þ pb ¼ p0
1 þ p0

2 þ k: ð2:5Þ

We consider soft hadronic high-energy reactions. We use
standard formulas of the tensor-Pomeron and vector-odd-
eron model from Ref. [28]. In this model, the assumption is
made that the Pomeron P and the charge-conjugation C ¼
þ1 reggeons f2R, a2R couple to hadrons like symmetric
tensors of rank 2, and the odderon O and the C ¼ −1
reggeons ωR, ρR couple to hadrons like vectors. We do not
treat γ exchange in the following.
In Ref. [40], it is shown that the experimental results [41]

on the spin dependence of high-energy proton-proton
elastic scattering exclude a scalar character of the
Pomeron couplings but are perfectly compatible with the
tensor-Pomeron model. A vector coupling for the Pomeron
could definitely be ruled out as shown in Ref. [42].
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A. Reaction pp → pp

We consider first the reaction (2.1) for off-shell protons.
Also, here, energy-momentum conservation (2.4) holds.
We have the diagrams of Fig. 1 with C ¼ þ1 and C ¼ −1
exchanges. The kinematic variables are

s ¼ ðpa þ pbÞ2 ¼ ðp1 þ p2Þ2;
t ¼ ðpa − p1Þ2 ¼ ðpb − p2Þ2;
u ¼ ðpa − p2Þ2 ¼ ðpb − p1Þ2;

m2
a ¼ p2

a; m2
b ¼ p2

b; m2
1 ¼ p2

1; m2
2 ¼ p2

2: ð2:6Þ
The interchange p1 ↔ p2 implies t ↔ u, where u ¼ −s−
tþm2

a þm2
b þm2

1 þm2
2. We are interested in the kin-

ematic regionffiffiffi
s

p
≫ mp;

ffiffiffiffiffi
jtj

p ≲mp; s ≫ jm2
aj; jm2

bj; jm2
1j; jm2

2j:
ð2:7Þ

There, we can neglect the diagrams with p1 ↔ p2.
We denote the off-shell pp scattering amplitude by

Mð0Þðpa; pb; p1; p2Þ: ð2:8Þ
In the tensor-Pomeron model [28], all exchanges at high

energies are assumed to be describable by effective single
Regge poles. Some standard references to Regge theory are
Refs. [43–45]. For further literature, we refer to Refs. [1,28].
The special feature of the tensor-Pomeron model is, as men-
tioned above, that all C ¼ þ1 exchanges (P, f2R, a2R) are
described as effective rank-2 symmetric tensor exchanges
and that all C ¼ −1 exchanges (O, ωR, ρR) are described as
effective vector exchanges. To calculate the expressions for
the diagrams of Fig. 1, we need the effective propagators for
the exchange objects and their proton-proton coupling
vertices. All these quantities are listed inChap. 3 ofRef. [28].
To write down the amplitude (2.8) in this model in a

convenient way, we define for the C ¼ þ1 exchanges the
functions

FPppðs; tÞ ¼ ½3βPppF1ðtÞ�2
1

4s
ð−isα0PÞαPðtÞ−1; ð2:9Þ

F f2Rppðs;tÞ¼
�
gf2Rpp
M0

F1ðtÞ
�
2 1

4s
ð−isα0f2RÞαf2R ðtÞ−1; ð2:10Þ

F a2Rppðs;tÞ¼
�
ga2Rpp
M0

F1ðtÞ
�
2 1

4s
ð−isα0a2RÞαa2R ðtÞ−1 ð2:11Þ

and for the C ¼ −1 exchanges the functions

FOppðs; tÞ ¼ −ηO½3βOppF1ðtÞ�2ð−isα0OÞαOðtÞ−1; ð2:12Þ

FωRppðs; tÞ ¼
�
gωRpp

M−
F1ðtÞ

�
2

ð−isα0ωR
ÞαωR ðtÞ−1; ð2:13Þ

F ρRppðs; tÞ ¼
�
gρRpp
M−

F1ðtÞ
�
2

ð−isα0ρRÞαρR ðtÞ−1: ð2:14Þ

We define also the following quantities:

F Tðs;tÞ¼FPppðs;tÞþF f2Rppðs;tÞþF a2Rppðs;tÞ; ð2:15Þ
FVðs;tÞ¼FOppðs;tÞþFωRppðs;tÞþF ρRppðs;tÞ: ð2:16Þ

All quantities occurring in (2.9)–(2.14) are as defined in
Chaps. 3.1 and 3.2 of Ref. [28]. To make our article self-
contained, we give in Appendix A a list of the quantities
and their values which we use. In considering the effective
propagators and vertices, some additional comments are
in order:

(i) In Ref. [28], exchange degeneracy of the reggeons
with C ¼ þ1 (Rþ ¼ f2R, a2R) and the reggeons
with C ¼ −1 (R− ¼ ωR, ρR) and equality of
the Rþ and R− trajectories was assumed; see also
Ref. [46]. This leads for the trajectories to αRðtÞ ¼
αRþðtÞ ¼ αR−

ðtÞ. We assume a standard linear
form αRðtÞ¼αRð0Þþα0Rt with the intercept and
the slope: αRð0Þ¼0.5475, α0R ¼ 0.9 GeV−2.

(ii) The Pomeron trajectory function in (2.9) is also
taken as linear in t, αPðtÞ ¼ 1þ ϵP þ α0Pt. For the
intercept parameter ϵP and the slope parameter
α0P, we have the default values from Ref. [28]:
ϵP ¼ 0.0808, α0P ¼ 0.25 GeV−2. The P and R
intercept parameters have been determined by Don-
nachie and Landshoff from a simultaneous fit to the
pp and pp̄ scattering data for

ffiffiffi
s

p
> 10 GeV [47]

and should be regarded rather as “effective” param-
eters. The parameter α0P ¼ 0.25 GeV−2 has been
determined from the pp elastic scattering data [48]
(see also Ref. [46]) and is in good agreement

FIG. 1. The diagrams for pp → pp elastic scattering with C ¼ þ1 (left) and C ¼ −1 (right) exchanges. There are also the diagrams
corresponding to the exchange p1 ↔ p2.

SOFT-PHOTON RADIATION IN HIGH-ENERGY PROTON- … PHYS. REV. D 106, 034023 (2022)

034023-3



with experimental findings on the exclusive ρ0

photoproduction [49,50]. The value for the coupling
constant of the Pomeron to protons is βPpp ¼
1.87 GeV−1; see (3.44) and Sec. 6.3 of Ref. [28].
For simplicity, in (2.9)–(2.14), the Dirac electro-
magnetic form factor of the proton is used. It is clear
that this cannot be strictly correct; see the discussion
in Chap. 3.2 of Ref. [46] and in Ref. [51]. It will be
shown in Sec. IVA that to effectively describe
the TOTEM data for the elastic pp cross section
(dσ=dt) at

ffiffiffi
s

p ¼ 13 TeV, taking into account only
the leading P contribution, we must change in
Eq. (2.9) both the ϵP parameter and the Pomeron-
proton form factor F1ðtÞ.

(iii) For the odderon exchange, we will also consider an
alternative Ansatz corresponding to a double Regge
pole (A9). Then, we have

FOppðs; tÞ → F̃Oppðs; tÞ ¼ FOppðs; tÞ
× ½C1 þ C2 ln ð−isα0OÞ�; ð2:17Þ

where C1 and C2 are real constants. In (2.12) and
(2.17), the factor ηO ¼ �1 and the odderon trajec-
tory function are unknown. We assume αOðtÞ ¼
1þ ϵO þ α0Ot with the parameters ϵO and α0O that
should be determined by experiment. Of course,
the Pomeron amplitude must dominate over the
odderon one for s → ∞ in order to ensure positive
total pp and pp̄ cross sections. Thus, we must
require ϵO ≤ ϵP. For our study here, we assume
βOpp ¼ 0.1 × βPpp ≃ 0.2 GeV−1, α0O ¼ α0P, ϵO ¼
0.0800, ηO ¼ −1, and ðC1; C2Þ as listed in (A10).
How these parameters are determined from compar-
isons between theory and experiment will be dis-
cussed in Sec. IVA.

In the following, we use tensor-product notation. The
first factors will always refer to the pa-p1 line, and the
second refer to the pb-p2 line of the diagrams shown
in Fig. 1.
In our model, the off-shell proton-proton scattering

amplitude has the form

Mð0Þðpa; pb; p1; p2Þ ¼ Mð0Þ
P þMð0Þ

f2R
þMð0Þ

a2R þMð0Þ
O þMð0Þ

ωR þMð0Þ
ρR

¼ iF Tðs; tÞ
�
γμ ⊗ γμðpa þ p1; pb þ p2Þ þ ð=pb þ =p2Þ ⊗ ð=pa þ =p1Þ −

1

2
ð=pa þ =p1Þ ⊗ ð=pb þ =p2Þ

�
− FVðs; tÞγμ ⊗ γμ: ð2:18Þ

With the helicities λa, λb, λ1, λ2 ∈ f−1=2; 1=2g, we get for the on-shell matrix element

hpðp1; λ1Þ; pðp2; λ2ÞjT jpðpa; λaÞ; pðpb; λbÞi
≡Mðon shellÞppðs; tÞ
¼ ū1 ⊗ ū2Mð0Þðpa; pb; p1; p2Þua ⊗ ubjon shell

¼ iF Tðs; tÞ½ū1γμuaū2γμubðpa þ p1; pb þ p2Þ þ ū1γμuaðpb þ p2Þμū2γνubðpa þ p1Þν
− 2m2

pū1uaū2ub� − FVðs; tÞū1γμuaū2γμub: ð2:19Þ

For brevity of notation, we define here and in the following
for the spinors ua ¼ uðpa; λaÞ, ū1 ¼ ūðp1; λ1Þ, etc. We also
denote Mðon shellÞppðs; tÞ as the on-shell pp elastic scatter-
ing amplitude.
We consider now the high-energy small-angle limit

where we have the simple relations

ūðp1; λ1Þγμuðpa; λaÞ ≅ ðpa þ p1Þμδλ1λa ;
ðpa þ p1; pb þ p2Þ ≅ 2s: ð2:20Þ

From (2.19) we get, for s → ∞, setting a possible odderon
contribution to zero, the Pomeron contribution as leading
term in the form

Mðon shellÞppðs; tÞ → i8s2FPppðs; tÞδλ1λaδλ2λb : ð2:21Þ

In this high-energy small-angle limit, the amplitude
calculated from the tensor-Pomeron exchange is the same
as the standard Donnachie-Landshoff amplitude; see the
discussion in Chap. 6.1 of Ref. [28].
Coming back to the general case, we emphasize that in

the following we use the exact formulas (2.18) and (2.19),
without the approximations (2.20).
The total cross section for unpolarized protons, obtained

from the forward-scattering amplitudes using the optical
theorem, is
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σtotðppÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
pÞ

q 1

4

X
λa;λb

Imhpðpa; λaÞ; pðpb; λbÞjT jpðpa; λaÞ; pðpb; λbÞi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

pÞ
q fReF Tðs; 0Þ8½ðs − 2m2

pÞ2 −m4
p� − ImFVðs; 0Þ2ðs − 2m2

pÞg: ð2:22Þ

With (2.9)–(2.17), this gives

σtotðppÞ ¼ 2

�
1 −

4m2
p

s

�
−1=2

��
ð3βPppÞ2ðsα0PÞαPð0Þ−1 cos

�
π

2
ðαPð0Þ − 1Þ

�

þ
�
gf2Rpp
M0

�
2

ðsα0f2RÞαf2R ð0Þ−1 cos
�
π

2
ðαf2Rð0Þ − 1Þ

�

þ
�
ga2Rpp
M0

�
2

ðsα0a2RÞαa2R ð0Þ−1 cos
�
π

2
ðαa2Rð0Þ − 1Þ

���
1 −

4m2
p

s
þ 3m4

p

s2

�

−
�
−ηOð3βOppÞ2ðsα0OÞαOð0Þ−1

�
cos

�
π

2
αOð0Þ

�
ðC1 þ C2 ln ðsα0OÞÞ − C2

π

2
sin

�
π

2
αOð0Þ

��

þ
�
gωRpp

M−

�
2

ðsα0ωR
ÞαωR ð0Þ−1 cos

�
π

2
αωR

ð0Þ
�

þ
�
gρRpp
M−

�
2

ðsα0ρRÞαρR ð0Þ−1 cos
�
π

2
αρRð0Þ

���
1 −

2m2
p

s

��
: ð2:23Þ

Here, we have used the expression (2.17) inserted into (2.16). To get the expression with (2.12) for the odderon exchange,
we have to set C1 ¼ 1 and C2 ¼ 0.

B. Reaction pp̄ → pp̄

Here, we study the reaction (2.2), where p and p̄ can be on or off shell. In our model, considering only hadronic
exchanges, we have the diagrams shown in Fig. 2. For high c.m. energies and small momentum transfers (2.7), the s-
channel exchanges should be negligible.
Now, we get for the pp̄ off-shell amplitude

Mð0Þ
pp̄ðpa; pb; p1; p2Þ ¼ iF Tðs; tÞ

h
γμ ⊗ γμðpa þ p1; pb þ p2Þ þ ðpb þ p2Þ ⊗ ðpa þ p1Þ −

1

2
ðpa þ p1Þ ⊗ ðpb þ p2Þ

i
þ FVðs; tÞγμ ⊗ γμ: ð2:24Þ

For the on-shell amplitude, we get

hpðp1; λ1Þ; p̄ðp2; λ2ÞjT jpðpa; λaÞ; p̄ðpb; λbÞi ¼ ū1 ⊗ v̄bM
ð0Þ
pp̄ðpa; pb; p1; p2Þua ⊗ v2

¼ iF Tðs; tÞ½ū1γμuav̄bγμv2ðpa þ p1; pb þ p2Þ þ ū1γμuaðpb þ p2Þμv̄bγνv2ðpa þ p1Þν þ 2m2
pū1uav̄bv2�

þ FVðs; tÞū1γμuav̄bγμv2: ð2:25Þ

FIG. 2. The diagrams for pp̄ → pp̄ elastic scattering with the t- and s-channel exchanges.
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The total pp̄ cross section is

σtotðpp̄Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
pÞ

q 1

4

X
λa;λb

Imhpðpa; λaÞ; p̄ðpb; λbÞjT jpðpa; λaÞ; p̄ðpb; λbÞi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

pÞ
q fReF Tðs; 0Þ8½ðs − 2m2

pÞ2 −m4
p� þ ImFVðs; 0Þ2ðs − 2m2

pÞg: ð2:26Þ

With (2.9)–(2.17), this gives

σtotðpp̄Þ ¼ 2

�
1 −

4m2
p

s

�
−1=2

��
ð3βPppÞ2ðsα0PÞαPð0Þ−1 cos

�
π

2
ðαPð0Þ − 1Þ

�

þ
�
gf2Rpp
M0

�
2

ðsα0f2RÞαf2R ð0Þ−1 cos
�
π

2
ðαf2Rð0Þ − 1Þ

�

þ
�
ga2Rpp
M0

�
2

ðsα0a2RÞαa2R ð0Þ−1 cos
�
π

2
ðαa2Rð0Þ − 1Þ

���
1 −

4m2
p

s
þ 3m4

p

s2

�

þ
�
−ηOð3βOppÞ2ðsα0OÞαOð0Þ−1

�
cos

�
π

2
αOð0Þ

�
ðC1 þ C2 ln ðsα0OÞÞ − C2

π

2
sin

�
π

2
αOð0Þ

��

þ
�
gωRpp

M−

�
2

ðsα0ωR
ÞαωR ð0Þ−1 cos

�
π

2
αωR

ð0Þ
�

þ
�
gρRpp
M−

�
2

ðsα0ρRÞαρR ð0Þ−1 cos
�
π

2
αρRð0Þ

���
1 −

2m2
p

s

��
: ð2:27Þ

Comparing Eq. (2.18) with Eq. (2.24), Eq. (2.19) with
Eq. (2.25), and Eq. (2.23) with Eq. (2.27), we see that for
pp and pp̄ scattering the C ¼ þ1 exchanges contribute
with the same sign and the C ¼ −1 exchanges contribute
with opposite sign, as they should.

C. Reaction pp → ppγ

Now, we consider the reaction (2.3). Here, we have the
energy-momentum relation (2.5). The kinematic variables
are

s ¼ ðpa þ pbÞ2 ¼ ðp0
1 þ p0

2 þ kÞ2;
s0 ¼ ðpa þ pb − kÞ2 ¼ ðp0

1 þ p0
2Þ2;

t1 ¼ ðpa − p0
1Þ2 ¼ ðpb − p0

2 − kÞ2;
t2 ¼ ðpb − p0

2Þ2 ¼ ðpa − p0
1 − kÞ2: ð2:28Þ

For the photon emission process (2.3), we have seven
types of diagrams shown in Fig. 3. In the diagrams (a), (b),
(d), and (e), the photon is emitted from the external proton
lines. The diagrams (c) and (f) correspond to contact terms.
The precise definition of the contact terms and of the
“structure” term (g) will be given below. For high c.m.
energies

ffiffiffi
s

p
and small momentum transfers jt1;2j [see

(2.28)], the diagrams of Fig. 3 with p0
1 ↔ p0

2 are expected
to give negligible contributions. We shall call the diagrams

(a), (b), (d), and (e), made gauge invariant by the addition of
(c) and (f), the bremsstrahlung diagrams.
The relevant T -matrix element is

hpðp0
1; λ1Þ; pðp0

2; λ2Þ; γðk; ϵÞjT jpðpa; λaÞ; pðpb; λbÞi
¼ ðϵμÞ�MðtotalÞ

μ ðpa; λa;pb; λb;p0
1; λ1;p

0
2; λ2; kÞ: ð2:29Þ

We consider MðtotalÞ
μ for arbitrary k. Gauge invariance

requires

kμMðtotalÞ
μ ¼ 0: ð2:30Þ

Let the sum of the diagrams of Fig. 3 with P and all other
exchanges be

Mμðp0
1; p

0
2Þ ¼ MðaÞ

μ þMðbÞ
μ þMðcÞ

μ þMðdÞ
μ

þMðeÞ
μ þMðfÞ

μ þMðgÞ
μ : ð2:31Þ

The complete amplitude is then

MðtotalÞ
μ ¼ Mμðp0

1; p
0
2Þ −Mμðp0

2; p
0
1Þ; ð2:32Þ

where a corresponding exchange of helicities is understood.
The relative minus sign here is due to the Fermi statistics,
which requires the amplitude to be antisymmetric under
interchange of the two final protons.
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The inclusive cross section for the real-photon yield of the reaction (2.3), including a statistics factor 1=2 due to identical
particles appearing in the final state, is as follows:

dσðpp → ppγÞ ¼ 1

2

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

pÞ
q d3k

ð2πÞ32k0
Z

d3p0
1

ð2πÞ32p00
1

d3p0
2

ð2πÞ32p00
2

× ð2πÞ4δð4Þðp0
1 þ p0

2 þ k − pa − pbÞ
1

4

X
p spins

MðtotalÞ
λ ðMðtotalÞ

ρ Þ�ð−gλρÞ: ð2:33Þ

Let, in the c.m. system, p0
1z and p

0
2z be the momentum components of p01 and p

0
2 in the direction of pa. Then, we can write

(2.33) with (2.32) as

dσðpp → ppγÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

pÞ
q d3k

ð2πÞ32k0
Z

d3p0
1

ð2πÞ32p00
1

d3p0
2

ð2πÞ32p00
2

θðp0
1z − p0

2zÞð2πÞ4δð4Þðp0
1 þ p0

2 þ k − pa − pbÞ

×
1

4

X
p spins

ðMλðp0
1; p

0
2Þ −Mλðp0

2; p
0
1ÞÞðMρðp0

1; p
0
2Þ −Mρðp0

2; p
0
1ÞÞ�ð−gλρÞ: ð2:34Þ

We are interested in high c.m. energies
ffiffiffi
s

p
and small momentum transfers. Then, for p0

1z > p0
2z, the amplitudeMλðp0

2; p
0
1Þ

is very small and can be neglected. On the other hand,Mλðp0
1; p

0
2Þ is very small for p0

1z < p0
2z. Therefore, from (2.34), we

get with very high accuracy

dσðpp → ppγÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

pÞ
q d3k

ð2πÞ32k0
Z

d3p0
1

ð2πÞ32p00
1

d3p0
2

ð2πÞ32p00
2

× ð2πÞ4δð4Þðp0
1 þ p0

2 þ k − pa − pbÞ
1

4

X
p spins

Mλðp0
1; p

0
2ÞðMρðp0

1; p
0
2ÞÞ�ð−gλρÞ: ð2:35Þ

In the following, we shall, for brevity of notation, set Mλ ≡Mλðp0
1; p

0
2Þ.

For calculating Mλ from the diagrams of Fig. 3, we use the following standard proton propagator and γpp vertex:

ð2:36Þ

ð2:37Þ

We take the form factors in (2.37) at q2 ¼ 0 in order to be
consistent with the Ward-Takahashi identity [52,53]:

ðp0 − pÞμΓðγppÞ
μ ðp0; pÞ ¼ −e½S−1F ðp0Þ − S−1F ðpÞ�: ð2:38Þ

In any case, we are finally interested in real photon
emission where k ¼ −q, k2 ¼ q2 ¼ 0.

Now, we list our results for the photon-bremsstrahlung

amplitudes MðaÞ
μ ;…;MðfÞ

μ corresponding to the Pomeron-
exchange diagrams (a)–(f) from Fig. 3 including the other
exchanges f2R, a2R, ωR, ρR, O.
With the off-shell pp elastic scattering amplitude (2.18),

the standard proton propagator (2.36), and the γpp vertex
function (2.37), we get the following radiative amplitudes:
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MðaÞ
μ ¼ −ū10 ⊗ ū20Mð0Þðpa − k; pb; p0

1; p
0
2ÞðSFðpa − kÞΓðγppÞ

μ ðpa − k; paÞuaÞ ⊗ ub

¼ eū10 ⊗ ū20
�
iF Tðs0; t2Þ

�
γα ⊗ γαðpa − kþ p0

1; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa − =kþ =p1
0Þ

−
1

2
ð=pa − =kþ =p1

0Þ ⊗ ð=pb þ =p2
0Þ
�
− FVðs0; t2Þγα ⊗ γα

�

×

�
=pa − =kþmp

ðpa − kÞ2 −m2
p þ iε

�
γμ −

i
2mp

σμνkνF2ð0Þ
�
ua

�
⊗ ub; ð2:39Þ

MðbÞ
μ ¼ −ðū10ΓðγppÞ

μ ðp0
1; p

0
1 þ kÞSFðp0

1 þ kÞÞ ⊗ ū20Mð0Þðpa; pb; p0
1 þ k; p0

2Þua ⊗ ub

¼ e

�
ū10

�
γμ −

i
2mp

σμνkνF2ð0Þ
�

=p1
0 þ =kþmp

ðp0
1 þ kÞ2 −m2

p þ iε

�
⊗ ū20

×

�
iF Tðs; t2Þ

�
γα ⊗ γαðpa þ p0

1 þ k; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa þ =p1
0 þ =kÞ

−
1

2
ð=pa þ =p1

0 þ =kÞ ⊗ ð=pb þ =p2
0Þ
�
− FVðs; t2Þγα ⊗ γα

�
ua ⊗ ub: ð2:40Þ

Here, the functions F T and FV are defined in (2.15) and (2.16), respectively.
Using (2.38), we find

kμMðaÞ
μ ¼ −eū10 ⊗ ū20Mð0Þðpa − k; pb; p0

1; p
0
2Þua ⊗ ub; ð2:41Þ

(a) (b) (c)

(d) (e) (f)

(g)

FIG. 3. Diagrams for the reaction pp → ppγ with exchange of the Pomeron P (a–f) and the “structure” term (g). The diagrams for
odderon and reggeon exchanges are as in parts a–f with P replaced by f2R, a2R, O, ωR, and ρR. In addition, there are the diagrams
corresponding to the interchange of the two final protons pðp0

1Þ ↔ pðp0
2Þ. These are not shown here.
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kμMðbÞ
μ ¼ eū10 ⊗ ū20Mð0Þðpa; pb; p0

1 þ k; p0
2Þua ⊗ ub: ð2:42Þ

Now, we impose the gauge-invariance condition, which must hold also for the photon emission from the pa-p0
1 lines in

Fig. 3 alone:

kμðMðaÞ
μ þMðbÞ

μ þMðcÞ
μ Þ ¼ 0: ð2:43Þ

We obtain then

kμMðcÞ
μ ¼ −kμMðaÞ

μ − kμMðbÞ
μ

¼ eū10 ⊗ ū20 ½Mð0Þðpa − k; pb; p0
1; p

0
2Þ −Mð0Þðpa; pb; p0

1 þ k; p0
2Þ�ua ⊗ ub

¼ eū10 ⊗ ū20
�
iF Tðs0; t2Þ

�
γα ⊗ γαðpa − kþ p0

1; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa − =kþ =p1
0Þ

−
1

2
ð=pa − =kþ =p1

0Þ ⊗ ð=pb þ =p2
0Þ
�
− FVðs0; t2Þγα ⊗ γα

− iF Tðs; t2Þ
�
γα ⊗ γαðpa þ p0

1 þ k; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa þ =p1
0 þ =kÞ

−
1

2
ð=pa þ =p1

0 þ =kÞ ⊗ ð=pb þ =p2
0Þ
�
þ FVðs; t2Þγα ⊗ γα

�
ua ⊗ ub: ð2:44Þ

We have from (2.28)

s0 ¼ ðpa þ pb − kÞ2
¼ ðpa þ pbÞ2 − 2ðk; pa þ pbÞ þ k2

¼ s − ðk; 2pa þ 2pb − kÞ ð2:45Þ

and define

ϰ ¼ ðk; 2pa þ 2pb − kÞ
s

: ð2:46Þ

Now, using the expressions given by Eqs. (2.9)–(2.14),
(2.45), and (2.46), we get

FPppðs0; t2Þ ¼ FPppðs; t2Þ½1þ ϰð2 − αPðt2ÞÞgPðϰ; t2Þ�;
ð2:47Þ

gPðϰ; t2Þ ¼
1

ð2 − αPðt2ÞÞϰ
½ð1 − ϰÞαPðt2Þ−2 − 1�; ð2:48Þ

and analogously for f2R and a2R, and

FOppðs0; t2Þ ¼ FOppðs; t2Þ½1þ ϰð1 − αOðt2ÞÞgOðϰ; t2Þ�;
ð2:49Þ

gOðϰ; t2Þ ¼
1

ð1 − αOðt2ÞÞϰ
½ð1 − ϰÞαOðt2Þ−1 − 1�; ð2:50Þ

and analogously for ωR and ρR.
From (2.47)–(2.50) and supplementing with the

reggeons, we get

F Tðs0; tÞ ¼ F Tðs; tÞ þ ϰΔF Tðs; t; ϰÞ; ð2:51Þ

FVðs0; tÞ ¼ FVðs; tÞ þ ϰΔFVðs; t; ϰÞ; ð2:52Þ

where

ΔF Tðs; t; ϰÞ ¼ ð2 − αPðtÞÞgPðϰ; tÞFPppðs; tÞ þ ð2 − αf2RðtÞÞgf2Rðϰ; tÞF f2Rppðs; tÞ
þ ð2 − αa2RðtÞÞga2Rðϰ; tÞF a2Rppðs; tÞ; ð2:53Þ

ΔFVðs; t; ϰÞ ¼ ð1 − αOðtÞÞgOðϰ; tÞFOppðs; tÞ þ ð1 − αωR
ðtÞÞgωR

ðϰ; tÞFωRppðs; tÞ
þ ð1 − αρRðtÞÞgρRðϰ; tÞF ρRppðs; tÞ: ð2:54Þ
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The formulas for the odderon in (2.49), (2.50), and (2.54) apply for a single-pole odderon (2.12), (A7). The
corresponding formulas for a double-pole odderon (2.17), (A9) are given in Appendix A; see (A24)–(A26).
Inserting all this in (2.44), we get

kμMðcÞ
μ ¼ eū10 ⊗ ū20

�
−iF Tðs; t2Þ½2γα ⊗ γαðk; pb þ p0

2Þ þ 2ð=pb þ =p2
0Þ ⊗ =k − =k ⊗ ð=pb þ =p2

0Þ�

þ i
ðk; 2pa þ 2pb − kÞ

s
ΔF Tðs; t2; ϰÞ

×

�
γα ⊗ γαðpa þ p0

1 − k; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa þ =p1
0 − =kÞ − 1

2
ð=pa þ =p1

0 − =kÞ ⊗ ð=pb þ =p2
0Þ
�

−
ðk; 2pa þ 2pb − kÞ

s
ΔFVðs; t2; ϰÞγα ⊗ γα

�
ua ⊗ ub: ð2:55Þ

Hence, the simplest solution of (2.55) for MðcÞ
μ has the form

MðcÞ
μ ¼ eū10 ⊗ ū20

�
−iF Tðs; t2Þ½2γα ⊗ γαðpb þ p0

2Þμ þ 2ð=pb þ =p2
0Þ ⊗ γμ − γμ ⊗ ð=pb þ =p2

0Þ�

þ i
ð2pa þ 2pb − kÞμ

s
ΔF Tðs; t2; ϰÞ

×
�
γα ⊗ γαðpa þ p0

1 − k; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa þ =p1
0 − =kÞ − 1

2
ð=pa þ =p1

0 − =kÞ ⊗ ð=pb þ =p2
0Þ
�

−
ð2pa þ 2pb − kÞμ

s
ΔFVðs; t2; ϰÞγα ⊗ γα

�
ua ⊗ ub: ð2:56Þ

We define (2.56) as MðcÞ
μ . Possible additions to this

solution of the form

M̃μ; kμM̃μ ¼ 0 ð2:57Þ

can and will be considered as a part of MðgÞ
μ for which we

require

kμMðgÞ
μ ¼ 0: ð2:58Þ

For the diagrams (d), (e), and (f), we get

MðdÞ
μ ¼ MðaÞ

μ

			ðpa;λaÞ↔ðpb;λbÞ
ðp0

1
;λ1Þ↔ðp0

2
;λ2Þ
; ð2:59Þ

MðeÞ
μ ¼ MðbÞ

μ

			ðpa;λaÞ↔ðpb;λbÞ
ðp0

1
;λ1Þ↔ðp0

2
;λ2Þ
; ð2:60Þ

MðfÞ
μ ¼ MðcÞ

μ

			ðpa;λaÞ↔ðpb;λbÞ
ðp0

1
;λ1Þ↔ðp0

2
;λ2Þ
: ð2:61Þ

With the exchanges ðpa; λaÞ ↔ ðpb; λbÞ and ðp0
1; λ1Þ ↔

ðp0
2; λ2Þ, we shall also exchange the order of the factors in

the tensor products. In this way, the first factors in the
tensor products always refer to the pa − p0

1 line, and the
second factors refer to the pb − p0

2 line, in the diagrams
of Fig. 3.

We shall call

MðstandardÞ
μ ¼MðaÞ

μ þMðbÞ
μ þMðcÞ

μ þMðdÞ
μ þMðeÞ

μ þMðfÞ
μ

ð2:62Þ

our standard, or “conventional,” amplitude. We have by
construction

kμMðstandardÞ
μ ¼ 0: ð2:63Þ

All “anomalous” terms are then subsumed in MðgÞ
μ , which

satisfies (2.58) and has no singularity for kμ → 0.

The explicit forms of the amplitudes MðaÞ
μ ;…;MðfÞ

μ in
(2.39), (2.40), (2.56), and (2.59)–(2.61), calculated in the
tensor-Pomeron approach, are a main result of our present
paper. But it turns out that these forms are not very
convenient for numerical computations. Therefore, in
Appendix B, we rewrite these amplitudes in a different
form, which is more easy to handle numerically.
The intermediate protons in the diagrams of Fig. 3 (a, b,

d, e) are off shell, and in principle we should take care of
that fact in our model. But at present, we set possible cutoff
form factors for off-shell protons in the Pomeron-proton
and photon-proton vertices and in the proton propagator
to 1. Note that a naive usage of form factors can violate the
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Ward-Takahashi identity (2.38). We expect, however, that
in our regions of interest, in the small k⊥ and ω ranges and
especially in the soft-photon limit, the off-shell effects
should be small.

III. SOFT-PHOTON APPROXIMATION
APPROACH

In the following, we shall compare our exact model
results,whichwe shall call standard results, for the amplitude
(2.62), using (B3)–(B16), to two soft-photon approxima-
tions: SPA1 and SPA2. In these SPAs, we consider only
the Pomeron-exchange terms for the radiative amplitudes

MðaÞ
μ ;…;MðfÞ

μ in (2.62). Below, we list the explicit expres-
sions for real photon emission in pp scattering:

SPA1.—Here, we keep only the pole terms ∝ ω−1 for

MðaÞ
μ ;…;MðfÞ

μ in (2.62). For real photons (k2 ¼ 0),
neglecting gauge terms ∝ kμ, and with p0

1 → p1,
p0
2 → p2, we get

Mμ → Mμ;SPA1 ¼ eMðon shellÞppðs; tÞ

×

�
−

paμ

ðpa · kÞ
þ p1μ

ðp1 · kÞ
−

pbμ

ðpb · kÞ
þ p2μ

ðp2 · kÞ
�
:

ð3:1Þ

Here, Mðon shellÞppðs; tÞ is the on-shell pp-scattering
amplitude given by (2.19). The result (3.1) is easily
obtained from (B3), (B4), and (B15). Inserting (3.1)
into (2.35), we get the following SPA1 result for the
inclusive photon cross section where, for consistency,
we neglect the photon momentum k in the energy-
momentum conserving δð4Þð:Þ function:

dσðpp → ppγÞSPA1
¼ d3k

ð2πÞ32k0
Z

d3p1d3p2e2
dσðpp → ppÞ
d3p1d3p2

×

�
−

paμ

ðpa · kÞ
þ p1μ

ðp1 · kÞ
−

pbμ

ðpb · kÞ
þ p2μ

ðp2 · kÞ
�

×

�
−

paν

ðpa · kÞ
þ p1ν

ðp1 · kÞ
−

pbν

ðpb · kÞ
þ p2ν

ðp2 · kÞ
�

× ð−gμνÞ: ð3:2Þ

Here,

dσðpp → ppÞ
d3p1d3p2

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

pÞ
q 1

ð2πÞ32p0
1ð2πÞ32p0

2

× ð2πÞ4δð4Þðp1 þ p2 − pa − pbÞ

×
1

4

X
p spins

jMðon shellÞppðs; tÞj2: ð3:3Þ

In (3.2) and (3.3), we have a frequently used SPA. One
takes the momentum distribution of the particles
without radiation [see (3.3)] and multiplies it with
the square of the emission factor in the square brackets
in (3.1).

SPA2.—Here, we keep the energy-momentum relation
(2.5). We consider again real photon emission and
make in (2.35) the replacement

Mμ → Mμ;SPA2 ¼ MðaþbþcÞ1
P;μ þMðdþeþfÞ1

P;μ : ð3:4Þ

The amplitude (3.4) corresponds to that given in (B4)
plus (B15), taking only the Pomeron exchange into
account. Here, the squared momentum transfer is t2
for the diagrams of Figs. 3(a)–3(c) and t1 for those of
Figs. 3(d)–3(f), where t1 and t2 are defined in (2.28).
Also, in the calculation of the photon distributions, we
keep the correct energy-momentum conserving δð4Þð:Þ
function in (2.35).

We also consider a slightly modified SPA1 amplitude
where we use the high-energy small-angle limit relations
(2.20). We get then M̂μ;SPA1 as in (3.1) but with (2.21)
inserted for Mðon shellÞpp:

M̂μ;SPA1 ¼ ie8s2FPppðs; tÞδλ1λaδλ2λb
×

�
−

paμ

ðpa · kÞ
þ p1μ

ðp1 · kÞ
−

pbμ

ðpb · kÞ
þ p2μ

ðp2 · kÞ
�
:

ð3:5Þ
For the SPA2, we examine, furthermore, the approximation

M̂μ;SPA2 ¼ ie8s2FPppðs; t2Þδλ1λaδλ2λb
�
−

paμ

ðpa · kÞ
þ p0

1μ

ðp0
1 · kÞ

�
þ ie8s2FPppðs; t1Þδλ1λaδλ2λb
×

�
−

pbμ

ðpb · kÞ
þ p0

2μ

ðp0
2 · kÞ

�
: ð3:6Þ

How these approximations (3.5) and (3.6) agree with
Mμ;SPA1 from the formula (3.1) and Mμ;SPA2 from the
formula (3.4) will be discussed at the end of Sec. IV B.

IV. RESULTS

Below, we show our results for total and elastic pp and
pp̄ scattering (Sec. IVA) and results for the pp → ppγ
reaction from the bremsstrahlung mechanism (Sec. IV B).

A. Comparison of the model results with the total and
elastic pp and pp̄ cross section data

Here, we compare our results obtained from Eqs. (2.19)
and (2.25) to the experimental data for σtot, dσ=dt, and ρ,
that is, the ratio of the real part to imaginary part of the
forward scattering amplitude,
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ρ ¼ ReT ðs; 0Þ
ImT ðs; 0Þ : ð4:1Þ

We emphasize that in the present paper it is not our purpose
to perform a precision fit to the available experimental data
on these quantities, say, from ISR to LHC energies. Here
ISR means the CERN Intersecting Storage Rings which
operated with a maximum c.m. energy of 63 GeV. Such fits
have been, for instance, given in Refs. [54–61]. Our aim
here is to obtain a reasonable description of the data mainly
at

ffiffiffi
s

p ¼ 13 TeV. We want to fix the parameters of our
model in this way. Themain aim of our paper is to give then
predictions for soft-photon radiation in proton-proton
elastic collisions for the LHC energy range; see Sec. IV B.
In Fig. 4, we present the total pp (see the red points and

lines) and pp̄ (see the blue points and lines) cross sections
for

ffiffiffi
s

p
> 10 GeV. We show our complete theoretical

results including the Pomeron, the reggeon, and the odd-
eron exchanges and their separate contributions. First, we
notice that, of course, the high-energy cross sections are
dominated by the Pomeron exchange (see the black solid
line). The cross sections with the Pomeron contribution
alone are σtotðppÞ ¼ 102.0 mb for

ffiffiffi
s

p ¼ 8 TeV and
σtotðppÞ ¼ 110.9 mb for

ffiffiffi
s

p ¼ 13 TeV. For the odderon
exchange, we use the double-pole Ansatz (A9) with the

parameters (A10) and ðC1; C2Þ ¼ ð−2.0; 0.3Þ adjusted to
describe ρ ¼ 0.1 found by TOTEM at

ffiffiffi
s

p ¼ 13 TeV.
See the discussion below in connection with Fig. 6 which
presents ρ as function of

ffiffiffi
s

p
. There we also show the

results for two more values ðC1; C2Þ ¼ ð−1.0; 0.1Þ and
ð−1.5; 0.2Þ. These lead to values of ρ > 0.1 at

ffiffiffi
s

p ¼
13 TeV. Here, we are interested in the total cross sections
where the odderon effects are very small. We get, for
instance, for the two cases ðC1; C2Þ ¼ ð−1.0; 0.1Þ and
ð−2.0; 0.3Þ the total cross sections, σtotðppÞ ¼ 102.2
and 102.9 mb for

ffiffiffi
s

p ¼ 8 TeV and σtotðppÞ ¼ 111.2
and 111.9 mb for

ffiffiffi
s

p ¼ 13 TeV, respectively. Our results
are in good agreement with the TOTEM results:
σtotðppÞjexp¼ð102.9�2.3Þmb and σtotðppÞjexp¼ð103.0�
2.3Þmb for

ffiffiffi
s

p ¼ 8 TeV [62] and σtotðppÞjexp ¼ ð110.6�
3.4Þ mb [63] and σtotðppÞjexp ¼ ð110.3� 3.5Þ mb [64] forffiffiffi
s

p ¼ 13 TeV.1 Note that we get for large energies a total
cross section for pp exceeding that for pp̄ collisions,
σtotðppÞ > σtotðpp̄Þ.
In Fig. 5, we show the pp elastic differential cross

sections for our model and the TOTEM data [64,67]
measured at

ffiffiffi
s

p ¼ 13 TeV. We find a quite good descrip-
tion of the data in the region 0.003GeV2≤−t≤0.26GeV2

taking ϵP ¼ 0.0865 and assuming the form factor FðtÞ ¼
expð−bjtjÞ with only one parameter, b ¼ 2.95 GeV−2. For
comparison, we show also the results for ϵP ¼ 0.0808 and
the Dirac form factor F1ðtÞ. We should not expect our
single-Pomeron exchange model to give a precision fit
for dσ=dt in the diffractive dip region and beyond. The
common lore is that in order to produce the dip one needs
the interference of various terms in the amplitude, at least
three terms: Pþ PPþ ggg; see, e.g., Refs. [48,54]. In
Refs. [55,56], the authors discussed the so-called break
effect, which leads to a smooth deflection of the linear
exponential behavior of the diffraction cone observed near
t ¼ −0.1 GeV2. The effect is related to the basic analytic
properties of the theory (t-channel unitarity) and reflects the
presence of the pion cloud around the nucleon. This small,
but interesting, effect could easily be included in our
parametrization of the t dependence of the pp elastic cross
section. But, as mentioned above, for our purposes, we only
need a reasonable description of the pp scattering data forffiffiffi
s

p ¼ 13 TeV. And, as we show in Fig. 5, we obtain such a
description in the t range of interest for us with our single-
exponential form factor FðtÞ.
In Fig. 6, we show our results for ρ for the two elastic

scattering processes pp and pp̄ together with the exper-
imental data. The solid lines represent results of our model
without the odderon contribution. The Pomeron and
reggeon parameters are the same as in Fig. 4. In the left
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FIG. 4. The total cross sections for pp and pp̄ scattering as a
function of the center-of-mass energy

ffiffiffi
s

p
. The red long-dashed

line and the blue dashed line correspond to our complete results
for pp and pp̄ scattering, respectively. Here, the Pomeron para-
meters are as in (A1), (A2), (A11), and (A12) with ϵP ¼ 0.0865.
The reggeon parameters are given in (A3)–(A6), and we take here
for the odderon the parameters (A9), (A10), and (A23), with
ðC1; C2Þ ¼ ð−2.0; 0.3Þ. The black solid line corresponds to the
Pomeron exchange alone, the dotted lines correspond to the
reggeon exchanges (lower for pp, upper for pp̄), and the dot-
dashed line corresponds to the odderon contribution increased by
a factor of 2 for visualization. The experimental data are from
Ref. [62], from Eq. (8) and Figs. 4 and 5 of Ref. [63], from
Ref. [64], and from the Particle Data Group [65] (see Ref. [66]).

1The cross sections σtotðppÞjexp from Refs. [63,64] for
ffiffiffi
s

p ¼
13 TeV were determined in a completely independent way and,
therefore, were combined for uncertainty reduction. The result is
then σtotðppÞjexp ¼ ð110.5� 2.4Þ mb; see Eq. (21) of Ref. [64].
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panel, the dashed and dotted lines show the results with the
odderon exchange for different values of ðC1; C2Þ in (2.17)
and with the parameters (A10), (A23). The C ¼ −1
reggeons lead to a splitting of the pp and pp̄ results at
smaller energies, while the odderon mainly affects the
higher energies. The odderon parameters ðC1; C2Þ are in
essence determined by the ρ value at

ffiffiffi
s

p ¼ 13 TeV. The
values ρ ¼ 0.103, 0.116, and 0.129 lead to ðC1; C2Þ ¼
ð−2.0; 0.3Þ, ð−1.5; 0.2Þ, and ð−1.0; 0.1Þ, respectively. In
the right panel of Fig. 6, we show the results for ðC1; C2Þ ¼
ð−2.0; 0.3Þ and for ϵO ¼ 0 and 0.05 to compare with

ϵO ¼ 0.08. We can see that the ρ values mentioned can
also be obtained by changing ϵO.
The TOTEM Collaboration has reported direct measure-

ments of the ρ parameter (4.1) through the Coulomb-
nuclear interference in the very small jtj region. The
TOTEM results for ρ extracted from the data on the
proton-proton differential cross section are:

(i) ρ ¼ 0.12� 0.03 at
ffiffiffi
s

p ¼ 8 TeV [62];
(ii) ρ¼ 0.09� 0.01 or ρ¼ 0.10� 0.01 at

ffiffiffi
s

p ¼ 13 TeV
[64], depending on different physics assumptions
and mathematical modelings.
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FIG. 5. The differential pp → pp cross sections measured by the TOTEM experiments at
ffiffiffi
s

p ¼ 13 TeV [64,67]. We show our
theoretical results obtained with two different Pomeron parameter sets: 1) ϵP ¼ 0.0808 and the Dirac form factor F1ðtÞ (see the blue
dashed lines) and 2) ϵP ¼ 0.0865 and the exponential form factor FðtÞ ¼ expð−bjtjÞwith b ¼ 2.95 GeV−2 (see the black solid lines). In
both cases, we take α0P ¼ 0.25 GeV−2 from (A2). Here, reggeon and odderon contributions are set to zero.
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FIG. 6. Our results for the ρ parameter as function of the c.m. energy
ffiffiffi
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p
for pp̄ (the blue upper lines) and pp (the red lower lines)

scattering together with the experimental data from Refs. [62,64] and from Ref. [66]. Our complete results include P, f2R, a2R, ωR, ρR,
andO exchanges. The solid lines are without the odderon contribution, and the dashed and dotted lines are with the odderon for different
values of the parameters as described in the figure legends.
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Wecanmake the following statement. If we take the above
ρ values from TOTEM as representing the truth, then, in the
framework of our model, we need an odderon contribution at
t ¼ 0. Moreover, we could not find a reasonable description
of the low- and high-energy data for ρ with a single-pole
odderon. For these reasons, we consider here a double-pole
odderon. To fit the TOTEM results for ρ, we have to choose
the odderon parameters ðC1; C2Þ ¼ ð−2.0; 0.3Þ. These find-
ings are consistent with the results of Refs. [68,69]. These
authors claim that a small value of ρ can be considered as the
experimental discovery of the odderon for small jtj, namely,
in its maximal form. The odderon was first introduced on
theoretical grounds in Ref. [70]. For a review of odderon
physics, we refer the reader to Ref. [71]. However, recent
reanalyses of the TOTEM results [72,73] have shown that
the values of ρ may be larger than those reported by the
TOTEM Collaboration. For illustration, in Ref. [72], one
finds ρ≃0.135 at

ffiffiffi
s

p ¼8TeVand ρ≃0.133 at
ffiffiffi
s

p ¼13TeV.
Reference [73] gives ρ ¼ 0.123� 0.010 at

ffiffiffi
s

p ¼ 13 TeV.
To be consistent with these values, we should take in our
model ðC1; C2Þ ¼ ð−1.0; 0.1Þ.
In view of these ongoing discussions in the literature,

we think that the low value ρ ¼ 0.1 at
ffiffiffi
s

p ¼ 13 TeV
reported by TOTEM probably does not prove that there
is an odderon contribution at t ¼ 0; see, for instance,
Refs. [74,75]. However, there are good reasons to believe
that there is an odderon effect at larger jtj (in the dip-bump
region) that leads to a very significant difference between
the differential cross sections of elastic pp and pp̄
scattering, as was first seen at the CERN ISR at

ffiffiffi
s

p ¼
53 GeV [76]. Remarkably, such a difference had been
predicted theoretically in Ref. [48]. The advantage of
corresponding measurements at higher energies, e.g., at
the LHC, is that subleading reggeon exchanges are very
small there, and thus an observation of differences between

pp and pp̄ would be a clear signal of the odderon. Indeed,
strong evidence for the odderon has been given in Ref. [77]
based on a model-independent analysis of the combined
TOTEM and D0 results in the dip-bump region.

B. Our standard results for the pp → ppγ reaction and
comparison with soft-photon approximations

First, we present our exact model or standard brems-
strahlung results for the pp → ppγ reaction (see Sec. II C)
for the proton-proton collision energy

ffiffiffi
s

p ¼ 13 TeV.
Below, k⊥ is the absolute value of the photon transverse
momentum, ω ¼ k0 is the center-of-mass photon energy,
and y is the rapidity of the photon. Then, we will compare
the resulting distributions with those obtained via variants
of the SPA discussed in Sec. III.
We see from Fig. 4 that at

ffiffiffi
s

p ¼ 13 TeV the pp-
scattering cross section is completely dominated by the
Pomeron exchange. Therefore, in the following, we shall
take into account only the Pomeron-exchange contribution
as shown in the diagrams of Figs. 3(a)–3(f).
In Fig. 7, we show the distributions in jt1;2j, where t1;2 is

either t1 or t2 defined in (2.28), and in transverse momen-
tum of the proton (here, pt;p ¼ jp0t;1j or jp0t;2j). At t1;2 ¼ 0

and pt;p ¼ 0, all contributions vanish. We can see how the
t1;2 distributions are sensitive to the form factor in the Ppp
vertex (A11) and ϵP the Pomeron intercept parameter;
see the discussion after Eq. (A2). In the following, we
take in our calculations ϵP ¼ 0.0865 and the exponential
Pomeron-proton form factor FðtÞ ¼ expð−bjtjÞ with b ¼
2.95 GeV−2 adjusted to the TOTEM data (see Fig. 5). We
see from Fig. 7 that photons with 1 MeV< k⊥ < 100 MeV
and jyj < 5 come predominantly from pp collisions
with momentum transfers between the protons of order
pt;p ∼

ffiffiffiffiffiffiffiffiffijt1;2j
p

∼ 0.3 GeV. Very small values of pt;p and/or
jt1;2j hardly contribute.
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FIG. 7. The distributions in 4-momentum transfer squared jt1;2j and in the transverse momentum of the outgoing protons for the
pp → ppγ reaction calculated for

ffiffiffi
s

p ¼ 13 TeV, jyj < 5, and 1 MeV < k⊥ < 100 MeV. The meaning of the lines is the same
as in Fig. 5.
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In Fig. 8, we show the results obtained for
ffiffiffi
s

p ¼ 13 TeV,
jyj < 5, and for two k⊥ intervals: 1 MeV< k⊥ < 400 MeV
(top panels) and 1 MeV < k⊥ < 100 MeV (bottom pan-
els). We see that in the small k⊥ and ω regions the Dirac
term from the γpp vertex function (2.37) dominates, while
for larger values, the anomalous magnetic moment of the
proton (Pauli term) plays an important role. Of course, for

the complete result, all contributions toMðstandardÞ
μ from the

diagrams of Fig. 3 with Dirac and Pauli terms have to be
added coherently. For more details on the size of various

contributions to MðstandardÞ
μ , we refer to the discussions

in Appendix B. We get the integrated cross sections forffiffiffi
s

p ¼ 13 TeV and in the k⊥ range 1MeV<k⊥<100MeV:
σðpp → ppγÞ ¼ 0.21 nb for jyj < 3.5 and σðpp →
ppγÞ ¼ 4.01 nb for 3.5 < jyj < 5.
In Fig. 9 (left panels), we show the two-dimensional

differential cross sections in the ω-k⊥ plane calculated forffiffiffi
s

p ¼ 13 TeV, 1 MeV < k⊥ < 100 MeV, jyj < 3.5 (the
top panel) and 3.5 < jyj < 5 (the bottom panel). The latter

rapidity range is relevant for the planned ALICE 3
measurements [16–18] of ultrasoft photons. Large y is
near the ω axis, and y ¼ 0 corresponds to the line ω ¼ k⊥,
both in accordance with ω ¼ k⊥ cosh y. The phase-space
region where ω < k⊥ is forbidden. We see that, due to our
cuts on y and k⊥ applied in phase space, there are additional
regions that are not accessible kinematically.
In the right panels of Fig. 9, we show the ratio

Rðω; k⊥Þ ¼
d2σSPA2=dωdk⊥
d2σstandard=dωdk⊥

: ð4:2Þ

One can see that the SPA2 given by (3.4) stays within 1%
accuracy for k⊥ ≲ 22 MeV and ω≲ 0.35 GeV considering
jyj < 3.5 and up to ω ≅ 1.7 GeV for 3.5 < jyj < 5.0. It is
difficult to draw the ratio Rðω; k⊥Þ for SPA1/standard due to
different integration procedures in two different codes: one
for the exact three-body phase space (standard approach) and
one for the two-body phase space supplemented by addi-
tional integration over photon 3-momentum (SPA1).
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FIG. 8. The differential cross sections for the pp → ppγ reaction calculated for
ffiffiffi
s

p ¼ 13 TeV, jyj < 5, and for the k⊥ intervals as
specified in the figure legends. Shown are our standard results (total) and the results for the Dirac and Pauli terms alone.
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In Fig. 10, we compare our standard result to various
SPAs on a semilogarithmic scale. We see that both, the
SPA1 (3.1) and SPA2 (3.4), follow the standard results very
well. Surprisingly, the SPA1, which does not have the
correct energy-momentum relations, fares somewhat better
than SPA2. But let us now have a closer look at these
kinematic regions on a linear scale.
Figure 11 shows the ratios of the SPAs to the standard

cross sections,

dσSPA=dk⊥
dσstandard=dk⊥

; ð4:3Þ

dσSPA=dω
dσstandard=dω

; ð4:4Þ

as functions of k⊥ and ω, respectively. The fluctuations of
the ratio SPA1/standard (see the red dashed lines) are due to

a different organization of integration in the two codes.
One can see that the deviations of the SPA1 from the
standard results are up to around 1% for jyj < 3.5,
1 MeV < k⊥ < 100 MeV, and ω≲ 0.7 GeV. For the for-
ward region, 3.5 < jyj < 5, this accuracy occurs even up to
larger ω ≃ 2 GeV. For the SPA2, the deviations increase
rapidly with growing k⊥ and ω (see also the right panels
of Fig. 9).
In Fig. 12, we show the results for the SPA1 (3.5)

and SPA2 (3.6) Ansätze using the high-energy small-
angle approximation. The calculations were done forffiffiffi
s

p ¼13TeV, 1MeV<k⊥<400MeV, and jyj < 5. From
the left panel, we see that the SPA1 is in very good
agreement with our standard result if we include there only
the Dirac terms. We have checked numerically that the
results from (3.1) and (3.5) overlap. From the right panel,
we see that the SPA2 results (3.4) and (3.6) are very close to
each other.
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FIG. 9. The left panels show the cross section d2σ=dωdk⊥ as a function of (ω, k⊥) calculated for
ffiffiffi
s

p ¼ 13 TeV. The top panels are for
1 MeV < k⊥ < 100 MeV, jyj < 3.5, and the bottom panels are for 3.5 < jyj < 5. The right panels show the ratio Rðω; k⊥Þ as defined
in (4.2).
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C. Comments on the photon radiation in connection
with diffractive excitation of the proton

One may ask about the role of diffractive excitations of
the protons in connection with photon radiation. There are
two types of exclusive processes to be considered,

pþ p → pþ γ þ N�; ð4:5Þ
with the N� charged nucleon resonance decaying hadroni-
cally, typically N� → pπ0, pπ0π0, pπþπ−, and

pþ p → ðN� → pþ γÞ þ p; ð4:6Þ

pþ p → ðN� → pþ γÞ þ ðN� → hadronsÞ: ð4:7Þ

Relevant examples of diagrams for these processes with
Pomeron exchange are shown in Fig. 13 for the reaction
(4.5) and in Fig. 14 for (4.6) and (4.7).

The reactions (4.5) and (4.7) lead to a final state pþ γ þ
pþ pionðsÞ. Thus, there is no interference with the process
pp → ppγ which we study in this paper. Of course, the
question of whether experimentally the processes (4.5) and
(4.7) can be separated from the elastic process (2.3) is a very
relevant one. However, this will depend on the experiment
and must be studied by the experimentalists themselves. The
reaction (4.6), on the other hand, leads to the final state ppγ
and, thus, should be discussed here. Let us first note that the
diagram of Fig. 14(a) will not lead in the amplitude to a
bremsstrahlung term ∝ ω−1. Indeed, this diagram will lead in
the amplitude to a factor, for real photons where k2 ¼ 0,

½ðp0
1 þ kÞ2 −m2

N� þ imN�ΓN� �−1
¼ ½2ðp0

1 · kÞ − ðm2
N� −m2

pÞ þ imN�ΓN� �−1: ð4:8Þ
Here,mN� andΓN� are themass andwidth of theN� resonance
considered. Clearly, Eq. (4.8) will not lead to a singular
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contribution ask → 0. Thus, in our terminology, it is part of the
structure term (g) of Fig. 3. In the following, we give a short
discussion of N� resonances which can contribute to the
photon flux via the diagrams of the type of Fig. 14(a).
TheNð1440Þwith JP ¼ 1=2þ,Nð1520Þwith JP ¼ 3=2−,

andNð1680Þwith JP ¼ 5=2þ states are potential candidates
for the role of N� in (4.6). These resonances satisfy the
Gribov-Morrison rule; see, e.g., Chap. 3.9 of Ref. [46].
The Roper resonance Nð1440Þ is doubtful. This poorly
known state was considered, however, in Refs. [56,78]
as an important contribution to forward low-mass single

diffraction dissociation. In Ref. [33], it was shown for the
pp → ppπ0 reaction that the nonresonant diffractive proc-
esses (Drell-Hiida-Deck typemodel) lead to an enhancement
in the invariant mass Mπp ≈ 1.4 GeV. Thus, one cannot be
sure whether the Roper resonance plays an important role
there. Coming back to the pp → ðN� → pγÞp reaction, the
Roper resonance has much smaller branching ratio [65]
BRðNð1440Þ → pγÞ ¼ 0.035–0.048% than the Nð1520Þ,
BRðNð1520Þ → pγÞ ¼ 0.31–0.52%, and the Nð1680Þ,
BRðNð1680Þ → pγÞ ¼ 0.21–0.32%. For the Nð1680Þ res-
onance, a sizeable cross section σðpp → pNð1680ÞÞ ¼
170� 60 μb was estimated at the CERN ISR energy offfiffiffi
s

p ¼ 45 GeV [79]. One should, however, bear in mind that
at ISR energies secondary reggeon exchanges are still
important. For the bremsstrahlung-type processes at the
LHC energies, the reggeon-exchange contributions are very
small; thus, diffractively excitedN� resonances are there due
to Pomeron exchange and should be produced preferentially
in forward/backward rapidity region. All these processes
require dedicated studies if the low γp invariant-mass region
can be measured in the forward rapidity range.
In Fig. 15, we show the differential cross sections

dσ=dMγp;low (the same sign rapidity of γ and p) and
dσ=dMγp;high (the opposite sign rapidity of γ and p) for
our standard bremsstrahlung (nonresonant) model. The

FIG. 13. A diagram for the reaction (4.5) with photon emission
from the proton line and hadronic decay of the N�. The diagrams
where the photon is attached in all other possible ways to the
charged particle lines are not shown.

(a) (b)

FIG. 14. Examples of diagrams: (a) for the reaction (4.6) and (b) for the reaction (4.7).
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calculations were done for
ffiffiffi
s

p ¼13TeV, 3.5<y<5,
and 1MeV<k⊥<100MeV. Figure 16 shows the two-
dimensional distributions in (Mγp;low; y) and in (Mγp;low; k⊥).
In the present paper, we consider soft-photon emission only
by protons. As already mentioned, photons may also be
produced from the radiative decays of diffractively excited
nucleon resonances. Candidates are Nð1440Þ, Nð1520Þ, and
Nð1680Þ. If these processes contribute significantly to our
pp → ppγ reaction, then we should see them in the Mγp;low

distribution (possibly distorted by interference effects) as a
resonance enhancement atMγp ¼ mN� with a width ΓN� over
our nonresonant term. However, we expect that the decay
photons will be emitted at rapidities larger than covered by the
dedicated ALICE 3 detector. Other background contributions,
for instance, soft photons fromcentral-exclusive productionvia
the fusion processes γP → γ, OP → γ, etc., should be taken
into account. Possible interference effects between various
mechanisms should be also included. This goes beyond the
scope of the present paper.We leave a detailed analysis of other
contributions for future studies. Finally, we conclude that
the measurement of forward/backward protons would be
crucial for a better understanding of the mechanisms of the
pp → ppγ reaction.

V. CONCLUSIONS

In this paper, we have presented a detailed discussion of
the reactions pp → pp, pp̄ → pp̄, and pp → ppγ at high
c.m. energies using the framework of the tensor-Pomeron
model [28]. To calculate the amplitudes for these reac-
tions, we have considered Pomeron (P), odderon (O), and
reggeon (f2R, a2R, ωR, ρR) exchanges.
Our theoretical results for elastic pp and pp̄ scattering are

given in Secs. II A and II B and compared to experimental

data in Secs. IVA and IV B. With our model, adjusting the
Pomeron and odderon parameters, we get a reasonable fit to
the TOTEM data on pp elastic scattering for

ffiffiffi
s

p ¼ 13 TeV
and jtj≲ 0.3 GeV2; see Fig. 5.We emphasize that we are not
out to produce a precision fit to all pp and pp̄ elastic
scattering data. We only need a reasonable description of the
data for

ffiffiffi
s

p ¼ 13 TeV as a prerequisite for the calculation of
photon radiation inpp collisions at this energy. Nevertheless,
we also had a look at the data for ρ, the ratio of real and
imaginary parts of the forward-scattering amplitudes. We
found that, taking the TOTEM data for granted, we need an
odderon contribution in the framework of our model, and a
double Regge pole structure of this odderon with intercept
slightly above 1 seems to be preferred; see Fig. 6. Clearly,
further experimental studies of reactionswhere odderon effects
could be present would be very welcome. Examples of such
reactions are photoproduction of f2 mesons, γp → f2p,
and central exclusive production of single and double ϕ
mesons, pp → pϕp and pp → pϕϕp; see, for instance,
Refs. [80–82]. All these reactions can be studied at ALICE3.
Turning now to themain topic of our paper, the calculation

of soft-photon radiation in pp collisions, we have given the
explicit formulas for this process in the framework of our
tensor-Pomeron model. The amplitudes corresponding to
photon emission from the external proton lines [see the
diagrams of Figs. 3(a), 3(b), 3(d), and3(e)] are determined by
the off-shell pp → pp scattering amplitude. By construc-
tion, the amplitudes (c) and (f), the contact terms, have to
satisfy gauge-invariance constraints involving the previous
amplitudes. In this way, we obtained our standard results for
thepp → ppγ reaction. The relevant distributions are shown
in Figs. 7–11.
We have compared our standard results to two soft-

photon approximations SPA1 and SPA2; see Sec. III. In
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the SPA1, we considered only the pole terms ∝ ω−1 in the
radiative amplitudes. This SPA1 agrees rather well, at the
percent level, with our exact model (or standard result)
in the kinematic range considered; see Figs. 10 and 11.
For 1 MeV < k⊥ < 100 MeV and 3.5 < jyj < 5.0, for

instance, we find agreement of SPA1with our standard result
at the percent level up to ω ≅ 2 GeV. The SPA2 is a good
approximation to the standard result, within 1% accuracy, for
k⊥ ≲ 22 MeV andω≲ 0.35 GeV considering jyj < 3.5 and
up to ω ≅ 1.7 GeV for 3.5 < jyj < 5.0; see Fig. 9.
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FIG. 17. The differential distributions for the pp → ppγ reaction calculated for
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In Sec. II C, we havewritten the amplitude forpp → ppγ
in the standard, straightforward, way with the photon
coupling to the protons via the Dirac and Pauli terms. It
turned out that the corresponding formulas (2.39), (2.40),
(2.56), and (2.59)–(2.61) were not convenient for numerical
work. Therefore, we have rewritten these amplitudes in
Appendix B as a sum of seven terms, labeled by j ¼ 1;…; 7,
for the tensor exchanges and of four terms, labeled by
j0 ¼ 1;…; 4, for the vector exchanges [see (B3)–(B16)].
Each of these 11 terms is separately gauge invariant. The pole
terms are only contained in the j ¼ 1 tensor term and j0 ¼ 1
vector term. The other terms have no singularity for ω → 0.
Thus, one expects that for soft-photon emission the terms
with j ¼ 1 and j0 ¼ 1 will be dominant. We found that
indeed this is correct but there is a very interesting effect
guaranteeing this. Considering for Pomeron exchange the
gauge-invariant and nonsingular terms with j ¼ 2 and j ¼ 4
alone, we find that the pole term only dominates over these
j ¼ 2 and j ¼ 4 terms individually for very small k⊥ ≈ ω≲
2m2

p=
ffiffiffi
s

p
≅ 0.15 MeV [see (B20), (B21), and Fig. 18]. This

effect is, in essence, due to the Pauli coupling of the photon.
We note that in the literature such small values forω as a limit
for the dominance of the ω−1 term are mentioned. For
instance, in Ref. [23], it is argued that for hard high-energy
elastic processes Low’s original result gives a reliable
representation of the radiative amplitude only in the vanish-
ingly small regionω≲m2=Q in the limitQ → ∞. Here,Q is
the scale of the hard process, and m is the charged particle
mass. But since in this work only hard processeswith photon
emission are considered, these arguments do not apply to our
case.We consider the exclusive soft processpp → ppγ with
soft-photon emission. We have, of course, to take all
contributions with different labels j into account and add
them coherently; see (B3). We find then large cancellations
between the j ¼ 2 and j ¼ 4 terms; see Fig. 17. This leads to
a much larger region in k⊥ andωwhere the pole terms alone
give a good representation of the radiative amplitude; see
Fig. 9. Our conclusion is that simple order of magnitude
estimates for the ω regions where the pole term dominates,
using only parts of the amplitudes, may give completely
wrong results. It is essential to add coherently all the various
parts of the amplitude for soft-photon emission in order not to
miss important interference effects.
In this article, we have only discussed the bremsstrahlung-

type emission of soft photons in pp collisions. Anomalous

emission terms have been subsumed in the amplitudeMðgÞ
μ ,

which must satisfy (2.58) and can have no singularity for
k → 0. There are, however, quite conventional contributions

to MðgÞ
μ , for instance, soft photons from central-exclusive

production via the fusion processes γP → γ, OP → γ. The
contributions of such processes are expected to be important
in themidrapidity region, around y ¼ 0. In a future paper, we
plan to study central-exclusive production of photons within
the tensor-Pomeron approach.
Finally, we emphasize that we have taken care to write

the formulas for the pp → ppγ amplitude in such a way
that they also apply to soft virtual photon production, for
instance, pp → ppðγ� → eþe−Þ. Thus, our Eqs. (2.39),
(2.40), (2.56), and (2.59)–(2.61), as well as (B1)–(B16),
can be directly used for soft virtual photon production. But
further investigations of this interesting topic go beyond the
scope of our present article.
We hope that our theoretical studies of the exclusive

pp → ppγ reaction will find experimental counterparts
with measurements of soft photons at the Relativistic
Heavy Ion Collider and at the LHC, for instance, with
the planned ALICE3 detector [16–18].
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APPENDIX A: LIST OF QUANTITIES AND
THEIR VALUES USED IN THE PAPER

The quantities listed in the following are in essence taken
fromChap. 3 of Ref. [28]. Here, the propagators and vertices
involving the Pomeron, the odderon, and the reggeons are to
be understood as effective propagators and vertices.
The effective propagators for P, reggeons, and O are as

follows:
(i) Pomeron P (see (3.10), (3.11), and Sec. 6.1 of

Ref. [28]):

ðA1Þ
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αPðtÞ ¼ αPð0Þ þ α0Pt; αPð0Þ ¼ 1þ ϵP;

α0P ¼ 0.25 GeV−2: ðA2Þ
The default value for ϵP from Ref. [28] is ϵP ¼ 0.0808. In our present paper, we find from a comparison to the data from
TOTEM measurements at

ffiffiffi
s

p ¼ 13 TeV [64,67] a slightly higher value: ϵP ¼ 0.0865; see Fig. 5. This value for the soft
Pomeron intercept is in agreement with those obtained in Refs. [83–85]. Our value above also agrees, within practically 1
standard deviation, with that obtained in Ref. [42] from a fit to photoproduction and low-x deep inelastic scattering which
gave ϵP ¼ 0.0935ð þ76

−64Þ.
(ii) reggeons Rþ ¼ f2R; a2R (see (3.12), (3.13), and Sec. 6.3 of Ref. [28]):

ðA3Þ

αRþðtÞ ¼ αRþð0Þ þ α0Rþt;

αRþð0Þ ¼ 0.5475;

α0Rþ ¼ 0.9 GeV−2: ðA4Þ

(iii) reggeons R− ¼ ωR; ρR (see (3.14), (3.15), and Sec. 6.3 of Ref. [28]):

ðA5Þ

αR−
ðtÞ ¼ αR−

ð0Þ þ α0R−
t;

αR−
ð0Þ ¼ 0.5475;

α0R−
¼ 0.9 GeV−2;

M− ¼ 1.41 GeV: ðA6Þ
The numbers for the reggeon parameters in (A4) and (A6)
are taken from Ref. [47] and Figs. 3.1 and 3.2 of Ref. [46],
except for M−, which is discussed in Sec. 6.3 of Ref. [28].
(iv) odderon O:

Our Ansatz for a single-pole odderon is as in Ref. [28]
[see (3.16), (3.17), and Sec. 6.2 therein]:

iΔðOÞ
μν ðs; tÞ ¼ −igμν

ηO
M2

0

ð−isα0OÞαOðtÞ−1; ðA7Þ

αOðtÞ ¼ αOð0Þ þ α0Ot; αOð0Þ ¼ 1þ ϵO;

M0 ¼ 1 GeV;

ηO ¼ �1;

α0O ¼ 0.25 GeV−2: ðA8Þ

Here, M0 ¼ 1 GeV is introduced for dimensional reasons,
and α0O ¼ α0P (A2) is set as default.
For a double-pole odderon, we set

iΔ̃ðOÞ
μν ðs; tÞ ¼ iΔðOÞ

μν ðs; tÞ½C1 þ C2 ln ð−isα0OÞ�: ðA9Þ

Here, C1 and C2 are real constants.
From the comparison with the ρ values of pp and pp̄

scattering, we find that the following values give a
reasonable description of the TOTEM data (see Fig. 6):

ηO ¼ −1; α0O ¼ 0.25 GeV−2; ϵO ¼ 0.0800;

ðC1; C2Þ ¼ ð−1.0; 0.1Þ; ð−1.5; 0.2Þ; ð−2.0; 0.3Þ: ðA10Þ
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The effective proton-Pomeron, proton-reggeon, and proton-odderon vertices are taken as in Ref. [28], but at least for the
Ppp vertex, we use a different form factor in order to fit the TOTEM data [64,67] at

ffiffiffi
s

p ¼ 13 TeV and in the low jtj region.
Now here is the list of effective vertices.

(i) Ppp vertex (see (3.43), (3.44), and Sec. 6.1 of Ref. [28]):

ðA11Þ

βPpp ¼ 1.87 GeV−1: ðA12Þ

In Ref. [28], the form factor F1ðtÞ was taken as the electromagnetic form factor of the proton,

F1ðtÞ ¼
�
1 −

t
4m2

p

μp
μN

��
1 −

t
4m2

p

�
−1
GDðtÞ;

μN ¼ e
2mp

;
μp
μN

¼ 2.7928;

GDðtÞ ¼
�
1 −

t
m2

D

�
−2
; m2

D ¼ 0.71 GeV2: ðA13Þ

In the present paper, we use F1ðtÞ → FðtÞ ¼ expð−bjtjÞwith b ¼ 2.95 GeV−2 adjusted to the TOTEM data (see Fig. 5).
(ii) Rþpp vertex, where Rþ ¼ f2R; a2R (see (3.49)–(3.52) and Sec. 6.3 of Ref. [28]):

ðA14Þ

gf2Rpp ¼ 11.04; M0 ¼ 1 GeV; ðA15Þ
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iΓða2RppÞ
μν ðp0; pÞ ¼ iΓða2Rp̄ p̄Þ

μν ðp0; pÞ

¼ −iga2Rpp
1

M0

F1½ðp0 − pÞ2�
�
1

2
½γμðp0 þ pÞν þ γνðp0 þ pÞμ� −

1

4
gμνð=p0 þ =pÞ

�
; ðA16Þ

ga2Rpp ¼ 1.68; M0 ¼ 1 GeV: ðA17Þ

(iii) R−pp vertex, where R− ¼ ωR; ρR (see (3.59)–(3.62) and Sec. 6.3 of Ref. [28]):

ðA18Þ

gωRpp ¼ 8.65; ðA19Þ

iΓðρRppÞ
μ ðp0; pÞ ¼ −iΓðρRp̄ p̄Þ

μ ðp0; pÞ
¼ −igρRppF1½ðp0 − pÞ2�γμ; ðA20Þ

gρRpp ¼ 2.02: ðA21Þ

(iv) Opp vertex (see (3.68), (3.69), and Sec. 6.2 of Ref. [28]):

ðA22Þ

βOpp ¼ 0.2 GeV−1; M0 ¼ 1 GeV: ðA23Þ

The coupling constant βOpp is taken as free parameter to be determined by experiment. In the present study, we assume
(A23): βOpp ¼ 0.1 × βPpp ≃ 0.2 GeV−1.
At the end of this Appendix, we give the formulas corresponding to (2.49), (2.50), and (2.54) for the case of a double-pole

odderon (A9). We have here to replace FOppðs; tÞ by F̃Oppðs; tÞ according to (2.17). In this way, we get instead of (2.49)

F̃Oppðs0; t2Þ ¼ F̃Oppðs; t2Þ þ ϰgΔFOppðs; t2; ϰÞ; ðA24Þ

where
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gΔFOppðs; t2; ϰÞ ¼ FOppðs; t2Þ
�
C1ð1 − αOðt2ÞÞgOðϰ; t2Þ þ C2

�
ð1 − αOðt2ÞÞgOðϰ; t2Þ lnð−isð1 − ϰÞα0OÞ þ

1

ϰ
lnð1 − ϰÞ

��
:

ðA25Þ

For ΔFVðs; t; ϰÞ in (2.54), this gives the replacement

gΔFVðs; t; ϰÞ ¼ gΔFOppðs; t; ϰÞ þ ð1 − αωR
ðtÞÞgωR

ðϰ; tÞFωRppðs; tÞ þ ð1 − αρRðtÞÞgρRðϰ; tÞF ρRppðs; tÞ: ðA26Þ

APPENDIX B: THE AMPLITUDES WITH PHOTON EMISSION

Here, we rewrite the amplitude MðaþbþcÞ
μ ¼ MðaÞ

μ þMðbÞ
μ þMðcÞ

μ , see (2.39), (2.40), and (2.56), in a way that is more
suitable for numerical computations.
We use the following relations:

=pa − =kþmp

ðpa − kÞ2 −m2
p þ iε

�
γμ −

i
2mp

σμνkνF2ð0Þ
�
ua ¼

1

−2pa · kþ k2 þ iε

�
2paμ − kμ þ ðkμ − =kγμÞ

þ F2ð0Þ
2mp

�
2ðpaμ=k − ðpa · kÞγμÞ þ 2mpðkμ − =kγμÞ − ð=kkμ − k2γμÞ

��
ua;

ðB1Þ

ū10
�
γμ −

i
2mp

σμνkνF2ð0Þ
�

=p1
0 þ =kþmp

ðp0
1 þ kÞ2 −m2

p þ iε
¼ ū10

1

2p0
1 · kþ k2 þ iε

�
2p0

1μ þ kμ − ðkμ − γμ=kÞ

þ F2ð0Þ
2mp

�
−2ðp0

1μ=k − ðp0
1 · kÞγμÞ − 2mpðkμ − γμ=kÞ − ðkμ=k − k2γμÞ

��
:

ðB2Þ

Using (B1) and (B2) and exploiting the properties of the Dirac spinors, paua ¼ mpua, ū10p10 ¼ ū10mp etc., we can write

our MðstandardÞ
μ from (2.62) as follows:

MðstandardÞ
μ ¼

X7
j¼1

ðMðaþbþcÞj
T;μ þMðdþeþfÞj

T;μ Þ þ
X4
j0¼1

ðMðaþbþcÞj0
V;μ þMðdþeþfÞj0

V;μ Þ: ðB3Þ

Here, T and V stand for the tensor- and vector-exchange diagrams, respectively, and j and j0 are just labels for the
subamplitudes in the sums on the rhs of (B3). We have

MðaþbþcÞ1
T;μ ¼ eū10 ⊗ ū20

�
iF Tðs; t2Þ½γα ⊗ γαðpa þ p0

1; pb þ p0
2Þ þ ð=pb þ =p2

0Þ ⊗ ð=pa þ =p1
0Þ

− 2m2
p1 ⊗ 1�

�
2paμ − kμ

−2pa · kþ k2 þ iε
þ 2p0

1μ þ kμ
2p0

1 · kþ k2 þ iε

��
ua ⊗ ub; ðB4Þ

MðaþbþcÞ2
T;μ ¼ eū10 ⊗ ū20

�
iF Tðs0; t2Þ

1

−2pa · kþ k2 þ iε
½γα ⊗ γαðpa þ p0

1 − k; pb þ p0
2Þ

þ ð=pb þ =p2
0Þ ⊗ ð=pa þ =p1

0 − =kÞ�
�
kμ − =kγμ þ

F2ð0Þ
2mp

ð2paμ=k − 2ðpa · kÞγμ

þ 2mpðkμ − =kγμÞ − ð=kkμ − k2γμÞÞ
�
⊗ 1

�
ua ⊗ ub; ðB5Þ
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MðaþbþcÞ3
T;μ ¼ −eū10 ⊗ ū20

�
iF Tðs0; t2Þ

mp

−2pa · kþ k2 þ iε

�
2paμ=k − 2ðpa · kÞγμ þ 2mpðkμ − =kγμÞ

− ð=kkμ − k2γμÞ þ
F2ð0Þ
2mp

ðð−2ðpa · kÞ þ k2 þ 4m2
pÞðkμ − =kγμÞ

þ 2mpð2paμ=k − 2ðpa · kÞγμÞ − 2mpð=kkμ − k2γμÞÞ
�
⊗ 1

�
ua ⊗ ub; ðB6Þ

MðaþbþcÞ4
T;μ ¼ eū10 ⊗ ū20

�
iF Tðs; t2Þ

1

2p0
1 · kþ k2 þ iε

�
−ðkμ − γμ=kÞ

þ F2ð0Þ
2mp

ð−2p0
1μ=kþ 2ðp0

1 · kÞγμ − 2mpðkμ − γμ=kÞ − ðkμ=k − k2γμÞÞ
�
⊗ 1

× ½γα ⊗ γαðpa þ p0
1 þ k; pb þ p0

2Þ þ ð=pb þ =p2
0Þ ⊗ ð=pa þ =p1

0 þ =kÞ�
�
ua ⊗ ub; ðB7Þ

MðaþbþcÞ5
T;μ ¼ −eū10 ⊗ ū20

�
iF Tðs; t2Þ

mp

2p0
1 · kþ k2 þ iε

�
−2p0

1μ=kþ 2ðp0
1 · kÞγμ − 2mpðkμ − γμ=kÞ

− ð=kkμ − k2γμÞ −
F2ð0Þ
2mp

ðð2ðp0
1 · kÞ þ k2 þ 4m2

pÞðkμ − γμ=kÞ

þ 2mpð2p0
1μ=k − 2ðp0

1 · kÞγμÞ þ 2mpð=kkμ − k2γμÞÞ
�
⊗ 1

�
ua ⊗ ub; ðB8Þ

MðaþbþcÞ6
T;μ ¼ eū10 ⊗ ū20

�
iΔF Tðs; t2; ϰÞ½γα ⊗ γαðpa þ p0

1 − k; pb þ p0
2Þ

þ ð=pb þ =p2
0Þ ⊗ ð=pa þ =p1

0 − =kÞ −mpð2mp − =kÞ ⊗ 1�

×

�ð2pa þ 2pb − k; kÞ
s

2paμ − kμ
−2pa · kþ k2 þ iε

þ ð2pa þ 2pb − kÞμ
s

��
ua ⊗ ub; ðB9Þ

MðaþbþcÞ7
T;μ ¼ eū10 ⊗ ū20

�
iF Tðs; t2Þ

�
ðγα ⊗ γαðpb þ p0

2; kÞ þ ð=pb þ =p2
0Þ ⊗ =k −mp=k ⊗ 1Þ

×

�
2p0

1μ þ kμ
2p0

1 · kþ k2 þ iε
−

2paμ − kμ
−2pa · kþ k2 þ iε

�

− 2γα ⊗ γαðpb þ p0
2Þμ − 2ð=pb þ =p2

0Þ ⊗ γμ þ 2mpγμ ⊗ 1
��

ua ⊗ ub: ðB10Þ

For the subamplitudes with the vector exchanges, we get

MðaþbþcÞ1
V;μ ¼ −eū10 ⊗ ū20

�
FVðs; t2Þγα ⊗ γα

�
2paμ − kμ

−2pa · kþ k2 þ iε
þ 2p0

1μ þ kμ
2p0

1 · kþ k2 þ iε

��
ua ⊗ ub; ðB11Þ

MðaþbþcÞ2
V;μ ¼ −eū10 ⊗ ū20

�
ΔFVðs; t2;ϰÞγα ⊗ γα

�ð2pa þ 2pb − k; kÞ
s

2paμ − kμ
−2pa · kþ k2 þ iε

þ ð2pa þ 2pb − kÞμ
s

��
ua ⊗ ub;

ðB12Þ

MðaþbþcÞ3
V;μ ¼ −eū10 ⊗ ū20

�
FVðs0; t2Þ

1

−2pa · kþ k2 þ iε
γα
�
kμ − =kγμ þ

F2ð0Þ
2mp

ð2paμ=k − 2ðpa · kÞγμ þ 2mpðkμ − =kγμÞ

− ð=kkμ − k2γμÞÞ
�
⊗ γα

�
ua ⊗ ub; ðB13Þ
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MðaþbþcÞ4
V;μ ¼ −eū10 ⊗ ū20

�
FVðs; t2Þ

1

2p0
1 · kþ k2 þ iε

�
−ðkμ − γμ=kÞ

þ F2ð0Þ
2mp

ð−2p0
1μ=kþ 2ðp0

1 · kÞγμ − 2mpðkμ − γμ=kÞ − ðkμ=k − k2γμÞÞ
�
γα ⊗ γα

�
ua ⊗ ub: ðB14Þ

According to (2.59)–(2.61), we have

MðdþeþfÞj
T;μ ¼ MðaþbþcÞj

T;μ

			ðpa;λaÞ↔ðpb;λbÞ
ðp0

1
;λ1Þ↔ðp0

2
;λ2Þ

for j ¼ 1;…; 7;

ðB15Þ

MðdþeþfÞj0
V;μ ¼ MðaþbþcÞj0

V;μ

			ðpa;λaÞ↔ðpb;λbÞ
ðp0

1
;λ1Þ↔ðp0

2
;λ2Þ

for j0 ¼ 1;…; 4;

ðB16Þ

where we also exchange the order of the tensor products in

(B4)–(B14). Note that all subamplitudes MðaþbþcÞj
T;μ and

MðaþbþcÞj0
V;μ are separately gauge invariant, as is easy to

check,

kμMðaþbþcÞj
T;μ ¼ 0; j ¼ 1;…; 7;

kμMðaþbþcÞj0
V;μ ¼ 0; j0 ¼ 1;…; 4: ðB17Þ

The same holds for MðdþeþfÞj
T;μ and MðdþeþfÞj0

V;μ .
Note that only the j ¼ 1 terms in (B4) and (B15) and the

j0 ¼ 1 terms in (B11) and (B16) contain the pole terms
proportional to ω−1 for ω → 0. The SPA1 and SPA2 results
are derived from these terms; see Sec. III.
In Fig. 17, we show differential distributions for the

pp → ppγ reaction for
ffiffiffi
s

p ¼ 13 TeV, jyj < 4, and for two
k⊥ intervals: 1 MeV < k⊥ < 100 MeV (the left panels),
100 MeV < k⊥ < 400 MeV (the right panels). In these
calculations, we limit ourselves to the leading Pomeron-
exchange contribution. We show the complete result
(“total”) including interference effects and the results for
individual j terms (B4)–(B10) plus (B15), except for j ¼ 3
and 5, which are very small and can be safely neglected.
Note that there is significant cancellation among the terms
j ¼ 2 and 4, due to destructive interference. The coherent
sum of the amplitudes ðaþ bþ cÞ plus ðdþ eþ fÞ with
j ¼ 2 and j ¼ 4 is denoted by 2þ 4.
How can we understand these results? First, we remark

that the destructive interference of the 2 and 4 terms above is
not due to a gauge cancellation. These terms are separately
gauge invariant; see (B17). Let us have a closer look at the
terms 1, 2, and 4 of (B4), (B5), and (B7), respectively, for real
photons, k2 ¼ 0, and with transverse momentum only:

ðkμÞ ¼
�

ω

ωk̂⊥

�
; jk̂⊥j ¼ 1: ðB18Þ

We work in the c.m. system with jpaj defining the z axis.
Then, disregarding terms on the rhs of (B4) and (B5), which
are of the same order in jpaj, we get very roughly

MðaþbþcÞ1
T;μ ∝

paμ

−pa · k
þ p0

1μ

p0
1 · k

∝
Δp
jpajω

: ðB19Þ

Here, Δp ¼ OðmpÞ is a measure of the transverse momen-
tum change from pa to p01.
The term MðaþbþcÞ2

T;μ has no singularity for ω → 0. The
main term here comes from the anomalous magnetic
moment F2ð0Þ and can be estimated as

MðaþbþcÞ2
T;μ ∝

1

jpajω
jpajω
mp

¼ 1

mp
ðB20Þ

and similarly forMðaþbþcÞ4
T;μ . Thus, the termMðaþbþcÞ1

T;μ will
win over the 2 and 4 terms individually for ω → 0.
However, for this to happen, we must require

Δp
jpajω

≈
mp

jpajω
≳ 1

mp
;

ω≲ m2
p

jpaj
: ðB21Þ

For our case with 2jpaj ¼ 13 TeV, this requires

k⊥ ≈ ω≲ 0.15 MeV: ðB22Þ
Explicit calculations confirm the order of magnitude of this
estimate. Indeed, from Fig. 18, we see that the j ¼ 1 term
exceeds the j ¼ 2 term only for k⊥ ≲ 0.35 MeV and
ω≲ 0.7 MeV. The crossing place of these terms depends
on the y range since the j ¼ 1 term has a minimum at y ¼ 0
and grows rapidly with jyj increasing, while the terms 2 and
4 are flat in the midrapidity region (see the top panels of
Fig. 17). When going with y → 0, the crossing place of the
terms 1 and 2 shifts to lower values of k⊥ and ω. In reality,
however, there is destructive interference between the terms
2 and 4, and their sum is harmless, well below the term 1, at
least for k⊥ < 100 MeV and ω < 2 GeV, as we see from
the left panels of Fig. 17. In the right panels of Fig. 17, we
show the results for larger k⊥ and ω ranges. The destructive
interference of the terms 2 and 4 is again a salient feature.
As we mentioned already, the terms with labels j ¼ 2

and 4 contain the Dirac and Pauli couplings, and the latter
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one dominates. In the result 2þ 4 shown in Fig. 17, we find
destructive interference of the Pauli parts of j ¼ 2 and
j ¼ 4 in the term ðaþ bþ cÞ and in the term ðdþ eþ fÞ
individually. But for the Pauli parts, we find numerically
that there is practically no interference between the
ðaþ bþ cÞ and the ðdþ eþ fÞ terms. In the 2þ 4 term,
the Dirac part wins over the Pauli part. The visible dip for
dσ=dy at y ≈ 0 in the 2þ 4 result (see the left upper panel
of Fig. 17) is due to destructive interference of the Dirac
parts between the ðaþ bþ cÞ and the ðdþ eþ fÞ terms.

For the vector-exchange contributions, (B11)–(B14) and
(B16), the situation is similar to that for the tensor
exchanges. The terms containing the ω−1 pole are the
j0 ¼ 1 terms. Individually, the vector-exchange terms with
j0 ¼ 3 and j0 ¼ 4 are much larger than the j0 ¼ 1 term,
except for very small k⊥ and ω. But again there is
destructive interference of the j0 ¼ 3 and j0 ¼ 4 terms,
and the sum 3þ 4 is well below the j0 ¼ 1 term in the same
kinematic regions as shown in Fig. 17. In this kinematic
region, the j0 ¼ 2 term is very small.
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