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A fluid-dynamic approach to the diffusion of heavy quarks in the quark-gluon plasma (QGP) is
presented. Specifically, we analyze the Fokker-Planck equation for the momentum transport of heavy
quarks from a fluid perspective and use a mapping to second-order fluid dynamics to determine
conductivities and relaxation times governing their spatial diffusion. By investigating the relation between
the two approaches, we provide new insights concerning the level of local thermalization of charm and
bottom quarks inside the expanding QGP. Our results indicate that a fluid-dynamic description of diffusion
is feasible for charm quarks at least for the latest stages of the fireball evolution.
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I. INTRODUCTION

Relativistic viscous hydrodynamics is a widely used tool
in the description of heavy-ion collisions. The assumption
of the quark-gluon plasma (QGP) behaving as an expand-
ing fluid successfully managed to explain light-flavor
observables such as particle spectra and flow harmonic
coefficients [1–3], suggesting that the mean-free path of the
light quarks and gluons is substantially smaller than the size
of the created fireball. In particular, elliptic flow is an
important probe of collectivity in the system created in
heavy-ion collisions. It is a response to initial conditions
and therefore sensitive to the early and strongly interacting
phase of the evolution. Remarkably, recent experimental
results [4,5] show that open heavy-flavor and charmonium
states—D mesons, J=ψ—have significantly positive ellip-
tic flow. These observations raised questions about the
possible heavy-quark (local) thermalization in the QGP [6].
Heavy quarks are very powerful tools to characterize the

QGP produced in heavy-ion collisions. Due to their large
mass, they are produced via hard scattering processes at the
very beginning of the collision and undergo all the stages of
the evolution of the expanding medium. The timescale

required for the heavy quarks to approach local kinetic
equilibrium is expected to be a factor ∼M=T larger than the
one for light quarks [7], where M is the heavy-quark mass
and T is the temperature of the medium.
Avariety of transport models (for a recent review see [8])

based on the Boltzmann equation or its approximations
were developed in the past years, addressing the issue of
heavy-quark in-medium dynamics. These models treat the
heavy quarks as Brownian particles that undergo elastic and
(possibly) radiative scattering processes with the partons
from the QGP. The heavy-quark momentum is modified
only slightly during each individual scattering, meaning
that several interactions are required in order to change it
significantly. This implies that local kinetic equilibrium can
be reached by charm and bottom quarks only for rather long
timescales. Therefore, recent theoretical developments are
mainly focused on the evaluation of the transport coef-
ficients which characterize the medium and parametrize
the interaction between the heavy quarks and the light
partons from the QGP. Great effort was put toward a
consistent estimate of these transport coefficients through a
systematic comparison between model predictions and
experimental data.
Our purpose here is to address the question of heavy-

quark in-medium thermalization from a new point of view.
We treat the heavy quarks as part of the medium itself,
somehow in analogy to the most recent implementation of
the statistical hadronization model (SHM) [6,9–11]. We
assume heavy quarks had enough time to interact with the
light thermal partons and to approach local kinetic
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equilibrium. This will be found to be a reasonable
assumption for charm in the stages in which the expansion
of the medium is not too violent. In this case heavy-quark
number conservation laws and the related continuity
equations can be used to describe the diffusion dynamics
in spacetime. While one can realistically assume that charm
quarks manage to get quite close to local kinetic equilib-
rium, a chemical thermalization would only happen over
larger timescales: hence the heavy quark multiplicity is set
by the initial production in hard scattering processes and
remains almost unchanged during the medium evolution.
In spite of introducing new dissipative quantities to

initialize, such a theoretical description is still much more
economic than a numerical solution of the Boltzmann
equation.
Eventually, heavy quarks could even affect the dynamics

of the QGP itself, and this could be naturally encoded into a
system of coupled hydrodynamic equations. However, as a
starting point, it is reasonable to think that the heavy quarks
do not influence significantly the energy density, pressure,
velocity, or shear stress of the medium. These quantities are
mostly determined by the thermodynamics of the light
quarks and gluons degrees of freedom. The heavy quarks
can be added “on top” of the fluid, and their fluid dynamics
is described by additional conserved currents. In the
following we pursue such an on top description. By
studying the connection between hydrodynamics and trans-
port theory (Fokker-Planck equation) we obtain new
insights on the mechanisms of “hydrodynamization” of
the heavy degrees of freedom in the QGP medium.
This work is structured as follows. In Sec. II we present

the aspects of transport theory which are relevant for our
treatment and give a short overview about heavy-quark
transport coefficients in the literature. In Sec. III we
introduce the conserved currents associated with the
heavy quark propagation in the QGP. In Sec. IVA we
build a relation between the transport coefficients defined
in the hydrodynamic framework and the ones in transport
theory. In Sec. IV B we show the results for the numerical
evaluation of the hydrodynamic transport coefficients.
In Sec. V we test the validity of the hydrodynamic
description of heavy quarks in the case of a QGP under-
going Bjorken flow. Finally, in Sec. VI we draw our
conclusions and discuss possible developments and future
perspectives.

II. THE FOKKER-PLANCK EQUATION AND
HEAVY-QUARK TRANSPORT COEFFICIENTS

In this section we present the Fokker-Planck equation as
an approximation of the Boltzmann equation, and we give
an overview about heavy-quark transport coefficients.
The Boltzmann equation relates the change in time

of the (out-of-equilibrium) distribution function fk of a
certain particle, with momentum k, to the collision
integral C½fk�,

kμ∂μfk ¼ C½fk�: ð1Þ

Let us consider the collision integral for the elastic
scattering between a heavy quark of initial momentum
k and a light parton from the medium of initial momentum
k0. Denoting the outgoing momenta of the heavy quark
and parton with p and p0, the collision integral in its
classical form then reads

C½fðrÞk � ¼
Z

dK0dPdP0Wkk0→pp0 ðfðrÞp fp0 − fðrÞk fk0 Þ; ð2Þ

whereWkk0→pp0 is the scattering rate for the aforementioned
process and r is an index accounting for the heavy quark
(charm/bottom) or antiquark (anticharm/antibottom). We
employed the abbreviation

Z
dP ¼ g

Z
d3p

ð2πÞ3p0
ð3Þ

to indicate the integral over the phase space of a particle
with four-momentum pμ. The degeneracy factor g
accounts for internal degrees of freedom (spin, color,
etc.), and the time component of the four-momentum p0 is
evaluated on-shell.
The Fokker-Planck equation is an approximation of the

Boltzmann equation in the limit of multiple soft scatterings
between the heavy quark and a parton from the medium.
We recall their relation in a situation where the fluid of
gluons and light quarks is stationary and homogeneous.
This is sufficient to define the transport coefficient of
interest for this work. The collision integral expanded in
terms of the small transferred momentum q ¼ p − k up to
second order in momentum derivatives reads

C½fðrÞk � ¼ k0
∂

∂ki

�
AifðrÞk þ ∂

∂kj
½BijfðrÞk �

�
; ð4Þ

where the indices i, j ¼ 1, 2, 3 run over the spatial
components of the correspondent four-momentum vector.
The tensors Ai and Bij describing the interaction of the
heavy quark with the medium arise naturally from the
momentum expansion of the collision integral. For an
isotropic medium, after factorizing the tensorial structure,
they can be rewritten as

Aiðk⃗Þ ¼ AðkÞki;
Bijðk⃗Þ ¼ ðδij − k̂ik̂jÞB0ðkÞ þ k̂ik̂jB1ðkÞ; ð5Þ

where we used k⃗ to indicate the spatial part of the four-
momentum vector kμ and k̂i ≡ ki=jk⃗j, with k≡ jk⃗j. AðkÞ
represents a drag coefficient, and B0 and B1 play the role
of momentum-diffusion coefficients along the directions
orthogonal and parallel to the heavy-quark velocity,
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respectively (for a full derivation see e.g., Ref. [12]).1 The
Einstein fluctuation-dissipation (EFD) relation for the three
transport coefficients reads

A ¼ 1

Tk0
B1 −

1

k2

�
2ðB1 − B0Þ þ k

∂B1

∂k

�
; ð6Þ

in three spatial dimensions, where T is the temperature of
the surrounding medium and k0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p

is the energy
of the on-shell heavy quark [14,15]. This ensures that,
asymptotically, the heavy quark momentum distribution

approaches the Maxwell-Jüttner limit fðrÞk ∼ e−k
0=T . An

extension accounting for quantum corrections for the heavy
quarks (Pauli blocking) asymptotically approaching a
Fermi-Dirac distribution is discussed in Appendix A.
Very often in phenomenological studies one attempts to

summarize the heavy-quark coupling with the medium in
terms of a single coefficient, the spatial diffusion coefficient
Ds, identified via the asymptotic mean squared displace-
ment hx⃗2i ∼

t→∞
6Dst of an ensemble of heavy quarks initially

placed at the origin. One can show that, as long as the
dynamics is nonrelativistic (M ≫ T), the latter is related to
the other transport coefficient by

Ds ¼ lim
k→0

T
MAðkÞ ; ð7Þ

where k is the heavy-quark momentum and M is its mass.
Recent constraints 1.5 < 2πDsTpc < 4.5 at the pseudoc-
ritical temperature Tpc ¼ 0.155 GeV [16] were obtained
by fitting various transport models to ALICE experimental
data for the nuclear modification factor RAA, elliptic (v2),
and triangular (v3) flow of D mesons in Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. This constraint corresponds to a ther-
malization time of about ∼3–9 fm=c at Tpc ¼ 0.155 GeV
for charm quarks of mass M ¼ 1.5 GeV (the link between
Ds and the relaxation time will be better clarified in the
following). In this work, we assume that this estimate for
Ds is also applicable at temperatures above Tpc and for
bottom quarks. Beside this phenomenological estimate, in
this work we also employ lattice-QCD (lQCD) results for
Ds taken from Ref. [17]. Other results can be found in
Refs. [18–20]. The lattice-QCD results for Ds (so far
limited to the quenched approximation) used in this paper
arise from calculations of color-electric field correlators
performed in the static M → ∞ limit, which provide the

momentum broadening of an infinitely heavy quark (for
more details see [21] and references therein). The above
estimates forDs are expected to be more reliable for objects
with a larger mass, such as bottom quarks. Nevertheless, as
done in Ref. [19], one can attempt to apply these results to
charm quarks as well. Notice that the quenched approxi-
mation requires a global adaptation of scales from pure
Yang-Mills theory to QCD. Such a procedure was sug-
gested in [22] for the shear viscosity over entropy ratio η=s,
and will be applied to the heavy-quark transport coeffi-
cients in a continuation of the present work.
An alternative approach toward the computation of

heavy-quark transport coefficients has been suggested
recently, based on the theory of open quantum systems
[23] within the effective field theory (EFT) framework of
potential nonrelativistic QCD (pNRQCD) calculations
[24]. It avoids some of the above limitations, and in
particular it allows for lattice estimates of heavy-quark
transport coefficients beyond the quenched approximation.

III. THE HYDRODYNAMIC APPROACH TO
HEAVY QUARKS

The aim of the present section is to introduce the heavy-
quark conserved current which propagates causally in the
QGP. As discussed in the previous section, the transport
coefficients fitted to reproduce experimental data or esti-
mated from lattice-QCD simulations suggest the possibility
at least for charm quarks to approach kinetic equilibrium
during their propagation in the hot fireball arising from the
nuclear collision. Hence it looks reasonable to develop a
hydrodynamic approach also for the modeling of the
heavy-quark dynamics in the quark-gluon plasma that
we are going to present in this section.
It is crucial to construct the hydrodynamic approach such

that causality is preserved even in the presence of dissipative
effects associated with the finite mean-free path of the
plasma particles. We employ an Israel-Stewart type
formalism—or second-order hydrodynamics—in which
the dissipative quantities (the heavy-quark diffusion currents
in this case) are promoted to dynamical variables which
evolve according to certain equations of motion. Here these
equations are governed by conductivities and relaxation
times. The relaxation times have to be large enough in order
to prevent the noncausal behavior; at the same time they have
to be smaller than the inverse expansion rate of the fireball
(coinciding with the longitudinal proper time τ for a pure
longitudinal Bjorken expansion) in order for the hydro-
dynamic approach to hold. What the relaxation time tells us
is that we are dealing with out-of-equilibrium transient
hydrodynamics for a timescale of the order of the relaxation
time itself. This relaxation toward a hydrodynamic phase is
often called hydrodynamization (see e.g., [25]).
In our specific problem, we want to include the con-

servation of a heavy quark–antiquark (QQ̄) current. Two
relevant heavy-quark currents are

1The transport coefficients entering into the Fokker-Planck
approach are in one-to-one correspondence with the ones
appearing in the Langevin equation, the latter being employed
when one is interested in simulating the dynamics of the
individual heavy quarks. One has for the transverse/longitudinal
momentum broadening κT=LðpÞ ¼ 2B0=1ðpÞ, while in the Ito
discretization scheme the two friction coefficients exactly
coincide, ηDðpÞ ¼ AðpÞ [13].
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Nμ
þ ≡ Nμ

Q þ Nμ
Q̄

2
and Nμ

− ≡ Nμ
Q − Nμ

Q̄; ð8Þ

associated with the conservation of the average (þ) and
net (−) heavy-quark numbers, respectively. Notice that in
the situation of experimental interest the net heavy-quark
number vanishes and their average number coincides with
the number of QQ̄ pairs initially produced in the hard
scattering processes and conserved throughout the fireball
evolution. The number of QQ̄ pairs is expected to be
accidentally conserved during the evolution of the QGP.
The mass of the heavy quarks is too large for them to be
thermally produced [26]. At the same time their annihilation
rate is too small to lead to a measurable loss of QQ̄ pairs
during the short lifetime of the plasma. Hence their final
multiplicity is fixed by the initial production in hard partonic
processes described by pQCD. On the other hand, the net
heavy-quark number is expected to be exactly conserved in
QCD due to the symmetry of the interaction. The loss of a
single quark/antiquark is in fact forbidden by flavor con-
servation. The net heavy-quark current is not conserved by
electroweak interactions instead. However, electroweak
processes can be considered negligible within the lifetime
of the QGP since they require much longer timescales.
Since the numbers of heavy quarks and antiquarks are

separately conserved within the fireball lifetime, following
the work in Ref. [27], we write the corresponding con-
served currents including dissipative corrections as

Nμ
ðrÞ ¼ nðrÞuμ þ νμðrÞ;

∂μN
μ
ðrÞ ¼ 0: ð9Þ

Here r ¼ Q or Q̄, uμ is the fluid four-velocity, and νμðrÞ are
the heavy-(anti)quark diffusion currents, constructed to be
orthogonal to uμ, i.e., uμν

μ
ðrÞ ¼ 0. Notice that this last

condition entails that in the local rest frame (LRF) of the
fluid—in which uμ ¼ ð1; 0; 0; 0Þ—the time component of
the diffusion currents ν0ðrÞ vanishes. In this frame the time

component of the current Nμ
ðrÞ defines then the heavy-

(anti)quark density nðrÞ even in the presence of dissipative
corrections. At local kinetic equilibrium, we consider for
quarks and antiquarks a Boltzmann distribution,

fðrÞ0k ¼ exp

�
−Ek þ μr

T

�

¼ exp

�−Ek þ qrμnetQ þ μaveQ =2

T

�
; ð10Þ

where Ek ¼ uμkμ. The μnetQ is the chemical potential
associated with net Nμ

− conserved current, and qr is a
charge factor—positive for quarks and negative for anti-
quarks. Additionally, one should consider that heavy
quarks are produced out of chemical equilibrium in the

QGP and their number is conserved during the subsequent
evolution of the fireball. A chemical potential μaveQ , the
same for quarks and antiquarks, associated with their
average number must be included in order to account for
such a deviation from full thermodynamic equilibrium. In
summary, one has

μQ ¼ μaveQ =2þ μnetQ ;

μQ̄ ¼ μaveQ =2 − μnetQ ; ð11Þ

consistent with the thermodynamic identities

nr ¼
∂P
∂μr

; n− ¼ ∂P
∂μnetQ

; nþ ¼ ∂P
∂μaveQ

: ð12Þ

It is often convenient to introduce the heavy-quark
fugacity γQ ≡ eμ

ave
Q =2T which can be factored out from

the heavy (anti)quark distributions:

fðrÞ0k ¼ γQ exp

�−Ek þ qrμnetQ

T

�
: ð13Þ

In Appendix B we provide an estimate of γQ in the case
of a fluid undergoing Bjorken flow. In the following, we
simply focus on the conservation of the average heavy-
quark number, since in most cases one is not interested in
distinguishing hadrons arising from a Q or Q̄ parent parton
(an exception could be the difference Δv1 in the direct flow
of D0 and D̄0 mesons proposed as a tool to extract
information on the primordial magnetic field in the plasma
[28]). Furthermore, for simplicity we assume that Nμ

− ¼ 0,
i.e., μnetQ ¼ 0, since the initial hard processes lead to the
production of the same number of quarks and antiquarks
and we neglect any local unbalance developing during the

hydrodynamic evolution. We define then
P

r n
ðrÞ
0 =2≡ nþ

and
P

r ν
μ
ðrÞ=2≡ νμþ. In this case, the dynamic evolution of

the relevant diffusion current will be driven by a single
chemical potential μQ ¼ μQ̄ ¼ μaveQ =2. We look for an
equation of motion for the particle diffusion current in
the form

τnΔ
μ
ρuσ∂σν

ρ
þ þ νμþ ¼ κn∇μ

�
μQ
T

�
; ð14Þ

where Δμν ¼ gμν − uμuν is the projector onto the space
orthogonal to the fluid velocity and we defined the trans-
verse gradient ∇μ ≡ Δμν

∂ν. This is a relaxation-type
equation in which terms of higher order in the gradients
are neglected. Two transport coefficients are present in
Eq. (14), namely the relaxation time τn and the particle-
diffusion coefficient κn. The presence of a relaxation time,
as anticipated, is necessary in order to ensure the causality
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of the equation. For τ ≫ τn, ν
μ
þ relaxes to its Navier-Stokes

limit νμþ ¼ κn∇μðμQ=TÞ.

IV. HEAVY-QUARK RELAXATION TIME AND
TRANSPORT COEFFICIENTS

The purpose of this section is twofold. First, we study
the relation between the transport coefficients defined
in the hydrodynamic approach and the ones defined in
transport theory (Fokker-Planck equation). Second, we
show our numerical results for the hydrodynamic transport
coefficients.

A. Matching Fokker-Planck with hydrodynamics

The definition of the heavy-quark relaxation time τn
and diffusion coefficient κn are deeply related to the
collision integral entering the Boltzmann equation. One
can start from the Fokker-Planck equation for the heavy

(anti)quark distribution fðrÞk , written for the case of a
homogeneous fluid at rest, and integrate subsequent
moments of it, taking at the end the proper linear
combination to get an equation for the diffusion current
νμþ. The zeroth moment simply gives the conservation
or continuity equation, which, in the fluid rest frame,
reduces to

∂tnþ þ ∂iν
iþ ¼ 0: ð15Þ

The first moment gives

∂t

Z
dKk0klfðrÞk þ ∂i

Z
dKklkifðrÞk

¼
Z

dKkl
�
k0

∂

∂ki

�
AifðrÞk þ ∂

∂kj
½BijfðrÞk �

��
: ð16Þ

We use the following decomposition for fðrÞk :

fðrÞk ¼ fðrÞ0k þ δfðrÞk ; ð17Þ

where in the equilibrium part we allow the chemical
potential to depend on the spacetime point x, allowing
for the development of a local excess of heavy quarks. In
the following we employ a simplified version of the
approach developed by Denicol et al. in Ref. [27],2 i.e.,
the method of irreducible moments. We first present the
general features of the method. Later on in this section, we
truncate the moment expansion at rank-2 tensors, indicating
that the only relevant dissipative quantities are the heavy-
quark bulk pressure, diffusion current, and shear-stress
tensor, often referred to as the 14-moment approximation.

The deviation from local equilibrium δfðrÞk expanded in
terms of its moments,

ρhμ1::μliðrÞ ≡ Δμ1::μl
ν1::νl

Z
dKkhν1 ::kνliδfðrÞk ; ð18Þ

reads as follows:

δfðrÞk ¼ fðrÞ0k

�X∞
l¼0

aðrÞl ρμ1::μlðrÞ khμ1 ::kμli

�
; ð19Þ

where aðrÞl are the coefficients of the linear expansion. The
projectors Δμ1::μl

ν1::νl to the fully symmetric, transverse, and
traceless part of a tensor are defined as in [27,30]. Given a
tensor Aν1::νl, by applying the projector Δμ1::μl

ν1::νl one obtains

Ahμ1::μli ≡ Δμ1::μl
ν1::νl A

ν1::νl : ð20Þ

Stopping the expansion at second order one only needs the
usual transverse projector Δμ

ν and

Δμ1μ2
ν1ν2 ≡ 1

2
ðΔμ1

ν1Δ
μ2
ν2 þ Δμ1

ν2Δ
μ2
ν1 Þ −

1

3
Δμ1μ2Δν1ν2 : ð21Þ

According to this definition, one has

ρðrÞ ¼ −
3

M2
ΠðrÞ;

ρμðrÞ ¼ νμðrÞ;

ρμνðrÞ ¼ πμνðrÞ; ð22Þ

being, respectively, the bulk pressure, the diffusion current,
and the shear stress tensor associated with the heavy
(anti)quarks. In getting these results one has exploited
the Landau matching conditions, which ensure that

Z
dKðk ·uÞδfðrÞk ¼ 0 and

Z
dKðk ·uÞ2δfðrÞk ¼ 0: ð23Þ

They are a way of fixing a temperature and chemical
potential of the system, even when the latter is off-
equilibrium, starting from the knowledge of the particle
and energy density, obtained from the first two moments of
the particle distribution.
By neglecting moments ρμ1::μlðrÞ of rank higher than 2,

the dissipative correction to the heavy-quark distribution
reads then

δfðrÞk ¼ fðrÞ0k

�
−aðrÞ0

3

M2
ΠðrÞ þ aðrÞ1 νμðrÞkhμi

þ aðrÞ2 πμσðrÞkhμkσi

�
: ð24Þ

2The method of moments was originally proposed by Grad
[29]. Denicol et al. developed its generalization by employing
irreducible moments.
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In the expression above one can determine the coefficients

aðrÞl exploiting the definition of the bulk pressure, diffusion
current and shear stress in terms of the first three moments

of δfðrÞk , respectively (see Appendix C), obtaining

aðrÞ0 ¼ 1

IðrÞ00

; aðrÞ1 ¼ −
1

PðrÞ
0

; aðrÞ2 ¼ 1

2IðrÞ42

; ð25Þ

where PðrÞ
0 is the heavy-quark contribution to the pressure

and the thermodynamic integrals IðrÞnq , for the case of a
medium at rest, are defined according to Ref. [27] as

IðrÞnq ¼ 1

ð2qþ 1Þ!!
Z

dKðk0Þn−2qk2qfðrÞ0k : ð26Þ

Notice that the bulk pressure and shear-stress associated
with the heavy (anti)quarks are expected to be much
smaller than the ones appearing in the stress-energy tensor
of the fluid dominated by gluons and light quarks.
Furthermore they will enter in the equation for the
heavy-quark diffusion current only through their deriva-
tives, providing corrections at least of second order in the
gradients. Thus, we will neglect them in our treatment.
We can then approximate

δfðrÞk ≈ −
1

PðrÞ
0

fðrÞ0k ν
μ
ðrÞkhμi: ð27Þ

At first order in the gradients (i.e., neglecting bulk and
shear corrections—see Appendix D for more details on
the calculations) we find a relaxation-type equation for the
diffusion current of the form of Eq. (14), where the
transport coefficients read

τn ¼
IðrÞ31

ð1=3Þ R dKk0Ak2fðrÞ0k

; ð28Þ

κn ¼
PðrÞ
0 T

ð1=3Þ R dKk0Ak2fðrÞ0

nðrÞ0 : ð29Þ

If one neglects the momentum dependence of the momen-
tum-diffusion coefficients, assuming D≡ B0 ¼ B1, which
is shown to be a reliable approximation up to heavy-quark
momentum k ∼ 5 GeV for bottom quarks [31], and impos-
ing the Einstein relation AðkÞ ¼ D=EkT, one obtains

τn ¼
TI31
DP0

¼ DsI31
TP0

; ð30Þ

κn ¼
T2

D
nðrÞ0 ¼ Dsn

ðrÞ
0 ; ð31Þ

where we find that the relation Ds ¼ T2=D between the
spatial (Ds) and momentum (D) diffusion coefficients,

usually found in studying the nonrelativistic Brownian
motion, arises naturally and holds also in this case in which
the heavy particle undergoes a relativistic dynamics, with
Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. This is a nontrivial result, valid as long as

the momentum dependence of D can be neglected. The
index r in Eq. (30) was omitted since the ratio I31=P0 is
equal for quarks and antiquarks. Notice that in the non-
relativistic limit we have

k0 ∼M;

I31 ∼MP0; ð32Þ

and thus τn ¼ A−1. This represents an important consis-
tency check, since τn approaches, in the M ≫ T limit, the
well-known result for the relaxation time arising from the
solution of the nonrelativistic Fokker-Planck equation.

B. Heavy-quark relaxation time

In Fig. 1 the relaxation time τn multiplied by the
temperature is shown as a function of the ratio M=T.
Here and in the next plots the range spanned by τn is
highlighted by the colored bands. Different colored bands
correspond to different Ds estimates coming from lattice-
QCD simulations [17] and from fits to ALICE experimental
data [16]. The heavy-quark relaxation time increases
linearly with theM=T ratio when the latter is large enough.
At a given temperature, the relaxation time is then larger for
heavier quarks, as expected. This entails that the non-
hydrodynamic phase is lasting longer for bottom quarks
with respect to charm quarks. The relaxation time τn is
observed to be positive even at zero mass. This observation,
although referring to a limiting case outside the domain of
validity of our approximations, is in agreement with the
second-order hydrodynamic description and guarantees
causal propagation.

FIG. 1. Heavy-quark relaxation time τn multiplied by temper-
ature T as a function ofM=T. The red band is computed usingDs
estimates coming from lattice-QCD simulations [17]. The blue
band is computed using estimates for Ds coming from fits to
ALICE experimental data [16].
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In Fig. 2 we compare—in dimensionless units rescaled
by the temperature—our estimate for the relaxation time τn
with the inverse of the Fokker-Planck drag coefficient A
arising from the nonrelativistic Einstein fluctuation-
dissipation relation A−1 ¼ ðM=TÞDs. They are both com-
puted according to a spatial diffusion coefficient given by
2πDsTc ¼ 3.7, which falls in both the lattice-QCD and
ALICE ranges. If one assumes that this last estimate holds
also at higher temperatures, the results plotted in Fig. 2 do
not depend on the specific value of T. Notice that one can
recast the nonrelativistic Einstein relation in a dimension-
less form suited to highlight its linear (M=T) scaling

A−1T ¼ 1

2π

�
M
T

�
ð2πDsTÞ; ð33Þ

manifest in Fig. 2. We observe that for large values ofM=T
the two curves coincide, and hence our calculation for the
heavy-quark relaxation time τn leads to the correct non-
relativistic limit, allowing one to get at the same time a
more realistic estimate for the latter in a kinematic range
in which the nonrelativistic approximation is no longer
justified.

V. VALIDITY OF THE HYDRODYNAMIC
DESCRIPTION OF HEAVY QUARKS

In this section we test the validity of the fluid-dynamic
description of heavy quarks in the case of a QGP under-
going Bjorken flow.
To estimate whether it is conceivable for the heavy

quarks to be described by fluid dynamics within an
expanding medium before the freeze-out occurs, the
relaxation time τn of charm and bottom quarks is compared
with the typical expansion time τexp of the fluid, defined as
the inverse of its expansion rate. One would be able to treat

heavy-quark transport with hydrodynamics only if
τn ≪ τexp. We assume here the fluid expansion to be
described by the Bjorken flow model [32], in which a
purely longitudinal expansion along the beam axis is
considered. The system is assumed to be invariant under
longitudinal Lorentz boosts, and the velocity profile has the
form of a Hubble-law expansion along the beam axis z,

vx ¼ vy ¼ 0; vz ¼
z
t
: ð34Þ

Moreover, in the Bjorken framework, all the thermody-
namic quantities depend only on τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

, that is, the
longitudinal proper time measured by a clock in the local
rest frame of the fluid. In the case of an ideal expansion,
due to entropy conservation, the temperature follows the
power law

TðτÞ ¼ T0

�
τ0
τ

�1
3

; ð35Þ

with T0 ¼ Tðτ0Þ being the temperature of the system
at τ0 (formation time of the QGP). The expansion rate
of the fluid in the case of this simple flow is given by
θ ¼ ∇μuμ ¼ 1=τ, so the typical expansion timescale is
τexp ≡ 1=θ ¼ τ, coinciding with the longitudinal proper
time. Before displaying our numerical results we can
attempt some parametric estimates for the heavy-quark
relaxation time arising from the Einstein fluctuation-
dissipation relation in Eq. (33) under the assumption that
the product DsT remains constant. One has

τEFDQ ≡ A−1 ∼ 1=T2 ∼
1

ðT3
0τ0Þ2=3

τ2=3: ð36Þ

Hence, for large enough time, one has

τEFDQ ∼ τ2=3 < τexp ¼ τ:

If this occurs before hadronization, at least for a fraction
of the fireball lifetime the heavy-quark evolution can be
described by hydrodynamic equations, as the other con-
served quantities.
We now consider the numerical results of our approach.

In Figs. 3 and 4 the comparison between τexp and τn as
functions of the longitudinal proper time are reported,
respectively, for charm and bottom quarks. This is done
assuming an initial temperature of 0.45 GeV and an
initialization time τ0 ¼ 0.5 fm=c, and employing different
values of the transport coefficientDs. For charm quarks, we
can see that τn goes below τexp quite fast when using
transport coefficients arising from fits to experimental data,
indicating that the conditions for a fluid-dynamic descrip-
tion are fulfilled for a sizable fraction of the deconfined
fireball lifetime. The lattice-QCD estimates of the transport

FIG. 2. The heavy-quark relaxation time as a function of M=T
is compared to the inverse of the Fokker-Planck drag coefficient
A. Dimensionless units rescaled by the temperature are em-
ployed. The two curves coincide in the nonrelativistic limit, i.e.,
for large values of M=T.
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coefficients suggest a later hydrodynamization timescale.
A hydrodynamic description for charm quarks in this case
might still be applicable but only for late times in the
fireball evolution and in proximity of the freeze-out surface.
Regarding bottom quarks, both Ds estimates predict the
hydrodynamization timescale to be of the order of the
typical lifetime of the QGP or larger.
The exact value of τn clearly depends on the initial

temperature and formation time of the QGP, as suggested
by the estimate in Eq. (36). The latter are not independent
parameters, but are linked by entropy conservation to the
final rapidity density of produced particles. One has

T3
0τ0 ∼ s0τ0 ∼

dS0
dηs

				
ηs¼0

∼
dN
dy

				
y¼0

; ð37Þ

where S0 (s0) is the initial entropy (density),

ηs ≡ ð1=2Þ ln ðt−zÞ
ðt−zÞ the spacetime rapidity, and y≡

ð1=2Þ ln ðEþpzÞ
ðE−pzÞ the rapidity of the final detected particles.

Hence, according to Eq. (36), the higher the rapidity
density of produced particles, the faster the relaxation of
heavy quarks toward equilibrium.
Although the Bjorken flow is not able to describe the full

evolution of the plasma but only the first instants after the
collision, it still allows us to get a semirealistic estimate of
how fast the diffusion process happens for heavy quarks.
Our conclusion is that the applicability of hydrodynamics
to the study of charm quark diffusion in the fireball
produced in heavy-ion collisions does not seem to be
forbidden.

VI. CONCLUSIONS AND OUTLOOK

Exciting experimental results on charm- and bottom-
hadron observables, which nowadays have an unprec-
edented level of precision, pose the important physics
question about the possible heavy-quark thermalization
in the QGP [16]. Driven by this question, we adopted a new
strategy to study the dynamics of heavy quarks in the
QGP and built a connection between a second-order
hydrodynamic approach based on the heavy-quark current
conservation and the approach provided by transport
theory. This led us to an expression for the transport
coefficients appearing in the equation of motion of the
heavy-quark diffusion current τn and κn as functions of the
temperature of the medium and heavy-quark mass.
Our results display the expected nonrelativistic limit

when T=M ≪ 1, but can be applied also to heavy quarks
with relativistic momenta. Remarkably, within the Fokker-
Planck approach, the relation connecting the spatial (Ds)
and momentum (D) diffusion coefficients—Ds ¼ T2=D—
holds also in the relativistic domain, as long as the
momentum dependence of D can be neglected.
In our approach the conditions for the applicability of

hydrodynamics seem to be fulfilled by the charm quark for
a fraction of the fireball lifetime, while for the bottom quark
the outcome indicates later hydrodynamization. Our next
step will be the implementation of the heavy-quark current
in a hydrodynamic framework (FluiduM [33–35]) to
compute and analyze heavy-flavor observables and com-
pare them with experimental data. We plan to include
the interaction of the heavy-quark current with other
conserved currents of baryon number, strangeness, and
electric charge [36,37] and study how this influences the
diffusion process, considering also the presence of strong
magnetic fields [38,39] at the beginning of the collision.
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FIG. 3. The relaxation time τn of charm quarks as a function of
the longitudinal proper time is compared to the typical expansion
timescale τexp of the fluid undergoing a Bjorken flow.

FIG. 4. The relaxation time τn of bottom quarks as a function of
the longitudinal proper time is compared to the typical expansion
timescale τexp of the fluid undergoing a Bjorken flow.
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APPENDIX A: QUANTUM CORRECTIONS TO
THE FOKKER-PLANCK EQUATION

In this work we used the Boltzmann and Fokker-Planck
equations in their classical limit, namely neglecting quan-
tum corrections associated with the fermionic statistics of
heavy quarks (Pauli blocking). Therefore, the distribution
function at equilibrium for heavy quarks was expected to be
a classical Boltzmann exponential as in Eq. (10). A more
accurate estimate for the transport coefficients can be
provided by implementing quantum corrections in the
Boltzmann equation and in the subsequent Fokker-
Planck equation. However, including them can lead to
complications concerning the determination of the distri-
bution function of heavy quarks at thermal equilibrium.
In fact, finding a stationary solution for the Fokker-
Planck equation becomes nontrivial in this case [40].
Nevertheless, if one considers the case of a single momen-
tum-independent diffusion coefficient—namely B0 ¼ B1≡
D—the corresponding Fokker-Planck equation reads

C½fðrÞk � ¼ k0
∂

∂ki

�
AðkÞkifðrÞk f̃ðrÞ þDδij

∂

∂kj
fðrÞk

�
; ðA1Þ

where f̃ðrÞk ¼ 1 − fðrÞk accounts for Pauli blocking. This
equation admits an analytical stationary solution in terms of
a Fermi-Dirac distribution,

fðrÞ0k ¼
�
γ−1Q exp

�
Ek − qrμnetQ

T

�
þ 1

�−1
: ðA2Þ

The relaxation time and diffusion coefficient now read

τquantumn ∼
I31
P0

T
D

�
1þ 2

1

3PðrÞ
0

Z
dKk2ðfðrÞ0k Þ2

�

¼ τn þ correction; ðA3Þ

κquantumn ∼
T2

D
nðrÞ0

�
1þ 2

1

3PðrÞ
0

Z
dKk2ðfðrÞ0k Þ2

�

¼ κn þ correction: ðA4Þ

Since the correction to the classical value depends on the
square of the distribution function, which is exponentially
suppressed with M=T, we expect a deviation from the
classical value only for a very small value of M=T.
Looking at the numerical results for the above coeffi-

cients one can see that this is actually the case. We start
considering the situation of full chemical equilibrium for
the heavy quarks, in which γQ ¼ 1 and μnetQ ¼ 0. In Fig. 5
deviations from the classical behavior in the relaxation time
are visible only at very small values of M=T. Therefore,
they are irrelevant for the realistic conditions realized at the
experiment. Similar considerations apply to Fig. 6, where
only at small M=T values does the diffusion coefficient

times the temperature differ from its classical constant
behavior.
One may worry that for charm quarks at the very

beginning of the fireball evolution, when T ∼ 0.5 GeV,
the condition M=T ≫ 1 is only marginally satisfied.
However, in this case what matters is that in the early
stages charm quarks—produced in the initial hard scatter-
ing processes—are strongly underpopulated with respect to
what would be their equilibrium abundance. This occur-
rence, discussed in detail in the following section, is
quantified by the fugacity factor γQ ≪ 1 which should
be included in Eqs. (A3) and (A4). Since the relevance of
quantum statistics depends on the λth=d̄ ratio among
the thermal de Broglie wavelength λth ≡ ð2π=MTÞ1=2 of the
particle and the average interparticle distance d̄ ∼ n−1=3, the
classical limit holding when λth=d̄ ≪ 1, the initial under-
population of the charm quark makes their classical treat-
ment better justified also at the very early stages. The
subsequent fireball evolution can only improve the accu-
racy of the approximation. Considering for simplicity the
case of a Bjorken expansion one has

FIG. 5. Relaxation time times the temperature as a function of
M=T. The different bands correspond respectively to the classical
and quantum computation of the relaxation time.

FIG. 6. Diffusion coefficient times the temperature as a func-
tion of M=T. The different bands correspond respectively to the
classical and quantum computation of the diffusion coefficient.
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λth ∼ T−1=2 ∼ τ1=6 and d̄ ∼ n−1=3 ∼ τ1=3;

so that λth=d̄ ∼ τ−1=6.

APPENDIX B: ESTIMATE OF THE
HEAVY-QUARK CHEMICAL POTENTIAL

IN THE CASE OF BJORKEN FLOW

In this section we discuss how to fix the heavy-quark
chemical potential referring to the conservation of the
average heavy-quark number NQQ̄ ≡ ðNQ þ NQ̄Þ=2. The
midrapidity density at τ0 arising from the initial hard
production is given by

nQQ̄
hardðτ0; x⃗⊥; y ¼ 0Þ ¼ 1

τ0

d3NQQ̄

dx⃗⊥dy

				
y¼0

: ðB1Þ

In the above expression, the QQ̄ rapidity distribution in
nucleus-nucleus collisions is set by the pQCD QQ̄ cross
section

dNQQ̄

dy
¼ hNcolli

1

σin
dσQQ̄

dy
; ðB2Þ

where σin is the inelastic proton-proton cross section
and σQQ̄ is the hard production cross section, possibly
containing cold-nuclear-matter effects (nPDF’s). Hence
one gets

nQQ̄
hardðτ0; x⃗⊥; y ¼ 0Þ ¼ 1

τ0
ncollðx⃗⊥Þ

1

σin
dσQQ̄

dy
: ðB3Þ

In case one considers homogeneous conditions in the
transverse plane, nevertheless representative of a central
Pb-Pb collision, one can estimate

nQQ̄
hardðτ0; y ¼ 0Þ ¼ 1

τ0

hNcolli
πR2

Pb

1

σin
dσQQ̄

dy
: ðB4Þ

To fix at each point the initial QQ̄ chemical potential μQ
(the same for quarks and antiquarks, which are produced
in equal amounts), this density has to be set equal to the
equilibrium thermal multiplicity

nQQ̄
thermðxÞ ¼ ð2sþ 1ÞNc

�
MTðxÞ
2π

�3
2

e−M=TðxÞeμQðxÞ=TðxÞ:

ðB5Þ

TðxÞ is extracted from the initial local energy density
of the medium through its equation of state (EoS). For the
sake of simplicity let us introduce the fugacity γQ ≡ eμQ=T.
One has then

nQQ̄
thermðxÞ ¼ ð2sþ 1ÞNcγQðxÞ

�
MTðxÞ
2π

�3
2

e−M=TðxÞ: ðB6Þ

Let us perform some estimates for the initial density of
charm-quark pairs with mass M ¼ 1.5 GeV taking the
central prediction by FONLL [41] for collisions at
5.02 TeV. One gets, at y ¼ 0, dσQQ̄=dy ¼ 0.463 mb, with
σin ¼ 70 mb. For the 0–10% most central Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV one has ncollðx⃗⊥ ¼ 0Þ ¼ 31.57 fm−2

and hNcolli ¼ 1653. Assuming a thermalization time
τ0 ¼ 0.5 fm=c one gets at the center of the fireball

nQQ̄
hardðτ0; x⃗⊥ ¼ 0; y ¼ 0Þ ≈ 0.42 fm−3: ðB7Þ

The average density in the transverse plane can be
estimated as slightly lower. Starting from Eq. (B4) and
setting RPb ¼ 6.62 fm one gets

nQQ̄
hardðτ0; y ¼ 0Þ ≈ 0.16 fm−3: ðB8Þ

This has to be compared with the thermal abundance in the
case of full chemical equilibrium of the heavy quarks, i.e.,
γQ ¼ 1. Assuming an initial temperature of the fireball of
T0 ¼ 0.45 GeV, one would obtain

nQQ̄
chem eq:ðτ0; y ¼ 0Þ ≈ 0.98 fm−3: ðB9Þ

Initially the heavy quarks are then underpopulated with
respect to their chemical-equilibrium abundance. This will
no longer be the case at the end of the fireball evolution.
The initial heavy-quark fugacity can be estimated as

γQðτ0Þ ¼ nQQ̄
hardðτ0Þ=nQQ̄

chem eq:ðτ0Þ ≈ 0.16: ðB10Þ

We now try to estimate the evolution of the heavy-quark
density and fugacity while the fireball undergoes an ideal
Bjorken expansion. In this case particle conservation entails

FIG. 7. Charm quark fugacity as a function of temperature in
logarithmic scale with T0 ¼ 0.45 GeV.
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nQQ̄ðτÞτ ¼ nQQ̄
0 τ0; ðB11Þ

where nQQ̄
0 ¼ nQQ̄

hardðτ0Þ. The Landau matching condition
applied to the heavy-quark density allows one to extract the
heavy-quark fugacity γQðτÞ:

ð2sþ 1ÞNcγQðτÞ
�
MTðτÞ
2π

�3
2

e−M=TðτÞ τ
τ0

¼ nQQ̄
0 : ðB12Þ

In the above, neglecting dissipative effects and deviations
from a Stefan-Boltzmann EoS, we estimate the temperature
evolution from entropy conservation:

sðτÞτ ¼ s0τ0 → T3ðτÞτ ¼ T3
0τ0: ðB13Þ

The result for the heavy-quark fugacity as a function of
temperature is shown in Fig. 7. Let us estimate the value
of the heavy-quark fugacity at chemical freeze-out at
TFO ¼ 0.15 GeV, occurring at τFO ¼ ðT0=TFOÞ3τ0 ¼
27τ0 ¼ 13.5 fm=c. One gets γQðτFOÞ ≈ 24.6, not far from
the one obtained with SHM fits [11] (γc ∼ 30).

APPENDIX C: COEFFICIENTS OF THE LINEAR
EXPANSION OF THE OFF-EQUILIBRIUM

DEVIATION

In this section we determine the coefficients of the linear
expansion of the deviation from equilibrium δfðrÞk in terms
of its moments, expressed in Eq. (19). Each coefficient can
be computed by integrating the corresponding moment of

the deviation δfðrÞk . The orthogonality relations between
moments given by [27]

Z
dKFðk0Þkhμ1���kμnikhν1���kνmi

¼ δmn m!Δμ1���μn
ν1���νm

ð2mþ 1Þ!!
Z

dKFðk0ÞðΔαβkαkβÞm ðC1Þ

are employed. The expansion coefficient for the heavy-
quark bulk pressure is obtained from the zeroth moment of
the deviation as

−
3

M2
ΠðrÞ ¼

Z
dKδfðrÞk ¼ −

3

M2

Z
dKaðrÞ0 fðrÞ0 ΠðrÞ

→ aðrÞ0 ¼ 1

IðrÞ00

: ðC2Þ

The coefficient for the heavy-quark diffusion current is
computed by taking the first moment of the deviation,

νhσiðrÞ ¼
Z

dKkhσiδfðrÞk ¼
Z

dKfðrÞ0 aðrÞ1 khσikhμiν
μ
ðrÞ

¼ −
aðrÞ1

3
δσμν

μ
ðrÞ

Z
dKfðrÞ0 k2

→ aðrÞ1 ¼ −
1

PðrÞ
0

: ðC3Þ

The coefficient for the heavy-quark shear stress term is
obtained by taking the second moment of the deviation,

πμσðrÞ ¼
Z

dKkhμkσiδfðrÞk

¼
Z

dKkhμkσikhαkβia
ðrÞ
2 fðrÞ0 πðrÞαβ

¼ 2

15

Z
dKaðrÞ2 fðrÞ0 k4πμσðrÞ

→ aðrÞ2 ¼ 1

2IðrÞ42

: ðC4Þ

APPENDIX D: DETAILS ON THE CALCULATION
OF THE TRANSPORT COEFFICIENTS

In this section we report the explicit calculation for the
heavy-quark relaxation time and diffusion coefficient
leading to the result in Eq. (30). The starting point is the
Fokker-Planck equation for the heavy (anti)quark distribu-
tions (charm, anticharm, bottom, antibottom)

kμ∂μf
ðrÞ
k ¼ k0

∂

∂ki

�
AkifðrÞk þ δijD

∂

∂kj
fðrÞk

�
; ðD1Þ

where we consider the case of an isotropic momentum
broadening, i.e., D ¼ B0 ¼ B1.
The zeroth moment of the Fokker-Planck equation gives

the continuity equation in the LRF of the fluid,

∂tnðrÞ þ ∂iν
i
ðrÞ ¼ 0 → ∂tnþ þ ∂iν

iþ ¼ 0: ðD2Þ

Notice that the right-hand side (RHS) of Eq. (D1) provides
a vanishing contribution when taking its zeroth moment.
This can be verified by doing the integration by parts.
The first moment of the Fokker-Planck equation gives

∂t

Z
dKk0klf

ðrÞ
k þ ∂i

Z
dKklkifðrÞk

¼
Z

dKk0kl
∂

∂ki
ðAkifðrÞk Þ: ðD3Þ

As we will show below, this will lead to the equation of
motion for the diffusion current in the LRF of the fluid.
Notice that the term proportional to the momentum-
broadening coefficient vanishes when taking the first
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moment of the Fokker-Planck equation. In fact, since it is
proportional to a second-order derivative, it vanishes after
integration by parts. Let us now analyze all the terms
involved in Eq. (D3) separately.

1. First term

Here we compute the term containing the time derivative
of the distribution function,

∂t

Z
dKk0klf

ðrÞ
k : ðD4Þ

Due to symmetry properties of the distribution function at
equilibrium (it depends only on the particle energy in the

LRF of the fluid), the first moment of fðrÞ0k vanishes. The
only contribution comes from the off-equilibrium deviation

δfðrÞk , which we expand in terms of the diffusion current,

∂t

Z
dKk0klf

ðrÞ
0

�
−

1

PðrÞ
0

khμiνhμi
�
: ðD5Þ

We then employ the orthogonality relation in Eq. (C1),

∂t

Z
dK

k2

3
k0f

ðrÞ
0

�
1

PðrÞ
0

�
νl; ðD6Þ

and, rewriting in terms of the thermodynamic integrals
introduced in the text, we get

IðrÞ31

PðrÞ
0

∂tν
l
ðrÞ →

I31
P0

∂tν
lþ; ðD7Þ

where

IðrÞ31 ¼ 1

3
hk0k2i0;r: ðD8Þ

Notice that I31 ∼MP0 in the nonrelativistic limit, reducing
the computed term to M∂tν

lþ.

2. Second term

Here we compute the term containing the spatial deriva-
tive of the distribution function,

∂i

Z
dKklkifðrÞk : ðD9Þ

We use the decomposition for the distribution function
to get

∂iδ
il

Z
dK

k2

3
fðrÞ0 þ ∂i

Z
dKkiklδfðrÞk : ðD10Þ

Exploiting the orthogonality conditions and the definition
of the pressure, we get

δil∂iP
ðrÞ
0 þOðδil∂iΠÞþOð∂iπilÞ¼TnðrÞ0 δil∂i

�
μr
T

�
þ corr;

ðD11Þ

where in the last passage we used ∂iP0 ¼ Tn0∂iðμr=TÞ and
the neglected terms, involving derivatives of the bulk
pressure and of the shear stress, are at least of second
order in the gradients.

3. Third term

Here we compute the RHS of the equation. Notice that
the term containing the momentum-diffusion coefficient
does not contribute. In fact, it is proportional to a second
order derivative; thus its first moment vanishes. Hence, one
has simply to compute

Z
dKklk0

∂

∂ki
ðAkifðrÞÞ

¼
Z

d3k
ð2πÞ3 k

l

�
∂ki

∂ki
ðAfðrÞÞ þ ∂AfðrÞ

∂ki
ki
�

¼IBP
Z

d3k
ð2πÞ3

�
3ðAfðrÞÞkl − ∂ðkiklÞ

∂ki
AfðrÞ

�

¼
Z

d3k
ð2πÞ3 ½3ðAf

ðrÞÞkl − 3ðAfðrÞÞkl

− klAfðrÞ� ¼
Z

d3k
ð2πÞ3 ½−k

lAfðrÞ�; ðD12Þ

where IBP means we performed the integration by parts.
Now we exploit the decomposition of the distribution
function. Due to symmetry constraints, the equilibrium
part of the distribution does not contribute since its first
moment is zero. Thus we have

Z
dKk0klAfðrÞ0

khμiνμ

PðrÞ
0

: ðD13Þ

By exploiting the orthogonality relation, one obtains

−
1

3PðrÞ
0

Z
dKk0k2AfðrÞ0 νl

¼ −
1

PðrÞ
0

1

3

Z
dKk0k2

�
D
k0T

�
fðrÞ0 νl

¼ D

PðrÞ
0 T

�
1

3

Z
dKk2fðrÞ0

�
νl

¼ −
D
T
νlðrÞ; ðD14Þ
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where we made use of the Einstein fluctuation-dissipation
relation to express A in terms of the momentum-diffusion
coefficient D.

4. Putting all blocks together

We now combine the three terms to obtain the equation
for the diffusion current:

T
D
I31
P0

∂tν
l
ðrÞ þ νlðrÞ ¼ −

T2

D
nðrÞ0 ∂

l

�
μr
T

�
: ðD15Þ

This is a relaxation-type equation for the diffusion current
νμðrÞ. Thus, we can identify the corresponding relaxation
time and diffusion coefficient,

τn ¼
TI31
DP0

; ðD16Þ

κðrÞn ¼ T2

D
nðrÞ0 ≡Dsn

ðrÞ
0 : ðD17Þ

We find that the relation Ds ¼ T2=D between the
spatial (Ds) and momentum (D) diffusion coefficients,
usually found in studying the nonrelativistic Brownian
motion, arises naturally and holds also in this case in
which the heavy particle undergoes a relativistic
dynamics, with Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. This is a nontrivial

result, valid as long as the momentum dependence of
D can be neglected.

[1] C. Gale, S. Jeon, and B. Schenke, Hydrodynamic modeling
of heavy-ion collisions, Int. J. Mod. Phys. A 28, 1340011
(2013).

[2] U. Heinz and R. Snellings, Collective flow and viscosity in
relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci.
63, 123 (2013).

[3] A. Dubla, S. Masciocchi, J. M. Pawlowski, B. Schenke, C.
Shen, and J. Stachel, Towards QCD-assisted hydrodynamics
for heavy-ion collision phenomenology, Nucl. Phys. A979,
251 (2018).

[4] S. Acharya et al. (ALICE Collaboration), Transverse-
momentum and event-shape dependence of D-meson flow
harmonics in Pb–Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, Phys.
Lett. B 813, 136054 (2021).

[5] S. Acharya et al. (ALICE Collaboration), J=ψ elliptic and
triangular flow in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
J. High Energy Phys. 10 (2020) 141.

[6] A. Andronic, P. Braun-Munzinger, M. K. Köhler, A.
Mazeliauskas, K. Redlich, J. Stachel, and V. Vislavicius,
The multiple-charm hierarchy in the statistical hadroniza-
tion model, J. High Energy Phys. 07 (2021) 035.

[7] G. D. Moore and D. Teaney, How much do heavy quarks
thermalize in a heavy ion collision?, Phys. Rev. C 71,
064904 (2005).

[8] F. Prino and R. Rapp, Open heavy flavor in QCD matter and
in nuclear collisions, J. Phys. G 43, 093002 (2016).

[9] A. Andronic, P. Braun-Munzinger, K. Redlich, and J.
Stachel, Statistical hadronization of heavy quarks in ultra-
relativistic nucleus-nucleus collisions, Nucl. Phys. A789,
334 (2007).

[10] A. Andronic, P. Braun-Munzinger, M. K. Köhler, K.
Redlich, and J. Stachel, Transverse momentum distributions
of charmonium states with the statistical hadronization
model, Phys. Lett. B 797, 134836 (2019).

[11] P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of
charmonium production and a new look at J=ψ suppression,
Phys. Lett. B 490, 196 (2000).

[12] B. Svetitsky, Diffusion of charmed quarks in the quark-
gluon plasma, Phys. Rev. D 37, 2484 (1988).

[13] A. Beraudo, A. De Pace, M. Monteno, M. Nardi, and F.
Prino, Development of heavy-flavour flow-harmonics in
high-energy nuclear collisions, J. High Energy Phys. 02
(2018) 043.

[14] L. E. Reichl, A Modern Course in Statistical Physics
(Universtity of Texas Press, Austin, Texas, 1980).

[15] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics
(Springer-Verlag, Berlin, 1985).

[16] S. Acharya et al. (ALICE Collaboration), Prompt D0, Dþ,
andD�þ production in Pb–Pb collisions at ffiffiffiffiffiffiffiffi

sNN
p ¼5.02TeV,

J. High Energy Phys. 01 (2022) 174.
[17] L. Altenkort, A. M. Eller, O. Kaczmarek, L. Mazur, G. D.

Moore, and H. Shu, Spectral reconstruction details of a
gradient-flowed color-electric correlator, EPJ Web Conf.
259, 10004 (2022).

[18] L. Altenkort, A. M. Eller, O. Kaczmarek, L. Mazur, G. D.
Moore, and H. Shu, Heavy quark momentum diffusion from
the lattice using gradient flow, Phys. Rev. D 103, 014511
(2021).

[19] A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, and H.
Ohno, Nonperturbative estimate of the heavy quark mo-
mentum diffusion coefficient, Phys. Rev. D 92, 116003
(2015).

[20] H. Ding, O. Kaczmarek, A. Lorenz, H. Ohno, H.
Sandmeyer, and H. Shu, Charm and beauty in the decon-
fined plasma from quenched lattice QCD, Phys. Rev. D 104,
114508 (2021).

[21] A. Beraudo et al., Extraction of heavy-flavor transport
coefficients in QCD matter, Nucl. Phys. A979, 21 (2018).

[22] N. Christiansen, M. Haas, J. M. Pawlowski, and N.
Strodthoff, Transport Coefficients in Yang–Mills Theory
and QCD, Phys. Rev. Lett. 115, 112002 (2015).

[23] N. Brambilla, M. A. Escobedo, A. Vairo, and P. Vander
Griend, Transport coefficients from in medium quarkonium
dynamics, Phys. Rev. D 100, 054025 (2019).

FLUID-DYNAMIC APPROACH TO HEAVY-QUARK DIFFUSION … PHYS. REV. D 106, 034021 (2022)

034021-13

https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1016/j.nuclphysa.2018.09.046
https://doi.org/10.1016/j.nuclphysa.2018.09.046
https://doi.org/10.1016/j.physletb.2020.136054
https://doi.org/10.1016/j.physletb.2020.136054
https://doi.org/10.1007/JHEP10(2020)141
https://doi.org/10.1007/JHEP07(2021)035
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1016/j.nuclphysa.2007.02.013
https://doi.org/10.1016/j.nuclphysa.2007.02.013
https://doi.org/10.1016/j.physletb.2019.134836
https://doi.org/10.1016/S0370-2693(00)00991-6
https://doi.org/10.1103/PhysRevD.37.2484
https://doi.org/10.1007/JHEP02(2018)043
https://doi.org/10.1007/JHEP02(2018)043
https://doi.org/10.1007/JHEP01(2022)174
https://doi.org/10.1051/epjconf/202225910004
https://doi.org/10.1051/epjconf/202225910004
https://doi.org/10.1103/PhysRevD.103.014511
https://doi.org/10.1103/PhysRevD.103.014511
https://doi.org/10.1103/PhysRevD.92.116003
https://doi.org/10.1103/PhysRevD.92.116003
https://doi.org/10.1103/PhysRevD.104.114508
https://doi.org/10.1103/PhysRevD.104.114508
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1103/PhysRevLett.115.112002
https://doi.org/10.1103/PhysRevD.100.054025


[24] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Potential
NRQCD: An effective theory for heavy quarkonium, Nucl.
Phys. B566, 275 (2000).

[25] M. P. Heller, A. Kurkela, M. Spaliński, and V. Svensson,
Hydrodynamization in kinetic theory: Transient modes
and the gradient expansion, Phys. Rev. D 97, 091503
(2018).

[26] P. Braun-Munzinger, Quarkonium production in ultra-
relativistic nuclear collisions: Suppression versus enhance-
ment, J. Phys. G 34, S471 (2007).

[27] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,
Derivation of transient relativistic fluid dynamics from the
Boltzmann equation, Phys. Rev. D 85, 114047 (2012);
Erratum, Phys. Rev. D 91, 039902 (2015).

[28] S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina,
and V. Greco, Directed flow of charm quarks as a witness of
the initial strong magnetic field in ultra-relativistic heavy ion
collisions, Phys. Lett. B 768, 260 (2017).

[29] H. Grad, About kinetic theory of rarefied gases, Commun.
Pure Appl. Math. 2, 331 (1949).

[30] S. R. De Groot, Relativistic Kinetic Theory. Principles and
Applications, edited by W. A. Van Leeuwen and C. G. Van
Weert (North-Holland Publishing Company, Amsterdam,
1980).

[31] W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, M.
Monteno, M. Nardi, and F. Prino, Heavy-flavour spectra in
high energy nucleus-nucleus collisions, Eur. Phys. J. C 71,
1666 (2011).

[32] J. D. Bjorken, Highly relativistic nucleus-nucleus
collisions: The central rapidity region, Phys. Rev. D 27
(1983).

[33] S. Floerchinger and U. A.Wiedemann, Mode-by-mode fluid
dynamics for relativistic heavy ion collisions, Phys. Lett. B
728, 407 (2014).

[34] S. Floerchinger, E. Grossi, and J. Lion, Fluid dynamics of
heavy ion collisions with mode expansion, Phys. Rev. C
100, 014905 (2019).

[35] D. Devetak, A. Dubla, S. Floerchinger, E. Grossi, S.
Masciocchi, A. Mazeliauskas, and I. Selyuzhenkov,
Global fluid fits to identified particle transverse momen-
tum spectra from heavy-ion collisions at the Large Hadron
Collider, J. High Energy Phys. 06 (2020) 044.

[36] J. A. Fotakis, M. Greif, C. Greiner, G. S. Denicol, and H.
Niemi, Diffusion processes involving multiple conserved
charges: A study from kinetic theory and implications to the
fluid-dynamical modeling of heavy ion collisions, Phys.
Rev. D 101, 076007 (2020).

[37] J. A. Fotakis, M. Greif, H. Niemi, G. S. Denicol, and C.
Greiner, Longitudinal dynamics of multiple conserved
charges, Nucl. Phys. A1005, 121899 (2021).

[38] A. Dubla, U. Gürsoy, and R. Snellings, Charge-dependent
flow as evidence of strong electromagnetic fields in heavy-
ion collisions, Mod. Phys. Lett. A 35, 2050324 (2020).

[39] S. Acharya et al. (ALICE Collaboration), Probing the
Effects of Strong Electromagnetic Fields with Charge-
Dependent Directed Flow in Pb-Pb Collisions at the
LHC, Phys. Rev. Lett. 125, 022301 (2020).

[40] G. Kaniadakis and P. Quarati, Classical model of bosons and
fermions, Phys. Rev. E 49, 5103 (1994).

[41] M. Cacciari, S. Frixione, and P. Nason, The p(T) spectrum
in heavy flavor photoproduction, J. High Energy Phys. 03
(2001) 006.

F. CAPELLINO et al. PHYS. REV. D 106, 034021 (2022)

034021-14

https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1088/0954-3899/34/8/S36
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1016/j.physletb.2017.02.046
https://doi.org/10.1002/cpa.3160020403
https://doi.org/10.1002/cpa.3160020403
https://doi.org/10.1140/epjc/s10052-011-1666-6
https://doi.org/10.1140/epjc/s10052-011-1666-6
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1103/PhysRevC.100.014905
https://doi.org/10.1103/PhysRevC.100.014905
https://doi.org/10.1007/JHEP06(2020)044
https://doi.org/10.1103/PhysRevD.101.076007
https://doi.org/10.1103/PhysRevD.101.076007
https://doi.org/10.1016/j.nuclphysa.2020.121899
https://doi.org/10.1142/S0217732320503241
https://doi.org/10.1103/PhysRevLett.125.022301
https://doi.org/10.1103/PhysRevE.49.5103
https://doi.org/10.1088/1126-6708/2001/03/006
https://doi.org/10.1088/1126-6708/2001/03/006

