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We consider the process of double J=ψ production in pp collisions at the LHC in the framework of the
kT -factorization approach. We focus on the gluon fragmentation mechanism which is related to multiple
gluon emission in the initial state. The initial state emission is treated according to Catani-Ciafaloni-
Fiorani-Marchesini evolution equation, and applies to both single and double parton scattering cases. We
show the importance of fragmentation contributions to J=ψ pair production and perform a comparison
between theoretical predictions and the latest ATLAS data collected at

ffiffiffi
s

p ¼ 8 TeV. We find that the
effects of multiple gluon emission are essential for both single- and multiparton interaction processes.
Finally, we highlight the problem of correct choice of the factorization scale with respect to numerical
stability of the calculations and the consistency with noncollinear evolution equations.
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I. INTRODUCTION

The production of J=ψ pairs at high energies serves as an
important probe testing the quarkonia production mecha-
nisms and their interpretation within nonrelativistic quan-
tum chromodynamics (NRQCD) [1–3]. NRQCD provides
a rigorous theoretical framework commonly used to
describe the production and decay of heavy quark bound
states. It implies a factorizable separation between pertur-
batively calculated short distance cross sections for the
production of a heavy quark pair and its subsequent
nonperturbative transition into a physical particle. The

intermediate QQ̄ state j2Sþ1LðaÞ
J i is characterized with its

spin S, orbital angular momentum L, total angular momen-
tum J, and color representation a. Its transition to a
physical meson proceeds via soft gluon radiation and is
described (parametrized) by the long-distance nonpertur-
bative matrix elements (LDMEs), which obey certain
hierarchy in powers of the relative heavy quark velocity
v [1–3]. Combined with next-to-leading order (NLO) short-
distance cross sections, NRQCD fits the LHC data on the
prompt J=ψ , ψ and χc transverse momentum distributions
(see, for example, [4–11]). A longstanding challenge in
explaining the polarization phenomena (the so-called

“polarization puzzle”) has been solved recently [12] (see
also discussions [13–15]).
In the last few years, NRQCD has made significant

progress in evaluating the prompt double J=ψ production.
A complete leading-order (LO) calculation including color
singlet (CS) and color octet (CO) terms is done [16].
Relativistic corrections to the J=ψ pair production are
carried out [17]. Full NLO contribution to the CS mecha-
nism is known [18], and partial tree-level NLO* contribu-
tions to the CS and CO mechanisms are calculated [19].
The latter are found to be essential for both low and large
transverse momenta, as compared to the LO results.
However, these predictions still suffer from sizeable dis-
crepancies with the latest ATLAS data [20], especially at
large transverse momentum pTðJ=ψ ; J=ψÞ, large invariant
mass mðJ=ψ ; J=ψÞ, and large rapidity separation ΔyðJ=ψ ;
J=ψÞ in the J=ψ pairs, that motivates looking for additional
mechanisms contributing to the double J=ψ events.
In our previous publication [21], we revealed a sizeable

combinatorial contribution from multiple gluon radiation
originating from the QCD evolution of the initial gluon
cascade. This contribution can be efficiently taken into
account using the Ciafaloni-Catani-Fiorani-Marchesini
(CCFM) evolution equation [22–25]. Indeed, gluons
emitted in a noncollinear evolution cascade have nonzero
transverse momenta and give rise to physical J=ψ mesons
via color octet fragmentation. The impact of such proc-
esses on double J=ψ production at forward rapidities
has been investigated [21], and their importance for the
associated Z=W� þ J=ψ production at the LHC has been
pointed out [26].
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It has been shown [21] that the gluon and quark
fragmentation into charmonium states could especially
play a crucial role in the kinematical region of large
invariant masses mðJ=ψ ; J=ψÞ and/or large rapidity sepa-
ration ΔyðJ=ψ ; J=ψÞ between the J=ψ mesons. Given the
fact that this region is covered by the ATLAS experiment
[20], we formulate our next goal. In our present study,
we are going to investigate the effects of multiple gluon
radiation with respect to double J=ψ production at central
rapidities and to give a quantitative comparison of our
predictions with the available ATLAS data [20]. The effect
of multiple gluon radiation in DPS events is to be studied
for the first time.
The outline of the paper is the following. In Sec. II

we briefly describe the basic steps of our calculations.
Section III is devoted to a discussion on the different
choices of the factorization scale. Section IV displays our
numerical results. Our conclusions are summarized
in Sec. V.

II. THE MODEL

To preserve consistency with our previous studies
[21,26], here we employ the kT-factorization approach
[27–30]. This approach is based on the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) [30,31] or Catani-Ciafaloni-
Fiorani-Marchesini (CCFM) gluon evolution equations
and has certain technical advantages in the ease of includ-
ing higher-order pQCD radiative corrections (namely, the
leading-logarithm part of NLOþ NNLOþ… terms cor-
responding to real gluon emissions) in the form of trans-
verse momentum dependent (TMD, or unintegrated) gluon
density in a proton. It can be used as a convenient
alternative to explicit higher-order pQCD calculations. A
detailed description of this approach can be found, for
example, in review [32].
First, we consider theOðα4sÞ off-shell gluon-gluon fusion

subprocess (where the initial gluons have nonzero trans-
verse momenta and are then off-shell) which represents the
leading order CS contribution1:

g� þ g� → cc̄½3Sð1Þ1 � þ cc̄½3Sð1Þ1 �: ð1Þ

Additionally, we take into account some subleading sub-
processes:

g� þ g� → cc̄½3Pð1Þ
J � þ cc̄½3Pð1Þ

J �; ð2Þ

g� þ g� → cc̄½3Pð1Þ
J � þ cc̄½3Sð1Þ1 � þ g; ð3Þ

g� þ g� → cc̄½3Sð1Þ1 � þ cc̄½3Sð1Þ1 � þ gþ g; ð4Þ

together with the feed-down contributions from excited
states ψ 0 decaying into J=ψ mesons. These subprocesses
are formally suppressed by extra powers of αs, or smaller
values of P-wave mesonic wave functions, or χc→J=ψþγ
decay branchings, but have an important kinematic prop-
erty of filling the region of large invariant masses and large
rapidity separation in J=ψ pairs. The typical Feynman
diagrams are presented in Fig. 1.
The production amplitudes of (1)–(4) contain spin

and color projection operators [33–36] which guarantee
the proper quantum numbers of final state charmonia.
In accordance with the kT-factorization prescription,
initial gluons have nonzero transverse four-momenta
k21T ¼ −k2

1T ≠ 0 and k22T ¼ −k2
2T ≠ 0, and their polariza-

tion vectors have an admixture of longitudinal component.
The summation over polarizations is carried out withP

ϵμϵ�ν ¼ kμ
Tk

ν
T=k

2
T [27–30]. This expression converges

to the ordinary gμν in the collinear limit kT → 0 after
averaging over the azimuthal angle. The gauge invariant
expressions for all these amplitudes have been obtained
earlier [37] and implemented into the Monte-Carlo event
generator PEGASUS [38].
Now we turn to another class of processes which

constitute the key topic of our study, namely, the fragmen-
tation contributions. The fragmentation approach is known
to be valid at high transverse momenta pT ≫ mψ . The
relevant fragmentation functions (FF)DH

a ðz; μ2Þ describing
the transition of parton a into charmonium stateH through
a number of intermediate QQ̄ states can be presented as a
series:

DH
a ðz; μ2Þ ¼

X
n

dnaðz; μ2ÞhOH½n�i ð5Þ

where n labels the intermediate (CS or CO) state, and
hOH½n�i are the corresponding LDMEs. In this way, the
single charmonia production cross section can be written as

dσðpp → Hþ XÞ
dpT

¼
Z

dσðpp → g�Þ
dpðg�Þ

T

DH
g ðz; μ2Þδðz − p=pðgÞÞdz

þ
Z

dσðpp → cc̄Þ
dpðcÞ

T

DH
c ðz; μ2Þδðz − p=pðcÞÞdz; ð6Þ

wherepðg�Þ,pðcÞ andp are themomenta of thegluon, charmed
quark and outgoing charmonium state H, respectively.
We have to take into consideration the channels

g → cc̄½3Sð8Þ1 �, g → cc̄½1Sð8Þ0 � þ g, g → cc̄½3Pð8Þ
J � þ g and

1Of course, there are also contributions from subprocesses
involving quarks in the initial state. However, such subprocesses
are strongly suppressed compared to the gluon-gluon fusion since
the quark densities in the proton are typically much lower than the
gluon densities at the LHC conditions (see, for example, recent
review [15] and references therein).
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c → cc̄½3Sð1Þ1 � þ c giving sizeable contributions2 to the

S-wave charmonia (J=ψ and ψ 0 mesons), g→cc̄½3Pð1Þ
J �þg,

g → cc̄½3Sð8Þ1 � and c → cc̄½3Pð1Þ
J � þ c contributing to the

P-wave charmonia (χcJ mesons with J ¼ 1, 2). The χc0
channel is neglected because of low branching fraction to
J=ψ . The present list ismore complete in comparisonwith our

previous paper [21]wherewe refer solely to the g → cc̄½3Sð8Þ1 �
channel.
The key point of our consideration is that any hard

subprocess (giving or not giving rise to a J=ψ meson) is
always accompanied by a number of gluons radiated during
the noncollinear QCD evolution, and these gluons can

fragment into additional J=ψ particles. We calculate the
corresponding contributions by collecting all possible
parton fragmentation combinations. At high energies, the
QCD evolution of gluon cascade can be described by the
CCFM equation. This equation smoothly interpolates
between the small-x BFKL gluon dynamics and high-x
DGLAP one, and, therefore, provides us with a suitable
tool for our phenomenological study. The numerical
calculations split in two steps. First, we simulate the
perturbative production of gluons, quarks, and charm pairs
in the corresponding off-shell gluon-gluon fusion subpro-
cesses and then reconstruct the CCFM gluon evolution
ladder using the CASCADE Monte Carlo generator [40].
After that, one can collect J=ψ pairs by looking over all
possible combinations of mesons originating from charmed
pairs, charmed quarks and gluons (including those formed
in the evolution cascade). The combinatorics is rather large,
because any fragmenting parton can be paired with any
other parton.

FIG. 1. Examples of Feynman diagrams, contributing to the production of: (a) J=ψ pair, subprocess (1); (b) J=ψ and χcJ pairs via CS
mechanism, subprocesses (2)–(4).

2Note that hOJ=ψ ½1Sð8Þ0 �i ¼ 0 according to the fit [39] and,
therefore, the corresponding contribution to the J=ψ production
is zero. Moreover, our recent fit for LDMEs of ψ 0 mesons also
leads to hOψ 0 ½1Sð8Þ0 �i ¼ 0, see Table I below. Thus, both these
contributions are not considered in our present calculations.
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For the initial hard subprocesses, we consider

g� þg� → g�; g� þg� → cþ c̄; g� þg� → qþ q̄;

g� þg� → cc̄½3Pð1;8Þ
J �; g� þg�→ cc̄½3Sð1Þ1 �þg; ð7Þ

where q denotes light quarks. The typical diagrams of
subprocesses (7) with reconstructed gluon ladders and
possible channels of fragmentation are presented in

Fig. 2. The CO channel g� þ g� → cc̄½3Sð8Þ1 � is excluded
from subprocesses (7) in order to avoid double countingwith

the fragmentation mechanism g� þ g� → g� → cc̄½3Sð8Þ1 �.
We have found that these two subprocesses perfectly match
one another in the ATLAS kinematic range. So, the double
charmonia production cross section can be written as

σðpp → HþH0 þ XÞ

¼
X
a

Z
σðpp → H0 þ XÞDH

a ðz; μ2Þδ
�
z −

pH

pa

�
dz

þ
X
a;b

ZZ
σðpp → g�=cc̄=qq̄ÞDH

a ðz; μ2ÞDH0
b ðz0; μ02Þ

× δ

�
z −

pH

pa

�
δ

�
z0 −

pH0

pb

�
dzdz0; ð8Þ

where summation runs over all gluons and charmed quarks
produced in hard interaction and/or in noncollinear gluon
evolution (both sources are included in the symbol
σðpp → g�=cc̄=qq̄Þ ); pa and pb (a ≠ b) are the momenta
of the gluons and/or charmed quarks, pH and pH0

are the
momenta of outgoing charmonium states H and H0,
respectively.

The formulas for most of the fragmentation functions
at the initial scale μ20 ¼ m2

ψ can be found in [41]. The

fragmentation functions g → cc̄½3Pð1;8Þ
J � þ g are also

known in the literature [42]. However, in our calculations
we use another form derived very recently [43], with the
fictitious mass of the emitted gluon (considered as regu-
larization parameter) mg ¼ mc ¼ 1.5 GeV. This form has
certain advantages over [42]. In fact, our fragmentation
functions are positive-definite, smooth and vanish at the
endpoints z ¼ 0 and z ¼ 1 (see discussion in [43] for more
information). The shapes of fragmentation functions are
modified by the final state gluon radiation; these effects can
be described in proper way with the DGLAP evolution
equation:

d
d ln μ2

�
DH

c

DH
g

�
¼ αsðμ2Þ

2π

�
Pcc Pgc

Pcg Pgg

�
⊗

�
DH

c

DH
g

�
; ð9Þ

where Pab are the usual LO DGLAP splitting functions.
According to the nonrelativistic QCD approximation,
we set the charmed quark mass to mc ¼ mψ=2 and then
solve the DGLAP equation (9) numerically with the
proper LDME’s.
The last contribution taken into consideration refers to

the double parton scattering (DPS) mechanism. According
to the standard factorization formula [44,45], this contri-
bution can be presented in a simple form:

σDPSðpp → HþH0 þ XÞ

¼ 1

2

σ1ðpp → Hþ XÞ · σ2ðpp → H0 þ XÞ
σeff

; ð10Þ

where the factor 1=2 prevents double counting between
identical particles. The “effective cross section” σeff is a

FIG. 2. Fragmentation contributions to the J=ψ pair production that takes into account multiple gluon emissions for subprocesses:

(a) g� þ g� → g�, (b) g� þ g� → cþ c̄, (c) g� þ g� → cc̄½2Sþ1LðaÞ
J �. Circles represent the transition of parton into J=ψ meson via

fragmentation mechanism.
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normalization factor which encodes all “DPS unknowns”
into a single parameter and represents the effective
transverse overlap of partonic interactions that constitute
the DPS process. In general, it can be regarded as free
parameter which should be extracted from the data.
The decomposition (10) of the DPS cross section into
two individual single parton scattering (SPS) factors
without correlation and interference between them is
acceptable for ATLAS kinematics region. The inclusive
cross sections σðpp → Hþ XÞ involved in (10) are
calculated in the kT-factorization approach supplemented
by the NRQCD formalism in a standard way (see,
for example, [39] and references therein). When calcu-
lating the DPS cross section, we also take into account
all the accompanying fragmentation contributions
(including all possible combinations of radiated partons,
see Fig. 3).
In the numerical calculations we use TMD gluon

densities in a proton obtained from a numerical solution
of CCFM evolution equation, namely, JH’2013 set 1 and
JH’2013 set 2 [46]. The input parameters of JH’2013 set 1
gluon distribution have been fitted to the proton structure
function F2ðx;Q2Þ, whereas the input parameters of
JH’2013 set 2 gluon were fitted to the both structure
functions F2ðx;Q2Þ and Fc

2ðx;Q2Þ. According to [46], we
use the two-loop formula for the QCD coupling αs with
nf ¼ 4 active quark flavors and ΛQCD ¼ 200 MeV. The
values of charmonia LDMEs for each of the TMD gluon
distributions used in our calculations are presented in
Table I. A comprehensive information on the fitting pro-
cedure can be found in [39]. We have checked that using
these LDMEs we reproduce all of the available data on
charmonia production at the LHC conditions. The masses
and the branching fractions of all particles involved into
calculations are taken from [47]. The DPS effective cross
section is chosen as σeff ¼ 13.8 mb, which was extracted
from a fit to the latest LHCb data on the double J=ψ
production (see [21] for more details). This value is very
close to the generally accepted value σeff ¼ 15 mb [48].

III. CHOICE OF FACTORIZATION SCALE

The choice of the factorization scale is a delicate, though
very important issue. In the CCFM evolution equation the
factorization scale μF is defined as μ2F ¼ ŝþQ2

T , where
ŝ ¼ ðk1 þ k2Þ2 is the invariant energy of partonic subpro-
cess and QT is the net transverse momentum of the initial
gluon pair. It looks rather natural to use the same definition
of μF throughout all calculations, but this may cause
problems in some cases.
A peculiar property of the partonic subprocess (1) is that

its cross section drops sharply with increasing ŝ, so that ŝ
is typically not far from threshold

ffiffiffî
s

p
th ¼ 2mψ (and,

consequently, is small). At the same time, the kT-spectra
of the initial gluons are exponentially broad. This means
that in an arbitrary pair of gluons, the transverse momentum
jkT j of one of the gluons is much larger than that of the
other. As a result, the expression μ2F ∝ ŝþQ2

T reduces to
μ2F ≃ k2

T . However, such a definition is self-contradictory.

FIG. 3. Example of double J=ψ production for double parton scattering in conventional scheme of calculation (a) and modified
scheme with multiple gluon radiation (b). Circles represent the transition of parton into J=ψ meson via fragmentation mechanism.

TABLE I. List of charmonia LDMEs.

LDME JH’2013 set 1 JH’2013 set 2

hOJ=ψ ½3Sð1Þ1 �i=GeV3 1.16 1.16

hOJ=ψ ½3Sð8Þ1 �i=GeV3 1.2 × 10−3 2.1 × 10−3

hOJ=ψ ½3Pð8Þ
0 �i=GeV5 2.4 × 10−2 2.4 × 10−2

hOJ=ψ ½1Sð8Þ0 �i=GeV3 0.0 0.0

hOχc1 ½3Pð1Þ
1 �i=GeV5 0.95 0.95

hOχc2 ½3Pð1Þ
2 �i=GeV5 0.49 0.44

hOχc0 ½3Sð8Þ1 �i=GeV3 1.2 × 10−4 2.9 × 10−4

hOψ ½3Sð1Þ1 �i=GeV3 0.7038 0.7038

hOψ ½3Sð8Þ1 �i=GeV3 1.1 × 10−3 2.2 × 10−3

hOψ ½3Pð8Þ
0 �i=GeV5 1.5 × 10−2 1.2 × 10−2

hOψ ½1Sð8Þ0 �i=GeV3 0.0 0.0
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Indeed, the gluon density fgðx;k2
T; μ

2
FÞ must describe the

probability distribution for k2
T at any given μF. Assume,

we set some μF and generate a random gluon transverse
momentum with the probability given by fgðx;k2

T; μ
2
FÞ. But

then we come to a conflict with setting μ2F ¼ k2
T which

requires μF to be different from what was set originally.
In fact, the condition μ2F ∝ k2

T means that the full area of
μ2F and k2

T is not accessible, but we are only restricted to a
one-dimensional trajectory tracing the functional depend-
ence of μ2F on k2

T . Moreover, this trajectory lies entirely on
a steep slope, as the gluon densities steeply change around
k2
T ¼ μ2F from high values at k2

T < μ2F to low values at
k2
T > μ2F. This makes the calculation very unstable with

respect to even small variations in the factorization scale,
see Fig. 4.
The above properties are further illustrated in Figs. 5 and

6. Shown in Fig. 5 is the double differential distribution in
the gluon transverse momenta dσ=d log10jk1T jd log10jk2T j
obtained from toy calculations with differently chosen
factorization scales and with different toy matrix elements
jMj2 for the partonic subprocess. Here we see that the
choice μ2F ¼ ŝ=4 favors moderate gluon transverse
momenta and the shape of the distribution is insensitive
to the properties of the matrix element. On the contrary, the
choice μ2F ¼ ŝþQ2

T makes the k2
T values large and highly

unequal, and the jkT j distribution is sensitive to the
properties of jMj2.
The effect of numerical instability is shown in Fig. 6.

With sharper matrix elements, the leading role in μF transits
from ŝ to Q2

T thus bringing us to an “unsafe” regime
μ2F ≃ k2

T . It may be worth noting that the problem is rather
general. Whatever the behavior of the matrix elements is,
there always exists a kinematic region where p2

T ≫ ŝ. The
case of J=ψ pair production was only “lucky” to reveal the
problem at smaller energies and smaller pT.

In Fig. 7 we extend our exercises from toy to real matrix
elements and inspect the behavior of subprocess (1). As is
expected, the region of the biggest numerical sensitivity
to the choice of μF is the region of the smallest invariant
masses and, respectively, the region of the smallest rapidity
difference ΔyðJ=ψ ; J=ψÞ. The divergence between the
different predictions is huge. At the same time, the curves
obtained with μ2F ¼ ðŝþQ2

TÞ=4 are notably close to the
experimental points as it is demonstrated in Sec. IV. It is
necessary to note that these predictions were obtained with
the TMD gluon densities JH’2013 set 1muf−, which use
the prefactor of 1=4 in the definition of μ2F in the CCFM
evolution and in the fitting procedure.
On the one hand, the property that the full range gluonic

phase space degenerates into a one-dimensional line
μ2F ∝ k2

T can be regarded as pathological, though inevitable
with increasing pT . It leads to extraordinary sensitivity of
the results to the choice of μF. Since this kind of bad
behavior is only seen at certain (rather special) kinematic
conditions (subprocesses with very small ŝ), one can try to
redefine the scale μ2F in this particular case. The definition
of μ2F used in the TMD fitting procedure is related to
the maximum angle between the two quarks formed in
the subprocess γ�g� → qq̄ [22–25] and follows from the
angular ordering condition. Processes different in their
topology may allow different forms of μ2F.
On the other hand, one can argue that the definition of μ2F

must preserve strict consistency between the fitting pro-
cedure (from which the gluon densities are obtained) and
the actual calculation (to which the gluon densities are
applied) and, therefore, have the form μF ∝ ŝþQ2

T (prob-
ably with some numerical prefactor). The property that the
parameter space (μ2F versus k2

T) is one-dimensional rather
than two-dimensional is not dangerous by its own (and is
similar to collinear factorization). The choice of μF is not

FIG. 4. The effect of scale variations in TMDs. By changing the factorization scale, we jump between the red and blue lines; in the
region μF ≃ kT the difference may be as large as several orders of magnitude.

BARANOV, LIPATOV, and PROKHOROV PHYS. REV. D 106, 034020 (2022)

034020-6



free, but is part of the proposed TMD parametrization.
We simply have to take the gluon densities obtained from
the fit (with the given form of μF) as they are and directly
substitute them into actual calculations.
An interesting parallel can be seen with collinear calcu-

lations at the NLO [49]. As one can see from Figs. 6 and 7 in
that paper, the integral size of the NLO contribution exceeds
the LO result by a significant (huge) factor. The difference
between theNLOandLOpredictions ismost dramatic in the
region of small J=ψ invariant masses and, respectively,
small rapidity separation. In the kT-factorizaion approach,

the NLO contributions are absorbed into the evolution
of TMD gluon densities, where the parameter μF regulates
the gluon emission. So, we find it not surprising that the
effect of μF is largest in the same region where the NLO
contribution is largest, i.e., at smallmðJ=ψ ; J=ψÞ and small
ΔyðJ=ψ ; J=ψÞ. This has to be compared with our Fig. 7.
Were the authors of [49] to calculate the pTðJ=ψ ; J=ψÞ
distributions, they would undoubtedly observe the same
discrepancy betweenNLO and LO as we do in Fig. 7 bottom
right. We had, in due time, reproduced all of the results [49]
with our kT-factorizaion technique.
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differently chosen factorization scales and different toy matrix elements jMj2 for the partonic subprocess. Left column corresponds to
μ2F ¼ ŝþQ2
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We would not, however, deny the fact that the numerical
instability at μ2F ≃ k2

T indicates that we are approaching the
applicability limits of the kT-factorization (noncollinear
parton evolution). The problem of extraordinary sensitivity
of the results to the choice of μF has probably been first
detected in [50], but leftwithout further attention andanalysis.

IV. NUMERICAL RESULTS

In this section, we present the results of our calculations
and perform a comparison with the recent ATLAS data
collected at

ffiffiffi
s

p ¼ 8 TeV [20]. The ATLAS Collaboration
has measured the differential cross sections of prompt J=ψ
pair production as functions of the transverse momentum
pTðJ=ψ ; J=ψÞ and the invariant mass mðJ=ψ ; J=ψÞ of the
J=ψ pair, of the rapidity separation ΔyðJ=ψ ; J=ψÞ and of
the azimuthal angle difference ΔϕðJ=ψ ; J=ψÞ between the
two J=ψ mesons. The following selection criteria were
applied: pTðJ=ψÞ> 8.5 GeV, jyðJ=ψÞj < 2.1, jηðμÞj < 2.3
for all muons, pTðμÞ > 4 GeV for the muons from the
triggered J=ψ meson, and pTðμÞ > 2.5 GeV for the muons

from the other J=ψ meson. Also presented were the
differential cross sections as functions of the subleading
J=ψ transverse momentum pTðJ=ψ2Þ, of the J=ψ pair
transverse momentum, and of the J=ψ pair invariant
mass, with the selection criteria pTðJ=ψÞ > 8.5 GeV,
jyðJ=ψÞj < 2.1 for each J=ψ , without requirements on
the muons in the final state. These measurements were
performed in the central jyðJ=ψ2Þj < 1.05 and forward
1.05 < jyðJ=ψ2Þj < 2.1 rapidity intervals. We have imple-
mented the same selection criteria in our calculations.
The calculations are performed with the following

setting of hard scales. For the CS contributions (1)–(4)
we take μ2F ¼ 1

4
ðŝþQ2

TÞ and μ2R ¼ 1
4
ðm2

ψ þ 1
2
ðp2

1T þ p2
2TÞÞ

with p1T and p2T being the transverse momenta of
produced particles. For these processes we use the gluon
densities JH’2013 set 1muf− and JH’2013 set 2muf−
obtained with μ2F ¼ 1

4
ðŝþQ2

TÞ. So, the numerical prefactor
1=4 in the definition of μF holds exact correspondence with
the fitting procedure [46]; and, in comparison with the
choice μ2F ¼ ðŝþQ2

TÞ, it softens to some extent the scale
dependence of the results.
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For the fragmentation contributions and DPS we set
μ2F ¼ ŝþQ2

T , μ
2
R ¼ m2

ψ þ p2
T for subprocesses with out-

going off-shell gluon or bound charmed pair; and
μ2F ¼ ŝþQ2

T , μ
2
R ¼ m2

c þ 1
2
ðp2

1T þ p2
2TÞ for subprocesses

with outgoing unbound charmed quarks. The factorization
concept implies that the fragmentation scale can only
depend on the parameters of the fragmented parton
and must not depend on the hard interaction scale. So,
we set μ2frag ¼ m2

Q þ p2
T wheremQ and pT are the mass and

transverse momentum of the fragmented parton.
Our numerical results are shown in Figs. 8 and 9. One

can see that the predictions obtained with the JH’2013 set 1
gluon density (used as the default choice) are rather close to
the data and can be said compatible with them within

theoretical uncertainties (shaded orange bands) for the
majority of the measured distributions. Following the
general receipt [46] of CCFM approach, the uncertainties
of our calculations were estimated by varying the renorm-
alization scale around its default value by a factor of 2.
In accord with that, the JH’2013 set 1 gluon density
had to be replaced with JH’2013 set 1þ or JH’2013
set1−, respectively. Such a replacement was done to
preserve the consistency of our calculations with the fitting
procedure of the initial parameters of TMD gluon densities,
as it is described in [46].
To highlight the role of DPS mechanism and the

combinatorial effects of multiple gluon and/or quark
radiation in the initial state, we separately show the
relevant contributions. The blue dashed histograms in

0 0.5 1 1.5 2 2.5 3 3.5 4

)ψ,J/ψ y(J/Δ

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

 [p
b/

0.
3]

 
)

ψ
,J

/
ψ

 y
(J

/
Δd

 )
ψ

+
J/

ψ
(J

/
σd

0 0.5 1 1.5 2 2.5 3

)ψ,J/ψ(J/φΔ

1−10

1

10

210

310

410

/8
]

π
 [p

b/
)

ψ
,J

/
ψ

(J
/

φ
Δd

 )
ψ

+
J/

ψ
(J

/
σd

10 20 30 40 50 60 70 80

) [GeV]ψ,J/ψm(J/

4−10

3−10

2−10

1−10

1

10

210

310

 [p
b/

5 
G

eV
] 

)
ψ

,J
/

ψ
dm

(J
/

 )
ψ

+
J/

ψ
(J

/
σd

0 10 20 30 40 50 60 70
) [GeV]ψ,J/ψ(J/

T
p

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

 [p
b/

2.
5 

G
eV

] 
)

ψ
,J

/
ψ

(J
/

T
dp

 )
ψ

+
J/

ψ
(J

/
σd

)

FIG. 7. The effect of the choice of the factorization scale μF on the size and the shape of the distributions in the rapidity separation,
ΔyðJ=ψ ; J=ψÞ (left upper panel); azimuthal angle difference, ΔϕðJ=ψ ; J=ψÞ (right upper panel); J=ψ pair invariant mass,mðJ=ψ ; J=ψÞ
(left lower panel); J=ψ pair transverse momentum, pTðJ=ψ ; J=ψÞ (right lower panel). The numerical instability is most pronounced at
p2
T ≫ ŝ, that is, when either ŝ is small or pT is large.

ROLE OF INITIAL GLUON EMISSION IN DOUBLE J=ψ … PHYS. REV. D 106, 034020 (2022)

034020-9



10 12 14 16 18 20 22 24 26
) [GeV]

2
ψ(J/

T
p

4−10

3−10

2−10

1−10

1

10

210

 [p
b/

2.
5 

G
eV

] 
) 2

ψ
(J

/
T

dp
 )

ψ
+

J/
ψ

(J
/

σd

)| < 1.05
2

ψ|y(J/

ATLAS data

10 12 14 16 18 20 22 24 26
) [GeV]

2
ψ(J/

T
p

4−10

3−10

2−10

1−10

1

10

210

 [p
b/

2.
5 

G
eV

] 
) 2

ψ
(J

/
T

dp
 )

ψ
+

J/
ψ

(J
/

σd

)| < 2.1
2

ψ1.05 < |y(J/

ATLAS data

0 10 20 30 40 50 60 70
) [GeV]ψ,J/ψ(J/

T
p

3−10

2−10

1−10

1

10

210

 [p
b/

5 
G

eV
] 

)
ψ

,J
/

ψ
(J

/
T

dp
 )

ψ
+

J/
ψ

(J
/

σd

)| < 1.05
2

ψ|y(J/

ATLAS data

0 10 20 30 40 50 60 70
) [GeV]ψ,J/ψ(J/

T
p

3−10

2−10

1−10

1

10

210

 [p
b/

5 
G

eV
] 

)
ψ

,J
/

ψ
(J

/
T

dp
 )

ψ
+

J/
ψ

(J
/

σd

)| < 2.1
2

ψ1.05 < |y(J/

ATLAS data

10 20 30 40 50 60 70 80

) [GeV]ψ,J/ψm(J/

3−10

2−10

1−10

1

10

210

 [p
b/

5 
G

eV
] 

)
ψ

,J
/

ψ
dm

(J
/

 )
ψ

+
J/

ψ
(J

/
σd

)| < 1.05
2

ψ|y(J/

10 20 30 40 50 60 70 80

) [GeV]ψ,J/ψm(J/

3−10

2−10

1−10

1

10

210

 [p
b/

5 
G

eV
] 

)
ψ

,J
/

ψ
dm

(J
/

 )
ψ

+
J/

ψ
(J

/
σd

)| < 2.1
2

ψ1.05 < |y(J/

sum (JH 2013 set 1)

sum (JH 2013 set 2)

DPS (JH 2013 set 1)

DPS + Fragm. (JH 2013 set 1)

processes (2)-(4) (JH 2013 set 1)

sum (JH 2013 set 1)

sum (JH 2013 set 2)

DPS (JH 2013 set 1)

DPS + Fragm. (JH 2013 set 1)

processes (2)-(4) (JH 2013 set 1)

sum (JH 2013 set 1)

sum (JH 2013 set 2)

DPS (JH 2013 set 1)

DPS + Fragm. (JH 2013 set 1)

processes (2)-(4) (JH 2013 set 1)

sum (JH 2013 set 1)

sum (JH 2013 set 2)

DPS (JH 2013 set 1)

DPS + Fragm. (JH 2013 set 1)

processes (2)-(4) (JH 2013 set 1)

ATLAS data

sum (JH 2013 set 1)

sum (JH 2013 set 2)

DPS (JH 2013 set 1)

DPS + Fragm. (JH 2013 set 1)

processes (2)-(4) (JH 2013 set 1)

ATLAS data

sum (JH 2013 set 1)

sum (JH 2013 set 2)

DPS (JH 2013 set 1)

DPS + Fragm. (JH 2013 set 1)

processes (2)-(4) (JH 2013 set 1)

FIG. 8. The differential cross-section of double J=ψ production in pp collisions at
ffiffiffi
s

p ¼ 8 TeV in the central (left column) and
forward (right column) rapidity regions, as a function of subleading J=ψ transverse momentum, pTðJ=ψ2Þ (upper row); J=ψ pair
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experimental data are taken from [20].
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Figs. 8 and 9 correspond to the estimated DPS terms,
whereas the blue solid histograms (labeled as “DPS
+Fragm.”) represent the sum of DPS and fragmentation
contributions. As one can see, the effect of multiple
parton radiation is very essential in the region of high
invariant mass mðJ=ψ ; J=ψÞ and large rapidity separation
ΔyðJ=ψ ; J=ψÞ. An accurate account of these contribu-
tions is extremely important for ATLAS data. The
importance of fragmentation terms have been already

demonstrated earlier [21], where, however, only the g� →
cc½3Sð8Þ1 � transition has been taken into account. Our
present calculations include a much larger number of
fragmentation channels; and the feed-down contributions
from the χc and ψ 0 decays are also taken into account.

Finally, we show the contributions from subprocesses
(2)–(4) (blue solid curves), although we find these
subprocesses not playing a considerable role for any
observable.
To investigate the sensitivity of our results to the choice

of TMD gluon density, we have repeated our calculations
with JH’2013 set 2 distribution. We find that the latter
predictions (red histograms in Figs. 8 and 9) are in good
agreement with the ones obtained with the default JH’2013
set 1 gluon density for the majority of observables. There
are some discrepancies in the region of high pTðJ=ψ ; J=ψÞ
and pTðJ=ψ2Þ. They can be promptly attributed to the
different behavior of TMD gluon distributions at high
transverse momenta kT .
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FIG. 9. The differential cross section of double J=ψ production in pp collisions at
ffiffiffi
s

p ¼ 8 TeV as a function of rapidity separation,
ΔyðJ=ψ ; J=ψÞ (left upper panel); azimuthal angle difference, ΔϕðJ=ψ ; J=ψÞ (right upper panel); J=ψ pair invariant mass,mðJ=ψ ; J=ψÞ
(left lower panel); J=ψ pair transverse momentum, pTðJ=ψ ; J=ψÞ (right lower panel). The integral theoretical predictions are shown for
JH’2013 set 1 and JH’2013 set 2 as well as the individual DPS and DPSþ fragmentation contributions. The experimental data are taken
from [20].
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Next, we discuss the role of multiple gluon radiation in
the DPS contributions. As it was said above, our calculation
scheme implies that the direct CO subprocesses g� þ g� →
cc̄½3Sð8Þ1 � in the both hard interaction blocks have to be
replaced with the g� þ g� → g� and/or g� þ g� → cþ c̄
subprocesses accompanied by gluon evolution ladders
(reconstructed according to the CCFM equation) with
subsequent fragmentation of all emitted partons into
charmonia. This brings additional contributions to the
DPS production cross section. To show the role of these
terms in more detail, we separately consider three different

sources.3 The first of them contains only ½3Sð1Þ1 ; 3Pð8Þ
J � ×

½3Sð1Þ1 ; 3Pð8Þ
J � combinations of single J=ψ production mech-

anisms. The second source includes ½3Sð8Þ1 � × ½3Sð1;8Þ1 ; 3Pð8Þ
J �

subprocesses. The sum of these two sources gives the DPS
contribution to double J=ψ production in the conventional
scheme. The third source is the modification of the second

one: it includes the ½g; c� × ½g; c; 3Sð1Þ1 ; 3Pð8Þ
J � combinations,

where the symbols g and c denote fragmentation contri-
butions coming from the g� þ g� → g� and g� þ g� → cþ
c̄ subprocesses (with multiple gluon radiation taken into
account in both cases). The sum of the first and the third
contributions represents the DPS cross section in our
scheme.
A comparison between the different contributions

obtained within the DPS framework is displayed in
Fig. 10. It is clearly seen that the yield from modified
mechanism (i.e., the third source, orange lines) is

approximately three times greater than that from the
conventional mechanism (the second source, blue lines).
Eventually, it nearly doubles the total estimated DPS
contribution. This constitutes in our view a remarkable
result. Thus, an accurate treatment of multiple gluon
emission in the initial state is indeed very important for
evaluating the DPS cross sections. In fact, these additional
contributions could also play a role for a number of other
processes related to the multiparton interactions. This can,
in turn, motivate some revisions of the effective DPS cross
section σeff extracted from the experimental data.

V. CONCLUSION

In the present study, we have addressed a challenging
problem of prompt double J=ψ production in pp collisions
at the LHC conditions. In addition to the conventional
production mechanisms mentioned earlier in the literature,
we take into account the effects of multiple gluon radiation
in the initial state followed by gluon fragmentation into
J=ψ mesons. The evolution of the radiated gluon cascade is
described within the kT-factorization approach, with mak-
ing use of CCFM equation. We demonstrate the importance
of these new contributions both in single and double parton
scattering processes.
We paid much attention to inspecting the influence of

the factorization scale μF on the numerical errors and to
studying the kinematic conditions under which the com-
putations become unstable. We find that the dangerous
region is p2

T ≫ ŝ, that corresponds to μ2F ≃ k2
T . The

computations can be made stable by adopting either of
two alternatives. One can adopt just a different definition of
the scale μF, so that to make it far from the instability region
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3Here we will not consider feed-down contributions to double
J=ψ production.
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(basically, by taking μF independent on kT). As an
alternative, one can consider the definition μF ∝ ŝþQ2

T
as a built-in property of the TMD gluon density. The latter
choice preserves the correspondence between the TMD
fitting procedure and the actual calculations where the
obtained TMD gluon distribution is used.
In the framework of our second hypothesis, we have

performed a numerical comparison with the latest mea-
surements reported by the ATLAS collaboration forffiffiffi
s

p ¼ 8 TeV. Having the fragmentation mechanism
employed in the theory, we greatly reduce the discrepancy

between the predictions and the data. This has immediate
impact on the value of the effective cross section σeff that
parametrizes the DPS contribution.
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