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The interface effects of quark matter play important roles in the properties of compact stars and small
nuggets, such as strangelets and nonstrange quark matter (udQM) nuggets. By introducing a density
derivative term to the Lagrangian density and adopting Thomas-Fermi approximation, we find it is possible
to reproduce the results obtained by solving Dirac equations. Adopting certain parameter sets, the energy
per baryon of udQM nuggets decreases with baryon number A and become more stable than nuclei at
A≳ 300. The effects of quark matter symmetry energy are examined, where udQM nuggets at A ≈ 1000

can be more stable than others if large symmetry energy is adopted. In such cases, larger udQM nuggets
will decay via fission and the surface of a udQM star will fragment into a crust made of udQM nuggets and
electrons, which resembles the cases of a strange star’s crust. The corresponding microscopic structures are
then investigated adopting spherical and cylindrical approximations for the Wigner-Seitz cells, where the
droplet phase is found to be the most stable configuration with udQM stars’ crusts and udQM dwarfs made
of udQM nuggets (A ≈ 1000) and electrons. For the cases considered here, the crust thickness of udQM
stars is typically ∼200 m, which reaches a few kilometers if we neglect the interface effects and adopt
Gibbs construction. The masses and radii of udQM dwarfs are smaller than typical white dwarfs, which
would increase if the interface effects are neglected.

DOI: 10.1103/PhysRevD.106.034016

I. INTRODUCTION

As we increase the density of baryonic matter, a decon-
finement phase transition takes place and formsquarkmatter.
The strange quark matter (SQM, composed of u, d, and s
quarks) obtained in this process was expected to be the
QCD ground state [1–3], where SQM objects with various
sizes may exist in the Universe, e.g., strangelets [4–7],

nuclearites [8,9], meteorlike compact ultradense objects
[10], and strange stars [11–13]. However, in the framework
of chiral models, SQM is unstable due to a too large s quark
mass [14,15]. An interesting proposition was raised recently
suggesting that, instead of SQM, the nonstrange quark
matter (udQM) may be the true ground state [16]. This
indicates the possible existence of udQM nuggets and
udQM stars, while ordinary nuclei do not necessarily decay
into udQM nuggets due to a large enough surface tension
[16–18]. Extensive investigations on the properties of
nonstrange quark stars were then carried out in recent
years [19–23].
One important factor that affects the properties of

strangelets and udQM nuggets is the interface effects of
quark matter, and in particular, the surface tension σ that
accounts for the energy contribution. Adopting the MIT
bag model with a bag constant B, it was found that a
small strangelet can be destabilized substantially at
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σ1=3 ≈ B1=4 [4], while the minimum baryon number for
metastable strangelets Amin ∝ σ3 [5,24]. If the surface
tension is smaller than a critical value with σ < σcrit, there
exist strangelets at a certain size that are more stable than
others [25]. This leads to significant implications for SQM
objects, where large strangelets are expected to decay via
fission [26] and a strange star’s surface fragments into a
crystalline crust composed of strangelets and electrons
[27]. For udQM nuggets, due to the absence of s quarks,
the critical surface tension σcrit is likely larger than that of
strangelets [26–28]. According to the recent estimations
with various effective models [29–39], it was shown that
the surface tension value is likely small, i.e., σ ≲ 30
MeV=fm2. In such cases, it is relatively easy for udQM
to fulfill the condition σ < σcrit, indicating the possible
existence of crusts inside udQM quark stars and a new
family of white dwarfs (udQM dwarfs). Additionally, it
was shown that quark matter may have a large symmetry
energy [40–44], which further increases σcrit and affects the
properties of udQM objects [18]. Note that, if the strange-
lets or udQM nuggets inside those stars are small, the
finite-size effects are dominated by curvature effects rather
than by surface tension [45]. In such cases, the criterion
σ < σcrit is no longer valid and the contribution of curvature
effects needs to be accounted for. Meanwhile, the predic-
tion of a small σ is neither unanimous nor conclusive. The
surface tension value may be strongly enhanced by new
terms arising from vector interactions, which would inhibit
the formation of quark star crusts [46,47].
In addition to the surface tension, other aspects of the

interface effects also play important roles. Because of
confinement of color charge, the quark wave functions
approach zero on the surface, which leads to quark
depletion and contributes to the interface effects. For
strangelets, it was shown that quark depletion has sizable
impacts on their sizes and charge properties [48–52], while
the curvature term plays an important role, especially for
small objects [45,53–55]. To account for those effects, it is
favorable to solve the Dirac equations and obtain the
structure of quark-vacuum interface self-consistently,
e.g., those in Refs. [29,37]. Nevertheless, for large objects,
to obtain all the wave functions of quarks requires extensive
computational resource, which limits its application in
various scenarios. It is thus necessary to adopt a simpler
approach that accounts for the general properties of inter-
face effects. This was done in the framework of the bag
model, where an analytical formula that introduces a
modification to the density of states was proposed, i.e.,
the multiple reflection expansion (MRE) method [5,53–56].
However, the MRE method describes the depleted quarks
with a delta function, which oversimplifies the surface
structure and is not applicable for other models with more
realistic confining potential, e.g., the linear confinement in
the framework of an equivparticle model [37]. In such
cases, we consider an effective approach that introduces a

density derivative term to the Lagrangian density, which
well reproduces the surface and curvature contributions
with a detailed surface structure.
In this work, we thus examine the effectiveness of the

density derivative term in describing the interface effects,
where the properties of strangelets and udQM nuggets are
investigated. For udQM nuggets that are more stable at
certain sizes, we further investigate the nonuniform struc-
tures composed of those nuggets and electrons, which
may persist inside quark stars and white dwarfs [18]. It is
found that, for a given parameter set, a quark star with
M ≳ 0.03 M⊙ can support a stable crust (∼200 m thick) on
its surface, while the maximum mass of udQM dwarfs
decreases and becomes smaller than 1.4 M⊙ if the interface
effects are accounted for. The paper is organized as follows.
In Sec. II we present the theoretical framework of the
equivparticle model, where a density derivative term was
added to the original Lagrangian density to mimic the
interface effects. To investigate the impact of symmetry
energy, an isospin-dependent term is added to the quark
mass scaling. Then the structures of strangelets, udQM
nuggets, and the crystalline structures of quark star crusts
are obtained adopting Thomas-Fermi approximation. The
numerical results are presented in Sec. III. We draw our
conclusion in Sec. IV.

II. THEORETICAL FRAMEWORK

To investigate the properties of quark matter and the
corresponding objects, we adopt the equivparticle model
that treats the strong interaction with density-dependent
quark masses [40,57–66]. The Lagrangian density for the
equivparticle model is fixed by

L ¼
X
i

ψ̄ i½iγμ∂μ −miðnu; nd; nsÞ − eqiγμAμ�ψ i

−
1

4
AμνAμν þ Lder þ Le þ Lμ; ð1Þ

Lder ¼ −
X
i;j

1

2
δV∂μðψ̄ iγνψ iÞ∂μðψ̄ jγ

νψ jÞ; ð2Þ

Le;μ ¼ ψ̄e;μ½iγμ∂μ −me;μ þ e2γμAμ�ψe;μ; ð3Þ

where ψ i represents the Dirac spinor of quark flavor i,
miðnbÞ is the equivalent quark mass, ni ¼ hψ̄ iγ

0ψ ii is the
number density, qi is the charge (qu ¼ 2e=3 and
qd ¼ qs ¼ −e=3), and Aμ is the photon field with the field
tensor

Aμν ¼ ∂μAν − ∂νAμ: ð4Þ

An additional density derivative term Lder is introduced to
account for the average interface effects, which was not
included in our previous studies [37]. As will be illustrated
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in this work, by properly adjusting the effective parameter
δV and adopting Thomas-Fermi approximation (TFA), we
can reproduce the results obtained by solving the Dirac
equation under mean-field approximation (MFA) [37,67].
Note that, if other contributions to the interface effects are
considered [29,68], the parameter δV may be altered. The
Lagrangian density Le;μ accounts for the contribution of
leptons (e−, μ−) withme;μ being their masses, which should
be included if electrons and/or muons are present.
In the past decades, various types of quark mass scalings

were proposed to describe the strong interaction among
quarks. For example, for density-dependent quark masses

miðnbÞ ¼ mi0 þmIðnbÞ; ð5Þ

the bag model suggests an inversely linear scaling mI ¼
B=3nb [69], where nb ¼

P
i¼u;d;s ni is the baryon number

density and mu0 ¼ 2.2, md0 ¼ 4.7, and ms0 ¼ 96.0 MeV
are the current masses of quarks [70]. An inversely cubic
scaling mI ¼ Dn−1=3b was derived if the contributions of
linear confinement and in-medium chiral condensates were
considered [71]. Further consideration of the one-gluon-
exchange interaction suggests mI ¼ Dn−1=3b − Cn1=3b [61],
while perturbation theory at ultrahigh densities gives
mI ¼ Dn−1=3b þ Cn1=3b [63]. An isospin-dependent term
was also introduced to examine the impacts of quark
matter symmetry energy, which was given by miðnb; δÞ ¼
mi0 þDn−1=3b − τiδDInαbe

−βnb , with τi being the third
component of isospin for quark flavor i and δ ¼ 3ðnd −
nuÞ=ðnd þ nuÞ as the isospin asymmetry [40]. Recently, we
have proposed a similar mass scaling [18]

mIðnb; δÞ ¼ Dn−1=3b þ Cn1=3b þ CIδ
2nb; ð6Þ

where the first term corresponds to linear confinement with
a confinement parameter D [71]. Depending on the sign
of C, the second term represents the contribution of one-
gluon-exchange interaction (C < 0) [61] or the leading-
order perturbative interaction (C > 0) [63]. The third term
accounts for the quark matter symmetry energy [18]. In
contrast to the mass scaling proposed in Ref. [40], here mI
is identical for different quark flavors, i.e., neglecting the
isovector-scalar channel.
Adopting the mass scaling in Eq. (6), the mean-field

vector potential for quark type i in MFA can be fixed
according to variational method, which is obtained with

Vi ¼
dmI

dni

X
i¼u;d;s

nsi þ eqiA0 þ 3δV∇2nb: ð7Þ

Here nsi ¼ hψ̄ iψ ii represents the scalar density of quark
flavor i. The density derivative term of quark masses on the
right-hand side is introduced to maintain thermodynamic
self-consistency. In fact, for any effective models with
density-dependent masses or coupling constants, the density

derivative terms appear naturally according to fundamental
thermodynamics, which have been discussed extensively in
various publications, e.g., those in Refs. [57,63,72–76]. The
second term represents the contribution from Coulomb
interaction and is fixed by

∇2A0 ¼ −
X

i¼u;d;s;e;μ

qini: ð8Þ

Note that the third term in Eq. (6) has led to the isovector
contributions in the vector potentials of quarks. Since
leptons have nothing to do with strong interaction and take
constant masses, the first and third terms vanish and Eq. (7)
becomes Ve;μ ¼ −e2A0.
The total particle number Ni is obtained by integrating

the density niðr⃗Þ, i.e.,

Ni ¼
Z

niðr⃗Þd3r: ð9Þ

The total energy of the system is determined by

M ¼ E0 þ
Z �

9

2
δVnbðr⃗Þ∇2nbðr⃗Þ þ

1

2
ð∇A0Þ2

�
d3r: ð10Þ

Here E0 represents the contributions of kinetic energy and
strong interaction with density-dependent quark masses,
which will be fixed based on different approaches intro-
duced in the following.

A. Spherically symmetric objects

For a spherically symmetric system, the Dirac spinor of
fermions can be expanded as

ψnκmðrÞ ¼
1

r

�
iGnκðrÞ

FnκðrÞσ · r̂

�
Yl
jmðθ;ϕÞ; ð11Þ

with GnκðrÞ=r and FnκðrÞ=r being the radial wave func-
tions for the upper and lower components, while Yl

jmðθ;ϕÞ
is the spinor spherical harmonics, i.e.,

Yl
jm ¼

X
lz;sz

hl; lz; 1=2; szjj; miYllzχ
sz
1=2: ð12Þ

The quantum number κ is defined by the angular momenta
ðl; jÞ as κ ¼ ð−1Þjþlþ1=2ðjþ 1=2Þ. The Dirac equation for
the radial wave functions in MFA is then obtained as

�
Vi þmi − d

dr þ κ
r

d
dr þ κ

r Vi −mi

��
Gnκ

Fnκ

�
¼ εnκ

�
Gnκ

Fnκ

�
: ð13Þ

For given radial wave functions, the scalar and vector
densities can be determined by
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nsiðrÞ ¼
1

4πr2
XNi

k¼1

½jGkiðrÞj2 − jFkiðrÞj2�; ð14aÞ

niðrÞ ¼
1

4πr2
XNi

k¼1

½jGkiðrÞj2 þ jFkiðrÞj2�: ð14bÞ

The total energy of the system can then be fixed by Eq. (10)
with

E0 ¼
X
i

�XNi

k¼1

εki −
Z

4πr2niðrÞViðrÞdr
�
: ð15Þ

For strangelets and udQM nuggets, we neglect the con-
tribution of leptons. The Dirac equation (13), mean-field
potentials in Eqs. (6) and (7), and densities in Eq. (14)
are solved via iteration in coordinate space with the grid
width 0.005 fm, where quarks occupy the lowest energy
levels and reaches β stability. More detailed discussion on
the numerical treatments can be found in our previous
studies [37,67].

B. Thomas-Fermi approximation

For a system with a large number of particles, instead of
solving the Dirac equation as indicated in Sec. II A, the
Thomas-Fermi approximation also provides relatively good
estimations for its properties. In the framework of TFA, we
have E0 ¼

R
E0ðr⃗Þd3r for the total energy in Eq. (10),

where the local kinetic energy density E0ðr⃗Þ is fixed by

E0 ¼
X
i

Z
νi

0

dip2

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmi

2

q
dp

¼
X
i

dimi
4

16π2
f

�
νi
mi

�
: ð16Þ

Here fðxÞ ¼ ½xð2x2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
− arcshðxÞ�, di (¼ 6 for

quarks and 2 for leptons) is the degeneracy factor, and νi is
the Fermi momentum of particle type i. The scalar and
vector densities are determined by

nsi ¼
dimi

3

4π2
g

�
νi
mi

�
; ni ¼

diν3i
6π2

; ð17Þ

where gðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
− arcshðxÞ. Note that mi, ns, ni,

and E0 represent the local properties of quark matter and
vary with the space coordinates, which can be determined
by the constancy of chemical potentials in order for the
system to be stable, i.e.,

μiðr⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νiðr⃗Þ2 þmiðr⃗Þ2

q
þ Viðr⃗Þ ¼ constant: ð18Þ

Once the density profiles satisfy Eq. (18), the total energyM
of the system reaches a minimum. We thus adopt the

imaginary time step method [77] and readjust the density
profiles iteratively. As convergency is reached with a
vanishing deviation of local chemical potentialsP

ihΔμ2i i, the total mass of the system can be fixed by
Eq. (10), where the equivalentmass and vector potentials are
obtained with Eqs. (6) and (7).
Here we apply TFA to two types of objects, i.e., the

spherically symmetric objects in the absence of leptons
(strangelets and udQM nuggets) and the Wigner-Seitz
(WS) cell that describes the microscopic structures in
quark stars’ crusts. Since quark propagation around the
quark-vacuum interface is absent in TFA, it is essential to
adopt the density derivative term Lder in Eq. (2) for finite-
sized objects. The corresponding effective parameter δV
is fixed by reproducing the results obtained by solving
the wave functions as illustrated in Sec. II A. For those
predicting udQM nuggets that are more stable than heavier
ones, we then investigate the possible formation of crys-
talline structures in quark stars [27,28], where spherical and
cylindrical approximations for the WS cell are adopted
[78–82]. In particular, the Laplace operator in Eqs. (7)
and (8) is reduced to one-dimensional, i.e.,

1D∶ ∇2ϕðr⃗Þ ¼ d2ϕðrÞ
dr2

; ð19Þ

2D∶ ∇2ϕðr⃗Þ ¼ d2ϕðrÞ
dr2

þ 1

r
dϕðrÞ
dr

; ð20Þ

3D∶ ∇2ϕðr⃗Þ ¼ d2ϕðrÞ
dr2

þ 2

r
dϕðrÞ
dr

; ð21Þ

with ϕ ¼ nb and A0. The density profiles and mean fields
are then obtained with fast cosine transformation, where
the reflective boundary conditions at r ¼ 0 and r ¼ RW are
fulfilled with RW being theWS cell radius. At fixed average
baryon number density nb, we then search for the optimum
cell size RW by minimizing the energy per baryon, where
the β-stability condition μu þ μe ¼ μu þ μμ ¼ μd ¼ μs and
global charge neutrality condition

P
i qiNi ¼ 0 are satisfied.

By assuming various dimensions with geometrical sym-
metries, five types of structures can be obtained based on
TFA, i.e., the slab phase in Eq. (19), the rod/tube phases in
Eq. (20), and the droplet/bubble phases in Eq. (21). A more
detailed illustration on the numerical recipe can be found in
Refs. [83,84]. Note that at small nb electrons take upmost of
the space in a WS cell, leading to a too large cell size RW.
In such cases, as was done in Ref. [84], we divide a WS cell
into a core (r < Rin) and a spherical shell (Rin < r ≤ RW).
For the droplet phase, we take Rin ¼ 60 fm.

III. RESULTS AND DISCUSSIONS

A. Strangelets

To reproduce the results obtained by solving Dirac
equations (δV ¼ 0) [37,67], one needs to adjust the
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effective parameter δV for the density derivative term Lder
in Eq. (2). Particularly, we reproduce the energy per baryon
of β-stable (μu ¼ μd ¼ μs) strangelets with TFA, where in
Table I the corresponding values of δV for various sets of
parameters (C, CI ¼ 0,D) are presented. It is found that δV
takes negative values and its absolute value is increasing
with the density n0 at vanishing external pressure, which
resembles our previous findings with both surface tension
and curvature term increasing with n0 [37,67].
Few examples on the obtained energy per baryon of

β-stable strangelets are presented in Fig. 1, which are
decreasing with baryon number A ¼ ðNu þ Nd þ NsÞ=3
due to the interface effects. Adopting the values of δv
indicated in Table I, it is shown that our calculation with
TFA well reproduces the results obtained by solving the
Dirac equations of quarks. Note that the energy per baryon
obtained with TFA varies smoothly with A. However, if
we solve the Dirac equations and examine the energy per
baryon of strangelets, there are slight fluctuations due to the
shell effects in single particle levels of quarks. This causes
deviations at small A, which are expected to become
insignificant at large baryon numbers, e.g., A≳ 300.

In the framework of TFA, the density profiles of
strangelets at fixed baryon number A are obtained by
fulfilling the constancy of chemical potentials in Eq. (18),
where the local densities are fixed by Eq. (17). In Fig. 2, we
present the density profiles of strangelets at A ¼ 1059.
With the inclusion of the density derivative term Lder in
Eq. (2), the density profiles obtained with TFA generally
coincide with those from quark wave functions. Since there
exist several nodes in quark wave functions, as indicated in
Fig. 2, the density profiles obtained with Eq. (14) fluctuate
and do not take constant values even at the regions far from
the surface, leading to minor discrepancies between those
obtained with the two methods. It is expected that the
discrepancies should eventually vanish at large enough A,
where the TFA is expected to give a good description of the
system. Nevertheless, in the surface region of a strangelet,
the densities obtained with TFA are larger than those
predicted by quark wave functions, where the situation
reverses at regions slightly beneath the surface. Such a
deviation on the surface is caused by the quark-vacuum
interface, which cannot be fixed by increasing the baryon
number A.
The charge-to-mass ratio (fZ ¼ Z=A), strangeness per

baryon (fS ¼ S=A), and ratio of root-mean-square radius to
baryon number (r0 ¼ hr2i1=2=A1=3) for β-stable strangelets
are presented in Fig. 3. The charge number and strangeness
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FIG. 1. Energy per baryon (M=A) of β-stable strangelets
obtained with TFA (solid line), which are compared with those
predicted by explicitly solving Dirac equations (symbolþ line).
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FIG. 2. Comparison between the density profiles in strangelets
determined by wave functions with Eq. (14) (solid) and TFAwith
Eq. (17) (dashed).

TABLE I. The coefficient δV for the density derivative termLder
in Eq. (1), where n0 represents the density of SQM at P ¼ 0. The
strength CI for the symmetry energy term in Eq. (6) has little
impact on the values of δv, which is taken as CI ¼ 0 here.

C
ffiffiffiffi
D

p
(MeV) n0 (fm−3) δv (10−10 MeV4)

−0.5 180 0.37 −0.5
0 156 0.24 −1.15
0.1 150 0.16 −1.5
0.7 129 0.099 −3.6
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of a strangelet are fixed by Z ¼ ð2Nu − Nd − NsÞ=3 and
S ¼ Ns, with Ni being the total particle number of quark
flavor i. Since the single particle levels of quarks are
discrete, the sequential occupation of lowest energy levels
causes fluctuations in the charge-to-mass ratio and strange-
ness per baryon, which will eventually become insignifi-
cant at large A. In such cases, as indicated in Fig. 3, the TFA
with density derivative term well reproduces the results
determined by solving Dirac equations. Nevertheless, there
exists a slight deviation for both fS and r0, where the TFA
underestimates fS and overestimates r0, which is mainly
caused by the discrepancies of density profiles in the
vicinity of the quark-vacuum interface as indicated
in Fig. 2.

B. udQM nuggets

Now let us examine the properties of udQM nuggets,
adopting the same parameter sets as strangelets in Sec. III A.
It is worth mentioning that, in order to reproduce the
experimental baryon masses with various effective models,
the typical mass for strange quarks is usually∼2–3ms0, e.g.,
the MIT bag model [85–87], nonrelativistic quark cluster
model [88,89], and potential models [90]. In such cases,
strangelets may not be stable due to the large strange quark
masses, where s quarks never emerge if the β-stability

condition is fulfilled and strangelets are then converted into
udQM nuggets.
In Fig. 4, we present the energy per baryon, charge-to-

mass ratio, and ratio of root-mean-square radius to baryon
number for udQM nuggets, which are obtained by taking
large enoughms0. The dashed curves indicate the properties
of strangelets corresponding to those in Figs. 1 and 3,
where ms0 ¼ 96.0 MeV. It is evident that adopting the
same δV as in strangelets well reproduces the energy per
baryon and charge-to-mass ratio of udQM nuggets with
TFA, both of which are decreasing with A. In comparison
with strangelets, we find udQM nuggets become more
massive with the energy per baryon increased by up to
40 MeV, while the magnitude is proportional to fS for
the strangelets indicated in Fig. 3. For the cases obtained
with the parameter set C ¼ 0.7 and

ffiffiffiffi
D

p ¼ 129 MeV, the
properties of udQM nuggets are similar to those of
strangelets with rather small fS. The energy per baryon
of udQM nuggets considered here is larger than that of the
heaviest β-stable nucleus 266Hs with M=A ¼ 931.74 MeV
[91–93], which permits the existence of udQM nuggets, as
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266Hs and lighter nuclei do not decay into them.
Nevertheless, only the udQM nuggets obtained with
C ¼ 0.7 and

ffiffiffiffi
D

p ¼ 129 MeV become stable as baryon
number increases. In general, we note udQM nuggets are
more positively charged and less compact in comparison
with strangelets. The charge-to-mass ratios obtained with
various parameter sets are close to each other, which is
mainly caused by the similar values of symmetry energy
(Esym ≈ 15 MeV) predicted by those parameters.
The symmetry energy of quark matter in Fig. 4 mainly

stems from the kinetic contributions, while in principle, the
interaction among quarks could alter its value [40–44], e.g.,
the formation of u − d quark Cooper pairs (2SC phase) [41].
In suchcases, asproposed inourpreviousstudy [18],wehave
included the third term in Eq. (6) to examine the effects
of quark matter symmetry energy Esym, which increases
with CI . As indicated in Fig. 5, we first fix δV
(¼ −1.5 × 10−10 MeV4) by reproducing the properties of
udQM nuggets and strangelets in the framework of TFA,
where the parameter set C ¼ 0.1,

ffiffiffiffi
D

p ¼ 150 MeV, and
CI ¼ 0 is adopted. Since the third term in Eq. (6) is propor-
tional to the baryon number density nb, the corresponding
contribution is thus insignificant in the surface region in

comparison with the first term (Dn−1=3b ), as it provides a
confining potential. In such cases, we expect varyingCI has
little impact on thevalues of δV ,where thevalue of δV fixed at
CI ¼ 0 is adopted for the cases with nonzero CI .
Similar to the cases in Fig. 4, it is found that udQM

nuggets indicated in Fig. 5 are more massive and positively
charged than strangelets, while the radii become larger as
well. We note that the udQM nugget at A ¼ 266 is more
stable than 266Hs adopting CI ¼ 0, which is forbidden since
no incidents of finite nuclei decaying into udQM nuggets
have been observed. This problem can be fixed if large
symmetry energies with CI ¼ 40 and 80 MeV fm3 are
adopted, where udQM nuggets become unstable compared
with finite nuclei. With the increase of Esym, there exist
udQM nuggets at A ≈ 1000 that are more stable than
others, where the energy per baryon is even smaller than
the infinite quark matter indicated by the half-solid tri-
angles in Fig. 5. In such cases, large udQM nuggets will
likely decay via fission and the surface of a udQM star will
fragment into a crust made of the udQM nuggets and
electrons, which resembles the cases of strange stars’ crusts
[27,28]. As Esym increases with CI, in contrast to the cases
predicting similar fZ’s with CI ¼ 0 in Fig. 4, the charge-to-
mass ratio of udQM nuggets increases with CI . Because of
the additional repulsive interactions from symmetry energy
and Coulomb repulsion with larger fZ, the ratio of root-
mean-square radius to baryon number r0 for udQM
nuggets becomes larger and increases with A, while that
of strangelets remains almost constant.

C. Compact stars

If either SQM or udQM becomes more stable than
nuclear matter, there should exist stable quark stars
composed of that matter, i.e., strange stars [11–13] or
udQM stars [19–23]. For most of the cases considered here,
we find that both strangelets and udQM nuggets become
more stable as baryon number A increases. Then a stable
quark star is bare on its surface, which is composed of a
sharp quark-vacuum interface covered by an electron cloud
about 1 Å thick. In addition to that, as indicated in Fig. 5,
there exist udQM nuggets at certain sizes (A ≈ 1000) that
are more stable than others if a large symmetry energy is
employed, which leads to the formation of stable quark star
crusts [18]. According to various investigations on strange
stars, it was shown that crusts made of strangelets and
electrons could exist if the surface tensions σ of SQM are
small enough [27,28]. Similar structures are thus expected
to be formed on a udQM star’s surface [18].
Now let us examine such possibilities for udQM stars in

the framework of TFA, where the microscopic structures
of their crusts are determined within a WS cell, i.e.,
adopting the single nucleus approximation. As an example,
we take the parameter set C ¼ 0.1,

ffiffiffiffi
D

p ¼ 150 MeV, and
CI ¼ 50 MeV fm3, so that udQM nuggets at A ≈ 1000 are
more stable than others with M=A < 930 MeV. Based on
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the numerical recipe introduced in Sec. II B, at fixed
average baryon number density nb, we search for the most
stable configuration among six types of structures (drop-
lets, rods, slabs, tubes, bubbles, and uniform) with optimum
WS cell sizes RW. For the nonuniform structures consid-
ered here, it is found that the droplet phase is the most
stable configuration, which is similar to strange stars’ crusts
according to previous investigations [28].
In Fig. 6, we present the density profiles of the droplet

phase at nb ¼ 1.3 × 10−4 and 10−5 fm−3, which is more
stable than other nonuniform structures with the energy per
baryon reduced by≳1 MeV. The densities of quarks remain
almost constant within the droplet and vanish at r > R with
R (¼ 16.5 and 12.5 fm) being the position of the quark-
vacuum interface. As we increase r, the density of u quarks
increases and that of d quarks decreases at r≳ R − 10 fm
due to Coulomb repulsion, both of which start to decrease at
r ≈ R − 3 fm under the impact of the density derivative term
in Eq. (1) and the confining potential. We have considered
the charge screening effects where the electrons move freely
and fulfill the constancy of chemical potential in Eq. (18). It
is found that R is much smaller than the optimum WS cell
radiusRW so that most of the space is occupied by electrons.
Since the obtained RW is rather large, as was done for the
outer crusts of neutron stars [84], we have divided the WS
cell into two parts at r ¼ Rin ¼ 60 fm, where the electron
density remains constant at r > Rin.
Based on the density profiles illustrated in Fig. 6, we can

fix the droplet size Rd with

Rd ¼ RW

�
9n2b

hðnu þ ndÞ2i
�

1=3

; ð22Þ

where hðnu þ ndÞ2i ¼
R ½nuðr⃗Þ þ ndðr⃗Þ�2d3r=V with V ¼

4πR3
W=3 being the WS cell volume. The corresponding

quantities that characterize the microscopic structures of
matter inside quark stars’ crusts are illustrated in Fig. 7,
where the droplet size Rd, WS cell radius RW, and baryon
number A are presented as functions of baryon number
density. It is found that inside the crusts of udQM stars
there typically exist udQM nuggets with Rd ≈ 12 fm that
arrange themselves in lattice structures, corresponding to
the most stable udQM nuggets at A ≈ 1000 as indicated in
Fig. 5. As the average baryon number density nb increases,
the size of udQM nuggets increases and eventually the
nonuniform structures become unstable in comparison with
the uniform one, indicating a core-crust transition density
for udQM stars. Meanwhile, theWS cell radius RW is much
larger than the droplet size Rd, which decreases as density
increases. In Fig. 7, we have also included the microscopic
structures of nuclear pasta in neutron stars, which shows the
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similar density-dependent behavior as those in udQM stars.
Nevertheless, the optimum droplet size, WS cell radius, and
baryon number are much smaller, which is mainly attrib-
uted to the much smaller energy contributions from the
surfaces of nuclei.
The equations of state (EOS) for dense stellar matter

inside udQM stars and neutron stars are then presented in
Fig. 8, where the corresponding microscopic structures
are indicated in Fig. 7. For the uniform matter in udQM
stars, the derivative terms in Eqs. (7)–(10) vanish so that
the corresponding properties of udQM can be obtained
easily by fulfilling the local charge neutrality conditionP

i qini¼0 and β-equilibrium condition μe¼μμ¼μd−μu.
In our previous study [18], we have neglected the effects of
charge screening and assumed vanishing surface tension, in
which case the EOS of the udQM stars’ crusts can be fixed
based on Gibbs construction, i.e.,

PQMðμb; μeÞ ¼ 0: ð23Þ
Here PQM represents the pressure of pure quark matter in
the absence of leptons and μb ¼ μu þ 2μd is the baryon
chemical potential. The volume fraction χ of quark matter
in udQM star crusts is fixed by fulfilling the global charge
neutrality condition

χ

�
2

3
nu −

1

3
nd

�
¼ ne: ð24Þ

According to Eq. (23), the pressure is solely from electrons
with P ¼ PeðμeÞ, while the energy density is given by

M=V ¼ χMQMðμb; μeÞ=V þMeðμeÞ=V: ð25Þ

The obtained results are then indicated by the blue solid
curve with larger pressure P in Fig. 8, which corresponds to
the limit of vanishing surface tension.

To fix the core-crust transition density indicated by the
open circles in Fig. 7, we consider the equilibrium con-
dition between the uniform and nonuniform phases with

PUniformðμtÞ ¼ PNonuniformðμtÞ ¼ Pt: ð26Þ

The EOS of udQM stars is then fixed by combining
the nonuniform one at μb ≤ μt and the uniform one at
μb > μt, which is indicated by the black curves in Fig. 8.
We note that there is a large discrepancy between the
electron chemical potentials of the two phases with
μUniforme ðμtÞ > μNonuniforme ðμtÞ. In such cases, similar to the
cases of a strange star enveloped by a nuclear crust [12],
there exists a gap of ≲1 Å between the crust and core for a
udQM star, which is supported by Coulomb interaction.
In principle, the phase equilibrium condition in Eq. (26)
is altered slightly under such circumstances with the
local electron chemical potential varying smoothly from
core to crust, e.g., similar to the cases illustrated in
Refs. [48,50,94,95]. Nevertheless, due to the effects of
charge screening, we expect such a variation in the core-
crust transition regions is insignificant for the masses and
radii of quark stars. Note that the gap vanishes if σ ¼ 0, i.e.,
those determined by Gibbs construction in Eqs. (23)–(25)
with the same electron chemical potentials for the uniform
and nonuniform phases at the core-crust transition regions
in udQM stars.
According to the left panel of Fig. 8, it is evident that

udQM is more stable than nuclear matter with larger
pressures. With neutrons dripping out of nuclei, there
exists a liquid-gas mixed phase that forms the inner crusts
of neutron stars, which is absent in udQM stars with the
crusts resembling the outer crusts of neutron stars. Because
of the additional contributions of neutron gas, the corre-
sponding core-crust transition pressure of dense stellar
matter in neutron stars is thus larger than that of udQM
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stars. The blue curves indicate the pressure of crustal matter
in udQM stars obtained with Gibbs construction, which
correspond to the cases with vanishing surface tension. In
comparison with the more realistic calculation adopting
TFA, the results obtained with Gibbs construction should
be viewed as an upper limit, which indicates a larger core-
crust transition pressure predicted by Eq. (23) with χ ¼ 1.
The EOS for the dense stellar matter in udQM stars and

neutron stars are then presented in the right panel of Fig. 8.
The electrons play a major role for the EOS of udQM stars’
crusts as well as neutron stars’ outer crusts, which exhibit
similar trends at M=V ≲ 0.1 MeV=fm3. As indicated in
Fig. 9, for those obtained with Gibbs construction, the
charge-to-mass ratio of udQM nuggets in udQM stars are
lager than that of nuclei in neutron stars, where the situation
reverses if we consider the interface effects with a density
derivative term in Eq. (2). Consequently, as the pressure
increases with electron density, the pressure of the crustal
matter in udQM stars at σ ¼ 0 is larger than neutron stars
and smaller if the more realistic calculation with TFA is
adopted. A density jump is observed at the core-crust
transition pressure in quark star matter, which becomes
less evident if Gibbs construction is adopted. This is
distinctively different from neutron star matter, where
the transition takes place smoothly with the formation of
a liquid-gas mixed phase, i.e., nuclear pastas.
In Fig. 9, we present the energy per baryon and charge-

to-mass ratio for dense stellar matter corresponding to the

EOS indicated in Fig. 8. The energy per baryon of quark
star matter is smaller than that of neutron star matter, which
is permitted by current constraints of nuclear physics since
finite nuclei do not decay into udQM nuggets as illustrated
in Fig. 4. We note there is a large density jump for the quark
star matter obtained with TFA, which decreases if we
reduce the energy contribution from the quark-vacuum
interface and vanishes at σ ¼ 0 as indicated by the blue
solid curve. In general, the obtained energy per baryon
increases with density, while the energy per baryon of
udQM becomes smaller if the contributions from the
quark-vacuum interface are neglected. The obtained
charge-to-mass ratio fZ for udQM nuggets are smaller
than nuclei in compact stars. Nevertheless, if the interface
effects are neglected, udQM nuggets become infinitesimal
and fZ increases to 0.5 as the energy contribution from the
Coulomb interaction vanishes.
Based on the EOSs of dense stellar matter in Fig. 8, the

structures of udQM stars and neutron stars can be fixed by
solving the Tolman-Oppenheimer-Volkov equation. Because
of the peculiar properties of EOS around the core-crust
transition densities, the obtained structures of compact stars
and, in particular, the crusts vary significantly under different
circumstances. To show this explicitly, in Fig. 10 we present
the density profiles of 1.4-solar-mass udQM stars and
neutron star, where for udQM stars both the realistic case
with TFA and the extreme case with σ ¼ 0 are illustrated. In
contrast to neutron stars, the density drops abruptly around
the core-crust transition regions, which is attributed to the
absence of inner crusts in udQM stars. The ∼200 m thick
crust is supported by the strong electric field of the core with
a gap of≲1 Å between them, which resembles the cases of a
strange star enveloped by a nuclear crust [12]. Nevertheless,
it is worth mentioning that the crust is stable and in
equilibrium with the core, where the baryon chemical
potentials take the same value. The drop of density becomes
less evident if the interface effects are neglected with the
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crust EOS fixed by Gibbs construction, which predicts
much thicker crusts (∼2 km) for udQM stars. Note that a
larger core-crust transition density is predicted by Gibbs
construction, while that of the realistic case with TFA may
be altered slightly depending on the electron chemical
potential and charge screening effects in the transition
region [48,50,94,95].
The mass-radius (M − R) relations of udQM stars,

neutron stars, udQM dwarfs, and white dwarfs obtained
under various circumstances are presented in Fig. 11, where
the parameter set C ¼ 0.1,

ffiffiffiffi
D

p ¼ 150 MeV, and CI ¼
50 MeV fm3 is employed. In the left panel, the M − R
relations for bare udQM stars and udQM stars with the
crust EOS fixed by TFA and Gibbs construction are
presented. The M − R relation of neutron stars obtained
with the covariant density functional DD-LZ1 [84,96] are
indicated for comparison. The shaded regions show the
constraints from the binary neutron star merger event
GW170817 within 90% credible region [97] and the pulse
profile modeling for PSR J0030þ 0451 and PSR J0740þ
6620 according to the Neutron Star Interior Composition
Explorer and x-ray multimirror–Newton data within 68%
credible region [98–101]. It is found that the udQM stars
are consistent with the recent constraints on the masses and
radii of pulsars, while the radii become slightly too large
if σ → 0. Nevertheless, we should mention that the tidal
deformability of those udQM stars (Λ1.4 ≈ 1050) is too
large according to the binary neutron star merger event
GW170817 [97], which may be fixed adopting different
parameters. The bare (unstable) udQM stars are obtained
with the EOS of uniform matter in Fig. 8, where the radii is
fixed at P ¼ 0. In such cases, the differences of radii
between udQM stars with and without crusts give roughly

the crust thickness, since both the phase equilibrium
conditions in Eqs. (23) and (26) predict core-crust tran-
sition pressure Pt ≈ 0. It is found that the crust thickness
is typically on the order of 200 m for udQM stars with
M ≳ 0.03 M⊙. The crust thickness grows significantly if
the energy contribution of the quark-vacuum interface is
neglected, which reaches a few kilometers for typical
udQM stars. In order to distinguish udQM stars from
neutron stars, we note that for realistic cases the radius of
udQM stars becomes rather small as the mass decreases,
which can be identified if there exist compact objects with
ultrasmall masses and radii, e.g., 4U 1746-37 [102].
In the right panel of Fig. 11, we present the M − R

relations of udQM dwarfs and white dwarfs adopting the
same parameter sets as in the left panel. Two types of white
dwarfs are examined, i.e., the catalyzed one that fulfills the
β-stability condition and the one with fZ ¼ 0.5, composed
of equal numbers of protons and neutrons. The observa-
tional masses and radii for white dwarfs in nearby visual
binaries Sirius B, Stein 2051 B, Procyon B, and 40 Eri B
are indicated with solid dots [103], which are slightly larger
than our predictions with fZ ¼ 0.5. Nevertheless, by
considering the effects of finite temperature and adopting
larger fZ, the masses and radii of white dwarfs should
increase. The masses of udQM dwarfs are found to be
larger than that of strangelet dwarfs [104], which is mainly
due to the larger charge-to-mass ratio of udQM nuggets.
The maximum mass of udQM dwarfs increases and
approaches the Chandrasekhar limit if the interface effects
are neglected, where the crustal EOS is fixed by Gibbs
construction. As indicated in Fig. 11, the masses and radii
of udQM dwarfs obtained at σ → 0 overlaps with those
of massive white dwarfs. In such cases, the possible
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observation of compact stars with masses and radii smaller
than traditional white dwarfs could be used to identify
udQM dwarfs [105].

IV. CONCLUSION

In this work, we examine the interface effects on various
types of quark matter objects, i.e., strangelets, udQM
nuggets, udQM stars, and udQM dwarfs. Particularly,
we show that the interface effects can be described by
introducing a density derivative term to the Lagrangian
density and adopting Thomas-Fermi approximation. By
adjusting the coupling constant δV for the density derivative
term, the properties of strangelets and udQM nuggets
obtained by solving Dirac equations are then reproduced
with Thomas-Fermi approximation. It is found that, adopt-
ing certain parameter sets, udQM nuggets at A≲ 300 are
unstable against decaying into nuclei but become stable
at large baryon numbers, which is consistent with current
nuclear physical constraints [16]. Additionally, if we
consider the cases with larger symmetry energies of quark
matter, there exist udQM nuggets at A ≈ 1000 that are more
stable than others. In such cases, large udQM nuggets will
decay via fission and the surface of a udQM star will
fragment into a crust made of the udQM nuggets and
electrons, which resembles the cases of strange stars’ crusts
[27,28]. We then examine the microscopic structures of
dense stellar matter in udQM stars’ crusts, where spherical
and cylindrical approximations for the Wigner-Seitz cell
are adopted [78–82]. It is found that the droplet phase is the

most stable configuration, which coincides with the strange
stars’ crusts according to previous investigations [28]. In
such cases, the crusts in the surface regions of udQM stars
are made of electrons and udQM nuggets in spherical shape
(A ≈ 1000). We then investigate the corresponding struc-
tures of udQM stars and udQM dwarfs. It is found that the
crust thickness is typically ∼200 m for udQM stars with
M ≳ 0.03 M⊙, which grows significantly and reaches a few
kilometers if the energy contribution of the quark-vacuum
interface is neglected. For udQM dwarfs, the masses and
radii are smaller than traditional white dwarfs, while the
maximum mass would increase and approach the
Chandrasekhar limit if the interface effects are neglected.
Further investigation on the effects of color supercon-

ductivity [29,106,107] and finite temperature [34,36] are
necessary, which are expected to affect the energy con-
tribution from the quark-vacuum interface and alter the
coupling constant δV for the density derivative term. In
addition to Coulomb interaction, there may be strong
attractive interactions among quark clusters, e.g., H-dibary-
ons [108–110], which could lead to the very interesting
conclusions of strangeon matter and strangeon stars
[111–113] and should be examined in our future study.

ACKNOWLEDGMENTS

This work was supported by National SKA Program of
China No. 2020SKA0120300 and National Natural Science
Foundation of China (Grants No. 11875052, No. 12005005,
and No. 11673002).

[1] A. R. Bodmer, Phys. Rev. D 4, 1601 (1971).
[2] E. Witten, Phys. Rev. D 30, 272 (1984).
[3] H. Terazawa, J. Phys. Soc. Jpn. 58, 3555 (1989).
[4] E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).
[5] M. S. Berger and R. L. Jaffe, Phys. Rev. C 35, 213 (1987).
[6] E. P. Gilson and R. L. Jaffe, Phys. Rev. Lett. 71, 332

(1993).
[7] G. X. Peng, X. J. Wen, and Y. D. Chen, Phys. Lett. B 633,

314 (2006).
[8] A. D. Rújula and S. L. Glashow, Nature (London) 312, 734

(1984).
[9] D. M. Lowder, Nucl. Phys. B, Proc. Suppl. 24, 177 (1991).

[10] J. Rafelski, L. Labun, and J. Birrell, Phys. Rev. Lett. 110,
111102 (2013).

[11] N. Itoh, Prog. Theor. Phys. 44, 291 (1970).
[12] C. Alcock, E. Farhi, and A. Olinto, Astrophys. J. 310, 261

(1986).
[13] P. Haensel, J. L. Zdunik, and R. Schaeffer, Astron. As-

trophys. 160, 121 (1986).
[14] M. Buballa and M. Oertel, Phys. Lett. B 457, 261 (1999).
[15] T. Klähn and T. Fischer, Astrophys. J. 810, 134 (2015).

[16] B. Holdom, J. Ren, and C. Zhang, Phys. Rev. Lett. 120,
222001 (2018).

[17] C.-J. Xia, S.-S. Xue, R.-X. Xu, and S.-G. Zhou, Phys. Rev.
D 101, 103031 (2020).

[18] L. Wang, J. Hu, C.-J. Xia, J.-F. Xu, G.-X. Peng, and R.-X.
Xu, Galaxies 9, 70 (2021).

[19] T. Zhao, W. Zheng, F. Wang, C.-M. Li, Y. Yan, Y.-F.
Huang, and H.-S. Zong, Phys. Rev. D 100, 043018 (2019).

[20] C. Zhang, Phys. Rev. D 101, 043003 (2020).
[21] Z. Cao, L.-W. Chen, P.-C. Chu, and Y. Zhou, arXiv:2009

.00942.
[22] C. Zhang and R. B. Mann, Phys. Rev. D 103, 063018

(2021).
[23] W.-L. Yuan, A. Li, Z. Miao, B. Zuo, and Z. Bai, Phys. Rev.

D 105, 123004 (2022).
[24] M. S. Berger, Phys. Rev. D 40, 2128 (1989).
[25] H. Heiselberg, Phys. Rev. D 48, 1418 (1993).
[26] M. G. Alford, K. Rajagopal, S. Reddy, and A.W. Steiner,

Phys. Rev. D 73, 114016 (2006).
[27] P. Jaikumar, S. Reddy, and A.W. Steiner, Phys. Rev. Lett.

96, 041101 (2006).

XIA, XU, PENG, and XU PHYS. REV. D 106, 034016 (2022)

034016-12

https://doi.org/10.1103/PhysRevD.4.1601
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1143/JPSJ.58.3555
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevC.35.213
https://doi.org/10.1103/PhysRevLett.71.332
https://doi.org/10.1103/PhysRevLett.71.332
https://doi.org/10.1016/j.physletb.2005.11.081
https://doi.org/10.1016/j.physletb.2005.11.081
https://doi.org/10.1038/312734a0
https://doi.org/10.1038/312734a0
https://doi.org/10.1016/0920-5632(91)90321-5
https://doi.org/10.1103/PhysRevLett.110.111102
https://doi.org/10.1103/PhysRevLett.110.111102
https://doi.org/10.1143/PTP.44.291
https://doi.org/10.1086/164679
https://doi.org/10.1086/164679
https://doi.org/10.1016/S0370-2693(99)00533-X
https://doi.org/10.1088/0004-637X/810/2/134
https://doi.org/10.1103/PhysRevLett.120.222001
https://doi.org/10.1103/PhysRevLett.120.222001
https://doi.org/10.1103/PhysRevD.101.103031
https://doi.org/10.1103/PhysRevD.101.103031
https://doi.org/10.3390/galaxies9040070
https://doi.org/10.1103/PhysRevD.100.043018
https://doi.org/10.1103/PhysRevD.101.043003
https://arXiv.org/abs/2009.00942
https://arXiv.org/abs/2009.00942
https://doi.org/10.1103/PhysRevD.103.063018
https://doi.org/10.1103/PhysRevD.103.063018
https://doi.org/10.1103/PhysRevD.105.123004
https://doi.org/10.1103/PhysRevD.105.123004
https://doi.org/10.1103/PhysRevD.40.2128
https://doi.org/10.1103/PhysRevD.48.1418
https://doi.org/10.1103/PhysRevD.73.114016
https://doi.org/10.1103/PhysRevLett.96.041101
https://doi.org/10.1103/PhysRevLett.96.041101


[28] M. Alford and D. Eby, Phys. Rev. C 78, 045802 (2008).
[29] M. Oertel and M. Urban, Phys. Rev. D 77, 074015 (2008).
[30] L. F. Palhares and E. S. Fraga, Phys. Rev. D 82, 125018

(2010).
[31] M. B. Pinto, V. Koch, and J. Randrup, Phys. Rev. C 86,

025203 (2012).
[32] D. Kroff and E. S. Fraga, Phys. Rev. D 91, 025017 (2015).
[33] A. F. Garcia and M. B. Pinto, Phys. Rev. C 88, 025207

(2013).
[34] W.-Y. Ke and Y.-X. Liu, Phys. Rev. D 89, 074041 (2014).
[35] B. W. Mintz, R. Stiele, R. O. Ramos, and J. Schaffner-

Bielich, Phys. Rev. D 87, 036004 (2013).
[36] F. Gao and Y.-x. Liu, Phys. Rev. D 94, 094030 (2016).
[37] C.-J. Xia, G.-X. Peng, T.-T. Sun, W.-L. Guo, D.-H. Lu, and

P. Jaikumar, Phys. Rev. D 98, 034031 (2018).
[38] E. S. Fraga, M. Hippert, and A. Schmitt, Phys. Rev. D 99,

014046 (2019).
[39] G. Lugones and A. G. Grunfeld, Phys. Rev. C 99, 035804

(2019).
[40] P.-C. Chu and L.-W. Chen, Astrophys. J. 780, 135 (2014).
[41] K. S. Jeong and S. H. Lee, Nucl. Phys. A945, 21 (2016).
[42] L.-W. Chen, Nucl. Phys. Rev. 34, 20 (2017).
[43] P.-C. Chu, Y. Zhou, X. Qi, X.-H. Li, Z. Zhang, and Y.

Zhou, Phys. Rev. C 99, 035802 (2019).
[44] X. Wu, A. Ohnishi, and H. Shen, AIP Conf. Proc. 2127,

020032 (2019).
[45] G. Lugones and A. G. Grunfeld, Phys. Rev. C 103, 035813

(2021).
[46] G. Lugones, A. Grunfeld, and M. A. Ajmi, Phys. Rev. C

88, 045803 (2013).
[47] G. Lugones and A. G. Grunfeld, Phys. Rev. D 104,

L101301 (2021).
[48] C.-J. Xia, G.-X. Peng, E.-G. Zhao, and S.-G. Zhou, Sci.

Bull. 61, 172 (2016).
[49] C.-J. Xia, Sci. Sin.-Phys. Mech. Astron. 46, 012021 (2016)

(in Chinese).
[50] C.-J. Xia, G.-X. Peng, E.-G. Zhao, and S.-G. Zhou, Phys.

Rev. D 93, 085025 (2016).
[51] C.-J. Xia, J. Phys. 861, 012022 (2017).
[52] C.-J. Xia and S.-G. Zhou, Nucl. Phys. B916, 669 (2017).
[53] J. Madsen, Phys. Rev. Lett. 70, 391 (1993).
[54] J. Madsen, Phys. Rev. D 47, 5156 (1993).
[55] J. Madsen, Phys. Rev. D 50, 3328 (1994).
[56] M. S. Berger and R. L. Jaffe, Phys. Rev. C 44, 566 (1991).
[57] G. X. Peng, H. C. Chiang, B. S. Zou, P. Z. Ning, and S. J.

Luo, Phys. Rev. C 62, 025801 (2000).
[58] X. J. Wen, X. H. Zhong, G. X. Peng, P. N. Shen, and P. Z.

Ning, Phys. Rev. C 72, 015204 (2005).
[59] X. J. Wen, G. X. Peng, and Y. D. Chen, J. Phys. G 34, 1697

(2007).
[60] C.-J. Xia, S.-W. Chen, and G.-X. Peng, Sci. China-Phys.

Mech. Astron. 57, 1304 (2014).
[61] S.-W. Chen, L. Gao, and G.-X. Peng, Chin. Phys. C 36,

947 (2012).
[62] Q. Chang, S.-W. Chen, G.-X. Peng, and J.-F. Xu, Sci.

China-Phys. Mech. Astron. 56, 1730 (2013).
[63] C. J. Xia, G. X. Peng, S. W. Chen, Z. Y. Lu, and J. F. Xu,

Phys. Rev. D 89, 105027 (2014).
[64] J.-X. Hou, G.-X. Peng, C.-J. Xia, and J.-F. Xu, Chin. Phys.

C 39, 015101 (2015).

[65] C. Peng, G.-X. Peng, C.-J. Xia, J.-F. Xu, and S.-P. Zhang,
Nucl. Sci. Tech. 27, 98 (2016).

[66] P.-C. Chu and L.-W. Chen, Phys. Rev. D 96, 083019
(2017).

[67] C.-J. Xia, AIP Conf. Proc. 2127, 020029 (2019).
[68] M. Buballa and S. Carignano, Prog. Part. Nucl. Phys. 81,

39 (2015).
[69] G. N. Fowler, S. Raha, and R. M.Weiner, Z. Phys. C 9, 271

(1981).
[70] Particle Data Group, Chin. Phys. C 40, 100001 (2016).
[71] G. X. Peng, H. C. Chiang, J. J. Yang, L. Li, and B. Liu,

Phys. Rev. C 61, 015201 (1999).
[72] G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).
[73] H. Lenske and C. Fuchs, Phys. Lett. B 345, 355 (1995).
[74] P. Wang, Phys. Rev. C 62, 015204 (2000).
[75] J. R. Torres and D. P. Menezes, Europhys. Lett. 101, 42003

(2013).
[76] V. Dexheimer, J. Torres, and D. Menezes, Eur. Phys. J. C

73, 2569 (2013).
[77] S. Levit, Phys. Lett. 139B, 147 (1984).
[78] C. Pethick and A. Potekhin, Phys. Lett. B 427, 7 (1998).
[79] K. Oyamatsu, Nucl. Phys. A561, 431 (1993).
[80] T. Maruyama, T. Tatsumi, D. N. Voskresensky, T.

Tanigawa, and S. Chiba, Phys. Rev. C 72, 015802 (2005).
[81] H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H.

Suzuki, and M. Takano, Nucl. Phys. A961, 78 (2017).
[82] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi,

Astrophys. J. 197, 20 (2011).
[83] C.-J. Xia, T. Maruyama, N. Yasutake, T. Tatsumi, and

Y.-X. Zhang, Phys. Rev. C 103, 055812 (2021).
[84] C.-J. Xia, B. Y. Sun, T. Maruyama, W.-H. Long, and A. Li,

Phys. Rev. C 105, 045803 (2022).
[85] T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys.

Rev. D 12, 2060 (1975).
[86] A. Bernotas and V. Šimonis, Nucl. Phys. A741, 179

(2004).
[87] Y. Maezawa, T. Hatsuda, and S. Sasaki, Prog. Theor. Phys.

114, 317 (2005).
[88] M. Oka, K. Shimizu, and K. Yazaki, Phys. Lett. 130B, 365

(1983).
[89] U. Straub, Z.-Y. Zhang, K. Brauer, A. Faessler, and S.

Khadkikar, Phys. Lett. B 200, 241 (1988).
[90] S. N. Jena, P. Panda, and T. C. Tripathy, Phys. Rev. D 63,

014011 (2000).
[91] G. Audi, F. G. Kondev, M. Wang, W. Huang, and S. Naimi,

Chin. Phys. C 41, 030001 (2017).
[92] W. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and

X. Xu, Chin. Phys. C 41, 030002 (2017).
[93] M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and

X. Xu, Chin. Phys. C 41, 030003 (2017).
[94] R. Belvedere, D. Pugliese, J. A. Rueda, R. Ruffini, and

S.-S. Xue, Nucl. Phys. A883, 1 (2012).
[95] J. A. Rueda, R. Ruffini, Y.-B. Wu, and S.-S. Xue, Phys.

Rev. C 89, 035804 (2014).
[96] B. Wei, Q. Zhao, Z.-H. Wang, J. Geng, B.-Y. Sun, Y.-F.

Niu, and W.-H. Long, Chin. Phys. C 44, 074107 (2020).
[97] LIGO Scientific and Virgo Collaborations, Phys. Rev. Lett.

121, 161101 (2018).
[98] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M.

Ludlam, S. Guillot, Z. Arzoumanian, C. L. Baker, A. V.

INTERFACE EFFECTS OF QUARK MATTER: LIGHT-QUARK … PHYS. REV. D 106, 034016 (2022)

034016-13

https://doi.org/10.1103/PhysRevC.78.045802
https://doi.org/10.1103/PhysRevD.77.074015
https://doi.org/10.1103/PhysRevD.82.125018
https://doi.org/10.1103/PhysRevD.82.125018
https://doi.org/10.1103/PhysRevC.86.025203
https://doi.org/10.1103/PhysRevC.86.025203
https://doi.org/10.1103/PhysRevD.91.025017
https://doi.org/10.1103/PhysRevC.88.025207
https://doi.org/10.1103/PhysRevC.88.025207
https://doi.org/10.1103/PhysRevD.89.074041
https://doi.org/10.1103/PhysRevD.87.036004
https://doi.org/10.1103/PhysRevD.94.094030
https://doi.org/10.1103/PhysRevD.98.034031
https://doi.org/10.1103/PhysRevD.99.014046
https://doi.org/10.1103/PhysRevD.99.014046
https://doi.org/10.1103/PhysRevC.99.035804
https://doi.org/10.1103/PhysRevC.99.035804
https://doi.org/10.1088/0004-637X/780/2/135
https://doi.org/10.1016/j.nuclphysa.2015.09.010
https://doi.org/10.11804/NuclPhysRev.34.01.020
https://doi.org/10.1103/PhysRevC.99.035802
https://doi.org/10.1063/1.5117822
https://doi.org/10.1063/1.5117822
https://doi.org/10.1103/PhysRevC.103.035813
https://doi.org/10.1103/PhysRevC.103.035813
https://doi.org/10.1103/PhysRevC.88.045803
https://doi.org/10.1103/PhysRevC.88.045803
https://doi.org/10.1103/PhysRevD.104.L101301
https://doi.org/10.1103/PhysRevD.104.L101301
https://doi.org/10.1007/s11434-015-0982-x
https://doi.org/10.1007/s11434-015-0982-x
https://doi.org/10.1360/SSPMA2015-00516
https://doi.org/10.1103/PhysRevD.93.085025
https://doi.org/10.1103/PhysRevD.93.085025
https://doi.org/10.1088/1742-6596/861/1/012022
https://doi.org/10.1016/j.nuclphysb.2017.01.022
https://doi.org/10.1103/PhysRevLett.70.391
https://doi.org/10.1103/PhysRevD.47.5156
https://doi.org/10.1103/PhysRevD.50.3328
https://doi.org/10.1103/PhysRevC.44.566.2
https://doi.org/10.1103/PhysRevC.62.025801
https://doi.org/10.1103/PhysRevC.72.015204
https://doi.org/10.1088/0954-3899/34/7/010
https://doi.org/10.1088/0954-3899/34/7/010
https://doi.org/10.1007/s11433-014-5452-y
https://doi.org/10.1007/s11433-014-5452-y
https://doi.org/10.1088/1674-1137/36/10/005
https://doi.org/10.1088/1674-1137/36/10/005
https://doi.org/10.1007/s11433-013-5160-z
https://doi.org/10.1007/s11433-013-5160-z
https://doi.org/10.1103/PhysRevD.89.105027
https://doi.org/10.1088/1674-1137/39/1/015101
https://doi.org/10.1088/1674-1137/39/1/015101
https://doi.org/10.1007/s41365-016-0095-5
https://doi.org/10.1103/PhysRevD.96.083019
https://doi.org/10.1103/PhysRevD.96.083019
https://doi.org/10.1063/1.5117819
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1007/BF01410668
https://doi.org/10.1007/BF01410668
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevC.61.015201
https://doi.org/10.1103/PhysRevLett.66.2720
https://doi.org/10.1016/0370-2693(94)01664-X
https://doi.org/10.1103/PhysRevC.62.015204
https://doi.org/10.1209/0295-5075/101/42003
https://doi.org/10.1209/0295-5075/101/42003
https://doi.org/10.1140/epjc/s10052-013-2569-5
https://doi.org/10.1140/epjc/s10052-013-2569-5
https://doi.org/10.1016/0370-2693(84)91232-2
https://doi.org/10.1016/S0370-2693(98)00341-4
https://doi.org/10.1016/0375-9474(93)90020-X
https://doi.org/10.1103/PhysRevC.72.015802
https://doi.org/10.1016/j.nuclphysa.2017.02.010
https://doi.org/10.1088/0067-0049/197/2/20
https://doi.org/10.1103/PhysRevC.103.055812
https://doi.org/10.1103/PhysRevC.105.045803
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1016/j.nuclphysa.2004.05.017
https://doi.org/10.1016/j.nuclphysa.2004.05.017
https://doi.org/10.1143/PTP.114.317
https://doi.org/10.1143/PTP.114.317
https://doi.org/10.1016/0370-2693(83)91523-X
https://doi.org/10.1016/0370-2693(83)91523-X
https://doi.org/10.1016/0370-2693(88)90763-0
https://doi.org/10.1103/PhysRevD.63.014011
https://doi.org/10.1103/PhysRevD.63.014011
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1088/1674-1137/41/3/030002
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1016/j.nuclphysa.2012.02.018
https://doi.org/10.1103/PhysRevC.89.035804
https://doi.org/10.1103/PhysRevC.89.035804
https://doi.org/10.1088/1674-1137/44/7/074107
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101


Bilous, D. Chakrabarty, K. C. Gendreau, A. K. Harding,
W. C. G. Ho, J. M. Lattimer, S. M. Morsink, and T. E.
Strohmayer, Astrophys. J. 887, L21 (2019).

[99] T. E. Riley et al., Astrophys. J. 918, L27 (2021).
[100] M. C. Miller et al., Astrophys. J. 887, L24 (2019).
[101] M. C. Miller et al., Astrophys. J. 918, L28 (2021).
[102] Z.-S. Li, Z.-J. Qu, L. Chen, Y.-J. Guo, J.-L. Qu, and R.-X.

Xu, Astrophys. J. 798, 56 (2015).
[103] H. E. Bond, P. Bergeron, and A. Bédard, Astrophys. J. 848,

16 (2017).
[104] M. G. Alford, S. Han, and S. Reddy, J. Phys. G 39, 065201

(2012).
[105] A. Kurban, Y.-F. Huang, J.-J. Geng, and H.-S. Zong, Phys.

Lett. B 832, 137204 (2022).

[106] M. Alford, K. Rajagopal, S. Reddy, and F. Wilczek, Phys.
Rev. D 64, 074017 (2001).

[107] J. Madsen, Phys. Rev. Lett. 87, 172003 (2001).
[108] T. Sakai, J. Mori, A. Buchmann, K. Shimizu, and K.

Yazaki, Nucl. Phys. A625, 192 (1997).
[109] N. K. Glendenning and J. Schaffner-Bielich, Phys. Rev. C

58, 1298 (1998).
[110] X. Y. Lai, C. Y. Gao, and R. X. Xu, Mon. Not. R. Astron.

Soc. 431, 3282 (2013).
[111] R.-X. Xu, Astrophys. J. 596, L59 (2003).
[112] W. Wang, J. Lu, H. Tong, M. Ge, Z. Li, Y. Men, and R. Xu,

Astrophys. J. 837, 81 (2017).
[113] Z.-Q. Miao, C.-J. Xia, X.-Y. Lai, T. Maruyama, R.-X. Xu,

and E.-P. Zhou, Int. J. Mod. Phys. E 31, 2250037 (2022).

XIA, XU, PENG, and XU PHYS. REV. D 106, 034016 (2022)

034016-14

https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.1088/0004-637X/798/1/56
https://doi.org/10.3847/1538-4357/aa8a63
https://doi.org/10.3847/1538-4357/aa8a63
https://doi.org/10.1088/0954-3899/39/6/065201
https://doi.org/10.1088/0954-3899/39/6/065201
https://doi.org/10.1016/j.physletb.2022.137204
https://doi.org/10.1016/j.physletb.2022.137204
https://doi.org/10.1103/PhysRevD.64.074017
https://doi.org/10.1103/PhysRevD.64.074017
https://doi.org/10.1103/PhysRevLett.87.172003
https://doi.org/10.1016/S0375-9474(97)00492-2
https://doi.org/10.1103/PhysRevC.58.1298
https://doi.org/10.1103/PhysRevC.58.1298
https://doi.org/10.1093/mnras/stt407
https://doi.org/10.1093/mnras/stt407
https://doi.org/10.1086/379209
https://doi.org/10.3847/1538-4357/aa5e52
https://doi.org/10.1142/S0218301322500379

