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We derive the dependence of the leading-twist pion light-cone distribution amplitude (LCDA) on a
parton momentum fraction x by directly solving the dispersion relations for the moments with inputs from
the operator product expansion (OPE) of the corresponding correlation function. It is noticed that these
dispersion relations must be organized into those for the Gegenbauer coefficients first in order to avoid the
ill-posed problem appearing in the conversion from the moments to the Gegenbauer coefficients. Given the
values of various condensates in the OPE, we find solutions for the pion LCDA, which are convergent and
stable in the Gegenbauer expansion. Moreover, the solution from summing contributions up to 18
Gegenbauer polynomials is smooth, and can be well approximated by a function proportional to xpð1 − xÞp
with p ≈ 0.45 at the scale μ ¼ 2 GeV. Turning off the condensates, we get the asymptotic form for the pion
LCDA as expected. We then solve for the pion LCDA at a different scale μ ¼ 1.5 GeVwith the condensate
inputs at this μ, and demonstrate that the result is consistent with the one obtained by evolving the
Gegenbauer coefficients from μ ¼ 2 GeV to 1.5 GeV. That is, our formalism is compatible with the QCD
evolution. The strength of the above framework that goes beyond analyses limited to only the first few
moments of a LCDA in conventional QCD sum rules is highlighted. The precision of our results can be
improved systematically by including higher-order and higher-power terms in the OPE.

DOI: 10.1103/PhysRevD.106.034015

I. INTRODUCTION

A light-cone distribution amplitude (LCDA), which
describes the momentum fraction distribution of a parton
in a hadron, is a nonperturbative fundamental input to the
collinear factorization for exclusive QCD processes with a
large energy scale Q [1]. When the factorization holds,
infrared divergences in radiative corrections to a process are
absorbed into hadron LCDAs, and the remnant, being
infrared finite, is calculable at the parton level in perturba-
tion theory. A physical quantity is then factorized into a
convolution of a hard kernel with hadron LCDAs in parton
momentum fractions. The corresponding factorization theo-
rem should be proved to all orders in the strong coupling
αs and to certain power in 1=Q. A LCDA, despite being
nonperturbative, is universal, i.e., process independent.
With this universality, a LCDA, determined by nonpertur-
bative methods or extracted from experimental data, can be
employed to make predictions for other exclusive processes
involving the same hadron. Accurate knowledge of hadron
LCDAs is thus crucial for enhancing the precision of
predictions from the factorization theorem, and helps

probing possible new physics in exclusive processes, such
as exclusive B meson decays.
Tremendous efforts have been devoted to the derivation of

hadrn LCDAs in the literature [2], all of which have their
own strength and weakness. Lattice QCD [3–14], as a first-
principle method, is powerful for extracting information of
LCDAs. However, the computation is usually limited to the
first few moments, which are not sufficient to reconstruct the
complete dependence on a parton momentum fraction x.
Though the formulation based on the quasicorrelation
function [15] or Euclidean correlation functions in general
[16–20] allows access to LCDAs in the entire x range, the
behavior near the endpoints of x cannot be reliably predicted
[21–23]. QCD sum rules, as one of the major analytical
approaches to nonperturbative quantities, have been applied
to studies of hadron LCDAs extensively [24–33]. Besides
the restriction to analyses of the first few moments, it is hard
to estimate theoretical uncertainties arising from the naive
parametrization of spectral densities based on the quark-
hadron duality. Using the Dyson-Schwinger equations,
one can calculate arbitrarily many moments of a LCDA
in principle [34–36]. Nevertheless, results depend on the
kernels adopted for solving the corresponding gap and
Bethe-Salpeter equations [34]: the rainbow-ladder and
dynamical-chiral-symmetry-breaking-improved kernels lead
to the Gegenbauer coefficient aπ2 ¼ 0.23 and aπ2 ¼ 0.15 at
the scale of 2 GeV, respectively, which are quite different.
The Gegenbauer coefficients in meson LCDAs were
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determined through a global fit of perturbative QCD
factorization formulas to measured branching ratios and
direct CP asymmetries in hadronic two-body B meson
decays recently [37]. However, this phenomenological
approach relies on the precision of both the theoretical
framework and experimental data sensitively.
We proposed to handle QCD sum rules [38] for non-

pertrbative observables, such as the ρ meson mass, as an
inverse problem in [39]. The spectral density on the hadron
side of a dispersion relation, established from a correlation
function, is regarded as an unknown. The operator product
expansion (OPE) for the correlation function on the quark
side is calculated in the standard way without ambiguity like
choices of the gap and Bethe-Salpeter kernels. The spectral
density, including both resonance and continuum contribu-
tions, is then derived by solving the dispersion relation as an
inverse problem with the OPE inputs. This formalism does
not involve a continuum threshold, because the continuum
contribution is supposed to be a smooth function, and may
deviate from the perturbative one (the quark-hadron duality
is likely to be broken). It does not require a Borel trans-
formation to suppress the continuum contribution and
higher-power corrections to the OPE, and needs no discre-
tionary stability criteria [40,41] as usually postulated in
conventional sum rules, once a dispersion relation is solved
directly. The long-existing concern on the rigorousness and
predictive power of QCD sum rules [42,43] is then resolved.
As an example, we demonstrated how to extract the masses
and decay constants of the series of ρ resonances from the
dispersion relation obeyed by a two-current correlator [39].
We then developed an inverse matrix method to solve for
scalar and pseudoscalar glueball masses from the corre-
sponding dispersion relations [44]. This new viewpoint,
based only on the analyticity of physical observables, has
been extended to the explanation of the D meson mixing
parameters [45] and to the constraint on the hadronic
vacuum polarization contribution to the muon anomalous
magnetic moment [46].
We will apply the inverse matrix method developed in

[44] to solve the dispersion relations for the moments of
the leading-twist pion LCDAwith the OPE inputs given in
[32]. The naive parametrization based on the quark-
hadron duality and the discretionary requirement on the
balance between perturbatve and condensate contributions
to the OPE in conventional sum rules are not necessary.
These improvements allow access to all moments of a
LCDA as explained later. Since the buildup of an OPE
is standard and reliable in the deep Euclidean region,
the precision of our predictions can be enhanced by
including higher-order and higher-power contributions
on the quark side systematically. We present the results
of the moments hξ2i ¼ 0.2672, hξ4i ¼ 0.1333, hξ6i¼
0.0871, hξ8i¼0.0658, hξ10i¼0.0546, hξ12i¼0.0480;…,
at the scale of 2 GeV, which exhibit good convergence.
The value of the second moment hξ2i is consistent with

those from sum rules [32] and lattice QCD [14], but lower
than from the global fit to the data of hadronic two-body B
meson decays [37]. Note that the global analysis in [37] is
based on the leading-order factorization formulas, so its
results are expected to be modified by subleading effects.
In principle, we can evaluate the moments higher than
hξ12i in our formalism, but will not continue due to the
reason below.
To construct the x dependence of the pion LCDA from

the obtained moments, one converts the moments to the
Gegenbauer coefficients, and then adds up the contributions
from the Gegenbauer polynomials multiplied by the corre-
sponding Gegenbauer coefficients. However, this conver-
sion involves a matrix, whose elements grow dramatically
fast with the number of moments, i.e., the dimension of the
matrix. Tiny errors in the obtained moments are then
enlarged significantly during the conversion, such that
the Gegenbauer coefficients go out of control unavoidably,
as noticed in [32]. It turns out that the resultant pion LCDA
becomes unstable in the Gegenbauer expansion, and reveals
violent oscillations in the x distribution. To overcome
the difficulty, which originates from an ill-posed nature,
we first organize the dispersion relations into those for the
Gegenbauer coefficients using the aforementioned matrix.
A regulator is introduced into the matrix to stabilize the
solutions for the Gegenbauer coefficients. It will be shown
that these solutions are convergent with the number of
Gegenbauer coefficients, and insensitive to the regulariza-
tion. Moreover, the shape of the pion LCDA is smooth after
summing the contributions up to 18 Gegenbauer polyno-
mials, which can be well described by a function propor-
tional to xpð1 − xÞp with p ¼ 0.45� 0.02 at the scale
μ ¼ 2 GeV. This shape is close to the one from the
dynamical-chiral-symmetry-breaking-improved kernel for
the Dyson-Schwinger equations [34,47], and a bit narrower
than the recent lattice QCD calculation based on the quasi-
light-front correlation function [23].
We stress that the pion LCDA can be derived at any scale

μ in our framework by choosing the condensate values in the
OPE at a designated μ. On the other hand, each of the
Gegenbauer coefficients in a LCDA follows the well-known
QCD evolution governed by a specific anomalous dimen-
sion. Hence, it is worth investigating howwell our method is
compatible with the QCD evolution. To do it, we solve for
the pion LCDA at another scale μ, say μ ¼ 1.5 GeV,
directly from the dispersion relations with the inputs at
this μ, and also get the pion LCDA at μ ¼ 1.5 GeV through
the evolution of the Gegenbauer coefficients obtained at
μ ¼ 2 GeV. It will be observed that these two results agree
with each other within theoretical uncertainties. We specu-
late that their minor distinction is attributed to the incom-
plete μ dependence of the currently available OPE, and that
the inclusion of higher-order contributions into the OPE will
improve the agreement. The above investigation supports
the consistency of our formalism.
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The rest of the paper is organized as follows. In Sec. II
we establish the dispersion relations for the moments and
for the Gegenbauer coefficients of the pion LCDA, and
highlight their advantages over conventional sum rules. The
inverse matrix method to solve the dispersion relations is
also elaborated. In Sec. III we first validate our approach by
solving for a sample LCDA from the dispersion relations
with the inputs of the mock data, which are generated
by the sample LCDA. The successful reproduction of the
sample LCDA from the mock data encourages the appli-
cation to exploring the realistic pion LCDA. The dispersion
relations are then solved with the condensate inputs given
in the literature, and the moments and the Gegenbauer
coefficients of the pion LCDA are determined. In particular,
we get the asymptotic form for the pion LCDA in the
absence of the condensates. The theoretical uncertainty

mainly comes from the dimension-six condensates, which
cause about 10% errors to our results. The stability and
reliability of the obtained LCDA, and the compatibility of
our formalism with the QCD evolution are also justified.
Section IV contains the conclusion and outlook. The
reformulation of the dispersion relations to facilitate the
inverse matrix method is detailed in the Appendix.

II. FORMALISM

The sum rules for the leading-twist pion LCDA were
deduced from a two-point correlation function in the
framework of the background field theory [25,31], and
refined, together with the numerical analysis, in [32]. To
illustrate their restrictive application to the derivation of the
moments, we quote the explicit expression

f2πhξnihξ0i
M2em

2
π=M2 ¼ 3

4π2ðnþ 1Þðnþ 3Þ ð1 − e−sπ=M
2Þ þmuhūui þmdhd̄di

M4
þ 1

12π

hαsG2i
M4

−
8nþ 1

18

muhgsūσTGui þmdhgsd̄σTGdi
M6

þ 2ð2nþ 1Þ
81

hgsūui2 þ hgsd̄di2
M6

−
nθðn − 2Þ

48π2
hg3sfG3i

M6

þ 1

486π2

�
½2ð51nþ 25Þ − 2nθðn − 2Þ� lnM

2

μ2
þ Cn

�P
u;d;shg2s ψ̄ψi2

M6
; ð1Þ

with the coefficient

Cn ¼ 3ð17nþ 35Þ þ θðn − 2Þ
�
49n2 þ 100nþ 56

n

− 25ð2nþ 1Þ
�
ψ

�
nþ 1

2

�
− ψ

�
n
2

�
þ ln 4�

�
: ð2Þ

The left-hand side of Eq. (1) arises form the pion pole
contribution, where fπ (mπ) is the pion decay constant
(mass),M is the Borel mass, and the nth moment hξni with
ξ ¼ 2x − 1 is defined via the pion LCDA ϕπðxÞ by

hξni≡
Z

1

0

dxð2x − 1ÞnϕπðxÞ: ð3Þ

The right-hand side is a result of the OPE for the two-point
correlation function, where the first term denotes the
perturbative contribution with the threshold sπ being in-
troduced through the parametrization of the continuum
contribution based on the quark-hadron duality, the others
are the power corrections proportional to various quark and
gluon condensates with the light quark masses mu and md,
and the strong coupling gs. The θ-function θðn − 2Þ takes
the value of unity as n ≥ 2, and ψ in Eq. (2) represents the
polygamma function. As to the notations in the condensates,
G (ψ ¼ u, d, or s) is the gluon (quark) field, σ (T) stands for

a Dirac-gamma (color) matrix, and f abbreviates a SU(3)
structure constant.
It is immediately noticed that the perturbative (con-

densate) contribution decreases (increases) with the integer
n. Namely, the convergence of the OPE deteriorates with n,
such that the calculation of higher moments is not reliable.
One may choose a large M to suppress the power
corrections. At the same time, the value of sπ should
not exceed the mass squared of the next excited state,
otherwise the single-pole parametrization, which leads to
Eq. (1), fails. The factor 1 − e−sπ=M

2

, diminishing with M
for a finite sπ, then lowers the perturbative contribution.
Therefore, lifting M does not improve the convergence of
the OPE effectively, and it is why sum-rule analyses are
limited to the first few moments. A discretionary criterion
was imposed on the power corrections with the dimension-
six contribution to a moment being smaller than 5% of the
total one in [32]. Combining the other criteria with the
perturbative contributions being above 30%, 35%, 40%,
40%, 40% for n ¼ 2, 4, 6, 8, 10, respectively, the authors
fixed the Borel windows in M, within which the corre-
sponding moments were computed [32]. It is obvious that
the above prescriptions induce theoretical uncertainties,
which are not easy to estimate rigorously. Moreover,
extracting the Gegenbauer coefficients from the moments,
i.e., the conversion from the Mellin space to the x space is
also an ill-posed problem, and suffers large uncertainties,
especially when many moments are involved. That is,
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getting more moments will not guarantee the uncovering
of the correct x dependence of a LCDA, if the precision of
the moments is not high enough. This is another major
obstacle for applying conventional sum rules to studies of
LCDAs. As shown in Sec. III, the difficulty and ambiguity
encountered in conventional sum rules can be avoided in
our formalism.
Note that the sum rules in Eq. (1) have to be reformu-

lated in order to be employed in our framework. The last
line contains the power-suppressed logarithm lnM2=M6,
which is proportional to lnð−q2Þ=ðq2Þ3 before the Borel
transformation, q being the momentum flowing through
the correlation function. To implement the inverse matrix
method in [44], both sides of a dispersion relation must be
expanded into power series in 1=q2 [without the logarithm
lnð−q2Þ], because the matrix equation to be solved is
constructed by equating the coefficients of each power
in 1=q2 on the two sides. If the logarithm exists, such
equating of the coefficients will not be legitimate. Hence,
the power-suppressed logarithm needs to be handled in a
nontrivial way to be explained in the next subsection. We
mention that choosing the scale μ2 ¼ q2 does not resolve
this issue, which just moves the logarithmic dependence to
the strong coupling constant αsðq2Þ in the OPE.

A. Reformulation of the dispersion relation

We consider the same correlation function Inðq2Þ as in
[32], and write the identity

Inðq2Þ ¼ lim
r→0

1

π

Z
R

r
ds

ImInðsÞ
s − q2

þ 1

2πi

Z
CR

ds
Ipertn ðsÞ
s − q2

; ð4Þ

by following the procedure in [44]. The contour on the
right-hand side of Eq. (4) consists of two pieces of
horizontal paths above and below the branch cut along
the positive real axis on the complex s plane and a
counterclockwise circle CR of large radius R [44]. The
spectral density ImInðsÞ=π is the unknown function, which
collects nonperturbative contributions from the low s
region, and the perturbative piece Ipertn ðsÞ is chosen as an
appropriate expression for InðsÞ in the region far away from
physical poles. The idea of reformulating the dispersion
relation is to absorb the power-suppressed logarithmic term
in the OPE, together with the perturbative contribution, into
the contour integration of Ipertn ðsÞ,

IOPEn ðq2Þ ¼ 1

2πi

I
ds

Ipertn ðsÞ
s − q2

þ Icondn ðq2Þ; ð5Þ

Icondn ðq2Þ

¼ muhūui þmdhd̄di
ðq2Þ2 þ 1

12π

hαsG2i
ðq2Þ2

þ 8nþ 1

9

muhgsūσTGui þmdhgsd̄σTGdi
ðq2Þ3

þ nθðn − 2Þ
24π2

hg3sfG3i
ðq2Þ3 −

4ð2nþ 1Þ
81

hgsūui2 þ hgsd̄di2
ðq2Þ3

−
Cn

243π2

P
u;d;shg2s ψ̄ψi2
ðq2Þ3 ; ð6Þ

where the OPE is given in the q2, instead ofM2, space. The
contour for the first term on the right-hand side of Eq. (5)
consists of a small clockwise circle Cr of radius r around
the origin, in addition to those in Eq. (4). Compared to the
OPE in Eq. (1), the power-suppressed logarithm is absent in
Icondn ðq2Þ, which has been shifted into the first term.
The contour integration of the power-suppressed loga-

rithm Lðq2Þ ¼ lnð−q2=μ2Þ=ðq2Þ3 yields, as derived in the
Appendix,

Lðq2Þ ¼ lim
r→0

�
1

ðq2Þ3 −
1

ðq2Þ2
d
dr

þ 1

2q2
d2

dr2

�
½−r3Lð−rÞ�

þ lim
r→0

1

π

Z
R

r
ds

ImLðsÞ
s − q2

þ 1

2πi

Z
CR

ds
LðsÞ
s − q2

; ð7Þ

where the first (second, third) term on the right-hand side
comes from the integral along the circle Cr (the horizontal
paths above and below the branch cut, the circle CR). It is
easy to see that the first two terms diverge as r → 0, but the
divergences cancel between them. Namely, the first term
serves as an infrared regulator of the second term. With
Eq. (7), the contour integral on the right-hand side of
Eq. (5) becomes

1

2πi

I
ds

Ipertn ðsÞ
s − q2

¼ lim
r→0

Pnðq2; rÞ þ lim
r→0

1

π

Z
R

r
ds

ImIpertn ðsÞ
s − q2

þ 1

2πi

Z
CR

ds
Ipertn ðsÞ
s − q2

; ð8Þ

with the infrared regulator

Pnðq2; rÞ ¼−
1

243π2ðq2Þ3
�
ln

r
μ2

−
q2

r
−
ðq2Þ2
2r2

�

× ½2ð51nþ 25Þ− 2nθðn− 2Þ�
X
u;d;s

hg2s ψ̄ψi2; ð9Þ

and
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1

π
ImIpertn ðsÞ ¼ 1

π
Ipertð1Þn þ 1

π
ImIpertð2Þn ðsÞ;

1

π
ImIpertð1Þn ¼ 3

4π2ðnþ 1Þðnþ 3Þ ;
1

π
ImIpertð2Þn ðsÞ ¼ 1

243π2s3
½2ð51nþ 25Þ

− 2nθðn − 2Þ�
X
u;d;s

hg2s ψ̄ψi2: ð10Þ

The second (last) line of the above expressions arises from
the perturbative contribution (power-suppressed logarith-
mic term) in the OPE, so the perturbative piece Ipertn ðsÞ
contains the quark condensate actually. The equality of
Eqs. (4) and (5) then establishes the modified dispersion
relation

1

π

Z
R

0

ds
ImInðsÞ
s − q2

¼ lim
r→0

Pnðq2; rÞ

þ lim
r→0

1

π

Z
R

r
ds

ImIpertð1Þn þ ImIpertð2Þn ðsÞ
s − q2

þ Icondn ðq2Þ; ð11Þ

where the integrals along the contour CR have canceled
from both sides. Equation (11) realizes the goal that all its
terms can be expanded into power series in 1=q2, as will be
demonstrated in the next subsection.
The width of a pion, being smaller than 10 eV, justifies

the narrow-width approximation for parametrizing the
resonance contribution to the spectral density. We thus
decompose the spectral density on the hadron side into a
pole contribution plus a continuum contribution,

1

π
ImInðsÞ ¼ f2πhξnihξ0iδðs −m2

πÞ þ ρnðsÞ; ð12Þ

where the unknown moment hξni and continuum function
ρnðsÞ will be obtained by solving the dispersion relation
directly. The function ρnðsÞ vanishes at the physical
threshold s → 0 like ρnðsÞ ∼ s [48], and the only require-
ment on its behavior is that it approaches to the perturbative
result as s → ∞,

lim
s→∞

ρnðsÞ →
3

4π2ðnþ 1Þðnþ 3Þ : ð13Þ

That is, the quark-hadron duality for the unknown con-
tinuum contribution is not assumed at any finite s in the
above construct.
Following [44], we introduce a subtracted continuum

function Δρn, which is related to the original ρn via

Δρnðs;ΛÞ ¼ ρnðsÞ −
1

π
ImIpertð1Þn ½1 − expð−s=ΛÞ�

−
1

π
ImIpertð2Þn ðsÞ½1 − expð−s4=Λ4Þ�: ð14Þ

The scale Λ characterizes the order of s, at which ρnðsÞ
transits to the perturbative expression in Eq. (13). The
smooth function 1 − expð−s=ΛÞ [1 − expð−s4=Λ4Þ] van-
ishes like s (s4); namely, the subtraction terms decrease like

s in the s → 0 limit with ImIpertð1Þn being a constant and

ImIpertð2Þn ðsÞ ∼ 1=s3 as indicated in Eq. (10), such that the
low-energy behavior of ρnðsÞ ∼ s is not altered. These
smooth functions approach to unity at large s ≫ Λ, render-
ing the dispersive integration of the subtracted continuum
function converge. That is, they play the role of an ultra-
violet regulator for a dispersive integral mentioned in [49].
We have tested choices of other smooth functions, such

as 1 − expð−s2=Λ2Þ for ImIpertð1Þn or 1 − expð−s5=Λ5Þ for
ImIpertð2Þn ðsÞ, which diminishes more rapidly as s → 0, and
confirmed that our solutions for the moments remain
untouched basically: the former (latter) replacement leads
to only Oð1%Þ [Oð0.1%Þ] reduction of the outcomes for
the second moment. Since Δρnðs;ΛÞ decreases quickly as
s > Λ, the radius R in Eq. (11) can be pushed toward
infinity, when the dispersion relation is formulated in terms
of the subtracted continuum function,

f2πhξnihξ0i
m2

π−q2
þ
Z

∞

0

ds
Δρnðs;ΛÞ
s−q2

¼ lim
r→0

Pnðq2;rÞþIcondn ðq2Þþ lim
r→0

1

π

×
Z

∞

r
ds

ImIpertð1Þn expð−s=ΛÞþImIpertð2Þn ðsÞexpð−s4=Λ4Þ
s−q2

;

ð15Þ

where Eq. (12) has been inserted. The results for the
moments hξni should be insensitive to the variation of
the transition scale Λ, which is introduced through the
ultraviolet regulation of the spectral density. The numerical
analysis to be performed in the next section does verify this
stability of hξni.

B. Inverse matrix method for moments

We illustrate how to solve the dispersion relation in
Eq. (15) as an inverse problem in the inverse matrix method
[44]. The subtracted continuum function Δρnðs;ΛÞ is a
dimensionless quantity, so it can be cast into the form
Δρnðs=ΛÞ. Certainly, Δρn may depend on other constant
scales, such as masses of excited states, which appear as
constant ratios over a givenΛ, instead of variables like s=Λ.
Equation (15) then reduces, under the variable changes
q2 ¼ xΛ, s ¼ yΛ, and r ¼ ϵΛ, to

DISPERSIVE DERIVATION OF THE PION DISTRIBUTION … PHYS. REV. D 106, 034015 (2022)

034015-5



rfhξnihξ0i
x− rm

þ
Z

∞

0

dy
ΔρnðyÞ
x− y

¼ −lim
ϵ→0

PnðxΛ; ϵΛÞ− Icondn ðxΛÞ

þ lim
ϵ→0

1

π

Z
∞

ϵ
dy

ImIpertð1Þn e−y þ ImIpertð2Þn ðyΛÞe−y4
x− y

; ð16Þ

with the constant ratios rf ¼ f2π=Λ and rm ¼ m2
π=Λ. It is

found that the transition scale Λ in the subtracted con-
tinuum function has moved into the condensate terms on
the right-hand side to make them dimensionless.
To express the involved quantities into matrix forms, we

rewrite the index n as 2n − 2, so that n runs over 1; 2; 3;…,
instead of 0; 2; 4;…. Considering the boundary condition
of Δρ2n−2ðyÞ ∼ y at y → 0 in Eq. (14), we expand
Δρ2n−2ðyÞ in terms of the generalized Laguerre polyno-

mials LðαÞ
j ðyÞ with the parameter α ¼ 1,

Δρ2n−2ðyÞ ¼
XN
j¼1

ajnyαe−yL
ðαÞ
j−1ðyÞ; ð17Þ

up to degree N − 1, where the unknown coefficients ajn
will be obtained in the inverse matrix method. The
generalized Laguerre polynomials satisfy the orthogonality

Z
∞

0

yαe−yLðαÞ
i ðyÞLðαÞ

j ðyÞdy ¼ Γðiþ αþ 1Þ
i!

δij: ð18Þ

As explained in [44], the set of generalized Laguerre
polynomials is the only choice of the orthogonal poly-
nomial sequence with the support between zero and infinity
for our setup. The number of polynomials N should be as
large as possible, such that Eq. (17) best describes the
subtracted continuum function, but cannot be too large in
order to avoid the ill-posed problem.
The first term on the left-hand side of Eq. (16) can be

expanded into a power series in 1=x trivially. Because
Δρ2n−2ðyÞ decreases quickly enough with the variable y, as
designed in Eq. (14), the major contribution to its integral
arises from a finite range of y. It is then justified to expand
the integral into a series in 1=x up to the power N for a
sufficiently large jxj by inserting

1

x − y
¼

XN
i¼1

yi−1

xi
: ð19Þ

Note that jxj being large enough is only a formal require-
ment, and does not have a substantial influence on the
calculation. The right-hand side of Eq. (16) can be expanded
into a power series in 1=x obviously: both the infrared

regulator Pn and the condensate contribution Icondn appear as
power series in 1=x; the exponentials e−y and e−y

4

,
decreasing fast enough with y, justify the insertion of
Eq. (19) into the integral. It is then clear that the reformu-
lation of the power-suppressed logarithm in Eq. (7) facil-
itates the expansions of both sides of the dispersion relation
into power series in 1=x.
Substituting Eqs. (17) and (19) into Eq. (16), and

equating the coefficients of 1=xi in the power series on
the two sides of Eq. (16), we arrive at the matrix equation
UAðnÞ ¼ BðnÞ for each n with the matrix elements

Ui1 ¼ ri−1m ;

Uij ¼
Z

∞

0

dyyi−1þαe−yLðαÞ
j−2ðyÞ; j ≥ 2; ð20Þ

where i and j run from 1 to N. In fact, we have Uij ¼ 0 for
j > iþ 1 owing to the orthogonality condition in Eq. (18).
The vector

AðnÞ ¼ ðrfhξ2n−2ihξ0i; a1n; a2n;…; aðN−1ÞnÞ; ð21Þ

collects the unknowns associated with the moment hξ2n−2i.
We point out that the last unknown aNn, which also
contributes to the coefficient of the term 1=xN , has been
neglected. In other words, aNn is traded for hξ2n−2i, such
that the number of the equations is equal to the number of
the unknowns, and the matrix equation is solvable. This
approximation is solid, because ajn decreases quickly with

j, as a stable solution for AðnÞ is attained. That is, a solution,
once becoming stable, is insensitive to N, and whether to
keep the last coefficient aNn is not crucial.
The power expansion on the OPE side gives the

coefficient bðnÞi of the term 1=xi, n ¼ 0; 2; 4;…, which
are written explicitly as

bðnÞ1 ¼ lim
ϵ→0

1

π

Z
∞

ϵ
dy½ImIpertð1Þn e−y þ ImIpertð2Þn ðyΛÞe−y4 �

− lim
ϵ→0

1

486π2ϵ2
½2ð51nþ 25Þ

− 2nθðn − 2Þ�
X
u;d;s

hg2s ψ̄ψi2
Λ3

; ð22Þ

bðnÞ2 ¼ lim
ϵ→0

1

π

Z
∞

ϵ
dyy½ImIpertð1Þn e−yþ ImIpertð2Þn ðyΛÞe−y4 �

− lim
ϵ→0

1

243π2ϵ
½2ð51nþ 25Þ− 2nθðn− 2Þ�

X
u;d;s

hg2s ψ̄ψi2
Λ3

−
muhūuiþmdhd̄di

Λ2
−

1

12π

hαsG2i
Λ2

; ð23Þ
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bðnÞ3 ¼ lim
ϵ→0

1

π

Z
∞

ϵ
dyy2½ImIpertð1Þn e−y þ ImIpertð2Þn ðyΛÞe−y4 �

þ lim
ϵ→0

1

243π2
ln
ϵΛ
μ2

½2ð51nþ 25Þ − 2nθðn − 2Þ�
X
u;d;s

hg2s ψ̄ψi2
Λ3

−
8nþ 1

9

muhgsūσTGui þmdhgsd̄σTGdi
Λ3

−
nθðn − 2Þ

24π2
hg3sfG3i

Λ3

þ 4ð2nþ 1Þ
81

hgsūui2 þ hgsd̄di2
Λ3

þ Cn

243π2

P
u;d;shg2s ψ̄ψi2

Λ3
; ð24Þ

bðnÞi ¼ 1

π

Z
∞

0

dyyi−1½ImIpertð1Þn e−y

þ ImIpertð2Þn ðyΛÞe−y4 �; i ≥ 4: ð25Þ

The coefficients bðnÞ1;2;3 of the terms 1=x1;2;3, respectively,
receive the additional condensate contributions. The inte-

grals for bðnÞi , i ≥ 4, are infrared finite, so the lower bounds
of y have been set to zero. We then define the vector

BðnÞ ¼ ðbð2n−2Þ1 ; bð2n−2Þ2 ;…; bð2n−2ÞN Þ; n¼ 1;2;3;…; ð26Þ

to gather the known inputs from the perturbative and
condensate (higher-power) contributions to the OPE.
One can then solve for the vector AðnÞ straightforwardly

via AðnÞ ¼ U−1BðnÞ by getting the inverse matrix U−1.
Though an inverse problem is usually ill posed, i.e., some
elements of U−1 may diverge when its dimension is
sufficiently large, the convergence of Eq. (17) can be
achieved at a finite N. This convergence, together with
the insensitivity of solutions to the variation of Λ, validate
the above inverse matrix method. There is no free param-
eter like the continuum threshold sπ, and no need to impose
the discretionary balance between the perturbative and
condensate contributions, to apply the Borel transforma-
tion, and to search for the Borel window in our framework.
The full dependence of the dispersion relation on q2 up to
the power 1=ðq2ÞN has been utilized to construct the matrix
equation. QCD dynamics enters through the OPE, which
can be derived systematically and rigorously without
ambiguity. These merits render possible calculating all
the moments of the pion LCDA at a scale μ, given the
inputs of condensates up to certain dimensions.
We stress that the explicit μ dependence of the dispersion

relation for hξ0i, which defines the normalization of the

pion LCDA and is supposed to be always equal to unity,
indicates the incompleteness of the OPE. As postulated in
[32], higher-order and higher-power corrections to the OPE
ought to be included to restore the constant normalization.
The condition hξ0i ¼ 1 was fixed by tuning the continuum
threshold sπ in [32], which, however, does not exist in our
formalism. We take an alternative viewpoint in the liter-
ature, interpreting the dispersion relation for hξ0i as that for
the pion decay constant fπ on the premise hξ0i ¼ 1. This
viewpoint is equivalent to shifting the μ dependence of hξ0i
into fπ. We thus compute the moments as the ratios

hξ2n−2i≡ AðnÞ
1

Að1Þ
1

; n ¼ 1; 2; 3;…; ð27Þ

in which the μ-dependent pion decay constant cancels
between the numerator and the denominator. We then have
the correct normalization hξ0i ¼ 1, and resolve the issue
about its μ dependence simultaneously.

C. Inverse matrix method for LCDA

One may expect that the x dependence of the pion LCDA
can be fully reconstructed, once the information of all its
moments is available. We warn that it is not the case.
Consider the expansion of the pion LCDA into a series of
Gegenbauer polynomials,

ϕπðxÞ ¼ 6xð1 − xÞ
X

n¼1;2;���
aπ2n−2C

ð3=2Þ
2n−2ð2x − 1Þ; ð28Þ

where the coefficients aπ2n−2 are related to the moments
hξ2n−2i up to n ¼ 6 through
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aπ0 ¼ hξ0i;

aπ2 ¼
7

12
ð5hξ2i − hξ0iÞ;

aπ4 ¼
11

24
ð21hξ4i − 14hξ2i þ hξ0iÞ;

aπ6 ¼
5

64
ð429hξ6i − 495hξ4i þ 135hξ2i − 5hξ0iÞ;

aπ8 ¼
19

384
ð2431hξ8i − 4004hξ6i þ 2002hξ4i − 308hξ2i þ 7hξ0iÞ;

aπ10 ¼
23

1536
ð29393hξ10i − 62985hξ8i þ 46410hξ6i − 13650hξ4i þ 1365hξ2i − 21hξ0iÞ: ð29Þ

It is apparent that the coefficients on the right-hand sides of
the above relations grow rapidly with n, a feature origi-
nating from an ill-posed problem. Then tiny deviations
from the true values of hξ2n−2i, due to either theoretical or
round-off errors, would destroy the delicate cancellation
among various terms with huge coefficients in Eq. (29).
Take the results in [32] as an example, in which the

moments up to hξ10i, higher than those calculated in the
literature, were presented:

ðhξ0i; hξ2i; hξ4i; hξ6i; hξ8i; hξ10iÞjμ¼2 GeV

¼ ð1; 0.254; 0.125; 0.077; 0.054; 0.041Þ: ð30Þ

They exhibit a satisfactory convergence with n, but the
corresponding Gegenbauer coefficients from Eq. (29),

ðaπ0; aπ2; aπ4; aπ6; aπ8; aπ10Þjμ¼2 GeV

¼ ð1; 0.157; 0.032; 0.035; 0.098;−0.046Þ; ð31Þ

do not. As a consequence, the pion LCDA in Eq. (28) with
the above Gegenbauer coefficients oscillates strongly with
three prominent peaks as displayed in Fig. 1, which seem
not to be a reasonable shape. The authors of [32] then
proposed models for the pion LCDA, and fitted the
involved parameters to the moments in Eq. (30), instead

of getting the Gegenbauer coefficients in Eq. (31). The
above discussion exemplifies that the conversion from the
moments to the Gegenbauer coefficients goes out of control
quickly with n, and that acquiring the x dependence of a
LCDA is a challenging subject. Nevertheless, we will
evaluate the moments of the pion LCDA in the next section
to demonstrate the potential of our method for accessing the
full x dependence of a LCDA.
To overcome the aforementioned difficulty, we extend

the formalism established in the previous subsection. The
idea is to avoid the delicate cancellation in Eq. (29) by
searching for stable solutions of the Gegenbauer coeffi-
cients directly. We define a matrix V with the elements

Vkn ¼ 6

Z
1

0

dxxð1 − xÞð2x − 1Þ2n−2Cð3=2Þ
2k−2 ð2x − 1Þ; ð32Þ

where Vkn ¼ 0 for k > n due to the orthogonality of the
Gegenbauer polynomials. It is trivial to check that the
elements of the inverse matrix V−1 contain the coefficients
on the right-hand side of Eq. (29). Namely, the matrix V is
responsible for the conversion between the moments and
the Gegenbauer coefficients. Next we rewrite the matrix a
formed by the coefficients ajn in the expansion of the
subtracted continuum function in Eq. (17) as a ¼ ãV, so
that all the unknowns are grouped into a single matrix

A ¼

0
BBB@

rfhξ0iaπ0 rfhξ0iaπ2 � � � rfhξ0iaπ2N−2

ã11 ã12 � � � ã1N
� � � � � � � � � � � �

ãðN−1Þ1 ãðN−1Þ2 � � � ãðN−1ÞN

1
CCCA: ð33Þ

It is then straightforward to construct the matrix equation
UAV ¼ B by repeating the procedure in the previous
subsection, where the elements of the matrix U are the
same as in Eq. (20), the unknown matrix A contains the
Gegenbauer coefficients aπ2n−2, and the matrix B collects

the inputs with the elements Bin ¼ BðnÞ
i ¼ bð2n−2Þi in

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

x

FIG. 1. Pion LCDA with the Gegenbauer coefficients in
Eq. (31).
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Eqs. (22)–(25). Similarly, the last row of ã, i.e.,
ãN1; ãN2; � � � ; ãNN have been neglected and traded for
the first row of A in order to have equal numbers of
equations and unknowns. We will justify this approxima-
tion by showing that the last row of ã are indeed negligibly
small in the next section. According to the argument for
Eq. (27), we consider the ratios in this work

aπ2n−2 ≡ A1n

A11

; n ¼ 1; 2; 3;…; ð34Þ

which follows the interpretation with the constant nor-
malization hξ0i ¼ aπ0 ¼ 1.
Naively, one can get a solution of A ¼ U−1BV−1

through the inverse matrices U−1 and V−1, where the
effect of V−1 is simply to organize the OPE inputs B for the
moments into BV−1 for the Gegenbauer coefficients.
However, the above inverse matrix method may not lead
to stable solutions for the Gegenbauer coefficients due to
the ill-posed nature, especially when inputs are not
accurate enough. A standard and popular resolution to
this issue is to apply the Tikhonov regularization, i.e., to
add an additional constraint which smears the fluctuation
caused by imperfect cancellation among various terms in
Eq. (29). The inverse matrix V−1 diverges more seriously
thanU−1 with N: the maximal elements of V−1 andU−1 for
the dimension N ¼ 18 are of Oð1010Þ and Oð102Þ,
respectively. This difference explains why stable solutions
for the moments, which require onlyU−1, can be found at a
finite N, and why an explicit regularization is necessary for
suppressing the divergence in V−1. Therefore, we propose
the modified matrix equation

UAðV þ λHÞ ¼ B; ð35Þ

where λ (H) denotes a regularization parameter (matrix).
There is freedom to choose H, but not any H works for
stabilizing solutions. We will show that a simple choice
H ¼ I, I being the unity matrix, serves the purpose well,
and look for stable solutions of A ¼ U−1BðV þ λIÞ−1,
which are insensitive to the regularization parameter λ.
The scale μ is set to the Borel mass M in [32], and the

moments for μ ¼ 1 GeV and 2 GeV were then extracted
through the QCD evolution. The value of μ in the OPE
input in Eq. (24) can be chosen arbitrarily. We will
determine the pion LCDAs at μ ¼ 2 GeV and
μ ¼ 1.5 GeV, and examine whether these two results
are consistent with the known QCD evolution that con-
nects the Gegenbauer coefficients at different scales. It will
be observed that the LCDA solved from the dispersion

relation with the OPE inputs at μ ¼ 1.5 GeV agrees with
the one derived by evolving the Gegenbauer coefficients at
μ ¼ 2 GeV to μ ¼ 1.5 GeV. This agreement hints that our
formalism is compatible with the QCD evolution.

III. NUMERICAL ANALYSIS

A. Testing the formalism with mock data

We first demonstrate that correct solutions can be
obtained in our method, given the mock data generated
from a sample LCDA in Eq. (28) with the Gegenbauer
coefficients

ðaπ0; aπ2; aπ4; aπ6; aπ8; aπ10; � � �Þ
¼ ð1; 0.20;−0.15; 0.10; 0; 0;…Þ; ð36Þ

and from a set of sample continuum functions

Δρ2n−2ðyÞ ¼ ye−ny; n ¼ 1; 2;…: ð37Þ

The moments hξ2n−2i are computed according to Eq. (3)
and then, together with Eq. (37), substituted into the left-
hand side of Eq. (16), whose power expansion in 1=xi

produces the elements BðnÞ
i of the input matrix BðnÞ,

BðnÞ
i ¼ ri−1m

Z
1

0

dyð2y−1Þ2n−2ϕπðyÞþ
Z

∞

0

dyyie−ny: ð38Þ

Here the factor rf has been omitted for simplicity, which
cancels in Eq. (27), the pion mass takes the value mπ ¼
139.57 MeV [50], and the transition scale is set to
Λ ¼ 1 GeV2. Another choice Λ ¼ 2 GeV2 causes no
change to the results. We evaluate the N × N matrix U
following Eq. (20), where N is related to the maximal
degree of the generalized Laguerre polynomial in the
expansion in Eq. (17). In principle, a true solution can be
approached to by increasing the number of polynomials N,
since the difference between the true and approximate
solutions is suppressed by a power 1=xNþ1. However, N
cannot be too large in a practical application, otherwise the
approximate solution would deviate from the true one due to
the generic nature of an ill-posed inverse problem as
mentioned before.
For each n, we increase the dimension of the matrix U,

and derive the solutions AðnÞ ¼ U−1BðnÞ according to
Sec. II B. It is found that the solutions become stable
gradually asN enlarges, vary only by about 0.1% within the
interval N ¼ ½17; 21�, and begin to change significantly as
N ≥ 22, implying that the inverse matrix U−1 is out of
control. The solutions of AðnÞ read up to n ¼ 7 for N ¼ 19
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ðhξ0i; a11; a21; a31;…; að17Þ1; að18Þ1Þ ¼ ð1; 1;∼0;∼0;…;∼0;∼0Þ;
ðhξ2i; a12; a22; a32;…; að17Þ2; að18Þ2Þ ¼ ð0.2686; 0.2500; 0.1250; 0.0625;…;−5.0 × 10−6;−3.6 × 10−6Þ;
ðhξ4i; a13; a23; a33;…; að17Þ3; að18Þ3Þ ¼ ð0.1159; 0.1110; 0.0740; 0.0493;…; 9.0 × 10−5; 3.6 × 10−5Þ;
ðhξ6i; a14; a24; a34;…; að17Þ4; að18Þ4Þ ¼ ð0.0642; 0.0621; 0.0465; 0.0347;…; 2.7 × 10−4; 1.1 × 10−4Þ;

hξ8i ¼ 0.0417; hξ10i ¼ 0.0300; hξ12i ¼ 0.0232; ð39Þ

where the notation ∼0 represents a value with magnitude
being smaller than 10−10, and the solutions for the
coefficients ajn in Eq. (17) for n ¼ 5, 6, 7 are not shown
explicitly. The monotonically decreasing sequences ajn in j
and the smallness of the last elements að18Þn support the
neglect of að19Þn in the construction of the matrix equation.
Compared to the true solutions,

ðhξ0i;hξ2i;hξ4i;hξ6i;hξ8i;hξ10i;hξ12iÞ
¼ð1;0.2686;0.1158;0.0638;0.0408;0.0288;0.0217Þ; ð40Þ
from the sample LCDAwith the Gegenbauer coefficients in
Eq. (36), the moments, especially the first few, have been
reproduced perfectly.
The solution for the continuum function Δρ6ðyÞ and the

input one ye−4y in Eq. (37) are compared in Fig. 2(a),
whose consistency confirms the good quality of the
solutions. If the solution for Δρ2ðyÞ and the input one
ye−2y are plotted, their curves overlap exactly. Even so, the
above seemly accurate results cannot reproduce the x
dependence of the sample LCDA: the moments in
Eq. (39) lead to the Gegenbauer coefficients aπ2n−2 through
the relations in Eq. (29),

ðaπ0; aπ2; aπ4; aπ6; aπ8; aπ10; aπ12Þ
¼ ð1; 0.2001;−0.1496; 0.1119; 0.0306;−0.0233; 0.2339Þ;

ð41Þ

which deviate from the true values in Eq. (36) more at
higher n. In particular, the magnitude of aπ12 becomes larger
than aπ2 , reflecting the ill-posed nature of the subject. One

may enhance the precision of the calculation by keeping
more digits of the numbers, but the appearance of the
divergent Gegenbauer coefficients is just deferred to even
higher n, and the problem is not completely resolved. This
is the same difficulty as elucidated in terms of the moments
in [32] in Sec. II C.
We turn to the method developed in Sec. II C, and

retrieve the Gegenbauer coefficients from the mock data.
The sample LCDA and continuum functions in Eq. (37)
generate the input matrix B with the elements Bin ¼ BðnÞ

i
the same as in Eq. (38). We get the matrices U and V up to
the dimension N × N following Eqs. (20) and (32),
respectively, and the solutions A ¼ U−1BV−1, whose first
rows give the Gegenbauer coefficients. Because the data are
precise, it turns out that no regularization is needed to
stabilize the solutions. We find that the LCDAs constructed
from the obtained Gegenbauer coefficients are stable after
N reaches 14, and start to oscillate as N ≥ 17. The resultant
LCDA ϕπðyÞ for N ¼ 16 and the sample LCDA are
compared in Fig. 2(b), which match each other roughly.
The similarity is justified by the approximate equality
between the first few moments for the obtained LCDA and
Eq. (40). The shape of the obtained ϕπðyÞ is a bit irregular
for N ¼ 17 in Fig. 2(c), which signals the divergent
behavior of the inverse matrices U−1 and V−1, and will
become strongly oscillatory as N increases further. The
Gegenbauer coefficients corresponding to the solution for
N ¼ 16

ðaπ0; aπ2; aπ4; aπ6; aπ8; aπ10; aπ12;…; aπ28; a
π
30Þ

¼ ð1; 0.2000;−0.1472; 0.1212; 0.0335;−0.0059;
− 0.0098;…;−0.0029; 0.0013Þ ð42Þ
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FIG. 2. (a) Solution of Δρ6ðyÞ (solid line) and the input one ye−4y (dashed line). (b) Solution of ϕπðyÞ with N ¼ 16 (solid line) and the
input one (dashed line). (c) Solution of ϕπðyÞ with N ¼ 17 (solid line) and the input one (dashed line).
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are all under control, a tendency quite distinct from that of
Eq. (41). The coefficient aπ2 is precisely reproduced, but aπ6
exceeds the true value in Eq. (36) by 20%. The larger
discrepancy between the Gegenbauer coefficients with
smaller magnitude, such as aπ10 and aπ12, is not a surprise.
We confirm that the corresponding sequences of ãjk
associated with the sample continuum functions also con-
verge well in j, and the last row in the unknown matrix ã is
negligible. For N ¼ 17, the last two Gegenbauer coeffi-
cients take the values aπ30 ¼ 0.0050 and aπ32 ¼ 0.0035 with
convergence slightly worse than in Eq. (42).
At last, we add a tiny fluctuation to the input matrix B,

enhancing the element B22 by 0.05%, which suffices to
destroy the stability of the solutions: Fig. 3(a) indicates
that the solution of ϕπðyÞ for N ¼ 16 without the regu-
larization exhibits violent oscillations compared to the one
in Fig. 2(b), and differs from the sample LCDA com-
pletely. We then switch on the regularization, and inves-
tigate the behavior of the solutions with the parameter λ. It
is observed that the Gegenbauer coefficients converge and
the resultant ϕπðyÞ in Fig. 3(b) is insensitive to the
variation of λ around λ ¼ 0.0054 for N ¼ 15. The shape
of ϕπðyÞ has been greatly improved relative to the one in
Fig. 3(a), and gets closer to that of the sample LCDA. For
N ¼ 16, the stability interval in λ moves toward somewhat
larger values around λ ¼ 0.0058, and the obtained ϕπðyÞ is
similar to the one for N ¼ 15, implying the stability of the

solutions with the increase of the dimension N of the
matrices U and V. The Gegenbauer coefficients corre-
sponding to the solution for N ¼ 16 are given by
aπ2 ¼ 0.1980, aπ4 ¼ −0.1289, aπ6 ¼ 0.0597;…. It is hard
to tell how much their deviation from those in Eq. (36) is
attributed to the added fluctuation, and how much orig-
inates from the inverse matrix method. The lessons from
the above analysis of the mock data include that a LCDA
can be uncovered to some extent in our formalism even
with fluctuations in inputs, and that the direct evaluation of
the Gegenbauer coefficients is more promising than going
through the moments for exploring the x dependence of
a LCDA.

B. Moments of the pion LCDA

After testing our formalism with the mock data, we apply
it to the study of the realistic pion LCDA, starting with the
determination of the moments from the OPE inputs. The
parameter ϵ is set to ϵ ¼ 10−5, which is small enough. We
have checked that the choice ϵ ¼ 10−6 changes solutions
for the moments at the level of 10−4, much lower than
theoretical uncertainties from other sources. To compare
our results with those in [32], we take the same values for
the following condensates [51,52] with the evolution in the
scale μ [53–55],

muhūui þmdhd̄di ¼ −ð1.651� 0.003Þ × 10−4 GeV4;

hgsq̄qi2 ¼ ð2.082þ0.734
−0.697Þ × 10−3

�
αsðμÞ

αsð2 GeVÞ
�
−4=β0

GeV6;

X
u;d;s

hg2s ψ̄ψi2 ¼ ð2þ r2cÞhg2s q̄qi2; hg2s q̄qi2 ¼ ð7.420þ2.614
−2.483Þ × 10−3 GeV6;

hαsG2i ¼ 0.038� 0.011; GeV4;

muhgsūσTGui þmdhgsd̄σTGdi ¼ −ð1.321� 0.033Þ × 10−4
�

αsðμÞ
αsð2 GeVÞ

�
14=ð3β0Þ

GeV4; ð43Þ
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FIG. 3. Solutions of ϕπðyÞ for (a) λ ¼ 0 with N ¼ 16 (solid line) and the input one (dashed line), (b) λ ¼ 0.0054 with N ¼ 15 (solid
line) and the input one (dashed line), and (c) λ ¼ 0.0058 with N ¼ 16 (solid line) and the input one (dashed line).
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for q ¼ u or d and β0 ¼ 11 − 2nf=3, nf ¼ 4 being the
number of active quark flavors. For simplicity, we consider
the one-loop running coupling constant αsðμÞ with the
QCD scale ΛQCD ¼ 0.22 GeV. Those condensates without
the evolution factors are scale independent; namely, their
values are the same as at μ ¼ 2 GeV. In fact, only the
evolution of the four-quark condensate hgsq̄qi2 matters. As
summarized in [56], the ratio rc ≡ hs̄si=hq̄qi derived in the
literature varies in a wide range, from 0.4 to 1.2. Here we
also follow [32], taking the average rc ¼ 0.74� 0.03
presented in [57].
The triple-gluon condensate hg3sfG3i has been estimated

in the single-instanton model [38,58,59], in lattice QCD
[60], and via the sum rules for charmonium systems [61].
The results differ dramatically as having been noticed in
[62]: the first two are opposite in sign, and the last one has a
magnitude about several times larger. It has been observed
that this input impacts the predictions for glueball masses,
so its values can be discriminated by the associated low
energy theorem [44]. Since glueball states have not yet
been identified unambiguously, the value of hg3sfG3i is still
uncertain. The dispersion relation for the moment hξ0i does
not depend on hg3sfG3i as indicated in Eq. (6), so the
corresponding prediction is free of this ambiguity. The
higher moments depend on hg3sfG3i, and we find no stable
solution for the moment hξ2i according to Eq. (27) with the
input hg3sfG3i ¼ 0.045 GeV6 in [32,52]. For a stable
solution to exist, hg3sfG3i must be sizable enough to
compensate the negative contribution from the four-quark
condensates hgsq̄qi2 and hg2s q̄qi2 at the same power of
1=ðq2Þ3 in Eq. (6). Hence, we choose the estimate in [61],

hg3sfG3i ¼ ð8.2� 1.0Þ GeV2 × hαsG2i; ð44Þ

which leads to a result for hξ2i close to the one in [32].
We first analyze the zeroth moment hξ0i from Að1Þ ¼

U−1Bð1Þ with Bð1Þ in Eqs. (22)–(25) as a demonstration. To
take into account the dimension-six condensates, the
dimension of the matrix U should be greater than three,
so we start withN ¼ 4, and increaseN one by one to search
for a convergent expansion in Eq. (17) for a given transition

scale Λ. When the convergence is attained, the solution for
Að1Þ, including its first component, becomes relatively
stable with respect to the variation of N. The value of

hξ0i for the given Λ is then obtained via hξ0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1Þ
1 =rf

q
,

as the pion decay constant fπ ¼ 130.41 MeV [50] is
known. Figures 4(a) and 4(b) exhibit the dependencies
of hξ0i onN forΛ ¼ 2 GeV2 and 3.7 GeV2, respectively. It
is found in Fig. 4(a) that the zeroth moment decreases from
N ¼ 4, reaches a minimum at N ¼ 10, and then increases
with N due to the growth of U−1 at high N. As N exceeds
22, the matrix elements of U−1 begin to go out of control
due to the ill-posed nature, such that the zeroth moment
changes significantly. As Λ increases, the range of N, in
which the zeroth moment stays around the minimum,
becomes wider, implying better convergence of the expan-
sion in Eq. (17). The flatness of the curve for the zeroth
moment, the convergence of the expansion, and the
stability of the solution at Λ ¼ 3.7 GeV2 are remarkable
as N > 16 in Fig. 4(b), before the curve descends and
oscillates at N ¼ 23. Note that there is a minimum of hξ0i
at N ¼ 19 in Fig. 4(b), though it is not visible in the almost
flat plateau.
To justify the neglect of the coefficient aN1 in the

construction of the matrix equation, we show the solutions
of Að1Þ corresponding to the minima located at N ¼ 10 in
Fig. 4(a) and located at N ¼ 19 in Fig. 4(b),

Að1ÞjN¼10 ¼ ð0.0043; 0.0210; 0.0085;…; 1.7

× 10−4; 4.9 × 10−5Þ; ð45Þ

Að1ÞjN¼19 ¼ ð0.0024; 0.0229; 0.0103;…; 1.9

× 10−5; 5.0 × 10−6Þ; ð46Þ

where the first components give the solutions for hξ0i. The
small ratio a91=a11 ¼ 4.9 × 10−5=0.0210 ≈ 0.002 and a91
being a quarter of a81 in Eq. (45) support that the unknown
coefficient að10Þ1 can be neglected safely. The tiny ratio
að18Þ1=a11 ¼ 5.0 × 10−6=0.0229 ≈ 2 × 10−4 and að18Þ1
being a quarter of að17Þ1 in Eq. (46) also confirm this
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FIG. 4. Dependencies of hξ0i on N for (a) Λ ¼ 2.0 GeV2 and (b) Λ ¼ 3.7 GeV2.
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approximation. The solution of Að1Þ forN ¼ 24 in Fig. 4(a),
where the curve starts to oscillate,

Að1ÞjN¼24¼ð0.0099;0.0153;0.0029;…−0.0030;−0.0015Þ;
ð47Þ

reveals much worse convergence, differing from Eqs. (45)
and (46) obviously, and that the matrix elements of U−1

have become too large.
It is easy to understand why the minima of the curves in

Figs. 4(a) and 4(b) move toward higher N, as the transition
scale Λ increases: a larger Λ means that the region with a
substantial continuum contribution moves toward a larger
s. The generalized Laguerre polynomials of higher
degrees, which also take substantial values at larger s,
are thus suitable for the expansion in Eq. (17). This feature
is explicit in Fig. 5(a), where the subtracted continuum
functions Δρ0ðsÞ for Λ ¼ 2.0 GeV2 and 3.7 GeV2 are
exhibited. These functions are constructed by substituting
the elements ajn in the corresponding solutions of Að1Þ in
Eqs. (45) and (46) into Eq. (17). It is seen that the taller
peak of the latter is located at a higher s relative to the
shorter peak of the former. To get a complete picture, we
display the continuum functions ρ0ðsÞ for Λ ¼ 2.0 GeV2

and 3.7 GeV2 in Fig. 5(b), which are obtained by adding
back the subtracted pieces in Eq. (14). We have verified
that the curves indeed approach to the constant perturba-

tive contribution ImIpertð1Þn ¼ 1=ð4π2Þ ≈ 0.025 as s → ∞
(another piece from ImIpertð2Þn is smaller in this case). The
shape of the continuum functions implies that the quark-
hadron duality assumed in the parametrization for the
spectral density in conventional sum rules does not hold
exactly, and the region below the threshold sπ ¼
1.05 GeV2 claimed in [32] still gives a sizable contribution
in fact.
It is encouraging that the minima in Figs. 4(a) and 4(b)

are both around 0.72, insensitive to the variation of the
transition scale Λ in a finite range. When Λ goes above
3.7 GeV2, the minimum disappears: the curve descends
monotonically till it becomes oscillatory. We regard this

situation as nonexistence of a solution, and the search
for a stable solution stops at this maximally allowed
Λ ¼ 3.7 GeV2. The solution of hξ0ijμ¼2 GeV ¼ 0.72, dis-
tinct from unity, recalls the statement that the currently
available OPE inputs are not complete. We vary the scale μ
in Eq. (24), considering the evolution of the condensates as
well, and observe that hξ0i increases as μ decreases, but
cannot reach unity: even when μ is as low as 0.5 GeV, hξ0i
is lifted only to 0.78 (corresponding to the maximally
allowed Λ ¼ 4.7 GeV2). As a test, we naively decrease the

fourth component Bð1Þ
4 of the input vector Bð1Þ by 0.01%,

and find that the resultant hξ0i can be enhanced effectively.
In other words, if the dimension-eight condensate provides
a little amount of destructive correction, the normalization
of the pion LCDA may be restored. The correction of this
order of magnitude is reasonable, viewing that the con-
tribution of the dimension-six condensate is about 0.1% of
the corresponding perturbative one in Eq. (24) for
Λ ¼ 3.7 GeV2. It is thus worthwhile to study the power
corrections from the dimension-eight condensates and to
examine whether the normalization of the pion LCDA is
respected in our framework. Below we will calculate the
other moments following the prescription in Eq. (27).
We repeat the above procedure to search for stable

solutions of the second moment hξ2i, deriving the solutions
of Að1Þ and Að2Þ for the same given Λ and N, and taking the

ratio of the elements Að2Þ
1 =Að1Þ

1 in Eq. (27) to get hξ2i, which
is independent of the pion decay constant fπ as mentioned
before. The typical curves describing the N dependence for
Λ ¼ 5 GeV2 and 7.2 GeV2, which ascend with N first,
reach maxima at N ¼ 14 and N ¼ 20, and drop quickly at
large N as shown in Figs. 6(a) and 6(b), respectively. This
behavior, opposite to that in Figs. 4(a) and 4(b), is attributed
to the ratio of the moments that we are computing. The
range in which hξ2i stays close to its maximum also
broadens with Λ. In particular, the curve in Fig. 6(b)
becomes very flat around N ¼ 20, such that it is hard to tell
the existence of a maximum. A curve forΛ above 7.2 GeV2

ascends monotonically, and no maximum, i.e., no solution
is identified. Since the solutions of hξ2i exist at Λ higher
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FIG. 5. Solutions of (a) Δρ0ðsÞ and of (b) ρ0ðsÞ for Λ ¼ 2.0 GeV2, N ¼ 10 (dashed line) and for Λ ¼ 3.7 GeV2, N ¼ 19 (solid line).
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than for hξ0i in Fig. 4, the continuum contribution
associated with the former approaches to the perturbative
one at larger s according to Eq. (14). This tendency is
apparent in Fig. 6(c), where the curves for the obtained
subtracted continuum functionΔρ2ðsÞ extend to the larger s
region compared to Δρ0ðsÞ in Fig. 5(a). The peaks of
Δρ2ðsÞ for Λ ¼ 5 GeV2 and 7.2 GeV2 in Fig. 6(c) are
located at about s ≈ 2 GeV2, corresponding to a higher
threshold sπ , while the peaks of Δρ0ðsÞ in Fig. 5(a) are
located at around 1 GeV2. That is, the thresholds sπ are in
fact different for different moments. However, the same sπ
has been employed in the sum-rule evaluations of the
moments [32]. The above features can be understood from
the viewpoint of conventional sum rules: the increase of sπ
with Λ enhances the perturbative contribution, i.e., the first
term on the right-hand side of Eq. (1); a larger Λ also
reduces the condensate contributions, which grow with n,
an effect similar to the increase of the Borel mass M. That
is, a larger Λ facilitates the existence of a solution by
improving the balance between the perturbative and con-
densate contributions. At last, it is natural that the height of
the peaks in Fig. 6(c) is a bit lower than the corresponding
perturbative contribution 1=ð20π2Þ ≈ 0.005 due to the
subtraction terms in Eq. (14).
We read off the values of the second moment hξ2i from

the most stable, i.e., the best convergent solutions in N, like
the one with N ¼ 20 in Fig. 6(b), for various transition
scales Λ, and plot its dependence on Λ in Fig. 7. It is seen

that the curve is quite stable with respect to the change ofΛ.
We select the value corresponding to the maximally
allowed Λ as our result for hξ2i. Other points on the curve
are also acceptable solutions, whose values differ from
the selected one by about 3%, which reflects the stability of
the solutions. The same procedure is then applied to the
evaluation of higher moments, and the resultant depend-
ence of the fourth moment hξ4i is also plotted in Fig. 7,
which reveals the similar behavior with excellent stability.
In principle, we can obtain all the moments of the pion
LCDA in this manner, but list only the first few below as
examples,

ðhξ2i; hξ4i; hξ6i; hξ8i; hξ10i; hξ12i;…Þjμ¼2 GeV

¼ ð0.2672; 0.1333; 0.0871; 0.0658; 0.0546; 0.0480;…Þ:
ð48Þ

The above values are a bit higher than, for instance,
hξ2ijμ¼2 GeV ¼ 0.254, in [32]. However, we remind the
reader that the input of the triple-gluon condensate has been
modified into Eq. (44), which differs from the one in [32].
Our hξ2ijμ¼2 GeV is also larger than in other methods (see
Table III in [32] for a summary and more complete
references), such as 0.210� 0.013ðstatÞ � 0.034ðsysÞ from
the recent lattice QCD analysis performed at a pion mass
mπ ¼ 550 MeV [14].
We have examined the sensitivity of the solutions to the

OPE inputs, and found that the condensates hmqq̄qi and
mqhgsq̄σTGqi have little influence. For example, multi-
plying the latter by a factor of 2 has no effect at all.
Adopting the lower (upper) bound the gluon condensate
hαsG2i in Eq. (43), we have hξ2ijμ¼2 GeV ¼ 0.2860
(0.2582) at N ¼ 20 for the maximally allowed Λ ¼
6.2 GeV2 (Λ ¼ 8.2 GeV2). It indicates that the �29%

change of hαsG2i causes only −3
þ7% uncertainty of the

second moment hξ2ijμ¼2 GeV, and that our results are less
sensitive to the variation of the dimension-four conden-
sates. The dimension-six condensates provide the major
source of theoretical uncertainties, which can be illustrated
by varying the triple-gluon condensate hg3sfG3i: the lower
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(upper) bound in Eq. (44) leads to hξ2ijμ¼2 GeV ¼ 0.2860
(0.2529) at N ¼ 20 for the maximally allowed Λ ¼
6.8 GeV2 (Λ ¼ 8.0 GeV2). That is, the �12% change of
the triple-gluon condensate in Eq. (44) yields −5

þ7% error.
The above investigation explores the theoretical uncertain-
ties of our results attributed to the variation of the con-
densate inputs, which is of order of 10%.
Converting the moments in Eq. (48), which seem to

converge satisfactorily, into the Gegenbauer coefficients via
Eq. (29), we get

ðaπ2; aπ4; aπ6; aπ8; aπ10; aπ12; � � �Þjμ¼2 GeV

¼ ð0.1960; 0.0268; 0.1918; 0.1376; 0.4034;−0.1319; � � �Þ;
ð49Þ

with worse convergence. The x dependence of the pion
LCDA constructed from the above Gegenbauer coefficients
oscillates between the values −1 and 3, more violently than
in Fig. 1. It is unlikely to be a reasonable form of a LCDA,
manifesting the difficulty to acquire the x dependence of
the pion LCDA from the moments, even when all the
moments are known. Therefore, we turn to the direct
extraction of the pion LCDA from the dispersion relations
for the Gegenbauer coefficients.

C. x Dependence of the pion LCDA

We apply the formalism developed in Sec. II C to the
determination of the Gegenbauer coefficients for the pion
LCDA from the OPE inputs. The construction of the N × N
matrices U and V follow Eqs. (20) and (32), respectively,
and the elements Bin of the input matrix B are computed
from Eqs. (22)–(25). The solutions A ¼ U−1BðV þ λIÞ−1
are then obtained straightforwardly, whose first rows give
the Gegenbauer coefficients. We increase the regularization
parameter λ step by step, and search for stable solutions in
the way similar to that in the previous subsection. It is
immediately noticed that no stable solutions exist for a
vanishing regularization parameter λ ¼ 0: the magnitudes of
the Gegenbauer coefficients aπ2n−2 always grow fast with n,

no matter how the transition scaleΛ and the dimensionN are
tuned, leading to a shape of the pion LCDA as in Fig. 3(a).
This is not a surprise, because the OPE inputs are incomplete
and not accurate enough, such that solutions from the inverse
matrix method are not well tamed. It turns out that λ has to be
sizable in order to effectively suppress the divergent behav-
ior, and to allow solutions of A, which are convergent under
the variations of N and Λ. The present case differs from the
analysis on the mock data, which represent precise inputs,
and require only a milder regularization. We then read the
Gegenbauer coefficients from A, and use them to construct
the pion LCDA in the Gegenbauer expansion.
Figure 8(a) exhibits the x dependencies of the pion LCDA

ϕπðxÞ for the increasing λ ¼ 0.01, 0.1, and 0.3, which
correspond to a sufficiently high dimension N ¼ 18 and
the transition scales Λ ¼ 13.01 GeV2, 12.37 GeV2, and
12.07 GeV2, respectively. It is found that the solutions
stabilize with λ steadily: the curve for λ ¼ 0.01 is oscillatory,
while the curve for λ ¼ 0.3 becomes relatively smooth. We
further increase λ, and observe that the shapes of the pion
LCDA for λ > 0.3 remain almost the same and independent
of λ: the three curves of ϕπðxÞ with N ¼ 18 for λ ¼ 0.40,
0.45 and 0.50, corresponding to Λ ¼ 12.01 GeV2,
11.99 GeV2 and 11.97 GeV2, respectively, overlap per-
fectly as shown in Fig. 8(b). The spikes near the endpoints
of x would be pushed toward x ¼ 0 and 1 and disappear
from the considered domain, if the dimension N could
continue to increase. Other than the endpoint behavior, the
shape of ϕπðxÞ in Fig. 8(b) is smooth. We also display ϕπðxÞ
with λ ¼ 0.45 for N ¼ 16, 18 and 20, corresponding to
Λ ¼ 10.28 GeV2, 11.99 GeV2 and 13.72 GeV2, respec-
tively, in Fig. 8(c). The overlap of the three curves is also
remarkable, implying that the pion LCDA resulting from the
summation of the contributions up to 18 Gegenbaer poly-
nomials is already stable with the variations of N andΛ. The
bands in both Figs. 8(b) and 8(c) reflect the theoretical
uncertainty of the pion LCDA in the inverse matrix method.
In terms of the Gegenbauer coefficient aπ2 , we have
aπ2 ¼ 0.1735, 0.1775 and 0.1811 with N ¼ 18 for
λ ¼ 0.40, 0.45 and 0.50, respectively, and aπ2 ¼ 0.1814,
0.1775 and 0.1748 for λ ¼ 0.45 with N ¼ 16, 18 and 20,

(a) (b) (c)

0.2

0.4

0.6

0.8

1.0

1.2

0.5

1.0

1.5

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
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respectively. Namely, the finite stability ranges in λ and in N give about 2% errors to the obtained Gegenbauer coefficients.
We gather our solutions for the set of Gegenbauer coefficients

ðaπ2; aπ4; aπ6; aπ8; aπ10; aπ12;…; aπ32; a
π
34Þjμ¼2 GeV

¼ ð0.1775þ0.0036
−0.0040 ; 0.0957

þ0.0011
−0.0012 ; 0.0762

þ0.0006
−0.0003 ; 0.0688

þ0.0016
−0.0012 ; 0.0643

þ0.0021
−0.0017 ; 0.0603

þ0.0024
−0.0019 ;

� � � ; 0.0089þ0.0004
−0.0006 ; 0.0028

þ0.0001
−0.0003Þ; ð50Þ

where the central values correspond to λ ¼ 0.45 and
N ¼ 18, and the errors from the variation of λ in the
interval [0.40, 0.50] correspond to the band in Fig. 8(b). It
is apparent that the elements in Eq. (50) are all under control
in contrast to those in Eq. (49). The convergent sequence in
Eq. (50) accounts for the smoothness of the pion LCDA
in Figs. 8(b) and 8(c). The pion LCDA with the above
coefficients yields the moments with the central values

ðhξ2i; hξ4i; hξ6i; hξ8i; hξ10i; hξ12i; � � �Þjμ¼2 GeV

¼ ð0.2609; 0.1362; 0.0890; 0.0652; 0.0511; 0.0420;…Þ;
ð51Þ

whose agreement with Eq. (48) verifies the consistency of
implementing the regularization. We remind the reader that
the Gegenbauer coefficients in Eq. (50) are derived at the
same Λ as an attempt to achieve their convergence, while
each of the moments in Eq. (48) is evaluated at a separate
Λ. This causes the minor difference between Eqs. (48) and
(51). The comparison of the first two Gegenbauer coef-
ficients in Eq. (50) with the results in the literature is
summarized in Table I. The value of aπ2 in Eq. (50) is of the
same order as those obtained in other methods, such as
lattice QCD [13,23,63,64]. Our aπ4 is too, but differs from
those in QCD sum rules [2,30], from the light-front quark

model (LFQM) [65], and from the indication of the data of
the pion transition form factor analyzed in light-cone sum
rules (LCSR) [66–68], which tend to be negative. How-
ever, the fits to the data of the pion form factors based on
LCSR favor positive aπ4 [69,70]. Note that aπ2 and aπ4 in
Eq. (50) are distinct from those determined in the global
study of two-body hadronic Bmeson decays formulated in
the perturbative QCD approach [37], where the leading-
order factorization formulas were employed. Hence, it is
worth including subleading contributions to the above
decays in the perturbative QCD approach, performing a
global analysis with higher precision, and checking
whether fit results of the Gegenbauer coefficients become
closer to those in Eq. (50). Besides, the Gegenbauer
coefficients presented here depend on the inputs for the
condensates, which are not yet completely certain.
To get a picture of the behavior of the pion LCDA slightly

away from the above best convergent solutions, we display
ϕπðxÞ for λ ¼ 0.45 with N ¼ 22 (Λ ¼ 15.72 GeV2) and
N ¼ 23 (Λ ¼ 17.57 GeV2) in Fig. 9(a). The former repre-
sents a solution outside the stability region, and the latter
represents a solution starting to go out of control with larger
N and Λ. For N ¼ 22, the shape of the curve is still similar
to that for N ¼ 16–20 in Fig. 8(c), except that it is bumpier
due to the worse convergence of the Gegenbauer coeffi-
cients, and the spikes near the endpoints are sharper and
squeezed further to the endpoints. As the dimension
increases to N ¼ 23, the shape becomes more oscillatory
with significant spikes, and also deviates more from that for
N ¼ 16–20. Figure 9(b) collects two results of ϕπðxÞ with
undesired behaviors: the solid line corresponds to another
transition scale Λ ¼ 12 GeV2 for λ ¼ 0.3 and N ¼ 18,
which differs from the solution with Λ ¼ 12.07 GeV2 for
the same λ and N in Fig. 8(a). The dashed line arises from
randomly chosen Λ ¼ 13 GeV2 and N ¼ 19 for λ ¼ 0.45.
In both cases the bad convergence of the Gegenbauer
coefficients induces numerous oscillations due to the ill-
posed nature, though the overall shapes of the curves remain
similar. The comparison between Figs. 8(b), 8(c), and 9
indicates that the existence of the smooth solutions for the
pion LCDA is nontrivial.
Fitting the parametrization for the pion LCDA

Γð2pþ 2Þ
Γðpþ 1Þ2 x

pð1 − xÞp; ð52Þ

TABLE I. Comparison of aπ2 and aπ4 for the pion LCDA at μ ¼
2 GeV in different methods, where the numbers without (with)
parentheses in LFQM [65] were derived from the linear (harmonic
oscillator) potential. The results presented at μ ¼ 1 GeV in
[37,65,68,70] have been evolved to μ ¼ 2 GeV.

Methods aπ2 aπ4

This work 0.1775þ0.0036
−0.0040 0.0957þ0.0011

−0.0012
Lattice QCD [13] 0.101� 0.023
Lattice QCD [23] 0.258� 0.087 0.122� 0.055
Lattice QCD [63] 0.233� 0.065
Lattice QCD [64] 0.136� 0.021
QCD sum rules [2] 0.057þ0.024

−0.019 −0.013þ0.022
−0.019

QCD sum rules [30] 0.149þ0.052
−0.043 −0.096þ0.063

−0.058
QCD sum rules [32] 0.157� 0.029 0.032� 0.007
LFQM [65] 0.092 (0.038) −0.002 (−0.020)
LCSR fit [68] 0.085 −0.020
LCSR fit [70] 0.205� 0.036 0.125� 0.042
Global fit [37] 0.491� 0.058 0.084� 0.029
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which has been normalized appropriately, to the curves in
Fig. 8(b), we deduce

p ¼ 0.45� 0.02; ð53Þ

where the upper (lower) bound of the error comes from the
regularization parameter λ ¼ 0.5 (0.4). The leading-twist
pion LCDA has been analyzed in various approaches, and
the results were summarized briefly in [23,32]. It is
interesting to find that our LCDA described by Eq. (53) is
very close to the one from the dynamical-chiral-symmetry-
breaking-improved kernel for the Dyson-Schwinger
equations [34,47], and to the ones from the random-
instanton-vacuum model [71], the Nambu-Jona-Lasinio
model [72], the nonlocal chiral quark model [73], the
light-cone quark model [74] and the basis light front
quantization [75]. As mentioned before, results from the
Dyson-Schwinger equations depend on kernels: the rain-
bow-ladder kernel [34] leads to a shorter and broader pion
LCDA with a shape different from that in Fig. 8(b). On
the other hand, our LCDA is a bit narrower than that from
the recent lattice QCD calculation based on the quasi-light-
front correlation function [23].
As a check, we seek the solutions of the pion LCDA

ϕπðxÞ in the sole presence of the perturbative piece in the
OPE. It is easily seen that solutions are independent of the
scale μ without the condensates at the considered level of

accuracy. Moreover, they are almost independent of the
transition scale Λ, because its dependence appears only
through the tiny ratio rm ¼ m2

π=Λ. Similarly, we increase
the regularization parameter λ gradually, and examine the
stability of the solutions. It is observed that solutions are
insensitive to the variation of λ till it reaches about 0.1. The
x dependencies of the pion LCDA for λ ¼ 0, 0.01 and 0.1
with the dimension N ¼ 18 are exhibited in Fig. 10(a),
where the curves for λ ¼ 0 and 0.01 overlap well, dem-
onstrating the stability of the solutions. No spikes near the
endpoints of x show up, since the OPE inputs are simple in
this case. As λ increases to 0.1, the shape of the pion LCDA
becomes bumpy with a shorter height in the intermediate x
region due to worse convergence in N. We also present the
x dependencies of the pion LCDA for N ¼ 16, 18, and 20
with λ ¼ 0 in Fig. 10(b), where the curves for N ¼ 16 and
18 overlap perfectly without visible difference. The curve
for N ¼ 20 is bumpy in the intermediate x region, though
the shape remains the same, implying that the ill-posed
nature starts to appear. The set of Gegenbauer coefficients
corresponding to λ ¼ 0 and N ¼ 18 is given by

ðaπ2; aπ4; aπ6; aπ8; aπ10; aπ12;…; aπ32; a
π
34Þ

¼ ð∼0;∼0;∼0;∼0;∼0; 4.4 × 10−9;…; 0.0001;−0.0001Þ;
ð54Þ
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FIG. 9. Dependencies of the pion LCDA ϕπðxÞ for (a) λ ¼ 0.45 with N ¼ 22 (Λ ¼ 15.72 GeV2, dashed line) and N ¼ 23

(Λ ¼ 17.57 GeV2, solid line), and (b) λ ¼ 0.30, Λ ¼ 12 GeV2 and N ¼ 18 (solid line), and λ ¼ 0.45, Λ ¼ 13 GeV2 and N ¼ 19
(dashed line).
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FIG. 10. Dependencies of the pion LCDA ϕπðxÞ for (a) λ ¼ 0 (solide line), 0.01 (dotted line) and 0.10 (dashed line) with N ¼ 18, and
(b) λ ¼ 0 with N ¼ 16 (dotted line), 18 (solid line) and 20 (dashed line) in the absence of the condensates.
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where ∼0 denotes a value smaller than 10−10, and the last
two coefficients of Oð10−4Þ are attributed to the growing
elements of the inverse matrix V−1. It is obvious that the
above Gegenbauer coefficients describe a pion LCDA in
the asymptotic form. This result, suggesting that the
deviation of the pion LCDA from the asymptotic form is
caused by the condensates, further supports the consistency
of our formalism. It also confirms that the balance between
perturbative and condensate contributions is not a crucial
requirement for the existence of stable solutions in our
approach, because the condensates are absent in the above
analysis.

D. QCD evolution

We have pointed out that the pion LCDA can be
determined at any scale μ in principle by tuning μ in
Eq. (9) and choosing the corresponding condensates defined
in Eq. (43). However, we have also made clear that the
current OPE inputs are not complete; namely, the μ
dependence of the inputs is not accurate strictly speaking.
Therefore, we investigate how well our formalism is
compatible with the QCD evolution: we solve for the pion
LCDA at another scale, say, μ ¼ 1.5 GeV, directly from
the inputs, evolve the pion LCDA obtained previously at
μ ¼ 2 GeV to this lower μ, and then compare the two
results. It is found that the shapes of the pion LCDA in the
former approach become independent of the regularization
parameter λ as λ > 0.1. The x dependencies of the pion
LCDA ϕπðxÞ for λ ¼ 0.10, 0.20 and 0.30 with the dimen-
sion N ¼ 18, corresponding to the transition scales
Λ ¼ 7.45 GeV2, 7.36 GeV2, and 7.31 GeV2, respectively,
are displayed in Fig. 11(a). The three curves overlap
reasonably well, reflecting the stability of the solutions.
Especially, the curve for λ ¼ 0.20 is smooth in the inter-
mediate x region. The curves show stronger oscillations near
the endpoints of x, which might be due to the larger
dimension-six condensate contributions at a lower μ, and
less perfect cancellation among various terms in the inverse
matrix method. We have confirmed that stable solutions for

the pion LCDA at the scale μ ¼ 2.5 GeV are as smooth as
those in Fig. 8(b). The set of Gegenbauer coefficients
corresponding to λ ¼ 0.20 is given by

ðaπ2; aπ4; aπ6; aπ8; aπ10; aπ12;…; aπ32; a
π
34Þjμ¼1.5 GeV

¼ ð0.2963; 0.2661; 0.2694; 0.2700; 0.2649; 0.2550;
…; 0.0379; 0.0109Þ; ð55Þ

whose elements are also all under control. We then exhibit
ϕπðxÞ for N ¼ 16, 18, and 20 with λ ¼ 0.20, corresponding
to Λ ¼ 6.35 GeV2, 7.36 GeV2, and 8.39 GeV2, respec-
tively, in Fig. 11(b). The three curves also overlap in the
intermediate x region, implying that the solutions are stable
with the variations of N and Λ, and oscillate strongly near
the endpoints of x for the similar reason. The bands in
Fig. 11 represent the theoretical uncertainty in our frame-
work, which is larger than in the case for μ ¼ 2 GeV.
It has been known that a Gegenbauer coefficient aπn of the

pion LCDA obeys the QCD evolution

aπnðμÞ ¼ aπnðμ0ÞEnðμ; μ0Þ; n ¼ 2; 4; 6; � � � ð56Þ

where the initial scale μ0 is set to 2 GeV, and the evolution
factor is written as

Enðμ; μ0Þ ¼
�
αsðμÞ
αsðμ0Þ

�
γð0Þn =ð2β0Þ

; ð57Þ

with the leading-order anomalous dimension

γð0Þn ¼ 8CF

�
ψðnþ 2Þ þ γE −

3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
; ð58Þ

CF ¼ 4=3 being a color factor and γE ¼ 0.5772 being the
Euler constant. We evolve the Gegenbauer coefficients at
μ ¼ 2 GeV associated with the curves in Figs. 8(b) and 8(c)
for various λ and N down to μ ¼ 1.5 GeV, and construct
the pion LCDAs in the Gegenbauer expansion as shown in

(a) (b)
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FIG. 11. Dependencies of the pion LCDA ϕπðxÞ for (a) λ ¼ 0.10 (Λ ¼ 7.45 GeV2, dashed line), 0.20 (Λ ¼ 7.36 GeV2, solid line) and
0.30 (Λ ¼ 7.31 GeV2, dotted line) with N ¼ 18, and (b) λ ¼ 0.20 with N ¼ 16 (Λ ¼ 6.35 GeV2, dotted line), 18 (Λ ¼ 7.36 GeV2,
solid line), and 20 (Λ ¼ 8.39 GeV2, dashed line).
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Fig. 12. The band formed by these curves is broadened a bit
by the evolution effect. The curves from solving the
dispersion relations directly for λ ¼ 0.1 and λ ¼ 0.3 in
Fig. 11(b), selected as the representative ones, are then
shown for comparison. It is observed that the former is
slightly above the latter in the intermediate x region, but
they overlap when the theoretical uncertainties are taken
into account. This rough agreement supports that our
formalism is compatible with the QCD evolution within
theoretical uncertainties.

IV. CONCLUSION

We have handled dispersion relations obeyed by a non-
perturbative correlation function in a novel way, much
different from that of conventional sum rules. It follows our
earlier proposal for solving dispersion relations as an inverse
problem with the OPE of the correlation function as inputs.
This formalism does not assume the quark-hadron duality
for the continuum contribution, does not involve a con-
tinuum threshold in the parametrization of a spectral density,
requires no Borel transformation to suppress the continuum
contribution and higher power corrections, and needs no
discretionary stability criteria on the balance between
perturbative and condensate contributions. With these
merits, extracting all the moments of the leading-twist pion
LCDA becomes possible as demonstrated in this work. The
idea is to expand the continuum function in an orthogonal
polynomial basis, which is formed by the generalized
Laguerre polynomials, and to solve for the unknown
coefficients in the expansion, together with the moments
appearing in the pion pole contribution, in the inverse matrix
method. We have pointed put that the power-suppressed
logarithm lnð−q2Þ=ðq2Þ3 in the OPE must be reformulated
into a power series in 1=q2 bymeans of a dispersive integral,
before the inverse matrix method can be implemented. It has
been shown that solutions for these unknowns are stable
with respect to the number N of polynomials in the
expansion, and to the variation of the transition scale Λ,
which is introduced through the ultraviolet regularization

for the spectral density. Inputting the quark and gluon
condensates in the literature, we have obtained the moments
of the pion LCDA at the scale μ ¼ 2 GeV close to those
from other approaches.
We have emphasized that it is highly nontrivial to acquire

the x dependence of the pion LCDA, even when all the
moments are available, because the conversion from the
moments to the Gegenbaer coefficients is also a challenging
ill-posed problem. Therefore, we have further extended our
framework to the analysis of the dispersion relations for the
Gegenbauer coefficients, which come from the linear
combination of those for the moments. To smear the strong
fluctuation in solutions caused by the ill-posed nature, a
regularization has been introduced into the inverse matrix
method, whose strength is characterized by a parameter λ.
It has been observed that solutions for the Gegenbauer
coefficients with excellent convergence exist, which are
insensitive to the variations of λ, N and Λ in finite ranges.
Furthermore, the pion LCDA from summing the contribu-
tions up to 18 Gegenbauer polynomials reveals a smooth
shape, in agreement with that from the dynamical-chiral-
symmetry-breaking-improved kernel for the Dyson-
Schwinger equations, and similar to that from the recent
lattice QCD derivation based on the quasi-light-front
correlation function, but different from that governed by
a finite number of moments from conventional sum rules.
We have verified that the asymptotic form is retrieved for the
pion LCDA in the absence of the condensates, and that our
formalism is compatible with the QCD evolution: the
solution for the pion LCDA with the condensate inputs at
a different scale μ ¼ 1.5 GeV matches the one obtained by
evolving the Gegenbauer coefficients from μ ¼ 2 GeV to
this lower scale within theoretical uncertainties.
We have surveyed the various sources of theoretical

uncertainties in our calculations, which are summarized
below. The uncertainties from the condensates hmqq̄qi and
mqhgsq̄σTGqi in the OPE inputs are negligible. The
variations of the dimension-four condensate hαsG2i and
the dimension-six condensates dominate the uncertainties,
amounting up to order of 10%. The uncertainty in our
method, resulting from the finite stability intervals of the
parameters λ, N and Λ, is about 2%–3%, as elaborated via
the evaluations of the moment hξ2i and the Gegenbauer
coefficient aπ2 . The choices of the subtraction terms for the
continuum function, i.e., of the ultraviolet regularization for
the spectral density causes 1% error at most. Overall
speaking, it is reasonable to claim order of 10% theoretical
uncertainties in our solutions for the pion LCDA. It should
be remembered that the zeroth moment hξ0i, related to the
normalization of the pion LCDA, is not equal to unity, and
depends on the scale μ under the current incomplete OPE
inputs. We have employed the alternative interpretation of
the dispersion relation for hξ0i as the one for the pion decay
constant on the premise hξ0i ¼ 1. By considering Eqs. (27)
and (34), the resultant μ-dependent pion decay constant
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FIG. 12. Comparison of the pion LCDA ϕπðxÞ from the
evolution of those in Figs. 8(b) and 8(c) (solid lines), and from
Fig. 11(a) for λ ¼ 0.10 and 0.30 (dashed lines).
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cancels in the ratios, and the issue about the μ dependence of
hξ0i is resolved. The uncertainty associated with the above
treatment was not taken into account in the present work.
We urge an inclusion of higher-power contributions, such as
that from dimension-eight condensates, into the OPE for the
relevant correlation function, which are expected to rectify
the normalization of the pion LCDA efficiently.
We have demonstrated how to extract information on the

leading-twist pion LCDA as much as possible from the
known dispersion relations. The framework developed here
is ready for applications to studies of other hadron LCDAs,
and likely to be extended to determinations of parton
distribution functions for inclusive processes. It goes
beyond analyses usually limited to a finite number of
moments in the literature, and serves as a simple analytical
approach to nonperturbative observables. The precision of
predictions from this formalism can be improved by adding
higher-order and higher-power contributions to the OPE
systematically, and by fixing the values of the quark and
gluon condensates, which are supposed to be universal
inputs.
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APPENDIX: REFORMULATION OF POWER-
SUPPRESSED LOGARITHM

We provide the details of reformulating the power-
suppressed logarithm lnð−q2=μ2Þ=ðq2Þ3 into a power
series in 1=q2 by means of a dispersive integral. We first
work on a simple power-suppressed logarithm Lð1Þðq2Þ ¼
lnð−q2=μ2Þ=q2, and produce it by a power series in 1=q2.
The insertion of Lð1Þðq2Þ into the contour integral in Eq. (5)
leads to

Lð1Þðq2Þ ¼ 1

2πi

Z
Cr

ds
Lð1ÞðsÞ
s − q2

þ 1

π

Z
R

r
ds

ImLð1ÞðsÞ
s − q2

þ 1

2πi

Z
CR

ds
Lð1ÞðsÞ
s − q2

: ðA1Þ

We apply the variable change s ¼ r expðiθÞ to the first
integral on the right-hand side, and expand the denomi-
nator r expðiθÞ − q2 up to the leading power in
r expðiθÞ=q2, since the next-to-leading power vanishes
in the r → 0 limit. The argument of the logarithm in the
numerator, −r cos θ − ir sin θ, rotates from the third quad-
rant counterclockwise as θ increases from zero. It implies
that the minus sign can be set to expð−iπÞ and the

argument becomes −r expðiθÞ ¼ r exp½iðθ − πÞ�. This
assignment guarantees that the first integral gives a real
value:

Z
2π

0

dθ ln
−r expðiθÞ

μ2
¼

Z
2π

0

dθ ln
r
μ2

þ i
Z

2π

0

dθðθ − πÞ

¼ 2π ln
r
μ2

: ðA2Þ

The substitution of ImLð1ÞðsÞ ¼ −π=s into the second
term on the right-hand side of Eq. (A1) yields

Lð1Þðq2Þ ¼ 1

2πq2

Z
2π

0

dθ ln
r exp½iðθ − πÞ�

μ2
−
Z

R

r

ds
sðs − q2Þ

þ 1

2πi

Z
CR

ds
Lð1ÞðsÞ
s − q2

; ðA3Þ

which reduces to

Lð1Þðq2Þ ¼ 1

q2
ln

r
μ2

þ 1

q2

�
ln
r − q2

r
− ln

R − q2

R

�

þ 1

2πi

Z
CR

ds
Lð1ÞðsÞ
s − q2

: ðA4Þ

The above expression verifies that the r → 0 limit can be
taken safely, and Lð1Þðq2Þ ¼ lnð−q2=μ2Þ=q2 has been
reproduced, as the term ln½ðR − q2Þ=R� and the last integral
are dropped at large R. We then arrive at

Lð1Þðq2Þ ¼ lim
r→0

−rLð1Þð−rÞ
q2

þ lim
r→0

1

π

Z
R

r
ds

ImLð1ÞðsÞ
s − q2

þ 1

2πi

Z
CR

ds
Lð1ÞðsÞ
s − q2

; ðA5Þ

where the first term is of power 1=q2, and the second term
can be cast into a power series in 1=q2 by expanding the
denominator of the integrand.
We then extend the above procedure to Lðq2Þ ¼

lnð−q2=μ2Þ=ðq2Þ3, starting with the identity

Lðq2Þ ¼ 1

2π

Z
2π

0

dθ expð−2iθÞ
r2½q2 − r expðiθÞ� ln

r exp½iðθ − πÞ�
μ2

−
Z

R

r

ds
s3ðs − q2Þ þ

1

2πi

Z
CR

ds
LðsÞ
s − q2

: ðA6Þ

The denominator q2 − r expðiθÞ in the first integral on the
right-hand side is expanded up to the second power in
r expðiθÞ=q2, and three pieces survive in the r → 0 limit:
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1

2πq2r2

Z
2π

0

dθ expð−2iθÞ ln−r expðiθÞ
μ2

¼ 1

2πq2r2

Z
2π

0

dθ expð−2iθÞiθ ¼ −
1

2q2r2
;

1

2πðq2Þ2r
Z

2π

0

dθ expð−iθÞ ln−r expðiθÞ
μ2

¼ 1

2πðq2Þ2r
Z

2π

0

dθ expð−iθÞiθ ¼ −
1

ðq2Þ2r ;

1

2πðq2Þ3
Z

2π

0

dθ ln
−r expðiθÞ

μ2
¼ 1

ðq2Þ3 ln
r
μ2

: ðA7Þ

The second integral on the right-hand side of Eq. (A6) gives

−
Z

R

r

ds
s3ðs − q2Þ ¼

1

ðq2Þ3 ln
r − q2

r
þ 1

ðq2Þ2rþ
1

2q2r2
−

1

ðq2Þ3 ln
R − q2

R
−

1

ðq2Þ2R −
1

2q2R2
: ðA8Þ

It is immediately seen that the three pieces in Eq. (A7) cancel the first three terms in the above expression. The similar steps
then lead Eq. (A6) to Eq. (7).

[1] G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43, 545
(1979); Phys. Rev. D 22, 2157 (1980).

[2] N. G. Stefanis, Phys. Lett. B 738, 483 (2014).
[3] S. A. Gottlieb and A. S. Kronfeld, Phys. Rev. Lett. 55, 2531

(1985).
[4] S. A. Gottlieb and A. S. Kronfeld, Phys. Rev. D 33, 227

(1986).
[5] G. Martinelli and C. T. Sachrajda, Phys. Lett. B 217, 319

(1989).
[6] D. Daniel, R. Gupta, and D. G. Richards, Phys. Rev. D 43,

3715 (1991).
[7] M. Goeckeler, R. Horsley, D. Pleiter, P. E. L. Rakow, A.

Schaefer, G. Schierholz, W. Schroers, and J. M. Zanotti,
Nucl. Phys. B, Proc. Suppl. 161, 69 (2006).

[8] V. M. Braun et al., Phys. Rev. D 74, 074501 (2006).
[9] P. A. Boyle, M. A. Donnellan, J. M. Flynn, A. Juttner, J.

Noaki, C. T. Sachrajda, and R. J. Tweedie (UKQCD Col-
laboration), Phys. Lett. B 641, 67 (2006).

[10] R. Arthur, P. A. Boyle, D. Brommel, M. A. Donnellan, J. M.
Flynn, A. Juttner, T. D. Rae, and C. T. C. Sachrajda, Phys.
Rev. D 83, 074505 (2011).

[11] V. M. Braun, S. Collins, M. Gockeler, P. Perez-Rubio, A.
Schafer, R. W. Schiel, and A. Sternbeck, Phys. Rev. D 92,
014504 (2015).

[12] G. S. Bali, V. M. Braun, M. Göckeler, M. Gruber, F. Hutzler,
P. Korcyl, B. Lang, and A. Schäfer (RQCD Collaboration),
Phys. Lett. B 774, 91 (2017).

[13] G. S. Bali, V. M. Braun, S. Bürger, M. Göckeler, M. Gruber,
F. Hutzler, P. Korcyl, A. Schäfer, A. Sternbeck, and P. Wein
(RQCD Collaboration), J. High Energy Phys. 08 (2019)
065; 11 (2020) 37(E).

[14] W. Detmold, A. V. Grebe, Issaku Kanamori, C.-J. David
Lin, Santanu Mondal, Robert J. Perry, and Yong Zhao
(HOPE Collaboration), Phys. Rev. D 105, 034506 (2022).

[15] J. H. Zhang, J. W. Chen, X. Ji, L. Jin, and H.W. Lin, Phys.
Rev. D 95, 094514 (2017).

[16] V. Braun and D. Müller, Eur. Phys. J. C 55, 349
(2008).

[17] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M. Gruber,
F. Hutzler, P. Korcyl, B. Lang, A. Schäfer, P. Wein, and J.-H.
Zhang, Eur. Phys. J. C 78, 217 (2018).

[18] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M. Gruber,
F. Hutzler, P. Korcyl, A. Schäfer, P. Wein, and J. H. Zhang,
Phys. Rev. D 98, 094507 (2018).

[19] A. V. Radyushkin, Phys. Rev. D 95, 056020 (2017).
[20] A. V. Radyushkin, Phys. Rev. D 100, 116011 (2019).
[21] R. Zhang, C. Honkala, H. W. Lin, and J. W. Chen, Phys.

Rev. D 102, 094519 (2020).
[22] J. Hua, M. H. Chu, P. Sun, W. Wang, J. Xu, Y. B. Yang, J. H.

Zhang, and Q. A. Zhang (Lattice Parton Collaboration),
Phys. Rev. Lett. 127, 062002 (2021).

[23] J. Hua, M. H. Chu, J. C. He, X. Ji, A. Schäfer, Y. Su, P. Sun,
W. Wang, J. Xu, Y. B. Yang, F. Yao, J.-H. Zhang, and Q.-A.
Zhang, arXiv:2201.09173.

[24] V. L. Chernyak and A. R. Zhitnitsky, Nucl. Phys. B201, 492
(1982); Phys. Rep. 112, 173 (1984); Nucl. Phys. B246, 52
(1984).

[25] T. Huang, X. N. Wang, and X. D. Xiang, Chin. Phys. Lett. 2,
67 (1985); X. D. Xiang, X. N. Wang, and T. Huang,
Commun. Theor. Phys. 6, 117 (1986); T. Huang, X. N.
Wang, X. D. Xiang, and S. J. Brodsky, Phys. Rev. D 35,
1013 (1987).

[26] V. M. Braun and I. Filyanov, Z. Phys. C 44, 157 (1989).
[27] P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005).
[28] P. Ball, V. M. Braun, and A. Lenz, J. High Energy Phys. 05

(2006) 004.
[29] P. Ball and G.W. Jones, J. High Energy Phys. 03 (2007)

069.
[30] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys.

Lett. B 508, 279 (2001); 590, 309(E) (2004).
[31] T. Zhong, X. G. Wu, Z. G. Wang, T. Huang, H. B. Fu, and

H. Y. Han, Phys. Rev. D 90, 016004 (2014).

DISPERSIVE DERIVATION OF THE PION DISTRIBUTION … PHYS. REV. D 106, 034015 (2022)

034015-21

https://doi.org/10.1103/PhysRevLett.43.545
https://doi.org/10.1103/PhysRevLett.43.545
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1016/j.physletb.2014.10.018
https://doi.org/10.1103/PhysRevLett.55.2531
https://doi.org/10.1103/PhysRevLett.55.2531
https://doi.org/10.1103/PhysRevD.33.227
https://doi.org/10.1103/PhysRevD.33.227
https://doi.org/10.1016/0370-2693(89)90874-5
https://doi.org/10.1016/0370-2693(89)90874-5
https://doi.org/10.1103/PhysRevD.43.3715
https://doi.org/10.1103/PhysRevD.43.3715
https://doi.org/10.1016/j.nuclphysbps.2006.08.064
https://doi.org/10.1103/PhysRevD.74.074501
https://doi.org/10.1016/j.physletb.2006.07.033
https://doi.org/10.1103/PhysRevD.83.074505
https://doi.org/10.1103/PhysRevD.83.074505
https://doi.org/10.1103/PhysRevD.92.014504
https://doi.org/10.1103/PhysRevD.92.014504
https://doi.org/10.1016/j.physletb.2017.08.077
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP11(2020)037
https://doi.org/10.1103/PhysRevD.105.034506
https://doi.org/10.1103/PhysRevD.95.094514
https://doi.org/10.1103/PhysRevD.95.094514
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://doi.org/10.1140/epjc/s10052-018-5700-9
https://doi.org/10.1103/PhysRevD.98.094507
https://doi.org/10.1103/PhysRevD.95.056020
https://doi.org/10.1103/PhysRevD.100.116011
https://doi.org/10.1103/PhysRevD.102.094519
https://doi.org/10.1103/PhysRevD.102.094519
https://doi.org/10.1103/PhysRevLett.127.062002
https://arXiv.org/abs/2201.09173
https://doi.org/10.1016/0550-3213(82)90445-X
https://doi.org/10.1016/0550-3213(82)90445-X
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1016/0550-3213(84)90114-7
https://doi.org/10.1016/0550-3213(84)90114-7
https://doi.org/10.1088/0256-307X/2/2/006
https://doi.org/10.1088/0256-307X/2/2/006
https://doi.org/10.1088/0253-6102/6/2/117
https://doi.org/10.1103/PhysRevD.35.1013
https://doi.org/10.1103/PhysRevD.35.1013
https://doi.org/10.1007/BF01548594
https://doi.org/10.1103/PhysRevD.71.014015
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2007/03/069
https://doi.org/10.1088/1126-6708/2007/03/069
https://doi.org/10.1016/S0370-2693(01)00517-2
https://doi.org/10.1016/S0370-2693(01)00517-2
https://doi.org/10.1016/j.physletb.2004.05.001
https://doi.org/10.1103/PhysRevD.90.016004


[32] T. Zhong, Z. H. Zhu, H. B. Fu, X. G. Wu, and T. Huang,
Phys. Rev. D 104, 016021 (2021).

[33] S. V. Mikhailov and N. G. Stefanis, Phys. Rev. D 104,
096013 (2021).

[34] L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts,
S. M. Schmidt, and P. C. Tandy, Phys. Rev. Lett. 110,
132001 (2013).

[35] K. Raya, L. Chang, M. Ding, D. Binosi, and C. D. Roberts,
arXiv:1911.12941.

[36] C. Shi, M. Li, X. Chen, and W. Jia, Phys. Rev. D 104,
094016 (2021).

[37] J. Hua, H. n. Li, C. D. Lu, W. Wang, and Z. P. Xing, Phys.
Rev. D 104, 016025 (2021).

[38] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979); B147, 448 (1979).

[39] H. n. Li and H. Umeeda, Phys. Rev. D 102, 114014 (2020).
[40] C. Coriano and H. n. Li, Phys. Lett. B 324, 98 (1994).
[41] C. Coriano, H. n. Li, and C. Savkli, J. High Energy Phys. 07

(1998) 008.
[42] D. B. Leinweber, Ann. Phys. (N.Y.) 254, 328 (1997).
[43] P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010).
[44] H. n. Li, Phys. Rev. D 104, 114017 (2021).
[45] H. n. Li, H. Umeeda, F. Xu, and F. S. Yu, Phys. Lett. B 810,

135802 (2020).
[46] H. n. Li and H. Umeeda, Phys. Rev. D 102, 094003 (2020).
[47] C. D. Roberts, D. G. Richards, T. Horn, and L. Chang, Prog.

Part. Nucl. Phys. 120, 103883 (2021).
[48] E. V. Veliev, K. Azizi, H. Sundu, and G. Kaya, arXiv:1012

.0683.
[49] H. Forkel, Phys. Rev. D 71, 054008 (2005).
[50] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,

010001 (2012) and 2013 partial update for the 2014 edition.
[51] S. Narison, Int. J. Mod. Phys. A 30, 1550116 (2015).
[52] P. Colangelo and A. Khodjamirian, arXiv:hep-ph/0010175.
[53] K. C. Yang, W. Y. P. Hwang, E. M. Henley, and L. S.

Kisslinger, Phys. Rev. D 47, 3001 (1993).
[54] W. Y. P. Hwang and K. C. Yang, Phys. Rev. D 49, 460

(1994).
[55] C. D. Lu, Y. M. Wang, and H. Zou, Phys. Rev. D 75, 056001

(2007).

[56] D. Harnett, J. Ho, and T. G. Steele, Phys. Rev. D 103,
114005 (2021).

[57] S. Narison, Nucl. Phys. B, Proc. Suppl. 207, 315
(2010).

[58] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Nucl. Phys. B165, 67 (1980).

[59] L. J. Reinders, H. Rubenstein, and S. Yazaki, Phys. Rep.
127, 1 (1985).

[60] H. Panagopoulos and E. Vicari, Nucl. Phys. B332, 261
(1990); A. DiGiacomo, K. Fabricius, and G. Paffuti, Phys.
Lett. 118B, 129 (1982).

[61] S. Narison, Phys. Lett. B 693, 559 (2010); 705, 544(E)
(2011); 706, 412 (2012); 707, 259 (2012).

[62] S. Narison, Int. J. Mod. Phys. A 33, 1850045 (2018);
arXiv:1812.09360.

[63] R. Arthur, P. A. Boyle, D. Brommel, M. A. Donnellan, J. M.
Flynn, A. Juttner, T. D. Rae, and C. T. C. Sachrajda, Phys.
Rev. D 83, 074505 (2011).

[64] V. M. Braun, S. Collins, M. Göckeler, P. Pérez-Rubio, A.
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