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Massive quarks in NLO dipole factorization for DIS: Transverse photon
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We calculate the light-cone wave functions for the QCD Fock components in a transverse virtual photon
necessary for applications at next-to-leading order (NLO) in the QCD coupling, including quark masses.
We present a detailed calculation of both the one-loop wave function for the quark-antiquark Fock
component and the tree-level wave function for the quark-antiquark-gluon Fock component. The quark
masses are renormalized in the pole mass scheme, satisfying constraints from the requirement of Lorentz
invariance. In particular the quark Pauli form factor at NLO is recovered from the on-shell limit of the
quark-antiquark Fock component. We use our result to calculate the next-to-leading-order correction to the
high energy deep inelastic scattering (DIS) transverse structure function on a dense target in the dipole
factorization framework. Together with our earlier result for longitudinal photons, this completes the
calculation of the total deep inelastic scattering cross section in the dipole picture with massive quarks at

next-to-leading order, enabling a comparison with experimental data.
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I. INTRODUCTION

In the limit of high scattering energies, quantum chromo-
dynamics (QCD) is believed to exhibit the phenomenon of
gluon saturation. This means that partial wave scattering
amplitudes can become of the order of unity, i.e. sensitive to
unitarity requirements, even for processes at weak coupling
(transverse) momentum scales. Understanding the behavior
of QCD in this limit has been the object of much attention
both experimentally and theoretically. In addition to high
energy hadronic and nuclear collision experiments, this
small-x regime of QCD can be probed in high energy deep
inelastic scattering experiments, at the HERA collider and
in a future electron-ion collider (EIC) [1,2].

A convenient theoretical tool used to understand the
behavior of QCD in this limit is provided by the color glass
condensate (CGC) effective theory description [3-5]. Here
one starts from the fact that in the small-x limit the
dominant degrees of freedom of the scattering are gluonic
states in the Fock state of the high energy target hadron or
nucleus. One then formulates the high energy scattering
process as an eikonal scattering off a classical color field
[6]. The advantage of this eikonal approximation is that one
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works in transverse coordinate space, where the unitarity
of the scattering matrix is manifest. The relevant physical
degrees of freedom describing the dense gluonic target are
eikonal scattering amplitudes of a dilute probe in the target
gluon field, lightlike Wilson lines. The Wilson lines resum
nonlinear interactions involving any number of gluons in
the target, and are thus very well adapted for describing the
nonlinear physics of gluon saturation. For the deep inelastic
scattering (DIS) process at high energy the eikonal scatter-
ing approach leads to the dipole picture [7-11], where one
factorizes the perturbative partonic structure of the virtual
photon from the eikonal scattering of the partonic states
from the possibly dense target.

In recent years the eikonal scattering picture of CGC has
been systematically pushed to next-to-leading-order (NLO)
accuracy for several different processes where a dilute
projectile interacts with the dense color field of the target.
The evolution of the Wilson lines with x (known as the
Balitsky-Kovchegov equation [12-14] for the two-point
function or as the IMWLK equation [15] more generally)
is now known to NLO including the resummations of
collinear logarithms needed to stabilize the calculation
[16-28] and even to NNLO in N = 4 super-Yang-Mills
theory [29]. There have been several calculations of single
[30-36] and double [37-39] inclusive parton production at
forward rapidity in high energy proton-nucleus collisions.
The inclusive DIS cross section for massless quarks has
been calculated [40-46] and the first descriptions of
experimental data have recently become available [47].
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Still in the context of DIS, exclusive scattering processes
have been studied at NLO in several papers [48—-53], as well
as inclusive dijet production [54].

The formalism of light-cone perturbation theory (LCPT)
[6,55-57] provides a calculational and conceptional tool to
develop the picture of high energy scattering in a system-
atical perturbative expansion. We use LCPT to formulate a
weak coupling Fock-space expansion of the quantum state
of the probe, expressed in terms of light-cone wave
functions (LCWF)’s. When Fourier transformed to trans-
verse coordinate space, the LCWF’s are naturally combined
with the Wilson lines describing the target to obtain
scattering cross sections.

In this work we address the DIS process with massive
quarks at one-loop order in QCD perturbation theory. This
calculation is highly relevant both for its phenomenologi-
cal applications and for the development of the LCPT
framework. On the phenomenological side, consistently
describing HERA results for F, and F% simultaneously
has been challenging in leading-order fits with BK (or
JIMWLK) evolution [58,59]. For understanding data from
HERA and the EIC in terms of high energy QCD, it will
be important to include F§ in the description at NLO
accuracy. This paper, taken together with our earlier
results for longitudinal photons [60], provides the full
expressions needed to calculate the total DIS cross section
including quark masses.

On the more theoretical level, there are not many LCPT
calculations at higher orders in perturbation theory. While
the LCPT formulation provides a more physical explicit
picture of the scattering process, the technology for loop
calculations has been less developed than in covariant
theory. Both the Hamiltonian formalism and the light-
cone gauge break explicit Lorentz invariance, which can
make intermediate expressions more cumbersome. Also
renormalization has been less well understood in LCPT
than in covariant perturbation theory, both because of the
small number of loop calculations, and the complications
related to Lorentz invariance and the gauge choice. In this
paper we will be faced with the problem of quark mass
renormalization in LCPT. To our knowledge, our calcu-
lation here is the first practical LCPT calculation of a
physical observable at NLO where not just the divergent
part of the mass counterterm is extracted [61-64], but one-
loop mass renormalization is carried out in full in the pole
mass scheme (see also discussion in [65]), and all the
finite leftover NLO terms are calculated with full mass
dependence.

This paper is a part of a series of papers on extending the
CGC (or more generally dipole picture) calculations of
small-x DIS at NLO accuracy to massive quarks using
light-cone perturbation theory. In our first paper [60] we
calculated the photon wave function and the total DIS cross
section for longitudinally polarized photons. The final
result for the wave function, and the cross sections for

both polarizations, are presented in an accompanying
shorter paper [66], but all the details of the calculation
for the transverse photon will be described here. Since
much of the calculation is relatively similar to the previous
calculations with massless quarks [43,44,46] and to the
longitudinal polarization case [60], we will be relatively
brief with the introduction in this paper and move
straight to the point. We refer the reader to these earlier
papers for more background on the physics and the
calculational methods.

In addition to the longitudinal photon case being
algebraically simpler than our present calculation, the
calculation in Ref. [60] also did not encounter the full
complexity of quark mass renormalization in LCPT in the
same way as in this paper (although the issue is discussed
in Ref. [60]). We will in this paper need to fully
renormalize the quark mass in both the propagator
correction (so called “kinetic mass”) and vertex correc-
tion (“vertex mass”). However, we will treat the issue in a
concise way in this paper, ensuring that we get the correct
result that maintains Lorentz invariance of the quark form
factor at one loop. We will return to a more detailed
discussion of mass renormalization, regularization, and
the related issue of the self-induced inertias [67] in a
separate future paper.

The paper is structured as follows. We will first, in
Sec. II, write down the expressions for the total NLO DIS
cross section, defining our notations and normalization for
the LCWF’s. We will then briefly describe the calculation
of the leading-order cross section in Sec. III. At NLO,
before moving to the individual diagrams, we will first
discuss the overall spinor structure, kinematics, and mass
renormalization procedure of the wave functions in Sec. I'V.
We then calculate the loop diagrams in Sec. V and combine
them to get the momentum space mass renormalized
y* — gg wave function in Sec. VI. This is then transformed
to mixed longitudinal momentum and transverse coordinate
space in Sec. VII. We then write down and Fourier
transform the tree-level y* — ggg wave functions in
Sec. VIIL. In Sec. IX we input the wave functions into
the expressions for the cross section and effectuate the
cancellation of the remaining UV divergences between the
contributions of the gg and ggg Fock states, to arrive at our
result for the total DIS cross section which is summarized
in Sec. X. We provide brief conclusions and an outlook for
the future in Sec. XI. Several more technical parts of the
calculation are presented in the appendixes.

I1. DIPOLE FACTORIZATION FOR DIS:
CROSS SECTION AT NLO

The DIS cross section can be expressed in terms of the
cross section of a virtual photon scattering on the hadronic
target. Following the discussion presented in [60], the total
NLO cross section for a virtual transverse photon scattering
from a classical gluon field takes the form

034013-2



MASSIVE QUARKS IN NLO DIPOLE FACTORIZATION FOR ...

PHYS. REV. D 106, 034013 (2022)

. I [
or = 2N, Z 2—+|U/7T 49|’Re[l = Sp1] + 2N Ce Z 2—+|‘l/yT 999)°Re[1 = So1] + O(@emas), (1)

qq F. states

qqgF. states

where the color factor Cp = (N2 — 1)/(2N,.) and N is the number of colors. The phase space sums over the mixed space
quark-antiquark (gg) and quark-antiquark-gluon (¢gg) Fock states are given by

R
-1/

where X is the transverse coordinate of the quark, x; that
of the antiquark, and x, that of the gluon. The reduced
LCWF’s 71744 and {71949 (see the discussion in [60])
are independent of the photon transverse momentum q and
cannot depend on the absolute transverse positions of the
Fock state partons, just on their differences. Finally, the
quark-antiquark (Sy;) and quark-antiquark-gluon (Sy;»)
amplitudes are defined as

qq9 F states

1
So1 = N_Tr(UF(XO)UjV(XI»’

Soiz = Tr(tUp(x0)1*Upp(x1))Ua (X2) 0. (3)

N, CCF
for the quark-antiquark (Sy;) and quark-antiquark-gluon
(So12) amplitudes. Here the fundamental (F) and the
adjoint (A) Wilson lines are defined as lightlike path
ordered exponentials for a classical gluon target

Up(x) = Pexp {—ig / dr A= (x+ 0, x>],
Ua(x) = Pexp {—ig / dx+TaA;(x+,o,x)], @)

where 1* and T“ are the generators of the fundamental and
adjoint representations, respectively.

What we will do in this paper is to calculate the LCWF
{7194 to one-loop order (up to a;) and the gluon emission
LCWEF 717449 to tree level, including quark masses. We
will then insert the result into Eq. (1) and subtract and add a
term to make explicit a cancellation of a transverse UV
divergence between the two contributions.

III. LEADING ORDER WAVE FUNCTION

As in the longitudinal case [60], let us first write down
the leading-order LCWF contribution to the transverse
photon splitting into a massive quark-antiquark dipole.
Following the notation shown in Fig. 1, the leading-order
r7 — qq LCWF can be written as

o dki O (ki) ‘ 1
S 2ro(a =3 ) (ITf @),
Jj=0 k=0
o dk;O(k) > 2, f[ Do
27r5<q+— k>< /d _Xk), (2)
2k (2x) j=0 ! k=0

lpy;'_’qq _ 5‘10‘1] V}/;‘_}qq (5)

ED, o hoshy *

Note that, as in Ref. [60], we do not include the delta
function for overall 3-momentum conservation in the
momentum space LCWF. For the transverse momentum
it is included in the definition of the Fourier transform from
momentum to coordinate space, and for the longitudinal
momentum in the phase space integration measure (2).
The leading-order light-cone energy denominator EDj g
simplifies to

+
2k+k+
1

IERE R

Here we have introduced the notations

EDLO [Pz + Q2 +m ]

P=ko-zq=-k; + (1 -z)g=(1-2)ko—zk;, (7)

0% =z(1-2)Q% (8)
|
‘ 0, ho, g
|
!
VT |
(77 )‘ !
j 17 h17 aq
EDq o
FIG. 1. Time ordered light-cone diagram (momenta flows from

left to right) contributing to the transverse virtual photon wave
function at leading order. Here, the quark (antiquark) helicity and
color indices are denoted as hy(h;) and ag(a;). In the vertex the
light-cone spatial three-momentum § = (¢*,q) = ko + k; is
conserved, i.e. ¢ = k§ + k| and q = k, + k.
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r, =/2(1=2)Q* + m?, ©)

with the momentum fraction z =kJ/g" and 1-z=
ki /gt with z € [0, 1]. The interpretation of P is that it
is the relative transverse momentum of the quark-antiquark
pair on the light cone, where the plus-momentum plays the
role of a mass in a two-dimensional nonrelativistic system.
After Fourier transforming to transverse coordinate space,
k, will be the typical inverse size of the dipole.

The transverse photon splitting vertex into massive
quark-antiquark (gg) pair is given by

View'! = +eesn(0);(q)o(1), (10)

where the parameter e, is the fractional charge of quark
flavor f, e is the QED coupling constant, and the compact
notation for the spinors #(0) = ii(kgy, hy) and »(1) =
v(ky, hy) has been introduced. The transverse momentum
dependence in the massive spinors # and v and in the
photon polarization vector can be extracted out by using the
decomposition derived in [60]. For the leading-order quark
spinor structure in Eq. (10), this decomposition yields

10(@0) = (E ) [(EE ), 50 0(1) + 300 o) P =m0 o el )

Indeed, in each term in the right-hand side of Eq. (11), the
y+ Dirac matrix projects out the components that depend on
the transverse momenta (and masses) from the spinors u
and v, so that only the components depending only on the
light-cone momenta and on the light-cone helicities (some-
times called good components) survive (see e.g. [43]).
For the DIS cross section, we need to Fourier transform
the momentum space expression of the LCWF, supple-
mented with the delta function for overall transverse
momentum conservation (see [60]), into mixed space.
|

~Yh—=qq ee k+ —k+ i —
iy = —2—;{ K Oq+ 1>5(f)s)”(0)1/+v(1) +

The reduced wave function lﬂ]yf(;qq is extracted from the

two-dimensional Fourier transform of the wave function

‘i‘&_)qq by separating an overall kinematical factor related
to the total transverse momentum, and a color factor, as

‘i‘ﬁ;qq = Sua ei(‘I/q+)'(k§Xo+kl+X1)lpﬁ;qq‘ (12)
Thus the reduced LCWF in mixed space is given by the
following expression:

70 . lo(1) | FP —mu<o>y+yfv<1>fm}e£- (13)

Here we have defined a Fourier transform operator F that corresponds to the Fourier transform of its argument, divided by
the leading-order energy denominator and an overall factor, as

fM:zé/(

dD—ZP eiP-xU]
2m)P2 P2 k2’
dD—2P eiP~mei

ﬂmzh/aﬁﬁﬁjg. (14)

We have also introduced the compact notation x3; = Xy — X; for the difference of transverse coordinates x, and x;. The
shorthand notation F will be very convenient in the NLO calculation. The evaluation of such Fourier transforms is

discussed in Appendix C.

It is then straightforward to perform the remaining (D — 2)-dimensional Fourier integrals in Eq. (14). All in all, the final
result for the reduced leading-order LCWF in mixed space can be written in the following form:

~vy—qq _ TEef < Kz

L0 = 2r \2alxy| q

— mi(O) P o(1)K <:<z|xO1|>}e£7

i

>{ Kkg 1k1+>aéa>a<o>y+v<1> O o) b Ko

[\

X1
(15)

where the function K,(z) is the modified Bessel function of the second kind. Setting D = 4, it is easy to check that one
recovers the conventional result for the wave function [7].
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IV. STRUCTURE OF THE NLO CORRECTIONS

A. Spinor structure and mass renormalization

Before proceeding to calculate these contributions, let us
first discuss the general Lorentz and gauge invariance
constraints for the wave functions, and its relation to mass
renormalization. As discussed already in our previous
paper [60], the quark mass appears in two separate terms
in the QCD light front Hamiltonian. The mass in the free
fermion term that determines the relation between light-
cone energy k=~ and light-cone momentum k? + m? is
referred to as the “kinetic mass.” On the other hand, as can
be explicitly seen from the decomposition (11), also a part
of the interaction term of the Hamiltonian is linearly
proportional to the mass, which we call the “vertex mass.”
Lorentz invariance at the level of the Lagrangian guarantees
that the two masses stay equal. However, the regularization
procedure of transverse dimensional regularization and a
longitudinal cutoff, which has proven convenient in loop
calculations [43,44,46], breaks Lorentz invariance. One is
left with two options. One is to modify the regularization
procedure to take this into account. It turns out that such a
regularization procedure in fact can be found, by only a
slight extension of the one that has been used so far,
affecting only the treatment of the “self-induced inertia” or
“seagull” diagrams that vanish in our earlier scheme
[57,67,68]. We will discuss this option in more detail in
a future work. The other option is to accept that the two
masses will become different after loop contributions, and
must be renormalized by separate renormalization condi-
tions at each order in perturbation theory. We have verified
explicitly that, at least at one loop, both procedures lead to
exactly equivalent results.

What happens in a practical calculation is the following.
As discussed in the case of the longitudinal polarization
[60], the kinetic mass renormalization is determined
by the “quark propagator correction diagrams.” Here the

u(0)¢(q)v(1),  (P-g)u(0)y v(1),

renormalization condition in the pole mass scheme is
determined by the requirement that the leading divergence
resulting from the energy denominator approaching zero in
the on-shell limit is absorbed into mass renormalization.
This procedure, discussed explicitly in [60], is identical in
the case of the transverse polarization, since the propagator
corrections completely factorize from the photon vertex. If
the propagator correction diagrams are evaluated with a
Lorentz-invariance conserving regularization scheme, the
ensuing counterterm can directly be used to renormalize
the vertex mass. If, on the other hand, one uses the
straightforward k* cutoff of [43,44,46], one needs a
separate renormalization condition for the vertex mass,
to restore Lorentz invariance. In the case of the longitudinal
photon polarization, the leading-order vertex does not have
a light-cone helicity flip term proportional to the mass.
There is thus no vertex mass parameter to renormalize and,
and vertex mass renormalization is not needed.

Since the difficult issues with mass renormalization are
related to the interplay of the regularization method and
Lorentz invariance, it is useful to start by checking the
constraints of Lorentz invariance on the wave function. In
the transverse photon case, the NLO correction to the
initial-state LCWF for y; — ¢g must be proportional to the
polarization vector of the photon. It can also only depend
on one transverse momentum vector P, and involve matrix
elements of different Dirac matrix structures between the
quark and antiquark spinors, which can be related to each
other by Dirac matrix commutation relations, and by using
the Dirac equation. Based on these facts it can be seen that
the LCWF can be written as a linear combination of four
independent spinor structures. In fact, for different stages of
the calculation it is convenient to use different bases for
these spinor structures. We start by introducing a basis that
is convenient for the loop calculations and first choose the
independent structures as

Pia0)y yiv(1),  a(0)r*éi(q)v(1). (16)

In terms of these four structures we can write the wave function up to NLO in terms of four form factors V', N7, ST, and
MT which are defined, extracting some constants for future convenience, by

¥p—qd ¥3—qd eer | _ a,Cg gt
Yio  +¥1o0 = 0ua m{“(o)éﬁ(@”(l) {1 + (7> VT] + AT

q" (P-g))
2k ki P2

(e o) (%) A7

+

¥ PO p/o(1) (%5 )57 + o (0} () (5 ) M7 ()

Here the form factor V7 multiplies the leading-order-like structure, which has both light-cone helicity nonflip contributions,
and flip contributions proportional to the quark mass. Out of the new structures that only appear at one-loop order, N7 is a
nonflip contribution and ST and M7 are light-cone helicity flip contributions.
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In general, the parametrization of the ygg vertex function
based on Lorentz and gauge invariances, relevant for the
vy — qq amplitude, can be written as

(18)

QD .
I(q) = Fp(q*/m*)y* + Fp(q*/m?) Siot,

where Fp and Fp are the Dirac and Pauli form factors,
respectively. As explained in Appendix F, one can show
that the form factors V7, N7, ST, and M7 have to obey the
following constraints:

a,Ce\m?* _,

_( 21 >P2$
aSCF 1 T
( 27 )(21— I)N

asCF T
(%)

= FP(qz/mz)»

P2—— 022

(19)

= FP(qz/mz),

2522

(20)

= -1+ Fp(q*/m*) + Fp(q*/m?),

P2——02—m?
(21)

Mg o = 0. (22)

All of these constraints are evaluated at what we call the
on-shell point q* = (P> +m?)/(z(1 —z)). The on-shell
point corresponds to the kinematical configuration of a
timelike virtual photon decaying to a quark-antiquark pair
with four-momentum conservation. For the DIS process the
virtual photon is spacelike, and the on-shell point is outside
of the physical region. We have, however, analytical
expressions for the form factors, and they can easily be
extended up to the on-shell point. The on-shell point is,
also, the renormalization point in the on-shell, i.e. pole
mass, quark mass renormalization scheme.

Depending on the details of the regularization procedure,
we can use these four constraints in two ways. If the
regularization procedure preserves Lorentz invariance, all
four conditions serve as cross-checks of the result of the
loop calculation. If, on the other hand, Lorentz invariance
needs to be restored, one of the constraint equations
becomes a renormalization condition for the vertex mass.
To see explicitly how this happens, let us see how a vertex
mass counterterm appears in the wave function (17). For the
purpose of mass renormalization, it is convenient to change
from the basis in (17) to a different one, where the
longitudinal component of the polarization vector is elim-
inated using e*(g) =0,q-€e(q) = 0. This leads to the
following structure:

. . + kT — kT a,C a,C
W il _ s eer ¢ 0 1 1 sCE 1 sCE TP . e, (0 v(1
LO + NLO o EDLO Zk(J)rkIr q+ + o0 V + o0 N eﬂu( )}/ U( )

+ % {1 + <O’2—CF) VT} Pieju(0)y* [y, y/]o(1) +m K%CF> ST] <Pin> e;u(0)yr/o(1)

T

-m [1 - <a32—?> MT + VT]}ejﬁ(O)

where clearly the first two lines are light-cone helicity
conserving, and the second two flip terms.

Following a bare perturbation theory approach, the mass
appearing in the unrenormalized wave function (17) is in
fact the bare mass mg . One then replaces my = m — om
with dm ~ ag, and inserts this relation into the equation. In a
renormalized perturbation approach, on the other hand, one
works all the time with the physical quark mass m, and
inserts an additional 3-point vertex mass counterterm in the
Hamiltonian. In both cases, it is obvious that the mass
counterterm at order ¢ is associated with the last line of
(23), which is the only one where the mass appears at LO,
and gives a contribution of the form

eey gt

\nyr_)qq — 5
om “UEDy o 2k k7

{ome;u(0)ry'v(1)}.  (24)

Since the form factor M7 is the only one that is only
associated with the same spinor structure, it is clear that the

2w P2

7*7"0(1)}, (23)

vertex mass renormalization will affect only the form
factor M”. Thus we can separate M7’ into the loop
contribution MITOOP(P, z,0?), which depends on the kin-
ematics, and the constant counterterm
T _ AqT 2 T

M= Mloop(P’ z,0Q ) + Mc.t.‘ (25)
It is now clear how to use one of the form factor constraints,
namely the last one (22), as a mass renormalization
condition. One simply determines the counterterm contri-
bution to M7 by requiring (22) to be satisfied, i.e.

MZ.L = _'/\/llicn)op(l)7 <, Q2)| (26)

P =—0>—m?"
This also points to a consistency condition that the loop
calculation must, and will, satisfy. Namely, when P2 is set
to the on-shell value P> = —Q? —m? the form factor
Mfmp(P,z, Q?) must no longer depend on z or Q2
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Also, if a Lorentz-invariance preserving regularization has
been used, (26) must be automatically satisfied with the
mass counterterm extracted from the kinetic mass renorm-
alization condition. Thus we have established the effect of
the vertex mass renormalization. Once the loop contribu-
tion MITOOP(P, z, Q%) is calculated, we will simply subtract
from it its value at the on-shell point, corresponding to the
vertex mass counterterm. The additional check of our result
obtained from comparing the first three constraint equa-
tions (19), (20), and (21) to the well-known result for the
Pauli form factor at one loop in QCD (identical to the QED
result [69,70] up to the replacement a,Cr <> aemej%) is
done in detail in Appendix F.

In practical calculations of loop diagrams, we will want
to use a symmetry under exchanging the quark and the
antiquark to restore some contributions, without calculating
the corresponding diagrams explicitly. The relevant sym-
metry here is that the light-cone wave function should stay
invariant if, for a fixed photon light front helicity, one
exchanges both the momenta and the helicities of the quark
and the antiquark. In terms of the invariant momenta the
quark and antiquark transverse momenta are given by k, =
P+ zq and k; = =P + (1 — z)q. Thus the exchange of
three-momenta ko <~ kl is achieved by the substitution
z+—>1—-z and P+ —P. The spinor matrix elements
a(0)y*o(1), a(0)y*[y',y/]v(1), and a(0)y*y'v(1) in
Eq. (23) are independent of transverse momenta, and
symmetric under the exchange z — 1 — z. Under exchang-
ing the light-cone helicities hy <> A, the first light-cone
helicity conserving matrix element #(0)y" v (1) ~ &y, _y,

|

7§~—>qq Y7r—49
lPLO lPNLO =9,

ey q° ki =k T L
A EDLO 2k+k+ q+

and the light-cone helicity flip one #(0)y Ty v(1) ~ 8,4,
are symmetric, and the second helicity conserving one
w(0)y [y’ y/]vo(1) ~ hySy, —p, antisymmetric. The scalar
form factors only depend on the square of the transverse
momentum P, but have a nontrivial dependence on the
momentum fraction z. Requiring the invariance of the
wave function under the simultaneous exchange lAco <~ IAcl,
hg <> h; we can then deduce the following symmetrization
requirements for the scalar form factors:

VI(1-2) =V(2), (27)
NT(1=2) =-N"(2), (28)
S'(1-2) =8"(2). (29)
M (1 =z) = M'(2). (30)

We will use these conditions to deduce the correct sign for
the contributions of diagrams related to each other by the
exchange of the quark and antiquark.

Before moving on, let us note that for the purposes of
Fourier transforming the wave function to mixed space
(which is done after mass renormalization) and for calcu-
lating the total DIS cross section, it is convenient to change
the basis yet again. In fact, the Fourier transform of both the
ST contribution and the MT + VT one are more easily
calculated if one splits the symmetric tensor P'P/ into its
trace and a traceless part. This additional reorganization
changes the decomposition (23) into the form

ag CF) VT:| ("‘ZCF> /\/T}P £,u(0)y (1)

2w

% {1 + (“2?) VT} Piela(0)yt [y, ¥/]v(1) + m K“;F) ST] <PII,1;] - 5—;) e (0)yty/v(1)

[1 + <0’25F> {MT +vT-%THe;u(0)y+yfv(1)}. (31)

It will also turn out that the expression for the combination
MT + VT —87/2 will be simpler than the terms sepa-
rately. The spinor matrix elements of this basis #(0)y " v(1),
#(0)y ™ [y', ¥/]v(1), and @(0)yTy'v(1) do not depend on the
transverse momentum P and can be factorized from the
Fourier transform. The result of the Fourier transform of
this decomposition is the one already given in the accom-
panying shorter paper [66].

B. Diagrams, energy denominators, and kinematics

The LCPT diagrams relevant for the calculation of the
vy — qq LCWF at NLO with massive quarks are shown in
Figs. 2—-6. There are four propagator correction diagrams,

|

(a) and (b) in Fig. 2 and (c) and (d) in Fig. 3, with a gluon
loop attached to the quark or the antiquark. Then, in Figs. 4
and 5, there are four vertex correction diagrams (e), (f), (g),
and (h), corresponding to two different kinematical pos-
sibilities, with longitudinal momentum (which is always
positive) flowing either up from the antiquark to the quark
or vice versa. Finally, in Fig. 6 there is an instantaneous
gluon exchange (i) between the quark and the antiquark, in
which the gluon momentum can either flow upwards into
the quark or downwards into the antiquark. It is convenient
to split up the contribution from this diagram into terms that
are combined with one or the other of the diagrams in Fig. 4
according to the direction of the momentum flow. Due to
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|
|
ED,o ED, EDio

FIG. 2. Time ordered one-loop quark self-energy diagrams (a) and (b) contributing to the transverse virtual photon LCWF at NLO.
(a) Imposing plus and transverse momentum conservation at each vertex gives g = ko + ki, kg = ko + k, and ky + k = k.

0/ | | | |
L | 07 h0> Qo ’Y;‘ : > :
: : 2 : :
(c) | | |
k,o,a! | T |
L @ Ty
\ ; - 13 hl7 aq ; < ;
q7 | | | |
ED, EDo ED, ED;o

FIG. 3. Time ordered one-loop instantaneous self-energy diagrams (c) and (d) contributing to the transverse virtual photon LCWF at
NLO. (c) Imposing plus and transverse momentum conservation at each vertex gives § = ko + k, and ky + k = k.

FIG. 4. Time ordered one-loop vertex diagram (e) and (f) and contributing to the transverse virtual photon LCWF at NLO.
(e) Imposing plus and transverse momentum conservation at each vertex gives g = ko/ + kl/ kof +k= ko, and klf =k+ kl

the symmetry of the kinematics by exchange of the quark  and the part of (i) where the momentum flows to the quark
and the antiquark between the two classes of graphs, only  as in (e).

the calculation of half of the diagrams is necessary; in this The energy denominators appearing in the diagrams
case we will calculate the ones labeled (a), (c), (e), (g)  are the same as in the longitudinal photon case [60].

Y

q, A

<
<

|
|
|
|
| |
| |
| |
ED, ED.o

FIG.5. Time ordered one-loop instantaneous vertex diagrams (g) and (h) contributing to the transverse virtual photon LCWF at NLO.
(g) Imposing plus and transverse momentum conservation at each vertex gives § = ko + ky, ko + k = ko.
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Following the notation introduced in Figs. 2 and 4, and imposing the plus and the transverse momentum conservation,

we find
2 2 2 2 2 2 2
_ _ _ _ q — Q kO/ +m k k1 +m
o=l PR =T ok ok T2k
i} K \? Kk = kgt o kilgt k")
=—F——||k—-—k — 0 = P2 LR 32
2K (k — k) K G TR IO 2
and
2 2 2 2 2 2
N PR it % ki +m*  ky+m
ED, =q~ - [ky + k7| = -
e B v [ 2k, 2k,
—q* k* 2 (kg —kT)(kT k) o, )
= k-—Kk L , 33
o (i) +1) + e o
|

where L = —(kj —k")P/kj. It is also convenient to L =—(1-¢P,
introduce the change of variables (k,k") — (K,¢&) by £(1—¢&) B
parametrizing the transverse momentum integration in the A= 1= (P2 + Q* + m?) + &m?,
loop by the relative momentum K of the gluon with respect (1-2)
to the quark after the loop as A, =(1-¢) (1 + 7 S_ZZ)) 0% + m?. (36)

k+
K=k--—ky=k—¢k
kaL 0 50

with kt =¢&zqt.  (34)

In these notations the energy denominators in Egs. (32)
and (33) can be cast into the following form:

! 2
ED, = W[K + A,
: 2
ED, = (=2¢M)z(1 = &) (1 = z(1 =¢)) [(K+L)2+A,),
(35)

where the momentum variable L. and the coefficients A,
A, are given by

!
!
|
[
|
|
|
|
|
|
|
!
| |
ED, EDyo

FIG. 6. Time ordered one-loop instantaneous diagram (i) con-
tributing to the transverse virtual photon LCWF at NLO. We only
calculate this in the kinematics kj > k;, the rest is restored by
symmetry. Imposing plus and transverse momentum conservation
gives ¢ = IAcof + IAclf and lAcOf +k= lAco, where £ is the momentum
flowing up to the quark.

In the following subsections, we present the detailed
computation of the NLO form factors corresponding to the
one-loop self-energy diagrams, one-loop instantaneous
diagrams, and one-loop vertex diagrams.

V. CALCULATION OF THE LOOP DIAGRAMS

A. One-loop quark self-energy contribution

In this section we compute the contribution to the
vy = qq LCWF in Eq. (17) from the massive quark
self-energy diagrams (a) and (b) shown in Fig. 2.
Applying the diagrammatic LCPT rules formulated in
momentum space yields the expression

lpg)eq‘_l:/cﬂ{\/(/17{;/&?07,<Zﬂ.)D—15(D—1)(]_€0/+7€_]‘€0)
T

N
222150V (ke — Ty — )&
X( ”) ( 0 0 )<EDLO)2EDa

1 /ka dk* /dD—2k N,
C16x)y KTk (kj—kT)) (27)P~2(ED.o)’ED,’
(37)

where the energy denominators are written down in Egs. (6)
and (32), and the spinor structure coming from the vertices
(note that the summation is implicit over the internal
helicities, gluon polarization, and color) is given by the
numerator
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Niy = teesg i u, 1y a [1(0) ¢, (k)u(01)][@(0) £ (k)u(0")][a(0") ¢ (q)v(1)]. (38)

By making the change of variables (k, k*) > (K, &) [see Eq. (34)] and regulating the small k* — 0 (or £ — 0) divergences
by an explicit cutoff kT > ag™ (or £ > a/z) with the dimensionless parameter a > 0, we can simplify the expression in
Eq. (37) to

_ T
lP}’*T_”]‘_I _ -1 /1 % dD 2K N(ﬁ) (39)
(@) 87q " (EDLo)? Jus: 2 J (2m)P72[K2+Ay]°
where the detailed calculation of the numerator in Eq. (38), performed in Appendix A, gives
2¢*Cy -~ (Dy —4)
NI = m%“‘ v;o;,,]‘"’{ [1+ (1 =&)2K? + m2& + sz (K2 4+ m?&] 3. (40)

Similarly as in the longitudinal case, we note that from this expression one obtains both the FDH scheme result by taking the
limit D; — 4, and the CDR one by setting D, = D.
Following the same steps as presented in [60], we find

£ oz s oz — 2 —
W= (2?) {— I / Fora-erlaan -t [Masagan -2 | ldéonml)},

3 [P2+ Q%+ m?]
(41)
where the elementary scalar integral 4 is defined in Ref. [43] (see Appendixes D and E there)
dP2K 1
A) = dg(y2)2-D/2 / . 42
AO( 1) 7'[(/,4 ) (271')D_2 [Kz —|—A1] ( )

We now perform the renormalization of the kinetic mass precisely as in our earlier calculation for the longitudinal photon
[60] (see Sec. V C). In the end, this amounts to a mass subtraction that makes the leading singularity at the on-shell point
P2 + 0% +m? = 0,ie. A} > &m? [see Eq. (36)] cancel. Note that the denominator P> + Q% + m? in the second term of

Eq. (41) is precisely the kind of doubling of the energy denominator in ‘Pi;;qq that results from a Taylor series development
in powers of the mass counterterm. Thus the effect of mass renormalization is to replace Ay(A) in the second term of

Eq. (41) by Ay(A;) — Ay(£2m?). With some abuse of notation we will continue denoting the mass-renormalized wave
1749

function with the same notation ‘P(a) . Together with the explicit expression [43]
D\[ A ]2 (4 )2—2 D A
Ay(A :r(z——)[ 1] <3——>—10 (— +O(D - 4), 43
0( 1) 2 4]1_”2 (2 %) D) g /"2 ( ) ( )
we can now evaluate the wave function as
\Pyr—w/q IPVT_"M (“sCF> VT (44)
o (a)

where the form factor V@) is given by

= a5 (3-2) es(G00) s (557}
_1og2<g>——+3+1(<% 4)>+Iv(a)+0(D—4). (45)

The factor (D; —4)/2(D — 4) is the regularization scheme dependent coefficient coming from the following integral:
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P [asenn(an =3 o o -9, (46)

and we have defined the function 7, = as

_ (P2 P2 2y [1dE [ 2log(¢)  (1+9) 1 3 1
B, = @0t [ (T S e e =) S

Note that this integral over & € [0, 1] is finite.

The mass renormalized LCWF for the quark self-energy diagram in diagram (b) shown in Fig. 2 can be now easily
obtained by using the symmetry between the diagrams (a) and (b). As discussed in Sec. IV A, this implies that the
contribution to the form factor V! from the antiquark propagator correction diagram (b) is obtained from the diagram (a) by
the substitution z — 1 — z. Using this symmetry we get

7199 ri—qq [ AsCr T
‘P(T) =Y ( o )V(b), (48)

where from Eq. (45) one obtains

4 2—7 D 2 P2+Q2+m2
O e e G e e R

log( a) % +3+ —(( j))-i-Iv +0(D-4) (49)
with
, 1dé [ 2log(é) (1+¢) 1 1
Iv(b>:(P2+Q2+m2)A ?<_ -9 2 ){P2+Q2+m2_P2+Q2+m2+ < mz}' 0

(1-9)

Summing the expressions in Egs. (44) and (48), we obtain for the full contribution of the one-loop quark self-energy to
the y7 = qg LCWF the result

Yr=49q  \yly—494 a,Cg T
¥ = Yo < o )V<a)+(b>’ (51)

where the NLO form factor V<Ta> +(b) Can be written as

5, (@ a \] @0t (. D k% P24 07 4
T _
V<a>+<b>2[5+1°g<2>“"g<1—z>H<2—% r(3-3) +1ox(ge) o (e

+ [log(z) + log(1 — 2)] @ + 210g(a)> ~ 4log(2) log(1 - 2) ~ log? <g> log’ < - Z)

21’ (D, —4)
- 164+ F 7
3 T b

+ Iy, + Iy, +O0(D-4). (52)

B. One-loop instantaneous contribution

Let us then calculate the one-loop instantaneous diagrams shown in Figs. 3, 5, and 6. We start by writing down the
expression for the diagram (c) in Fig. 3. Applying the diagrammatic LCPT rules formulated in momentum space yields the
expression
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“ oz ~ [ — NT
wi :/dk/dk, 27)P 160N (R + k — & ©
(© o (27) tko k= ko) g5 ED. 206 + 67
0
1 /ka dk* / P2k N, (53)
167 )y kTk§(k§ —kT)) (2z)P~2ED{oED,’
where the spinor structure coming from the vertices is given by the numerator
N{yy = eer g 15, tya [1(0) ¢, (k)u(0)][@(0") 5 (k) #:(q) v (1)]. (54)

After making the change of variables (k, k") — (K, &), we can simplify the expression in Eq. (53) to

— T
g _ 1 /1 d¢ [d°?K N

_ dé , 55
(c) 872G EDy o Jus: 2 ) (27)P72[K2+A] (55)

where the numerator Eq. (54) in these variables simplifies (see Appendix A) to

NI, :—eefchaaoa,{[—éﬂ >]a<o>y P @) (DK’ + E(D, - 2)mi(0)y s ()o(1 >]}. (56)

Noting that the term proportional to K’ vanishes upon integration over K, we then obtain

By (D, = 2O (@)o(1) [ Eao(ay). (57)

al/z

2
C
LI,rT qq g Lr
© = 327D,

Next, we compute the diagram (g) in Fig. 5. The expression in momentum space reads

B ~ [ — NT
\P}’T_’qq _ /dk/dk (2 D—15(D—1) ]}/ ]’%_I’% (g)
(2 o (27) tho + O)EDLOEDaz(kl+ +kT)
L k' /- >k N 59
S l6r )y kT(k§ — k) (k[ +kT) ) (22)P2EDLoED,’
where the spinor structure coming from the vertices is given by the numerator
N&) = —€€fg t(lo(lol (10/111[ ( )#6( ) ( )][ﬁ(o/)¢ﬂ(Q)y+¢:’(k)v(l)] (59)

In the (K, &) variables, we can simplify the expression in Eq. (58) to

_ T
g _ 1 / b / d>?K Ny (60)
() 8ﬂq+EDLO alz [1 —-z+ Zf] (Zﬂ)D_z [KZ + Al] ’

where the numerator in Eq. (59) (see Appendix A) simplifies to

2 _ . _ . . _
Ny = =ees e { (F00) lahr's(1) + (D, = Ol 70 (1) K+ (D, = maO)r il | (61)
Again, the term proportional to K’ vanishes, and we are left with the following expression:

2
*T—> q g C U 1 dgi
W = ey oAb (D, = i) i()o(1) |

=2+ Ap(Ay). (62)

Finally, we focus on the diagram (i) in Fig. 6. We calculate this in the kinematics k; > k& and denote this contribution as
(i);. The corresponding expression in momentum space reads
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T
1 N,

%) EDy oED, (] - k1 )°

L e M, )
8n)o ki(gT—ky)(ky—kg)?) (2m)P2EDiED,’

where the energy denominator ED, is defined in Eq. (33) and the spinor structure coming from the vertices is given by the
numerator

lp“*qq / dky / dky (27)P16PD (ky 4 ke —

NGy, = —eerF 1y taya [1(0)r u(0)][7(0") ¢, (q) v (1)) [5(1 )y o (1)). (64)

By the change of variables (k, 0’) — (K, &) we can simplify the expression in Eq. (63) to

. -1 de [ dPPK N{
Yr—=d49 / f (i), (65)

Or " 42(q")BDio Ju2 28 ) 2m)P2[(K+ L2 + 4]
where the numerator in Eq. (64) (see Appendix A) simplifies to

NGy, = —eer g Crduya {(4q7[1 = 2(1 = £)eja(0)y*v(1) + 24" 7(0)¢,(q)r *v'v(1))[K' + L] + 2" mu(0)y* ¢3(q)v(1)}.

(66)
Now, since the term proportional to (K + L)’ vanishes by symmetry due to the integration in K, we obtain
2
17—q4 9°Cr - + b dé
W = ey st miO)r la)e(1) [ E o) (67)

By comparing the expressions in Eqgs. (57), (62), and (67) to Eq. (17), we observe that the instantaneous diagrams
contribute only to the form factor M7 as

wiy = 22209 ageag(a)

-3 —%_‘j)) +(1-2) [ deean(an) + 00 -4, (68)
wiy = Lm0 a2 aga)
3 2
:_(5)3_:)){(I_Z)+¥log(l—z)}—|—0(D—4), (69)
and
ME) =2(1-2) A/lngo(Az)- (70)

To simplify the expressions in Egs. (68) and (69) we utilized the relation —L;‘)AO(Al) =14+0(D-4).
The corresponding contributions from diagrams (d), (h), and (i), can be obtained from Egs. (68), (69), and (70) by
symmetry, as z <> 1 —z.

C. One-loop vertex contribution

The only diagrams left to calculate for the full y7 — gg LCWF at NLO are the nontrivial vertex correction diagrams (e)
and (f) shown in Fig. 4. These two diagrams give contributions to all four form factors introduced in the decomposition
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Eq. (17). Since the contributions coming from the diagrams (e) and (f) are symmetric to each other by exchange of the quark
and antiquark, we need to explicitly calculate only one of them, for example the diagram (e).
For diagram (e), the momentum space expression of the one-loop LCWF can be written as

\P@*""’ = / dk / dky / dky (27)P=160-D (ky + k — ko) (22)P16@-V (kyy — k — ky)

T
Ny

ED,ED,ED; o
NT
(e) (7 1 )

1 /ka dkt /dD‘Zk
Cl6m )y kT(k§ —kT)(kt + k)] (27)P"2ED,ED,ED,q’

where the numerator (again the summation is implicit over the internal helicities, gluon polarization, and color) is given by

Ny = —€€;g*8u,a, Celi(0) ¢, (k)u(0)][@(0)¢;(q)v(1")] [0(1') s (k) v (1)]. (72)

Applying again the change of variables k +— K, we obtain

799 1 1

Before starting to calculate this contribution, it is useful
to make a small power counting argument for the transverse
momentum integrals in relation to the quark masses
and light-cone helicities. One is performing a (D — 2)-
dimensional integral with a total denominator ~K* at large
K from the energy denominators. Therefore one can have
UV divergences in the integral if the numerator, coming
from a product of three elementary quark-gauge boson
vertices, is proportional to at least K?. From the decom-
position of the elementary vertex (11) we see that light-cone
helicity conserving terms are proportional to the momentum
K, whereas light-cone helicity flip terms are proportional to
one power of the mass ~m. We will thus have two kinds of
UV divergent contributions, proportional to m® or to m'. The
first ones behave just like the corresponding diagrams in the
massless case. The second ones, proportional to the mass,
will contribute to the renormalization of the quark (vertex)
mass, which appears linearly in the leading-order vertex.

v — 5 dikt | 1 K
(C) o 47Tq+ EDLO\/O ( a %

d?2K Ny
> / @mP K + AJ[(K+ L) + A 73)

There will also be 4 kinds of finite contributions, propor-
tional to m", n = 0, 1, 2, 3. The number of powers of mass
corresponds to the number of light-cone helicity flips
following the quark line. Thus n = 0 and n = 2 contribu-
tions are nonflip contributions for the overall diagram and
can interfere with each other. Similarly n =1 and n =3
have an overall helicity flip between the outgoing quark and
antiquark, and can interfere with each other. Only even
powers of the mass up to m* will appear in the NLO cross
section. Quark masses regulate the energy denominators, so
there are no IR divergences in the transverse integrals.

From a technical point of view, the calculation of the
numerator and the corresponding tensor integrals in
Eq. (73) turns out to be a quite tedious task. Therefore,
the details of the intermediate steps are documented in
Appendix A3, keeping the main text as readable as
possible. Collecting the results from Appendix A 3, we
find the following result:

‘g = ee a,Cr\ [ 2kl kT _
W = b (S ) w0 @V, + (PR a0 o7,

kN P-g, . ) 2k kT _
+ (P2 Bt om0y ST + (P ) mao)r My, | (74)

where the form factors can be cast into the form:

D, -4 LTI
V@z—Z(S)—ZJr/ di[—2z+z§

2 (D-4) /2 L6

+L/lzd§[§+(lz_éz)]ﬁJrzmzAldé(l—5)5{ R

(P> + Q* +m?) T_}

[{aoan+ 55,

(1-2z)P/B/

+ 530} +0(D-4) (75)
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(Ds _4)
-7

+2z[)1d§(1—§){2+

2 4 02 2
N@Z—Z(l—z) wq’_}

+z(2z—1)+2z(1—z)%ldf(f—z){f‘o@z)‘f’ p2
(2z = 1)E] [ (P2 4+ m?)
(1-2) H p?

P/IB/— (1 -¢)(P* + Q% + mz)Bo}

_ 21m2/1 dE(1 =1 +2(1-z)(1 - é)]{Pl],—lf]+§Bo} +0(D-4) (76)
0
o _ _Z+2Z/1 a1 -8 (P07 +m2)T +§(1 - 2z)(P? +m2)Pij _pip
() ' " Jo P2 N (1-2z)P?
&1 =P8, + EnBy | + 0D - 4 (77)
and
(Dy, —4) (1-2) 1 2
L= 00+ S5 e0 -0+ -0 [ ae|-Zan(an) + Alan)]
! _1 (P> + Q° +m?) _ ’ 2 A2 2y ! _£)2 _
o [l T o) [Nas g o0 -4, (9
In the above expressions the following compact notation has been introduced:
T_=-(1-¢ [PJ'BJ' + "EPQBO},
(1-2)
T.=+(1-9)[(1=&)(P*+ Q%+ m?)By — PIB/ + (1 — 2)Em> By, (79)

where the elementary integrals B, and /3’ are the ones defined in Ref. [43] (see Appendixes D and E there).

Diagram (f) is obtained from (e) by exchanging the quark
and the antiquark. Thus, as discussed in IV A, we can obtain
its contribution to the form factors with the substitution
z— 1 —z and changing the sign for N7, so that the
symmetry requirements Eqs. (27), (28), (29), and (30)
are recovered.

VI. FULL MOMENTUM SPACE LCWF
A. Form factor V7

The full form factor V' gets contributions from the self-
energy diagrams (a) and (b) and from the nontrivial vertex
correction diagrams (e) and (f). Consequently, by sym-
metry, one has

where the mass renormalized expression for the V@
contribution is given in Eq. (45). To obtain the full V'
contribution in momentum space, we shall next evaluate
further the individual terms appearing in Eq. (75) for V(Te).
We follow the same strategy that was used in Ref. [60], and
study the UV divergent and UV finite parts separately.

1. UV divergent part

To evaluate the UV divergent part in Eq. (75), we first
remind the reader that the UV divergent function Ay(A,)
can be written as

T -2
Ag(Ay) = ((‘; ) 5 r<3 - g) - log(%> +OD-4).
1)

Before performing the integration over the &, we rewrite the
coefficient A, as

Z -
A, = 2 - &), 82
=4 _Z)Q =8O -¢0) (82)
where the zeroes in £ are given by
-4y, with y= 142 (83
(ﬂ:) - 2Z }/ ’ W 7/ - Q2 .

Substituting Eq. (82) into Eq. (81) and then performing the
remaining & integral analytically gives the following result:
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/z Z

where the functions Z,; for i = 1, 2, 3 are independent of transverse momenta P and are given explicitly in Appendix B.

Putting everything together, we get
(47)22 D w (1+5z2)
——I(3-—= 1 = -
)H(z—g ) T\ e 2
) 1 1 14y
—— |+ Ll | ————— | + | | + =— |ylog| —————
) i) (e )
A2

—21ZK1+;)(1—3/)+22] log<Q;2mz>. (85)

/a/lz de E— 2+ zij}Ao(Az) - % —l—log(g
1
(

2. UV finite parts

Let us then focus on computation of the UV finite part in Eq. (75), which turns out to be quite tricky. It is possible to
directly compute the B, and B’ integrals, but the result would be too complicated for further analytical integration,
in particular for the required Fourier transform. Instead, we first Feynman parametrize the denominator appearing in 5,
and B as

By e 1 1
{Bf] -/ dx[—xLi] (1= L2+ (1= x)A, + 18y (8¢)
where L = —(1 — &)P and the denominator can be rewritten as
D=x(1-x)L>+ (1 =x)A; +xA, = (1 =&)[(1 = x)P> + Q> + m?] |x(1 = &) + a EZ)
+ Em? [5(1 —x)+ x(l - Z(<11__j))>]. (87)

From Eqgs. (86) and (87) we then find that a combination appearing in the definition of 7 in Eq. (79) can be expressed as

o ~ Idx _
P (1= + 04 )By = [ (-1 =P+ O
0

_ _z:1=9
I, _ 2/1dx§(1 92155
0

= =~ ; (88)
(=9 D x1-9+55)
where the function Z, is given by the simple expression
7, = /’ ar—U=8  _ _iog(e) +log(1 - 2(1 - &)). (89)
o [x(1-8)+ 4l

The relation in Eq. (88) turns out to be very useful in what follows.

The difficulty in this part of the calculation is that we want to perform the divergent integral ! /. d¢ /€ analytically. Being
able to do this requires further manipulations of the somewhat complicated functions 7 . in the integrand. However, the
relations in Egs. (86)—(89) make it possible to split the [!_d&/& integral into a divergent part that can be integrated

alz
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analytically, and a remaining more complicated term that is finite in the limit @ — 0. To this end, we first substitute the
expression (88) into the definition of 7, in Eq. (79) yielding the following result:

g€ — %) +x |1 =53

T,=7,-¢1-gm

£ - g2 [1dx

}+ﬂ1—®U—ZMﬂ&

oD [x(l -+ (fZ)}

X

:I++

(90)

A=2) Jo Dlx(1-g) +5]
Furthermore, we note that one can rewrite the function 7 _ from Eq. (79) as’'
2
z6(1-¢
T_=Ap(A) = Ag(Dy) =T, + (l(fz))szo
Ay A, 22E(1 -
= —log< ) —I—log< > T, +Mm250. (91)
(1-2)
Finally, combining the expressions in Egs. (90) and (91), we arrive at the following expression:
A A, 1d 2 2(1 -
T_ ——log( >+log( > -7, +m? B 5 &l §>§ . (92)
u? u? o D(1-2) (1= &) + 7
With these intermediate results at hand, we obtain after the direct integration the term proportional to 7 _ in the

expression for V(Te) given in Eq. (75)

ol
// df |:E - 2z+ Z£:| T_= —Ié:;l + Z(2I§;2 —15;3) - ._75;1 + Z(2._7§;2 - jgﬁ)

_{“;Z)+%mg<g>+

_ 3.2
ng(l —z) —log(1 —z)log <Q) —Li, <—
z z

)}

1d 2
+m/d5/ * % liz

where the functions J,,; with i =1, 2, 3 which depend
explicitly on the transverse momentum P are given in
Appendix B. The point of these manipulations is that we
have now managed to split the integral (93) that had a
divergence in the momentum fraction regulated by « into,
on the one hand, a part where both the momentum fraction
and Feynman parameter integrals have been evaluated and,
on the other hand, a part proportional to m?> where the
integrals remain, but the regulator has been taken to o = 0.

'"This relation follows from the Passarino-Veltman tensor
decomposition for 3.

E(1=&)[1 4+ z&(E-2)]
[x(l - &) +ﬁ}

(93)

The contribution (93) is, as it appears in the expression
for V{e) in Eq. (75), multiplied with 1/P?. However, as can

both be seen in the general decomposition in Eq. (17) and
deduced from the fact that the original expressions before
transverse momentum integrals never have energy denom-
inators ~P?, such a transverse IR divergent behavior is
completely spurious and must in fact cancel. Thus we know
that in fact the expression (93) must in fact vanish in the
limit P2 - 0. Indeed, one can show that if we rewrite
T_=T_-limp_y7_+ limp_y7 _, where limp2_,, 7 _
is obtained from Eq. (92) with P> — 0, we can cast the
integral result in Eq. (93) into the following form:
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1 1 _ [3z a P2+ Q*+m?
[l = [ () e ()

! log (&) z oz (1-2z) 1
o (e )
m ; ¢ (1_5)24'1_54‘2 P2+ 02+ m? +§(( m? 02 + m? +5(( ))

—x) 2
R e (R (RS (94)
where
2 2 é: 2 Z
Dprg = (1=¢)(Q" +m ){x(l—fﬂ'l—_z} +ém [§+x(1—§)—x(1—5)1—_z . (95)

The “double” denominator DDp:_,, appears after combining the original expression ~1/D and the subtraction term
~1/Dpa_,, into a common fraction. This expression manifestly vanishes at P> — 0 and thus cancels the factor 1/P?
multiplying it in Eq. (75), as it should. As a separate point, we also note that the remaining £ and x integrals in Eq. (94) are
finite and could be done analytically. However, it turns out that they, unlike the parts that diverge as o — 0, need to be kept
in an unintegrated form in order to Fourier transform our expressions into mixed space later. The form (94) is the one we
then use to obtain the final result.

Finally, for the 7, term appearing in Eq. (75) we obtain after the direct integration

1 2 1 1 -
L/Z dé[g-k%} T, = 5t ( ZZZ) log(1 —z) —2log(1 — z) log(g) + log? (g) —2Li, (—&)

tdx 22 x(1-822(1 —2) +z&8
+m/d€/ D=2 (1-9+55 (%6)

3. Collecting the UV divergent and finite terms

Collecting all the UV divergent and UV finite terms together, we can cast the one-loop form factor V(Te) into the following
form:

ro_ |32 a (4m)>% D u? _(P2+Q2+m2) P2 + Q% + m?
Va=-[5 “"g<z>H<2—§>r )t g e p e
7z Z(Ds—4) 3 a (04 . Z
—?—5—(1) — 4) — log(l - Z) |:§+ 210g <;>:| + 10g2 <;> - 2L12 <— —1 — Z> + QV(C)

1 1
+Li (—) +Li <—> +1y, +0(D-4), (97)
N -L(1-y) N-L(+y) "V

where we have defined the function Qv(c) as

1 14y 1 1 m? 0> +m?
Qy, = <1 +21> [Iog(l —2z) +ylog <1+y—2z>] 2 |:<Z +2>(1 -7) +Q2} log <n12> (98)

and Iy, is given by the following integral expression:

~ b log(é) |z z 1 (1—z)m’
Iy, =—(P2+Q2+m2){/ dé( +—+5 - 5 37 -
“ o \(1=8? 1-¢ 2/ P24 Q24 m? + L E m? 0+ m? + S m?

dx l—x 28(1 —
/ az / IDDM ﬁ(_z)‘? 1 +Z§(é—2)]}

tdvz(1-g) [l -OR+5)
+m? / dé/ 1=2) {[x(]— o 5] +§(1—z)+x§(1—§)(1—2z)}. (99)
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The double integrals appearing in Eq. (99) can be further L dé Idy
grals appearing in Eq. (99) / FE), (102)

simplified by performing a set of change of variables. Since (1-¢) Je D
we will use the same variable change in several parts of our

calculation, let us introduce it here for a more general case. where the denominator D now becomes
We consider the following double integral of the type
appearing e.g. in Eq. (99): & B
D= |yt g -0 )+ (1-)07 200

1 Ldx Z
/Odé/o (), (100) (103)

where the denominator D is defined in Eq. (87) and f is
some smooth function depending on ¢ and x. First,
introducing the following change of variable

Next, introducing the following change of variable

¢
=2 104
x> y=E4x(1-¢) (101) sy (164

yields leads to

1 f(n.y)
A dy/) (1 =ymA{[1 + 725111 - y)(P2+m?) + (1 —ny) 0% + ym*} (105)

In this expression the denominator is now linear in y. Finally, with the change of variable

17'—>)(=Z(1—17)=Z<1—§), (106)

one obtains

L[ d fy)
o e =040 =) P (# + 0+ ) + y[® + 412 07} o

Ny

Interestingly, we will find that all the double integrals that are written as an our example integral (100) can be greatly
simplified by performing the above chain of three changes of variables.
Now we can further simplify our expression for / Ve in Eq. (99) by applying the change of variables to y and y. After

some algebra, we obtain

1V<e>——<P2+Q2+m2){ I d5<(l°g(‘f) += +Z> " —

7 1=¢ 2/ (P24 02+ m? + {F m {0 + m? + FE m?)
+/1 dy /z dy m’ (z- )()[1—2y( -0 +5(2-2)? }
0 (1=3)Jo (1=2P (P2 4+ 0% 4 4 (5515 o + 4525 QIHQ? + v + s g o + 55 07
I dy /z dy m? (1-2) 5
+ : _ 2y + 2z — ) (1 =2)]. (108
a5 5 e ey e (8 R LU

4. The full form factor V' in momentum space

At this stage, it is convenient to combine the results from the propagator correction diagram (a) from Eq. (45) and from
the vertex correction (e) that we have just calculated in Eq. (97). This gives
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3(1-2)

T T _
Vi TV = [

() {2

32

?) “"g(@/im >}

3 a\ (PP+ Q*+m?) [3z a P’ + 0% + m?
——2log|— |+ ———= log(—]| ¢ log| —————
—I—{ > og(z> + P2 5 + log p og D

7z (1-z)(Dy—4) =*

3_1c s
R N R R 0> By S

1
+ Li <—>+Li<
N-L(-y) \1

N
—5:.(1+7)

|
|
o
c
(3]
PR
P
|‘N
2
N
+
[®)
<

(109)

We note that the log?(a/z) term and a part of the log(a/z) term from the vertex corrections canceled against the self-energy

contribution, as in the massless case.

Finally, we are ready to write down the full result for the form factor V7 in Eq. (80). By reconstructing the contributions
of diagrams (b) and (f) using the z <> 1 — z symmetry, as discussed in Sec. [V A, we obtain the full leading-order-like form

factor VT as

D

=) e () {5 (-5) () - e ()
.

5 1(D,—-4) =
2 2(D-4) 3

where the functions Q), and I, are defined as

Qy=Qp +ze -2,
]V = IV(e) +IV(3) + [Z <~ 1 _Z]’

(111)
in terms of Q), | from Eq. (98) and I, , Iy, from Eqgs. (47)
and (108) and the function L, which also appears in the
longitudinal photon case [60], is given by

)

L2, [“2(1—— T y>) +Li2<1
(112)

It is now straightforward to check that in the massless
quark limit (y — 1) the functions defined above satisfy

2

1
Lo log?(—*-)., @,—0. I,»0. (113)
6 2 1-z

1 -2z
Q. — +2z—-22

—+log2<li_z) +Qy+L+1y,+0(D-4),

(110)

and correspondingly the expression in Eq. (110) reduces to
the one obtained in Refs. [44,46].

B. Form factor N7

The form factor A'7 gets contributions only from the two
nontrivial vertex correction diagrams (e) and (f). Again, by
using the symmetry discussed in Sec. IVA, we have

,/\/T:Nz;:)—[zel—z]. (114)
The expression above is UV finite and free from the £ — 0
singularities. Since the calculation follows the same steps
as before, we can immediately write down the final result

NT:QN+[N, (115)
where the function Q,, is given by
QN:QN(C)—[Ze 1—2} (116)

with

lL+y
o= - {10g(1—z)+ylog<1+y_2z>}

and I, is given by the following integral expression

+ 4 ;Z) K%H)(y— 1) —g—i} log<¥> (117)
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INZIN(C)—[ZQI—Z] (118)
with

Lo, =@+ @) ['a ["Sxn0-ae-a0-afx0-0+ 5

+m? / d.f/ Zx2z(1 - ) (1—§)+§]{<2+(§f:35> [x)z(ll__;):é]—[l+2(1—z)(1—§)]}.

(119)

It is straightforward to check that this contribution vanishes in the massless quark limit. This is an agreement with the
findings in the massless case in Ref. [43].

The double integrals in Eq. (119) can be simplified by performing the change of variables to (y,y) introduced in
Sec. VI A 3. This yields the following result:

2(1—1) z 1
Ingy = 2 2 (=37, 2 4 x(I=0) A2
{P + 0+ m? + oy 55 0°)

X {(P2+ O+ m?)[y’y + 22— y)y] - 222%(1—y) +x(1 =2x)y + z2(1 =y = 3y + 2 (1 + x)y)]}.

ym®
(1-x)
(120)

C. Form factor ST

The form factor ST gets contributions only from the two nontrivial vertex correction diagrams (e) and (f). Again, by using
the symmetry discussed in Sec. IVA, we have

S'=8,+lze -1 (121)

The fully finite contribution S(Te) from Eq. (77) can be easily rewritten into the following form:

_ ! (P> + 0%+ m?) Idx (1-22)
Sé>—‘Z+ZZA dé(l—f){—TT_JFWA 5(1—5)[;“: (e

e [ [xé(l —g) <(11‘_2;)) n 52] } (122)

with 7_ from Eq. (92). Again, one can further simplify the expression in Eq. (122) by first performing the change of
variables to (y, ). This yields a very compact expression

(123)

ST ——21—zP2/d/ - —.
(e) ( ) 0 Y o (I—=y) {P2+Q2+m2+ liv (I-2) [m2+x(l—x> Qz]}

D. Form factor MT”

Finally, we deal with the form factor M7, which also contains the vertex-mass renormalization counterterm M/, .
This form factor gets contributions from the instantaneous diagrams (c), (g), (d), (h), (i) and from the vertex correction
diagrams (e) and (f). Again, by using the symmetry discussed in Sec. I[VA, we get

MT = (M) + My + MG + My + [z 1-2]) + M. (124)

Collecting the expressions obtained in Egs. (68), (69), (70), and (78) together, we find
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T r__(1-2)(D;-4) : 1 (P> + Q% + m?)
M _Mc.t. - _Tm‘i‘L/zdf{(l —Z)(l +Z_,:>AO(A1)+ |:—E—|—Zi| TT_
_%(Pzﬁ-Qz—l-mz)(l—’é)zBo} +0D—-4)+ [z 1-12], (125)

with 7 _ from Eq. (92). In the on-shell scheme for mass renormalization, the vertex-mass counterterm M7, is determined
by the renormalization condition M” — 0 for P> - —(Q? + m?). Consequently, the expression in Eq. (125) yields the
following result:

w, = C5R=D (-0 [ae + 9.4(@0) + 0D -4+ o 1=
= %(5;7__;)) - Al dE(1 + &) Ap(&m?) + O(D - 4). (126)

We discuss the value of the mass counterterm a bit more in Appendix F 3, and continue here with our primary objective,
the mass-renormalized LCWF. The full mass renormalized expression for the form factor M7 in the general kinematics
now reads

1 1 P2 )2 2
wr= [ aef a0+ o - A+ -1 EEE I
2
_uzfz)(lﬂ + 0% +m*)(1 —5)260} +0D-4)+[z< 1-1]. (127)
Finally, we note that the first term can be further evaluated by using the following result:

1 - 1 3 1 1
dé(1 Ag(Ar) — 2m?)] = (P? 2 2/d<— —> - , 128
| ae+ A8 — An(@) = 92+ 02 ) [ ae( 57545 S e e

and that the third term containing B, can be rewritten by using the Feynman parametrized form introduced in Eq. (86).
Combining these final remarks, we obtain the following result:

1 1 (P> + Q%+ m?) - 1 ( 3(1-2) (1—z)> 1
T = dé| -tz —= T 7 (PP Q2+ m?) [ deEf -
M {A/z 5[ €+Z} p? -+ +m)A : 2(1_§)+ 2 )P4 m S m
P2 A2 n ! 1% Z _ 2} _ _
(P24 0 +m% dgA o (1= o=l 1-1, (129)

with 7 _ from Eq. (92).

E. Form factor V' + MT-87/2

We are now almost ready to pass on to the next stage of our calculation and Fourier transform the LCWF to transverse
coordinate space. As discussed in Sec. IV A, at this stage it is convenient to switch from our original basis of four scalar form
factors VI, MT, ST, and M to one where the most rank-2 tensor, most complicated to transform, is traceless. This makes
appear, as the coefficient of the “leading-order-masslike” spinor structure, the combination V' + MT — ST /2, as seen in
Eq. (31). It turns out that a significant simplification occurs in this particular linear combination. As the last step in
evaluating the momentum space LCWF let us now write it down. This combination has quite a simple form

1 3 a a (4m)22 D u? P2+ Q* +m?
T T_tgr_ |2 a -= —r ) - _—
Vi+ M 28 L—l—log<z>+log<1_z>]{(2_§F<3 2>+log<Q2+m2 2log o7

1(D,—4 2
+Eﬁ+3—%+logz<i> +L+QV+IVMS+O(D_4)7 (130)
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where Iy\,s is given by the following integral expression:

Ingz(P2+Q2+m2)/1§(—210g(§)+(1+§)>{ _1 _ _ 1 e 2}

o £\ (1=9 2 JP+@+m Py Q2w 80
? 1 3(1-2) (1-2) 1
+ (P2 + 0 +m’ / dé(— + =
| ! 0 2(1_5) 2 P2+Q2+m2+i(11:5)m2

-0 [a [ =) [ag ['Te-ep [T o]

1 tdy o f s o (1—21)_x_ zm?  x[2(1—z2) + z¢%] 1
+A dg% a1=9) {(Q+ ){é(l_z) 5}+(1—Z)2[x(1—§)+ﬁ]}+[z 1-27]. (131)

We can further simplify the expression in Eq. (131) by first performing the change of variables to (y,y). This yields

(P22 oy (1A 2log(§)  (1+9) 1 3 1
fows = (0 +m)/0 ‘f< -9 2 J\Prg+m P2+ 02+ m? 4+ S m?

- 1 3(1—-z) (1-2) 1
+ (P2 4+ 0° + 2/d(— + > -
( Q m) 0 5 2(1_5) 2 P2+Q2+m2+%m2

dy /Z dr —Z+y(1—2)+x(z— Ol +xy—y(1-2)]
R &

+(P2+Q2+m2)K(

+(1-2)

I dy /Z dy —(Q* +m)y(1 =y +( - ));E Z)] +m? - )[2+ 2a ZZ) (z=x)%]
o (I=y)Jo (1-x) {P2+ 0%+ m? + s (i [m? + 414 071}
tleel-d. (132)

—

VII. COORDINATE SPACE LCWF
We now Fourier transform the full NLO result of y; — ¢g in Eq. (31) into mixed space. We first factor out the
exponential dependence on the center-of-mass coordinate of the dipole and the momentum of the photon as described in
[60]. This yields
JYri—ad — §

agay

ei(q/q*)-(kJXMkTXl)lpr?ﬁqé’ (133)
where the reduced LCWF 77497 up to NLO accuracy in coupling a, reads
et = gl y?yN;quq + O(ea?). (134)

~ 1144

Here the leading-order result §;f, ~ is given by Eq. (13) and the NLO piece Fourier transformed to mixed space reads

Pt = =52 (S )| (B2 oty w0 o) + 30 o) | 7P
+ a(0)y (D) FIPINT] + ma(0)yyiv(1)F [(P;fj - %) ST] — ma(O)y*yin(1)F [MT Ty . Sﬂ }eg,

(135)

where the Fourier operator F is defined in Eq. (14). We remind the reader that in this basis, our expression for the form
factor ST is written in a symmetric and traceless form, which turns out to be very convenient for the Fourier transformation

034013-23



G. BEUF, T. LAPPI, and R. PAATELAINEN

PHYS. REV. D 106, 034013 (2022)

into mixed space. In addition, as discussed in previous
section, the combination MT + VT —S87/2 is quite
straightforward to compute both in momentum and mixed
space due to the simple analytical structure.

Before computing the Fourier transforms in Eq. (135), we
would like to clarify some important points. Firstly, all the
UV finite terms appearing in this expression can be Fourier
transformed in four dimensions and only the UV regulari-
zation dependent terms (including the D — 4 pole term)

F[PVT] =

need to be Fourier transformed in D dimensions. Secondly,
the terms which are independent of the transverse momenta
P trivially factor out from the Fourier transform. Thirdly, the
terms exhibit a number of different types of P dependence.
All the corresponding transverse Fourier integrals needed for
these terms are given in Appendix C.

Putting all these steps together, we first Fourier transform
the momentum space expression of V' in Eq. (110). The
final result can be cast into the following form:

ixh, k. \22([3 <a) < a >]
2 flog(2) +1
[Xo1] <2”|X01 |> { L o8 z 8 1-z

-

) ) L0 e

+|i:§’11|{F—%+log ( )+QV+L:|KK (|X01|K)—|—7V—|—O(D—4)}, (136)
where the function 1), is given by
R s = (S = B
/dg((log(gz—i-lié—i—%) K(;_:? <|X01| K? + )
‘/oz<1df>/m ; m_;[z“<1iu> e =2
x{ K%+ (XOIWK +u;:;; %) }
‘K(ld—){mz/ow( ge-nt e+ () 1)
x%m(m” K?—f—ug:;;lcf()—i—[zel—z]. (137)
K U)Ky

To obtain Eq. (137), we have additionally performed the following change of variable y — u = y/(1 — y) in Eq. (108). In
addition, the above expressions use again the function k, = \/ v(1 — v)Q? 4+ m? for the inverse transverse length scale

associated with momentum fraction v € {z, x}.

Next, we Fourier transform the momentum space expression of A'7 in Eq. (114). The final result can be cast into the

following form:

FIPINT]

where the function 1, is given by

o)
X ~
= ﬁ{QNKzKIOXOl'Kz) + IN}’

(138)
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{(2+u)uz+u)(] KZ "‘”8 XKK1< Xoi 8 ){
+m_22(1%z+1_1[u—2z—2u;(])[ K§+u8 " ( Xo1| fo)
— [z 1-72. 1

Similarly, Fourier transforming the momentum space expression of S in Eq. (121) yields

PP/ 5 (1-2) {xi x 8 [z dy o du (1-2)
F - ST _ 01201 _ ¥ / / ?'f' 2
(5 -5)7 | =2 -5 [ 2 [ a2 v

x K, <|x01| K%—I—uéi :;))Kf() +zeo 1-2. (140)

Finally, the result for the Fourier transformed form factor combination VI + M” — 87 /2 in Eq. (130) reads

=S =Gai) {Brm(®) () {52 (-8 rwn(24) +2r

l(Ds_4) T Z ~
+§ (D—4) }K%_2(|X01|KZ)+ {3—?+10g2 <1—_Z> +QV+L}K0(|XOI|KZ)+IVMS+0(D_4)7

(141)
where the function I,,,,s is given by
[ S C8-19) ) -
# [lae(-3022+ oD (g2 + = D)
+ ) T /w <uiu1>2{‘z‘<liu> = 12 oy + 5
o e e P s e}
« {KO<|XOI| @ +u8 :;ik)%) - 0}} f e l-1] (142)

We have now obtained the full mass-renormalized one-loop mixed space LCWF for y* — ¢g with massive quarks, the most
important result of our paper. This result, without any details of it derivation, is also shown in the shorter companion
paper [66].

VIII. TREE-LEVEL GLUON EMISSION

A. Momentum space wave function

We then move to the tree-level wave functions for gluon emission from a transverse photon state, which are needed for
the full cross section at NLO. As in the massless case [44,46], we need to calculate four gluon emission diagrams, shown in
Figs. 7 and 8.
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17h17a1

ED i ED ED a, ED

404192 409192
FIG. 7. Tree level gluon emission diagrams (j) and (k) contributing to the quark-antiquark-gluon component of the transverse virtual
photon wave function at NLO. Imposing plus and transverse momentum conservation at each vertex gives for diagram (j): ky = ko + &,

and g = ]}0 + lAcl + IA<2. Similarly for diagram (k): lAclr = IA<, + 1}2 and g = IAcO + lAq + IAcz.

|

L 0, ho, g T > } 0, hos g
| q, A |
| |
| |

-T- ‘ 2,0,a -
O] ‘ | 2,0,a

| (m) |

7; < : 17h17a1 < 3 17h17a1

q, A
Equﬁlgz Equ‘Y192

FIG. 8. Tree-level instantaneous gluon emission diagrams (1) and (m) contributing to the quark-antiquark-gluon component of the
transverse virtual photon wave function at NLO. Imposing plus and transverse momentum conservation at each vertex gives for
diagrams (1) and (m): ¢ = ko + k; + k».

Applying the diagrammatic LCPT rules and following the notations shown in Figs. 7 and 8, we obtain for the diagrams (j)
and (I) in momentum space

q,y’}—wéy o /%(ZH)D_Ié(D_I)(/;O/ _I’% _ I’%O) gfﬁoa, [ﬁ(O)%(kz)u(O/)}eef[ﬁ(()/)%{(f])v(1)]
V) B 2

ED,, ; ED

qy 41 909192

_ teergtia, u(0)¢5(ka)u(0)u(0)g;(q)v(1)

= (143)
2(1‘3 + k;) Equ/l?lEDlIofllm
and
W99 _ +eerglaya, w(0)ds(ka)r* #a(q)v(1) (144)
% Z(k(J)r + k;r) Equl?lgz
where the energy denominators appearing in Eq. (143) and (144) can be written as
N e % K} +m?  kI+m?
qodr — 2g* Zk(; Zkfr
—-q" K\, A 2
=— ||k ——q) +Q.+m}, (145)
2k (kg +k7) [( L W
il 2 <k3+m2 ki +m? k_%)
4909192 2q+ 2k§ 2k1+ 2k2r
i KoV ak AR
=——||ky—-*Kk — |k ——= 2 24 Apm? ¢, 146
sty (i) g { (ke mgra) 2 o s (140
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and the coefficients introduced in the denominators are defined as

_ k+<q+ - k+) ktk
2 _ K 1) 2 K
=" & M= (147)
Similarly, for the diagrams (k) and (m) we get
m— o F s 1(0)¢(q)v(1")](=gtG,a, ) [P (1) s (ka)v(1)]
\PJ’T 999 _ /dk11(271')D_16<D_1)(k1/ _ kZ _ kl) eef[u( Ay o
® ED’[O‘?]’ED%QM]z
_ eyt 10)i(a)0(1)3(1)fs (k)0 (1) (148)
2(kfr + k2+) ED!]ol}l/ED%Qlﬂz
and
(m) 2(kj +&3) ED, ..,
where the energy denominators appearing in Eqgs. (148) and (149) can be written as
2 2 2 2 2 2 + + 2
q>-0 <k0+m k1/+m> —q [( kg > - 2}
ED, ., = - + = ko——q) + Q% +m?|, (150)
201 2q* 2k 2k, 2k§ (kT + k) q" )
ep . _T-0 (kgtm kifm’ k3
otz gt 2k 2k 2k
_k;r k; 2 q+k2+ k(J)r 2 . ) 5
and the coefficients introduced in the denominators are defined as
_ k+(q+ — k+) Jou o8
2 _ %o 0/) 2 )
Ch=""gp & =g (152)

Note that the energy denominators (146) and (151) are in fact equal, but it is convenient to write them in terms of different
variables in the context of different diagrams.

The transverse momentum dependence in the massive spinors # and v and in the gluon or photon polarization vectors can
be extracted by using the decompositions

O u0) = s { (1 52 )t w0 ) = ()0 )| [ = )
_% <%)2a(0)y+y/u(0/>}e;f : (153)

@610 (1) = s { [ (P )t w0 o(1) = @) B ot [ -
- B0 a(1) e (154)

and
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O (1) = oL { | (5= )t w0 o) + g 0n i o) [ -

—%Q(O)Vﬂ/’v(l’)}fﬁ (155)
stk (1) = et { [ (14 ot 20700 + (3 )0 o) [t = ]
- (%)21—;(1')y+yfv(1)}e:", (156)

where the remaining spinor matrix elements are independent of transverse momentum. Inserting the decomposition in
Egs. (153) and (154) into Egs. (143) and (144), and noting that in the light-cone gauge #;(k,)y"#,(q) = —€es’ vy v’y we
find for the sum of the diagrams (j) + (1) the expression

WA _ "‘eefgtgoaleée:]
0+ = Ky 2
(kZ_ékO) +k+k+ (kl +q) +Q2 +m +/1(_] }

X{ T 21 . ~a(0)y Myjo(1) + k =a(0)rtyly v(l)} (157)
(kl _q_l+q) + Q%J) +m

where the Dirac structure M’Gl) is defined as

MG) = {[(%(T,{%@)ﬁ’(fm <2kk++> vy ]] [ké ]Izi kl] _ <g)2},j}
x { qu%q%( )—;[7 7]} {k’f—z—Lq"] —m;/’}. (158)

Similarly for the sum (k) + (m) inserting the decomposition in Egs. (155) and (156) into Eqgs. (148) and (149) yields the
expression

eled

lPY*T—’!M.(l o _eefgtgoal €
(k)+(m) Ky N2, gtk K
(ko =1 k,)" + S {(ky — 2q)” + Q2 + m + Ao}
1 0™l q
1 B : kT .
X{(k ot O M)+ o i) . (159
0~ qjq + (k) + m 1

where the Dirac structure Mf]lq is defined as

. 2t — gt 1 kg
My = { [<4Oq+ ! )51(%& +§[7k77’]] [klé _q_qu} - mYI}
2k++k+ i kT o k. kN2 .
i { K T 2)‘%:) ' <2kzl*> V’M} [klz _ﬁkl‘} ”"(ﬁ) y/}' e
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B. Fourier transform to coordinate space

The Fourier transform to mixed space of the y; — ggg
LCWEF is given by the expression

D-2 D-2
(I)y;eqt?g_(lu2>2—%/d k()/d k1

(2”)D—2 (27[>D—2
D-2
/ d"k, Ko Xo K X KX,
(27)P=2
x (2m)P726P=D (q — ko — k| — k) P49,

(161)

To simplify the Fourier transformation, we first make the
change of variables (k,k,) — (P,K) in Eq. (157) with

P: _kl +ﬂq7
q+
K=k -2 (i k)
kg + k3

kg + k3 kg

and correspondingly (Kkg, k,) — (P, K) in Eq. (159) with

k+
P=k,-2q,
0 pe
ky
K=k,—-————(k;+k
2 k1++k§r( 1+ 2)

(e oo i
=|—7 kz——kl}. (163)
ki + k3 ki

Here we also introduce the following compact notation
for the coordinate difference between a quark/antiquark p

and the center of mass of the two-particle system m, n that
it is recoiling against:

ki X, + kX,
kM + k)

) —x,, (164)

Xntmp = “Xpintm = (

with x,,,, = X,, — X,,,. Using these we introduce the relative
coordinates corresponding to the gluon emission diagrams
(G) and (k). For the diagram (j) with emission from the
quark, the natural coordinates are the separation between
the gluon (lAcz) and the quark (lAcO)

X2;(j> = X0 (165)

and the separation between the center of mass of the quark-
gluon system and the antiquark (IAcl):

kg xo + k3 X,
ky + k3

X3,(5) = Xo42;1 = ( > -x;. (166)

For the other diagram (k) with an emission from the
antiquark, the natural coordinates that appear are the
separation between the gluon and the antiquark

X2;(k) = X21 (167)
and the separation between the quark and the center of mass
of the antiquark-gluon system

k?—Xl + k;X2

e > (168)

X3,k) = X142 = X0 — <

Next, performing the integration in Eq. (161) over the
delta function of transverse momenta, we obtain the
expression

(27)P-2
< (ii;li A D)
and
\?g;?rqn% _ ;_g.(kgx0+kl+xl+k;x2) (ﬂ2)2—§ ((212)%
< (ii_)?ieiP’X”“‘f"K"‘”“‘P?iﬁ‘fi"), (170)

where the LCWF’s in Egs. (157) and (159) are written in
terms of the new variables P and K and the relative
coordinate separations.

Adding the contributions in Egs. (169) and (170)
together, we obtain the following result for the full ggg
LCWF with massive quarks in mixed space

~ % 7 q. + + _
7339 _ a o (kg Xotk Xk X)) ~
lP T — tlloal edq y/yr qqg’

(171)

where we have factorized out the dependence on the center-
of-mass coordinate of the partonic system2 and the color
structure from the reduced LCWF 7774949, The reduced
LCWEF can be split into two parts: the part without light-
cone helicity flips (not proportional to m), and the part with
one or two flips (proportional to m, m?) as

P = ee geles (T + X)), (172)
Here the light-cone helicity nonflip contribution ¥ is
given by the following expression:

%See also the discussion in [60].
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) 1 _ i kT D gt ;
V= —W”(O)ﬁ {(27(3 +k3)30p,) _72[7 vyj]] [(Zkf - g8, _2[71371]} v(D)IZf
! (0t | (2k+ )5kt q+ kool 2kt + kH\sY k; i 1)k
—m“( r|( o—Q)(DS)ﬂL?[V,V] (2K + 2)(Ds)+7[7’7] v(1)Ziy,
kKSk§ Kki
a(0)y yy'v() T ) - @(0)y r'y v(1)T (m) (173)

(kg +k3)? (K +&;)?

and correspondingly the contribution with one or two light-cone helicity flips, proportional to powers of the mass, AT
given by

; 1 _ ij k3 oo i
s — e O [(2/@ + k)00, =5 [727’]} Y1),
0o Tk
i &_O+i2k+ +\§k ﬂkl 1)Zk Zﬂ‘o +yviylo(1)T
_’_m;a(o) +.,,1 (2k+ —|—k+)(5ij +§[ i j] U(l)Zi
GEY) vy 1 TR )0y Ty (k)
s Bl ok - ety + L o2 - a0 e 170
(ki +k3)%q ’ 2 (ki +k3)

It is straightforward to check that in the massless quark limit, the expression in Eq. (172) reduces to the result obtained in

[44,46]. The (D — 2)-dimensional Fourier integrals of the type Z,7 and 7 are defined and calculated in Appendix E, for
which the following compact notation has been introduced:

I = Z(x35)- X2)- Oy @G 4G)s Loy = Z(X3,00 X209 Qi @0+ Ak
L) = Z(x3). X2 Oy @G AG)s Ly = Z(X3,00 X209 Qi D0+ Acr))»
T = T (Xa)- Xa5), Oy @) AG)s T ) = T (Xaqi)» Xa:00» Oy @) A (175)

with the coefficients

q kiky q kiky
a)(J) = k+ k+ k+ 27 w(k) = k+ k+ k+ PR (176)
i (kg +k7) o (K +k3)
the other momentum fraction ratios A, from Eqgs. (147), (152), and the coordinate differences defined in Egs. (165), (166),
(167), and (168). We now have the full expressions for the gluon emission wave functions in coordinate space.

IX. CALCULATING THE DIS CROSS SECTION

Let us now compute the transverse virtual photon cross section at NLO with massive quarks in the dipole factorization
framework. As in the massless case [43,44,46], this consists of squaring separately the gg and ggg contributions, and then
effectuating a cancellation of an UV divergent contribution between them. These steps happen in a similar way here, since
the additional algebraic complexity for massive quarks resides more in the UV finite pieces that are not affected by this
subtraction. Thus we will be relatively brief here and refer the reader to the massless calculation for more details. We follow
here the exponential subtraction procedure of [46].

A. Quark-antiquark contribution

Let us first write down the gg contribution to the DIS cross section at NLO in a,. Applying the formula for the cross
section in Eq. (1), we find the following expression:
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dkg dk{  278(q* k+ K [ gp-2g. [ a2 it
i = 2NZ/ 55w | 3 / 0 [ S S ARl - Sul

ho.hy

dz -
ZZ/) a1 /dD 2x0/dD 2 _2 ZZWT 972Re[1 — Sy ], (177)

hgty

where the y; — ¢g LCWF squared is summed over the quark spins (A, &), transverse photon polarization (1), and the
factor 1/(D, — 2) comes from averaging over the transverse photon polarization states.

We can now compute the LCWF squared by using the compact expressions for the LO and NLO wave functions in
Egs. (13) and (135), respectively. This leads to the following expression:

B3 0 P = e D S s R 20 W) Ote). (79

ho,hy ho.hy

After performing the straightforward Dirac algebra, we obtain

=2) Z > i = . fem 282(1 - Z)(q+)2{[22 + (1= 2|7 [PF [P + m>F*[1] 7 (1]

ho.hy

+ (25 {2+ 0 - ey + S pEea)
+m2}"*[1]]-“[VT+MT—%T]}}, (179)

where the UV finite terms has been simplified by taking the D, = D = 4 limit.

Using the results obtained in Egs. (136), (138), and (141), the gg contribution to the total cross section can be
written as

C D4
o |qq = 4N, aemZef/ dzAO] /x] {[1 + <a F)fUV] (27T’|€X01|>

< ([2% + (1= 2)? (kKo (Ix01 [k, + m? (Ko ([%01 <))

(=) 12+ 0= 97 bty + 25k ol -+ Kb v [ Relt = Sl

T

+ O(aemas). (180)

where the shorthand notation f[xi] = [dP2x;/(2x) for i =0, 1 denotes a (D — 2)-dimensional transverse coordinate
integral. The function fyy contains the UV divergent term plus the regularization scheme dependent part, and it is

given by
fov = B—l—log( ) —i—log(l izﬂ {g;z_y;r<3 —%) +1og<W> —|—2yE} +%%. (181)

Similarly, the UV finite functions fy, f and fy\s are given by

5 n° i
fv:{i_?+log( )*QV“}KK('“"K)“‘”

Fus = {3 T g ( )+ LK) + T (182)
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Here we recall that x,, = \/v(l — v)Q? 4+ m?, L is defined by Eq. (112), Q by Egs. (116) and (117), I, by Eq. (139), I,,
by Eq. (137), Q) by Egs. (111) and (98), and finally I,,\.s by Eq. (142).

B. Quark-antiquark-gluon contribution
The ggg contribution to the DIS cross section at NLO in «; is given by the second term in Eq. (1)

dk o dkT o dky 2x8(qT —k§ —ki —k3)
2N : : P
or |qqg CFZ/ 2k§ (2m) A 2k+(271')/0 2ky (27) 29"

/dD -2 /dD -2 /dD -2 ZZ |77~ 4392Re([1 — Soy5). (183)

Jo hoh

where the y; — ¢gg LCWF squared is also summed over the emitted gluon polarization (). Following the straightforward
but lengthy derivation shown in Appendix D, we find the result

ﬁz Z |l//yT_)qu|2 - aeme as(4ﬂ>22<2k+>(2k+>{lcqqq‘UV + Kgqg|UV + ,ququ + K:gqqh: } + O(aema?)' (184)
‘ 7o ho

Here the functions ’qug|UV and qug|UV are the UV divergent parts of the squares of the contributions without a light-cone
helicity flip and with one flip, respectively. They are given by the following expressions:

Khlow = e 448 6 + )+ 2065+ (0, =& P (07 = st = kD) 12
T KT+ K 4 20+ (D= R0 = s 0 = kI P (159)

and

2

m .
Kaaglov, = NCET [k (kg + k) +2(k5)? + (D, = 4) (k5 )| T P
2
m .
e W ) 260+ (D= kP (156
1 2

Note that a flip and nonflip contribution cannot interfere and thus there are no cross terms.

The functions K, [z and K[, | are the remaining UV finite terms, without and with light-cone helicity flips
respectively, i.e. w1th0ut or with explicit powers of the quark mass. The UV finite light-cone helicity nonflip terms can be
cast into the following form:

Klile = (e T T 4K (6 = INelZly ()] = el )]

= ki (kg + k) + kg (kT -+ k)] (kg + &) + k(R + &) te [T (Z )T}
4(ky + k3 )kiky o o o Ak RSk .
G R v S

4(k+)2k+k+ 4(k+)2k+k+

W+ B g o0V~ G gy i )
2k P | o 2P
s+ O G gyl e

Similarly, the UV finite contributions with one or more light-cone helicity flips are given by
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_ (k3) 25 Ak ki (k3 )? .
’ng}g'Fm =m {W[‘LW(H -q")+2(q") ”I(j)| - (k& + k3 )3qt gﬁe[ ( (J)) ]
(k3)* Ak ki (k3 ) 5
[k (k- 2 I’ 7§R i (Zh)*
T U = )+ 2Aa PP+ et s el ()
2(k+)4 2(k+)4
2 2 2 2 2 T
g gy PO G gy
2 8] i io\*
G i i (K KR kD) + (el (T )
2(]{;)4 Ut + kKT + K K2R el TE (T )*
4(/{3/(;)2 . i Fi * 4(ki~>k;)2 T i *
& RIE R T G e
Alkg ki) (k5 )? _Alkgk)(k3)?

&+ aig e To))
4(k§ + k3)(ky)?
(kf 4+ k3)*q"
4k (k)
(kg + k3 )

Ne[Zil (Zgy)"] -

NRe[T 1) (Z ;)]

K+ )]
Ak + k) (k)2

(kg +k3)%q*

4 (k) o .
+ Wﬁe{j(m) (Z(w)) ]}

(188)

Note that there are contributions proportional to m?, coming from either two light-cone helicity flips in the amplitude and
none in the conjugate or one flip in both, as well as contributions ~m* with three flips in the amplitude and one in the

conjugate.

Finally, inserting the expression in Eq. (184) into Eq. (183), we obtain the gluon emission contribution to the cross

section

* asCF
O'J%|qég:4NCaem< 7 )Z €y

C. UV subtraction

Like in the longitudinal photon case [60], the UV
renormalization of the coupling g is not relevant at the
accuracy of the present calculation. Therefore, the remain-
ing UV divergences have to cancel between the ¢gg and ggg
Fock states contributions on the cross section level. Due to
the complicate analytical structure of the gluon emission
contribution in Eq. (189), the UV divergent phase-space
integrals cannot be performed analytically for arbitrary
dimension D. Hence, it is desirable to understand the
cancellation of UV divergences at the integrand level.

In the expression (189), the first two contributions inside
the curly brackets contain two terms which are UV
divergent when x, - X, and X, — x;, respectively. In
addition, the remaining two contributions are UV finite and

/dk*/ dk*/ ~dk; 3 K = k)
q-‘r

/ / - / {quy|UV + Iqug|UV + qug|F + ,nggh: I}Re{l - 8012] + O(aemag)'

(189)

hence we have immediately taken the limit D, = D = 4 at
the integrand level, which simplifies the further calculation
considerably. In order to subtract the UV divergences, we
will follow the same steps as presented in [60] and use the
following property of Wilson lines at coincident transverse
coordinate points

}(Lrl;[thUF(Y)]UA(X)ba = [Ur(y)??), (190)
which implies that
lim 8012 = hm 8012 = 801 (191)

X=X

Thus, the UV divergences in Eq. (189) are subtracted by
replacing
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IZ{5 PRe[l = Soia] = {IZ{j) PRe[l = Soia] = 2§ yy IPRe[l = Soi]} + |Z{§ yy I"Re[l = Soil,

|II(J>|2RC[1 - 8012] = {|IEJ)|2RC[1 - 8012} - |II(])UV|2R6[1 - 801]} + |IE_])UV|2RC[1 - 801], (192)
and

[T PRe[l = Sypa] - {|T8 PRe[l = Sypa] — [T 1y PRe[l = Sy} + [T oy PRe[1 = Sy

|Iik)|2Re[1 - 8012] = {|Iék)|2Re[1 - 5012} - |Iik)Uv|2Re[1 - SO]]} + |Iék)Uv|2Re[1 - SO]]’ (193)

|
where the subtraction terms are given in terms of a two lim 7 éj’.‘) = lim Z "(j.‘) Uy
functions Zi%, and Zi: T . T .
Xll_l’)l;l(lzzk) = Xil_l’)I;]Il(k) uv- (196)

IG{)UV = iy (Xo1: Xa0, Q%),w(j)’i(j))’ _
An identical analysis holds for the function Zyy. It is

i i 02w Ao
Ly uv = Tuv(Xo1- X20. O @) A ) important to note that there is no unique choice for the UV

Ty uv = Ziv(Xor. Xa1, Oy @A) divergent subtraction in Eq. (195). The only requirement
; ; - for the subtraction is that the UV divergence needs to
I(k) vv = Zuv(Xo1. Xa1, Q(k)’w(k)”l(k))' (194) cancel between the gg and ggg contributions. Thus, it is

sufficient for the subtraction to approximate the original
Now, for the function Zi, be a good UV approximation of ~ integrals by any function that has the same value in the UV

the full integral, it must satisfy limits (for any D). Because of this cancellation, the
integrals of the expressions inside the curly brackets in
lim 7k = 1im Iikv (195) Eqs (192) and (193) are finite, apd one can safely take the

X2 =X X2 =X limit Dy = D = 4 under the x, integral.
In an arbitrary dimension D, the integrals 7% and Z [see

from which it follows that Egs. (E6) and (E7)] are given by
|
Th(bor, 0% ) = — L2 gk / * du P20+l [ D12 gt o5 (197)
L] £ k) 4(477:)[)_2 0 0 £

. — in2~P2 e o 2 [u/w 2

Zi(b,r, 0%, w,2) = LD—zrl / du ! ~P/2e=I0 ] o= det=D/2 e’ o=l (198)
2(47‘[) 0 0

It is straightforward to see that to get the leading behavior in the limit |r|> — 0 we can set 1 = 0. This leads us to

‘ _ ) 2-p/2 |r|2 1-D/2 (oo . w2 (D |r|2a)
Tik b.r, 2, r;O_ H bi k d -D/2 ,—u[Q*+m?| e -1, , 199
(b,r, 0%, w) —4(4”)D_2 r T ; uu e e 5 » (199)
and
: 2-D/2 2\ 1-D/2 [ _ 2 2
) _ 20 ip . |r| _ A2 21 bl D |l” @
Zi(b.r, 0% ) =" —ri( - duu' =P+l o= (T 1, : 200
(b.r. 0% @) 2(47[)D_2r 4 0 e ¢ “"\2 4u (200)

where we have suppressed the dependence on the variable 4 in the notation.
Now there are several possible ways of performing the UV subtraction. Using the exponential subtraction procedure
introduced in [46], we approximate the incomplete gamma function with

D 2 D 2
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where the exponential is independent of u allowing for an analytical calculation of the u integral. This replacement has the
correct behavior in the UV limit |r|?> — 0, but also is regular in the IR limit of large |r|> — co. Here we note that another
option would be to follow the polynomial subtraction scheme used in [44]. Here the subtraction function is polynomial in 7.
This however, introduces a new IR divergence, which must be compensated with another subtraction.” Finally, substituting

Eq. (201) into Egs. (199) and (200) gives

2-D/2hi vk 2 /72 7\ 31
) _ _lu b'r (l ‘ )] D/ZF(g_ 1>€_2b2JE (M) Kg—l <|b|1 /QZ 4 mz)’ (202)

27P/2-1 2z|b]

7k, (b,r, 0% @

and

_ B i2-D/2yi _w2 (O +m2 82 _
Ibv(b’n Q2’w) :Mi(l | )1 D/2F<2 1)6 22T E (T) K%_2<|b| /Q2_~_m2>‘ (203)

ArP/?

The following master integral will be used to compute the UV divergent r integral:

22802 - 1)2 _ ] ((4m)?% D Xo1 |21
WG -1 nlgz ) /dD‘zr(|r|2)3‘De WETE — 7{3{((2”_) - F(3 —2) +10g<| 014| a ) + 2y + O(D —4)}. (204)
2

D. UV subtracted results

For the UV subtraction terms coming from the diagram (j), we find

iy a,Cr\ — ¢ I
o (5 )Z L Gre) kel

T

949 [xo] /[x1]
ol ) )
- %%}Re[l — Soi] + O(D - 4) (205)
and
e OB
i {[5-oa(em) {2 (3-3) +oe(%) <20
;( >)}Re[1—801]+(9(D 4. (206)

Similarly, for the diagram (k), we find

1 0ORy (a CF> e} / < K. )D“‘ >
1 =4N.a,, K, Kp_;(|Xo1 |k
T 439 C Z o] J ] 27[|X01| [ z 12) 1(| Oll Z)]
2k+ k+) k;mm (4777)2_% D %1/‘2
———1lo I'3—— I 2
{[ H 4 g( ka)]{@—% ( 2>+°g< 4 )* “’}

1( )
R S0l + 0D -4

(207)

3See the discussion in Appendix E of [46].
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and

”
or

()3 (a CF> / < K, >D—4 )
49 Z & fxol i) \27[Xo1 [ 7 2([xo1 K]
T 3 ky (47[)2_% D /4
dik+ S | 2,min 3_Y | 01 ’
) {[ 4 °g< kgﬂ{(z 3 ( 2)+0g< s ) o

_%%}Re[l —So] +O(D - 4). (208)

In order to simplify our subtraction terms further, we introduce the same parametrization as in the ¢g contribution:
ks =zq*, ki = (1 —=z)¢", and k3 ;, = ag™ and change of variables from (k. k') > z. Hence, the sum of Egs. (205)

and (207) yields the followmg expression for the UV divergent light-cone helicity nonflip subtraction contribution:

7[00y _ a;Cr / / / ( >’” >
= —4N.a,, e dz k. Ko_{(|xo1|x
() [[oe [ [ o) ket

0o e ) -2) () )

+ %%}Re[l ~So] +O(D —4) (209)

and for the light-cone helicity flip contribution

qquVmH Movw — _aN o, (a CF> Zef/ dz AO /Xl] (2,,|X01|>D 4[@_ (o1
{ B + log( > + log<1 — z)} {(é”_)zj (3 - 2) + log <X(2)AM2> + 2}’5}

%%}Re[l — Syl +O(D -4). (210)

These expressions precisely cancel the UV divergent part in the gg contribution Eq. (180), including the scheme dependent
part. The remaining terms in Eq. (180) are UV finite and regularization scheme independent.

The remaining finite terms after the UV subtraction of the cross section are obtained by using the parts inside the curly
brackets of Eqgs. (192) and (193) in Eqgs. (185) and (186). They are a part of our final result for the cross section.

X. RESULT: TRANSVERSE PHOTON CROSS SECTION

We can now gather here the main result of our paper, which is the transverse virtual photon total cross section at NLO
with massive quarks. The cross section can be written as a sum of two UV finite terms

o = ol [ 4 oL [+ O(a,ad), (211)

where the first term in Eq. (211) is the mass renormalized and the UV subtracted gg contribution, which is obtained by
adding the UV subtraction terms in Egs. (209) and (210) into Eq. (180). This gives

o [ — 4N aemZe / dz//{z (1 = 22K (%o €] + m2[Ko

C 2z —1
i (%) {[Zz +(1 —Z)Z]KZK1(|X01|Kz)fV+( ZZ )KZK1(|X01|Kz>fN

k)]

- mKo([xo, |Kz)fVMS} }Re[l — Sor] + Olauna?). (212)

where the shorthand notation [, = [d?x,/(2x) for i = 0, 1 denotes a two-dimensional transverse coordinate integral and

we recall that x, = \/ v(1 —v)Q? + m?. The functions fy, fy, and fyus are explicitly written down in Eq. (182).
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Evaluating the expressions fy,, fr, and fy,s also requires
the definitions of L from Eq. (112), Q,, from Egs. (116)
and (117), I+ from Eq. (139), T,, from Eq. (137), Q), from
Egs. (111) and (98), and 7VM5 from Eq. (142). Here the
first line in Eq. (212), not proportional to a;, is explicitly
the known leading-order cross section for massive quarks
and the functions f; encode the order @; NLO corrections.
We have checked that in the limit of zero quark mass these
expressions reduce to the known results in Refs. [43,46].

The second term in Eq. (211) is the UV subtracted ggg
contribution. It contains both the UV subtracted terms
corresponding to the parts inside the curly brackets of
Egs. (192) and (193), and the parts of the ggg contribution
that were finite to begin with:

7Fsubt _ ¥ I(j)\2+|(k)\ 1G5+ ()5, s

T lagg = OT lqqg or |qqg qqg + UT

(213)

T

x {ﬁ K3 (K + k) + ()7 [1

—[x2,) 2/ (%01 [*€7E)

where the last two terms correspond a contribution coming
from the finite terms without a light-cone helicity flip
Eqs. (187) and the ones with one or more helicity flip terms,
proportional to powers of the mass, (188).

The final result for the ¢gg part contains a significant
number of terms. In order to clarify the structure we use the
relative coordinates corresponding to the gluon emission
diagrams (j) and (k): for the diagram (j) with emission from
the quark the g (ko) — g(k,) relative separation Xo.(j) = X9
defined in Eq. (165) and the separation of the gg system to the
recoiling antiquark (g(k,)) X3.(j) = Xg42;1 from Egq. (166),
and conversely for the diagram (k) with emission from the
antiquark the (k) — g(k,) relative separation Xo:(k) = Xo
defined in Eq. (167) and the separation of the recoiling quark
to the g system (¢(ko)) X3.(k) = X;142 from Eq. (168).

In the case of the exponential subtraction scheme
developed [46], i.e. using Eq. (201), the two UV subtracted
terms in (213) can be simplified to

G c = dkj K
/ |(J_)|2+|(k)|2:4Ncaem<as” F)Z‘f?/ / // dk+/ dk+/ (¢" = +, oki)
7 X /%

256

2k (q" - k+) |X3,5) 1P %2, 22
_2M oo 1 ] X{ 1) i) [ggj) )}2Re[1 — S

(

e~ 1x20 _ _ )
_W {WKIOXO” Q%j) + mz)} Re[l — 501]}

1
_~_7
(k" + k5 )?

e~ X2 P/ (X0 PeE) .
T Rl {\/Qﬁm(w

and

I(J [ H R _

1
X {m[zkg(kg + k) + (k3)?]
0 2
|X2;(j)|2 (1:2)12
X 64 [gm ] Re[l _5012]
L
(ki + k)

(27 (k[ +k3) + (k3 )?]

|X2;k|2 12
{2 gl PRelt - S -

Here we have introduced the compact notation

2k (

| |Xz;(k>|2

(k7 (kf + k) + () [1 -

i (S) T [ [ [ [ f o [

e~ X200/ (%01 Pe7E)

|2 {K0<X01|

|X2;(k)

g —ky) 8 X300
(q+)2 256

)| Rell =S}

[ggif)]zRe[l - So12]

(214)

i=l Okz+)

e~ X2 P/ (1x01 PeE) — 5 2

X2,

2+ m )TRe[l —301]}}. (215)
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2
() _ [ (02 + m? _bsol / u/%g - _ x|
g —A —aexp {—u(Qf +m )}exp{ A - exp {—t(w(jd;m?)} exp oy (216)

and

ab  du X3,0017) [#/ew dt %2007
gEk)):/O —exp{ u(Q )—i—m)}exp{—%}/o t—exp{ t(ay )mz)}exp{—% . (217)

The notations Q%) Q%k),/l(j),i(k) are defined in Eqgs. (147), (152) and @), () in Eq. (176). As discussed also in the
longitudinal case [60], these integrals could be seen as generalizations of the integral representation of Bessel functions that
appear in the massless case. In addition, these integrals are very rapidly converging at both small and large values of the
integration variable, and hence they should be well suited for numerical evaluation as is.

Let us finally turn to the last two terms in Eq. (213), which are finite from the beginning. They can be simplified starting
from the intermediate expressions in Eqgs. (187) and (188), and using the Fourier transform integrals in Appendix E. After
some intermediate stages of algebra, the third term in Eq. (213) can be simplified into the following form:

1 (aC 0 dk; & 2 kf
o by = 4Ncaem§< ;)Zg//// dk*/ dk*/ = ki)
f X1 %
1

+k+k+_k+2 P ) . ) _ . . . y
x {64(k§+k§)(k,++k2+)(q+)2 {aky (kg = k) [(x3,) - X)) (X300 - X200) = (X355 Xz,(k))(x3,(k) X2i(5))]

22
— [k (kg + k3) + kg (ki + kDK (ki + K5 + ki (k7 + 5] (Xaugy) - Xa.00) (Xagy) - X )}g
(kg + k3 )k ky (222) (ki + k3 kg ky 22)
6T + k)" 0 X009 T gy () Xaw)Giy Mo
(kg )2k ks (2:2) (k)2 ks (22
16(](0 + k;)'qur (X3;(J) X2,(_]))g0) H(J) + 16(k1 T k;)3q+ (X3;(k) X2§<k))g(k) H(k)
R o TP
S(kr + pa e FYZ S ESY) Re[l — Sp,). 218
* 8(kg +ky)* [Hl* + (kT + k) [Huol” Rel 012] (218)

Similarly, the last term in Eq. (213) reads

* C = dkj 3(q Kt
07T|‘;;Ig—41vam <“ F)Z //// dk*/ dk*/ +'01>

(k) (2:1) kgkf(k;) (1:2) H(2:1)
X {64(k6r+k§r)4(q+)2 [4k;r(k;r )+2( ) ]|X3(_| | [g(J) ]2_—16(k++k+) ( 3:3) X2(J )g() g(j)
(k3)* (2:1) ko ki (k3 ) (12) H(2:1)
o+ kg ) (g o (ko 0+ 200 ks Pl T+ g g (o 200996
1 . .
+ + + + +12 . (1:2) ~(1:2)
- 32(kg + k;)(kT + kzr) [(2k0 + k2 )(2kl + kz ) + (kz ) ](XZ;(j) XZ;(k))g(j) g(k)
+ (k2+)4 [(2k+ + k+)(2k+ + k+) + (k+)2](x . g(z;l)g(z;l)
0 2 1 2 2 36) * X3500) i Y

32(ky + k3 )2 (ki + k3 )*(qh)?
m? 2(k3)* o +m72 2(k5)*
6 (kg +ky)* 0 16 (k" + k3)*

(kg k3)? (12) 5(2:1) (ki ky)? (2:1) 5(12)
1600 1)tk Tk Pe 20 X009 960 T e v ag o T e 0 X969
(kg ki) (k5 )? (:2) g(1:1) (ko ki) (k3 )? (2:2)175(1:1)

- W (X2, - X3;(j))g(j) () W (X2 - X3;(k))g(k) Hg@() ]
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(kg + k) (k)?
16(ki + k3 )*q ™"
K5 i, k)
4k +k)* VYO T Akt k)

(Xay(5) - X3;(j))g(j) (k)

+

(2;2)g(1:1)

H(k)QEi;)l) }Re[l — So12)-

(K + k) (k3 )? |
16(ky +K3)%q" (%00 - X3:00)9 i

Here we have also introduced the functions H(j) and H(k), which are defined as

o du ~
H) = A 2 exp {—u[Q%j) + m? + Ajym?|} exp

oo dy -
Huy = [) 7exp {—u[Q%k) + m? 4+ ﬂ(k)mz]} exp {

To summarize the abbreviated notations, we recall that the
definitions needed for an evaluation of the ggg results can
be found in the following:
(i) For the gluon emission relative coordinates X,
Xy,) in Egs. (165), (167) and 3-particle center-of-
mass coordinates X,j) and X3,y in Egs. (166), (168).
(i) Generalized Bessel functions Qéj;b) in Egs. (216),
(217) and H ) in Egs. (220), (221).
(iii) The momentum scales Q%), Q%k) and longitudinal
momentum fraction ratios ﬂ(j),/l(k) in Egs. (147),
(152) and the momentum fraction ratios ), ()
in Eq. (176).

XI. CONCLUSION

In this paper, we have calculated, for the first time in the
literature, the one-loop light-cone wave function for a
transverse photon splitting into a quark-antiquark pair
including quark masses. After obtaining the one-loop
LCWF we also Fourier transformed our result to mixed
transverse coordinate longitudinal momentum space.
Combined with the tree-level wave function for a quark-
antiquark-gluon state this enabled us to obtain an explicit
expression for the total transverse photon cross section in
the dipole picture, suited for cross section calculations in
the nonlinear gluon saturation regime.

We believe that our results are significant in several
ways. Firstly, we have provided the first calculation of the
total DIS cross section for massive quarks in the dipole
picture at NLO accuracy. This paves the way for a
description of existing and future total DIS cross sections
in the small-x saturation regime, following the recent first
successful NLO fit for massless quarks in [47]. We
provide in this paper the explicit expressions for the cross
section which, together with a BK-factorization pro-
cedure, e.g. one of the three used in [47], can directly
be used in similar fits. More generally, the light-cone wave
function is a central ingredient in any NLO calculation in

(219)
|X3; j |2 +t g |X2; j |2
{_ ol * el (220)
X3, > + @ [ X200
I o WLt (221)

the small-x dipole factorization formulation for DIS or
photoproduction processes involving heavy quarks. Thus
it is an essential ingredient in bringing the phenomenol-
ogy of gluon saturation in high energy deep inelastic
scattering to NLO accuracy. The light-cone wave function
is needed for calculations of, e.g. exclusive vector meson
production, dijet production, or diffractive structure func-
tions in DIS. All of these processes can now be accessed at
NLO accuracy in the saturation regime, also for massive
quarks. On yet a more fundamental level, the light-cone
wave function, independently of the needs of a specific
cross section calculation, is a fundamental universal
quantity in perturbative QCD. It encodes the structure
of a photon in light-cone gauge, which is required for a
proper partonic interpretation. In calculating the wave
function to one-loop accuracy with massive quarks, we
have also had to address explicitly the issue of quark mass
renormalization in light-cone perturbation theory. This is
an issue that had previously been discussed in the
literature at the level of the divergent terms. To our
knowledge our calculation is, however, the first LCPT
loop calculation to perform a full quark mass renormal-
ization in a specific scheme, including the finite terms. We
will discuss the details of different regularization proce-
dures and their relation to mass renormalization in more
detail in a separate publication. However, already here we
have demonstrated in practice the relation between mass
renormalization in LCPT and Lorentz invariance, encoded
in the structure of the quark form factor. The final results
for the wave function and cross section obtained in this
paper are also summarized in a shorter companion
paper [66].
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Ny = e€rg 1,y 16y a [1(0) 5 (k)u(0")] [(0) 5 (K u(
(k)u(0)][2(0") 5 (k)u(0)][2(0)¢:(q) v(1)],

= eefg25a0a] Cr [u(0)¢6

APPENDIX A: CALCULATION OF THE
NUMERATORS

In this appendix we evaluate the numerators for the self-
energy diagram (a), the instantaneous diagrams (c), (g),
(i);, and the vertex correction diagram (e). Summation
notation over the internal helicities, gluon polarization, and
color is always implicit.

1. Numerator for the quark self-energy diagram (a)

The numerator for the quark self-energy diagram (a) can
be written as

0[a(0")ga(q)v(1)]
(A1)

where the four-vectors k, and k( are the same since the plus and the transverse momentum are conserved and both k, and
ko are on-shell. The spinor structures inside the first two square brackets can be written in the helicity basis as

50, (u(0) =
+ % @) "2 ()i u() }e{,,
O )5 (61u(0) = k(—)(l——){[(l 57)7h

5kl

m{ [(1 2kk++> b7 S(0)y T u(0) + <%)ﬁ(())y+[yi’yj]u(0/):| Ki

where the variable K is defined in Eq. (34). Using the completeness relation for the spinors

Zu (0"a

and noting that y*(Ky +m)y™ = 2(kg

NT, = 280800 S 1) (a1 >]{[<1_

k020 -5)

- () 5O o)

—k*)y ", we obtain

(A2)
lft(O’)}’ u(0) — (4k]:+> (0)y D’k’ yl}u(O)} Kk
(A3)
=fytm (Ad)
%)25§$:>5f3.y>ﬁ(0)7+u(0)
KKK — " (%)4 (0)}’+7jy1u(0)}ege*’ (AS)

Here the terms linear in the transverse integration variable K vanish due to rotational symmetry. Summing over the gluon

helicity states yields

T 492 CF

rhioqd k+ 2 k+ 5 2 k+ 4
N = FZF 5 oy l——) +4(D. -3 K+ (p,—2)(5) 4,
@ = R (1 - e D {K 2k3> + 4D ><4k+>] + )<k3) }
0 0

(A6)

034013-40



MASSIVE QUARKS IN NLO DIPOLE FACTORIZATION FOR ... PHYS. REV. D 106, 034013 (2022)

where the definition of the leading-order QED photon splitting vertex VyT 9 s given in Eq. (10). Finally, using the
parametrization k*/k{ = &, we find the following expression:

24°C o D, —4
N, = ﬁ‘%m v;g;hf"{ [1+ (1= &2K? + m?& + %52 (K> + m?¢&’] } (A7)

2. Numerator for the instantaneous diagrams (c), (g), and (i),

The numerator for the instantaneous diagram (c) can be written as

N{oy = eerg15a, 1y a [1(0)¢, (K)u(0N)][@(0")#; (k)y *#:(q)v(1)]
= —€€;9%8 0, Crl1 (0) ¢, (k)u(0")][@(0)y* £ (k)3 (q)v(1))- (A8)

To simplify this expression, we first use the completeness relation (see e.g. Appendix A in Ref. [43])

k,n, + k,n
Zga.u(k)gj;,u(k) = _g,uu + %, (A9)

where n*a, = a* and Eq. (A4). This gives

kn +kn

N{) = e/ 810,Cr {—gw - ][ )y +m)r* v (g)o(1)]

= —€€/6u CF{—4(k$ —k)a(0)f;(q)v(1) — (D = 4)u(0) (ko — By #.(q)v(1)

#2882 0y a1000) + (0, ~ Dm0 (a1 . (a10)

where the standard y-matrix relations have been used, as well as the plus and transverse momentum conservation relation
ky = ko — k. Note that this implies ¥yy*™ = (Ko — k)y"
Finally, using the Dirac equation &(0)¥, = mii(0), we get

N, = ety P Ce{ |22+ D, =2 O ia)o(1) + 2mi0)r* (a1}
= ey Co{ [ <212 + D =20 K= @) + (0, 2O o)} (A1)

Note that in the shift ¥ — (k*/ k+)ko the y~ term vanishes, leaving only the terms involving y’. Thus, we can
rewrite [¥ — k- foly " = [k — £ Ky
Using the vanables K and 5 introduced in Eq. (34) the expression in Eq. (A11) can be rewritten as

2 . . _
N(TC> = —€€f925a0a1 CF{ [—54' D, - 2} Kl”@)ﬁ)’%(@)”@) + 5(Ds - 2>m“(0)7+¢z(Q)”(1)}- (A12)
The numerator for the instantaneous diagram (g) can be written as

Niy) = —€€; gt taya, [1(0) o (K)u(0)][@(0')#1(q)r " £5 (K)v(1)]. (A13)

Following the same steps as above we find

N = ey Cutu { (ZHOI (@ o(1) + (D, = (0 7 io(1) | K+ (D, ~ malO)r (a1} (414)

034013-41



G. BEUF, T. LAPPI, and R. PAATELAINEN PHYS. REV. D 106, 034013 (2022)

Finally, the numerator for the instantaneous diagram (i), can be written as

NGy, = —eerg1a, taya [1(0)y u(0)][a(0")¢;(g)v(1)][5(1)r " v(1)]
= —ee;g* Crbyyq, [0(0)y " u(0)][a(0')#3(q)v(1)][B(1)y Fo(1)]. (A15)

The simplifications here again follow the same steps as above leading to

kb7 N S .
NI = —ee;@Crbu, {—4km ' [kw - q} #(0) (1) - 2¢* [k - q—iql] WOV (@) ro(1)
; 2q+mﬁ(0)7+¢a(61)”(1)}- (Al6)
Noting that ko — % =—(K+L), we get
NI, = —ee; Crbugn {491 — 2(1 — OleS(O)y o(1) + 24" #(0)a()y 7 o( 1)K + L] + 2" ma(0)r* di(g)o(1)}.
(A17)

3. Numerator for the quark vertex correction diagram (e)

The numerator for the diagram (e) can be written as
N{., = —ee;g*6,5Celi(0)¢, (k)u(0")][a(0")¢:(q)v(1)][2(1")¢; (k) v(1)]. (A18)

With the kinematical variables as in Fig. 4(e), the independent spinor structures can be decomposed as

m { [(1 ) %) 87 i(0) u(0') + (%) 7(0)7* 7' yf’]u<o'>} K

0

1(0)¢5(k)u(0") =

2 () w0 ) fel (A19)

0000 = = ) { [ (£550 )t 0001 + L0 o) B mi@) o0 el

oKy q
(A20)
and
s = ————— L (1 £ Yo o) + (£ ) oyt o) [
: GE0+m U 2 I
m (kt\2_ .
-5 (kj) v(l’)y*ymv(l)}é‘g’", (A21)
1
where we have introduced the variables
(k(;r - k+) k*tq* W
H=K-———P=K+1L, R=K+——P=K+—L A22
5 + W o (A22)
with L = @, P and
ktqt K+
B (S o
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Substituting Egs. (A19), (A20), and (A21) into (A18), and following the same steps as before, we find the expression

NT 2¢€G%6,5Cr
O R =D +E)

g1 (0)y " [aVK' + ma,,y/|[D"HF + my'|[c"R" = mc,,y/]v(1)el, (A24)

where we have introduced the following compact notation: and the coefficient a,,, c,, as

all = adfp, ) + bly', 7).

b = esk  + FIrF. v a _1 Ez c _1 Ez (A27)
— Oy TR "ma\kg) T T2k )
" = g8(p,) + hly". v, (A25)

and defined the coefficients a, b, e, f, g, h as To perform the contractions in Eq. (A24) requires
tedious but straightforward algebraic manipulations. To
kt kt 2kt kar — kf this end, we have automatized the computation of the
a=1- T T4k €=- T g Lorentz contractions with FORM [71,72], and we have also
| 0 n 0 s cross-checked our results manually by pen and paper. The
f==, g=1+-——. =— (A26) one-loop vertex correction diagram (e) can be written in the

2 2k 4k spinor basis of Eq. (17), and the result reads

gz €€y (a,C ~ 2k kT ~
wi = EI-SL(: < 2;){,,((0)@(@1;(1)%) + ( o >P-eﬂu(0)y+v(l)N(Te)

kN P-g;, . . 2k
+ () Bt pmacoyy a0, + (B85 i pianae, b 29
where the form factors V(Te), N (Te), 8{8), and M(Te) are given in Eqs. (75), (76), (77), and (78), respectively.

APPENDIX B: USEFUL INTEGRALS

In this appendix we calculate the functions Z; and J ¢ that are introduced in Sec. V C. Let us first consider the functions
Z;,; which are independent of the transverse momenta P. These functions are defined as follows:

[l déE AN a 0% +m? . 1 . 1
IE;] = /(;/Z? |:—10g<ﬂ—2>:| —10g(;> 10g<7ﬂ2 ) +L12(71 _%Z(l —y)) +L12(1 _ZLZ(I +}/)>’ (Bl)

1 A, 02 + m? 1 1+y 1 02 + m?
Ten = dé|—1 —_ = —1 i 2 ——v1 ) - — 1)1 , B2
) /0’/Z 5{ og(ﬂz)] og( e + zy og a— 2Z(y ) log — (B2)

and

1 A, 1 0*+m*\ 3 1 1 1 l+y
rea= [ et s (3| = gon(55) + 3o -2 (1 el
1 1 0% +m? m? Q> +m?
-1 =-= —1)1 — 1 . B3
(150 o= o (S5 - e (2 (83)

Here we have used the following compact notation y = /1 + 4m?/Q? introduced in Eq. (83).
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Similarly, the functions J; which depend on the transverse momenta P are defined as follows:

_ (A (AN e (@ P2+’ +m*\ 1 z<g>_ﬂ_2_ 2/1 log(é) (1-2)
jé;l_l/zé[bg(,uzﬂ_ 10g<z>10g< (1—2)u? ) 210g z 6 " 0 de&(l—f)sz—FQZ—i—mz—i—%mz’
(B4)

1 A, m2> P2+ Q>+ m? <P2 + 0% + m2>
"= déllog( — )| =-2+1log| — | + = lo , B5
Te2 L/z 5[ g<ﬂ2>} g<u2 e A (R P (B3)

and

B A T e WL e Y o e
Tia= [ deefoe(3) | =1 - Ty 2 () ot oot oot () 89

Next we provide two important intermediate results used for the computation shown in Sec. V C. After integration over
the £, we obtain the following result:

3z a 0% +m? 1+5z 1[m? 1 0% +m?
—T.. 2Ln —Ten) = —|—+1 — 11 —|— 14+—)(1 - 1 -
g1 t2(2Zen — L) {2 + Og(z)] og< e T TS ZQ2+ +2Z (1—-7)|log 2

1 14y , 1 , 1
(14— )yrog[——" ) -Liy[——— ) —Lip)[————). B7
(12 ree(is, 22) 12(1—2;(1—@) 12(1_2;(1+y>) 57
Similarly, we find
3z a Q>+ m? P2+ Q>+ m?
—Je1+ 22T 0 = Te3) = [E—HOg(E)}{IOg(T + log T —log(1 - 2)
1 a n? ! log(¢) z z (1-2)
—log?| =) =3z+— 2/ d — . (B8
28 (Z) et C’t[(1—2.>‘)2+1—5+2]P2+QZ+mz+‘:(<1]__§>>mZ (B8)

APPENDIX C: FOURIER TRANSFORMS FOR ¢gg STATES

In this appendix we present the relevant integrals that are needed to calculate the Fourier transformed y; — gg LCWFs in
mixed space up to NLO.
We start by considering the following integral:

dD—ZP eiP-XOI o1
/(Zﬂ)D_z [P2 + A2] ’ ( )

where xo; = X( — x; and P?> + A? > 0. The standard technique to evaluate these type of integrals is to first introduce a
Schwinger parametrization for each denominator

1 1 /°°
—=—— [ A leA, A p>0, C2
AP TR Jo p (C2)

which turns the integral in Eq. (C1) into a simple Gaussian form in P. The resulting expression can be evaluated by using the
standard Gaussian integral:

[areel-2 ] [S0] = paaoe st me] ©

where y = (y1,¥2, .-, Vu)s b= (b1, by, ..., b,) and a;; is a symmetric, nonsingular, and positive defined n x n matrix.
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These steps lead to the result

dD—2P iP~xm
/ e e - 407

|\>|U

xn1 12
/ dr 1182 e,
0

(C4)

The remaining one-dimensional integral can be performed
by using the general formula

) B\ #/2
dtP~le et =2( —
A e e A

Here K_;(x) is the modified Bessel function. Notice that

for positive values of x K4(x) is an analytic function of f

and that K;(x) is even in f, i.e. Ky(x) = K_g(x).
Hence, the integral in Eq. (C4) yields the result

dP2p P 1 [ A \32
= K»
/ (2m)P2 [P+ A2 (27) (2”|X01|) "

We also note that if the expression in Eq. (C1) contains a
logarithmic function, one can first use the relation log(A) =
lim,_,( 0,A* and then apply the Schwinger parametrization
formula in Eq. (C2).

It is then easy to show that for the rank-one tensor
integral

K_s(2VAB), A,B> 0.

(C5)

(Ix01]4).

(Co)

dD—ZP PjeiP-xm
/(zﬂ)D—2 [P2 +A2]

_ix)) ( A )%—2
(27)[x01] \27[X, |

In addition, we need to compute the following symmetric
and traceless rank-two tensor integral in D = 4:

AKp_([xoi[A).  (C7)

/ d2P ™o (PP - 15UP?)
(27)? [P? + A?]
AZ

xi x! &
] (o LA NI

plus delta functions in x;;, which we ignore.

Furthermore, Fourier transforms of a product can
be treated by a partial fraction decomposition before
integrating:

1 1 1 1
P2+ A}][P2 + A] A3 - A} [PZ +A2 PPy A%}
(C9)

which leads to the Fourier transform being a difference of
two Bessel K functions with different arguments. Doing a
double Schwinger parametrization of the denominators,
which one would also be tempted to do, ends up expressing
the result in the same form. Here the two terms come from
the integration limits of the innermost Schwinger parameter
integral after the usual shift, with then the outermost
Schwinger parameter integration transforming the terms
to Bessel K functions. One can also first combine the
denominators with a Feynman parametrization and then
perform the integral with a single Schwinger parameter.
This gives a result as a Feynman parameter integral of a
single Bessel K function. However, this Feynman param-
eter integral can be performed using the Bessel equation
satisfied by the K functions. This again results in the same
difference of two terms as the partial fraction method,
coming from the upper and lower integration limits of the
Feynman parameter integral. In some cases we have been
able to express the differences of Bessel K functions as a
single Bessel function, using a partial integration in some
other Feynman parameter. However, this is only possible on
a case-by-case basis, not in general.

APPENDIX D: SQUARING THE GLUON
EMISSION CONTRIBUTION

In this appendix we present the detailed computation of
the y; — gqg LCWF squared in Eq. (184). As a first step,
we need to square Eq. (172) which is then averaged and
summed over the transverse photon polarization (1) and
summed over the quark spin (%, &) and gluon polarization
(o) states. This gives the following starting point:

Doy ) leied (B + TP

1o holn
1 ! *
=g 2 BT 2 el ee]
Ao ho hl
1 . li - il ot .y
~(D,-2) hzh: (24 Zn)E + ') 80,00,
- 0,71
1 , y i
= .-2) D (ZYP 4 |31 + 2%e[ZV(Z)")).
s ho Ty

(D1)

To begin with, we concentrate on the light-cone helicity
nonflip contribution |£¥|2, which is given by the first term
(in the third line) on the right-hand side of Eq. (D1). To
simplify the algebra, we divide the function = in Eq. (173)
into the four terms
(D2)

i Alj 1j lj lj
TV =Aj + By + €+ Ciys

where we have defined the set of four functions as
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i _ ii k+ . . q+ .
) = agaOr* |25 + k00, =5 ) [k = ety — Lo,

q* i Lk
0)y+ [(2/@ =g+ I 71]] [(2k1+ + k)3, + >

mN
<
I
|
S
z
<

o7
and
1j _ X
C({) = +cu(0)rtyy'v(1) T ),
Clhy = =07y v(1) T (),
with the coefficients

! 1 Kk .
W= s O e e S e
(kg +k3)q (ki +k5)q (k§ +K5) (kT + k3)

Squaring the expression in Eq. (D2) yields

;};IZUIZZ}; (AL P + BU, [ + 29%e[Al (BI] )] + 2%e[C (€ )7)
0741 0,11

' 1j \s /L 1j lj " 1j Nx/Alj 1j lj
+ Ne[(C))*(Chy + 24, + 2B + Re[(C ) )" (Chyy + 244 +2B3,)]).

(D3)

(D4)

(D5)

(D7)

In Eq. (D7) only the first two terms, which are proportional to the Fourier integrals’ |Z iéf>]2 and |Z ’(ﬁ) |2, contain the UV

divergences at D = 4. Hence, the remaining terms can be directly computed in D, = D = 4, which is an enormous
technical simplification. The computation of individual terms in Eq. (D7) closely follows the detailed derivation presented
in the case of massless quarks. Therefore, for a detailed discussion, we refer the reader to our previous work [44,46]. After

some amount of algebra, we obtain

DAL P = 8k K af [4kg (kg + KF) + (D, = 2) (k5 )2][(Ds = 2)(g+)* = 4k (g = k)T

Q'
ho.hy
S IB P = 8k k{ bE [4kT (K + k) + (D, = 2)(k3)?[(D, = 2)(g" ) — 4kg (g™ — k§ITIE .
ho.ly
and
> 29%e[Al (Bil)"] = 8k ki 8ag b {q ks (kg — ki ) [Re[Zi (TH)] = Re[ZH (TH)"]]
ho,hy

= [k (kg + &) + kg (ki + k3)][kg (kg + k5) + ki (K[ + k3)IRe[Z( (T() T}

Furthermore, for the terms which contain instantaneous diagrams, we obtain the following expressions:
D Ne[(CH)*(Cly + 247, +2B()] = 8kg ki {4ch | T ) + 8kg ki agycq)RelZ (T )]
hoshy

= 8(k{ + k3 )*bugeNRelZfy (T ) T}

D Ne[(Cy ) (Cy + 240 +2B()] = 8k ki {4ct, [T > + 8(k§ + k3 ) cmyRe[TiE (T (my)’]
hoohy

—8k+k+b ( )E}fe[ i (,_7( ))*}},

*See the discussion in Appendix E.
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and ik :
= by Oy QAT )00 + 21 [T},

L (ol V¥ — _ q+ . ~

2ANICHCET=0 P o) 2k =gt + G o)
0-741

—m2b3ﬁ(0)y+ylij(1)1(k). (D15)

Next, we concentrate on the contributions with one or

two light-cone helicity flips in the amplitude. We start by Here th o db fori— L2 3 are defined

computing the second term |Z |2 in Eq. (Dl) Again, to ere the coellicients a; and b; for 1 = 1, 2, 5 are delined as

simplify the algebra, we divide the function >4 in Eq. (174)

into the two parts 1 (k3 )? (k3)?
TR T kP T 0k
%5 = A + B, (d13) 1 p— k) P
(K +k;) (k[ +k3)*q (k{ +k7)°
where we have defined the functions Al,{; and B,l,’; as (D16)

Gk , This yields the following expression:
A= =may Q) | (25 +4)5) =21 ()T}

+ .
a7 | QK1 =)oty =T [o(02) SRR = S AL+ B+ 2velal(Bly ). (017)

hoshy hony
+m?aza(0)ytylyto(1)Z ), (D14)
By taking the complex conjugate of the function A we
and find for the first term on the right-hand side of Eq. (D17),
|
i _ o koo .
> lAn? = Z{—alu {2k++k+)5( D) —2[}/’,7/1]}7/ ()T,
ho.hy ho.hy

+
+anO)r (24 = a*)ath, = 2o + masaO) a1 |
+

- i'j k i i\
{—annyy |k + 0o, + 52 )| rruoey)

+ AL .
+axa(0)| kT =038, + )| WO)E )+ mass Dy WO)Tg) | (DIS)

Let us then perform further simplifications for the terms « a? from the above expression. This part is given by

ii k+ . . . ’ k+ - . i
S { a2k kot = 21| oz b { ety kg 05+ 52 | ruo )
hoohy
(D19)
Performing the sum over h; with y* (¥, —m)y™ = 2k{y"*, and then using the relations
ly[ =2- D.\'v
{rt.r'} =0,
'] =208, + 17, (D20)
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we find that Egs. (D19) can be simplified to
(D19) = (D, —2)a22k} S u<o>y+{[<2k3 k) + (kXD = 3)16
ho

[k ) = (0 =& 2| fuoizy ) (D21)

Next, utilizing the fact that 7 i(i) x Xb, (see Appendix E) so that only the term symmetric in i, i’ in the above expression
survives, and finally performing a simple trace

> " a(0)ytu(0) = 4ko, gt = 4ky (D22)
ho

then gives for Eq. (D19) the following result:
(D19) = (D = 2)ai8kg ki [4kg (kg + k) + (k3)*(Ds = 2)]|Z}; > (D23)

For the cross term « a;a, in Eq. (D18) we have the starting point

_ P = .
2e| S { a0+ |2t + 000, = | oz |
ho.hy
+
{287 = ot + 51 A o)) . (024

First, carrying out the sum over /; and using the relations in Eq. (D20), we obtain after some algebra

(D24) = —a1a28 " BO) =265 (D, ~ )65, — (2K + k5 (D, — ) P2k + (D, — )Ju(0)2he[T} (26 ).
ho

(D25)

Note that since the integrals 7 éj) x Xéo and 7 1(3-/) x X](§’+2;1 (see Appendix E), also the antisymmetric term in i, X’ contributes.
Next, simplifying the above expression further by performing a trace with Eq. (D22) and

> a0y ¥y u(0) = -4k 8 (D26)
ho
we find the result
(D24) = —a1a28k§k1+ [2k0+ - k2+(DS - 4)][21(1+ +q7 (D, — 4)}29%e[Iéj)(ffj))*]. (D27)

Following the same steps for the other terms, Eq. (D19) yields

S 1AL = (0, - 20885 k7 { ok kg +85) + (620, - D)} P
ho,hy

+a3dkt (k= q") + (¢")2(Ds = 2))|Z() [P + m* a3 (D = 2)|Z ;)
20102
(Ds - 2)

(2K I (D, = H)][2KF + g+(D, - 4))e[Zi, (T )] } (D28)

Note that the terms o« m* in Eq. (D18) produce a trace over an odd number of gamma matrices, which consequently results
in zero. Furthermore, by noting that only the term o |Z Ej)|2 is UV divergent, we get
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D JALP = m? (D, - 2)8k§ ki {ad[dks (k§ + k) +2(k5)? + (k3)2(D, — 4)]| T P
ho.hy

+ a3k (kf = ") +2(q" VTG P + 2mP G| )P — ayardhy ki Re[Ti (Z7;)]}. (D29)
The computation of the second term on the right-hand side of Eq. (D17) follows the same steps as above and it yields
Y B = mA(D, = 2)8kk{ {BHAKT (K| + k) +2(k5)* + (kF)2(D, = 4)][Z},
ho,hy

+ D3[4kg (kg — ) + 2(q )| Th PP + 2m2B3|T | + bybydk ki Ne[Z (Zi)'1}- (D30)

The third term on the right-hand side of Eq. (D17) is given by the expression

- i Sk .
S omelal ()] =2mY e o i + k0ot S 1o,
10,111 0-111

_ : q R _ ~
+astO)r (24 = "oty = 2[00 + masa O a(1)Z |

bt @t + 605, =2 b1 uiory

!

bt} |24 = 088, = 5 a0 = mbsn w0 T | 031

This term is fully UV finite, and therefore we can immediately set D, = D = 4 everywhere. After performing the spinor
and gamma-matrix algebra, we obtain the following expression:

S 20Nl AN(BH)] = 4mP8h ki {—ayby[(2K5 + k3 (2kE + k3) + (k3 )NelZ1, (T1)']

ho,hy
+ by [(2k = q)(2k§ = ¢") + (g7 )*Re[Z (Zi))']
— 2a1by (kg )*Re[Tf;) (Z()*] + 2a2by (k] )*Re[Z(;) (T,))]}- (D32)
Finally, we concentrate on the third contribution in Eq. (D1), which is the cross term between the helicity nonflip and the
helicity one and two flip contributions. It is straightforward to show that terms coming from the helicity nonflip and single
helicity flip contributions yield a vanishing result, since they involve a trace over an odd number of gamma matrices.

Therefore, we are left with the terms which involve only a product of a helicity nonflip contribution and a two helicity flip
one. These terms give the following result:

> 20e[=(Z5)] = 8m8ky ki {agas (kg ki )Re[ZlE (Z)*] = b bs (kg ki )Re[Zf (Z)7]
ho.hy

+ cayasRelT 1) (Z))*] + cmbsRe[T m) ()]} (D33)

APPENDIX E: FOURIER TRANSFORMS FOR GLUON EMISSION

For the gluon emission diagrams from a transverse photon state, we need to calculate the following set of Fourier
integrals:

Db @) =it [ L8, [ 0K PRe s

(2”)D—2 (zﬂ.)D—Z [PZ + QZ + m2HK2 + w(PZ + QZ + m2 + /17112)] ’ (El)
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(b . Q2 o /1) ﬂ / dD ZP / dD—2K ) KieiP‘heiKT ] (E2)
(2z)P=2 | (27)P~2 [P? + 0 + m?|[K? + w(P? + 0 + m? + im?)]’
A - db-2p dP2K PioiPb KT
T'(b.r, 0% 0.2) = 2-"/ / _ _ : E3
(b.r. Q%o d) =12 [ 507 | a2 75 O 1 K+ (B2 + O+ i )] (E3)
dD—ZP dD—ZK eiP~beiK~r
b, 5 1 2-2 / / _ _ , E4
Zb.r. % w.2) = 27)P=2 ] (27)P=2 [P* + Q% 4+ m?][K? + o(P? + 0% + m? + Am?)] (E4)
and
dD 2P dD—ZK eiP~beiK~r
J (b, A = . E5
J(b.r, Q. @, )= W / (2m)P- 2 / (27:)0‘2 [K2 + (u(P2 + 0>+ m? + /lmz)} (E5)

To perform the above integrals, we use the Schwinger parametrization introduced in Eq. (C2) for each denominator, and
then perform the (D — 2)-dimensional transverse momentum integrals, which are then Gaussian.
For the integrals in Eqs. (E1)-(E4), we obtain

. ~ =D/2 e ) b2 ufw ) P
Ilj(b, r, QZ, , ﬂ) = —Wb’ﬂ A du M_D/2 —u[@*+m ] A dr t_D/ze_tw/Im e (E6)
' B 2D2 oo ufw "
Z'(b.r. &% .2 :#r’ A dut u!~D/2 (0] o5 . dt 1P/2 gt g~ (E7)
ai 2 PR e D/2 =ul0?+m?] ;-2 Y D2 —twim? -
I(b,r,Q,w,ﬂ):Wb | duu= e ; drt e e, (E8)
and
_ 2-D/2 0 _ 5 2 u/w r)2
Z(b.r,0* w.2) = W/o du u1=D/2g=ul@+m] o5 i dr £1-D/2 gm0 o=l (E9)

Note that in an arbitrary dimension D, the ¢ integrals above would give a u dependent incomplete Gamma function. Hence,
we are not able to express the final results in terms of familiar special functions (e.g. the modified Bessel K functions).
In the case of Eq. (ES), we are only left with an integral over a single Schwinger parameter

j(b’ r, QZ’ a),/l) _ Iu2—D/2 (471.)2—D0)1_% /°° du uz—De—Lta;[Q2+m2+/lin ]e 1=[|b|*+|r|? ] (ElO)
0

The remaining u integral can be performed for generic dimension D, yielding the following results:

_ 280 /O ¥ m? + m\ "7 .
j(b,r,QZ,w,l):(Zﬂ)z‘D<g> < Q|;|;’i:|j:’> KD_3(\/Q2+m2+/Im2 |b|2+w|r|2>. (E11)

APPENDIX F: FORM FACTORS AND LORENTZ INVARIANCE

In this appendix we discuss some of the constraints from the Lorentz invariance on the momentum space scalar
form factors ST, N7, and V7, and the longitudinal photon V¥ from our earlier paper [60], at the on-shell point, as discussed
in Sec. IVA.

Our starting point is the usual parametrization of the ygg vertex function (based on Lorentz and gauge invariance),

D'(q) = Fp(q*/m)p* + Fp(q*/m?) & i, (F1)
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which introduces the Dirac and Pauli form factors
Fp(g?/m?) and Fp(q?/m?). This form should now be
compared with the general parametrization of the spinor
structure of the wave function in Eq. (17). The difference
between vertex corrections as encoded in the form factors
Fp and Fp and the LCWF is that in the former the
“outgoing” ¢g is an asymptotic outgoing state in the
scattering process, but in the latter it is an intermediate
state that will scatter off the target shockwave. This means
that in the form factors the quarks are on mass shell, which

('Iyg/l,/,t (Z\I) .
2m

1(0)#,(g)v(1)Fp(g*/m*) +

in our case means P?> = —Q? — m?. Note that for a quark-
antiquark pair in the final state, which is the situation here,
this means that the virtual photon must be timelike,
g> = —0Q? > 4m?. Relatedly, the ¢gg state in the LCWF
has its own energy denominator EDy . In the comparison
of the LCWF with the form factors this energy denominator
(which becomes zero at the on-shell point) must be left out.
Leaving out the additional color and electric charge factors
and contracting with the physical polarization vector for the
photon, the condition that should be satisfied is

in(0)o* v(1)Fp(q*/m?)

2

= L ap) |1+ (S0 )vr| L et o) (45T a7
0 ™1

g (P-¢g)

Tk P

POy po(1) (% )57 +

+

e MO @) (“2_?> MT}

(F2)

P =022

This same constraint with a longitudinal photon polarization (the I't component of the constraint) was already considered in
our earlier paper [60]. For a transverse photon polarization one can use the relation

€1u(2)q,#(0)ic* v(1) = 2mu(0)#;v(1) —

" (P-¢g)

—2P?
hiki P

to arrive at the constraints (19), (20), (21), and (22). In the
remainder of this appendix, we will verify that our results
for the form factors satisfy the constraints (19), (20) and
show how to use (22) for quark mass renormalization. We
will also check an additional relation that relates the
transverse and longitudinal polarization states. It would
also be interesting to check what happens with the I'”
component, which does not couple to photons in the light-
cone gauge, but we leave such a discussion for another day.

1. From ST to Fp

The form factor ST is related to the Pauli form factor by
Eq. (19). It gets contributions only from the two non-
instantaneous vertex correction diagrams (e) and (f), calcu-
lated in Sec. V C. At the on-shell point P> = —Q? — m? the
contribution from diagram (e) in Eq. (123) is such that

:—2 d/d .
P= / Y Zer){—ZQ]

(F5)

At this point it is trivial to integrate over y and writing the
photon virtuality in terms of the 4-vector ¢g> = —Q? one has

P/a(0)yty/u(1) -

k) a0 o) &
[P2+Q2+m2]2,f§—kl+ a(0)7* #,(@)u(1) (F4)
|
1 T _ [ 1
R0 P A Wie 2 -na (F6)

The result from the other diagram (f) is the same up to an
exchange z <> 1 — z, and thus the total contribution is

: 1
Pe QP A [m* = x(1 = x)q°]
/l—z d 1
- y
0 [m* = x(1-x)q*]

1 1
- _A & [m? — (1= x)q*’

where one uses the symmetry of the y integrand under
y <> 1 —y. Thus the left-hand side of the condition Eq. (19) is

g CF
P2 < >S 2 2_ 2
Pe=—0°-m

~(57) [ 4 x(lz 7T oe=Y

which is indeed the one-loop Pauli form factor.

(F7)

(F8)
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2. From N7 to Fp

For the form factor A/7 it is best to start from

NT =1y, +Qy, — [z 1-1] (F9)

with the expression for Q N given in Eq. (117) and for [ N in Eq. (120). At the on-shell point the first contribution

reduces to

! @ =2mP 222 (1 —y) 4+ (1 = 2¢)y +2(1 —y =3y + 2¢(1 + x)y)]
I/\/‘z_Qz 2:0dy0d)( .

A straightforward integration over y gives

2(1=x)[m* 4+ x(1 - x) 07 (F10)

Iy

In order to arrive at the same manipulations as for S7
above, we split this into

IN(E) P g — I.(/)\x};;hella + I%(—es)hellb (Flz)
with
Zz

Jon-shell — __ ;2 2z —1 / d)( F13

N ( ) 0 m?* + (1 —x)0? (F13)
and

, 2y —1)(1 — 2

I%;s)hellb — 2 /Z dy (v )(2 ) + 2)2 . (F14)

¢ o z(1=x)m* +x(1-x)0°

The first terms yield the Pauli form factor, following the
same procedure as above:

-1 [Ion-shella _ [Z <1 _ZH = /l d){ m2
2z—1" Mo o Am*—x(1-x)a’}

(F15)

agreeing with the condition (20). The second term can be
shown, after a somewhat lengthy calculation, to cancel
against the QN(C) term even without antisymmetrization

with respect to z <> 1 —z:
-shell b _
I%(:) T+ Qy, =0. (F16)

Thus our result for N7 indeed satisfies the condition (20).

_ /z q —m?22% + x(1 = 2y) + z(1 — 4y + 2%°)]
L i A (1= p)[m* + x(1 =) Q%]

(F11)

3. MT and vertex mass renormalization

Using the form (126) for the M7 counterterm and

Ao(A) = F(2—§> [ﬁ]n ’ +0(D-4)

ol
|

(F17)

one can easily perform the & integral to obtain

(2—2) [%]Q_Z—FO(D—M.

(F18)

1(D,—4) 5 3
T

In terms of the mass renormalization coefficient Z,, in the
on-shell scheme this corresponds to

2 122
7 =1 |BCr | Bl DY | m
27 |12 2 ) |4mp?

+ L__‘LM O(D—4)}. (F19)

5 1

2 2(D-4)
This is indeed the known result (including the finite piece)
for the mass renormalization in the on-shell scheme in
CDR for D, = D and in FDH or DRED for D, = 4 (see
e.g. [73]), and also in QED up to the replacement
a,Cr = aemej%. Indeed, the expression (F1) for the yqg

vertex function is derived assuming that m is the pole mass,
so that the relation (22) corresponds to the on-shell mass
renormalization condition. While this is different from the
“kinetic mass” counterterm in our calculation in Sec. VA,
this is a known feature of our regularization scheme
[57,61-64] with a cutoff in k™ and dimensional regulari-
zation for transverse momenta. It is also known that at least
the divergent pieces of the mass counterterms agree if one
regularizes with a cutoff in k=, which is however

034013-52



MASSIVE QUARKS IN NLO DIPOLE FACTORIZATION FOR ...

PHYS. REV. D 106, 034013 (2022)

technically difficult to do for the finite terms. In a future
paper we will show how it is possible to develop a
regularization scheme where the kinetic and vertex mass
counterterms agree exactly.

4. Additional check for V7, V-

We have now verified that our LCWF’s satisfy the
constraints for the scalar functions 87 and N7, and used
the condition on M7 for mass renormalization. There
remains the condition (21) for V'. This is, however, a a bit
more problematic. Indeed, the Dirac form factor and V'
involve quantities which have soft divergences and UV
divergences (related to quark wave function renormaliza-
tion, not mass). Hence, there should be some regularization
scheme dependence, making it more difficult to use these
relations to compare our results with earlier ones in the
literature. Nevertheless, such soft and UV divergences have
some degree of universality. This allows us to obtain a
constraint between two finite quantities by taking the
|

(D,—4)z

1 1
Vi, +V), = (D_4)2+/% df[f—(l—z)—zf}Ao(Az)—

+f de(1-¢)

[2 (2z—1)  z£
/z

& (1-z) (1-2)

and, from Eq. (75) in this paper,

VI :_ME—ZJF/I dé[l—Zz—s—zf] {Ao(Az

(D_4) 2 /2 f

difference between the constraints for the longitudinal
and transverse photons. By subtracting Eq. (H7) in
Ref. [60] for the longitudinal photon from its analog
(21) for the transverse one, we find that

(2z - 1)2 27,2
——4Z(1 _Z)FP(CI /m?).

(F20)

a,C
S|V e =

Note that the quark self-energy diagrams cancel in the
difference. Then, one has, using the notations of Ref. [60]

VE-VE =V =V, =V, +(ze (1-2). (F21)

We will be comparing to results from our earlier paper [60],
so we must start from intermediate results that are in a
slightly less integrated form. Using Eqs. (73) and (78)
from [60] one finds

Z2’,’12

T [ azi-pes,

[(1=60-4.0 )5~ + (1)} + 0(D=4), (P22

- -+ 0+ [T+ o)

+ [Lasa-a2e - o 0 s - P (- et

/z 5 (1 )
1 (1-2z)PIB/
2| de(l -
v [z - e GRS
The scheme dependent rational term — ((%Y__f;

+ 580} +0(D -4).

(F23)

5 in Eqgs. (F22) and (F23) cancels in the difference between the two, whereas

the term —z in Eq. (F23) is a scheme independent rational term induced by the tensor reduction.
Setting P> = —0? — m? and following the same method as previously, one arrives at the end of the calculation at

m

D
T L L _
[V(e) - V(c) - V(e)]”Pz:_Qz_mz - (1 - 2Z){F<2 - E) |:47T/42

+ {qz

e

(1=2x)(1 = 22)

_(1—2Z)2/Z m’
Y == 42(1=2)Jo “m—4(1=p)a?}

(F24)

After symmetrizing in y <> (1 — y) and adding the other graphs according to Eq. (F21), one gets

[VT - VL] |P2:—Q2—m2 =

which indeed reproduces the constraint (F20).

(1-27)% [1 m?
T 4z(1 —z)A Yl ==}

(F25)
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