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In this paper we suggest a new approach to the structure of the soft Pomeron: based on the t-channel
unitarity, we expressed the exchange of the soft Pomeron through the interaction of the dipole of small
size of the order of 1=QsðYÞ [QsðYÞ is the saturation momentum] with the hadrons. Therefore, it is shown
that the typical distances in soft processes are small r ∼ 1=Qsð12YÞ, where Y ¼ lns. The saturation
momentum, which determines the energy dependence of the scattering amplitude, is proportional to
Q2

sð12YÞ ∝ exp ð1
2
λYÞ, with λ ≈ 0.2, and this behavior is in perfect agreement with the phenomenological

Donnachie-Landshoff Pomeron. We demonstrate that the saturation models could describe the exper-
imental data for σtot; σel; σdiff and Bel. Hence, our approach is a good first approximation to start discussion
of the soft processes in the color glass condensate approach on the solid theoretical basis.
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I. INTRODUCTION

We believe that high energy scattering can be described
in Reggeon field theory (RFT) of quantum chromodynam-
ics (QCD), where development has led to understanding
of many characteristic features of the processes at high
energies, including the phenomenological application to
LHC, RHIC and HERA data during the past three decades.
The basic ideas of RFT go back to the pre-QCD era,

when in 1967 Gribov [1] proposed his diagram technique,
which is based on a very general picture and properties of
high energy exchanges in a local field theory. These general
ideas were assimilated to QCD and worked out over the
years in many papers [2–35]. However, in spite of much
work that has been done, the theoretical framework of RFT
is still incomplete. Actually, we face two problems with
RFT: the first is the s-channel unitarity for dilute-dense
parton system scattering, which is governed by JIMWLK1

equation [35]; and the second one is related to the

summation of the Balitsky, Fadin, Kuraev and Lipatov
(BFKL) Pomeron loops [36–42].
Bearing this in mind, we cannot be surprised that RFT is

not able to describe the soft interaction of hadrons at high
energies. On the other hand, the color glass condensate
(CGC) approach, as well as its realization in RFT, leads to a
new saturation scale [saturation momentum QsðYÞ] which
increases at large rapidities (Y). It gives us a hope that the soft
interactions actually stem from sufficient short distances
where we can apply RFT in QCD. Phenomenological
attempts to describe the soft experimental data, based on
these ideas with some additional assumptions, turn out to be
rather successful (see Refs. [43,44] and references therein).
The main building block of the Gribov Pomeron calculus

is the exchange of the soft Pomeron with the Green’s
function:

GIPðY;QTÞ ¼
�
s
s0

�
αIPðQT Þ ¼ eðΔ−α0IPQ2

TÞY; ð1Þ

where αIPðQTÞ ¼ Δ − α0IPQ
2
T is the Pomeron trajectory and

QT is the momentum transferred by the Pomeron.
Our goal in this paper is to build the main ingredient of

the RFT such as soft Pomeron in the Pomeron calculus,
using the JIMWLK evolution. Our basic idea can be
illustrated using the simple Pomeron Green’s function of
Eq. (1). One can notice that this Green’s function has the
following factorization property:

GIPðY;QTÞ ¼ GIPðY − y;QTÞGIPðy;QTÞ ð2Þ
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1The abbreviation JIMWLK equation is used for Jalilian-
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(JIMWLK) equation [21–28].
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for any value of y. Actually, Eq. (2) follows directly from
t-channel unitarity [1] and, therefore, has a general origin
and, hence, should be held in QCD. In Secs. II–IV we will
show that this is a correct expectation and, indeed, we will
generalize Eq. (2) to QCD. It should be noted that this
generalization includes the integration over the sizes of
dipoles with rapidities Y. On the other hand, the contri-
bution of the Pomeron to hadron-hadron scattering can be
written in the form2

NIPðY;QTÞ ¼ g2hðQTÞGIPðY;QTÞ; ð3Þ

where gh denotes the vertex of Pomeron-hadron interaction.
Using Eq. (2) we can rewrite Eq. (3) as follows:

NIPðY;QTÞ ¼ Nh
IPðY − y;QTÞNh

IPðy;QTÞ with

Nh
IPðy0; QTÞ ¼ ghðQTÞGIPðy0; QTÞ: ð4Þ

In Sec. V we will show that Eq. (4) can be generalized
to QCD with Nh

IP, which has the meaning of the dipole
scattering amplitude with the hadron. Such an amplitude
can be estimated using the nonlinear Balitsky-Kovchegov
(BK) evolution [19]. Using the generalization of Eq. (4)
we conclude that the contribution of the dressed BFKL
Pomeron3 to hadron-hadron scattering amplitude is propor-
tional to the minimal of two saturation momenta:Q2

sðY − yÞ
and Q2

sðyÞ. Choosing y ¼ 1
2
Y we obtain the largest con-

tribution, which stems from the shortest distances, providing
the best theoretical accuracy in perturbative QCD estimates.
Since from high energy phenomenology Q2

sðyÞ¼ expðλYÞ

with λ ¼ 0.2–0.25 [45,46], one can see that we expect
the intercept of the dressed BFKL Pomeron will be
Δ ¼ 0.1–0.125, which is close to the soft phenomeno-
logical Donnachie-Landshoff Pomeron [47] intercept. It
should be pointed out that the dressed BFKL Pomeron is
quite different from the BFKL Pomeron, which has been
derived from perturbative QCD in Ref. [2], since in our
approach the interactions between perturbative BFKL
Pomerons have been taken into account in the triple
Pomeron vertex and their vertices of interaction with
the hadron. These interactions result in the fact that the
short distances of about r ∼ 1=Qs contribute to the soft
interaction at high energies. Small but not equal to zero Δ
means that the exchange of the dressed BFKL Pomeron
violates the Froissart theorem [48]. The interaction
between dressed Pomerons, as well as their interactions
with hadrons, has to be found and to be taken into account
to obtain the scattering amplitude of hadron-hadron
interaction. Such a difficult task is certainly out of the
scope of this paper and perhaps to solve this problem
we will need a new theoretical input both from RFT
and from nonperturbative QCD. In this paper for our
estimates of the scale of such contributions we use the
simple eikonal, Glauber formula [49], which restores the
Froissart theorem.
In Sec. VI we will discuss the dressed Pomeron con-

tribution to diffractive production. In the conclusions, we
summarize our results and discuss the future prospects.

II. BFKL POMERON IN THE COORDINATE
REPRESENTATION

It is well known that the scattering amplitude
NðY; r;R;QTÞ of the dipole with size r and rapidity Y ≫ 1
with the dipole of the size R at the rest has the following
form in the leading log(1/x) approximation (LLA) at high
energy (see Refs. [2–4,14]:

NBFKLðY; r;R;QTÞ

¼ rR
16

Xn¼∞

n¼−∞

Z
∞

−∞
dνeωðν;nÞY

1

ðν2 þ ðn−1
2
Þ2Þðν2 þ ðnþ1

2
Þ2Þ

× En;ν
Q ðrÞEn;−ν

Q ðRÞ: ð5Þ

Since we often use in the paper the solution of the nonlinear
BK equation for the scattering amplitude, it has to be
mentioned that Eq. (5) does not contain any nonlinear
effects.
In Eq. (5) QT is the transverse momentum that is trans-

ferred by the BFKL Pomeron (see Fig. 1). One can see that
the scattering amplitude can be viewed as the sum of the
exchange of the Reggeons whose intercepts are equal to

ωðν; nÞ ¼ 2ᾱS

�
ψð1Þ − Re

�
ψ

�jnj þ 1

2
þ iν

���
; ð6aÞ

QT

(Y, r)

(0, R)

e

E   (r)Q

E    (R)Q

FIG. 1. The general representation of the BFKL Pomeron
Green function for the scattering of the dipole with rapidity Y
and size rwith the dipole with size R, which is at the rest. b is the
impact parameter of this amplitude. QT is the transverse mo-
mentum transferred by the Pomeron.

2In this paper we denote by N the imaginary part of the
scattering amplitude and the indices specify the process which we
consider. Without indices N denotes the amplitude of dipole-
dipole scattering.

3Dressed Pomeron is determined by Eq. (4) where Nh
IP is the

BFKL Pomeron with resummed interactions of Pomerons, given
by the Balitsky-Kovchegov equation.

CONTRERAS, LEVIN, and SANHUEZA PHYS. REV. D 106, 034011 (2022)

034011-2



ωðν; n¼ 0Þ ¼ 2ᾱS

�
ψð1Þ−Re

�
ψ

�
1

2
þ iν

���

⟶
ν≪1

ω0 þDν2 ¼ 4 ln2ᾱS þ 14ζð3ÞᾱSν2; ð6bÞ

where ψðzÞ is the Euler ψ function [see formula (8.36) of
Ref. [50]] and ᾱS ¼ Nc

π αS. The expansion of the BFKL
kernel at small ν determines the BFKL Pomeron at large
energies and will be useful in our estimates below.
Generally speaking, En;ν

Q ðrÞ are the Fourier images of the
eigenfunction of the BFKL Hamiltonian in the coordinate
space:

En;νðρ10;ρ20Þ¼ ð−1Þn
�
ρ10ρ20
ρ12

�
h−1

2

�
ρ�10ρ

�
20

ρ�12

�
h̃−1

2

with

h¼ n
2
− iν; h̃¼−

n
2
− iν; ð7Þ

where ρik ≡ ρi − ρk are complex transverse coordinates.
They take the form [3,4,14]

En;ν
Q ðrÞ¼ 2π2

bn;ν

1

r

Z
dzdz�ei

2
ðq�zþqz�ÞEn;ν

�
zþ1

2
ρ;z−

1

2
ρ

�
;

ð8Þ

where

bn;ν ¼
24iνπ3

1
2
jnj − iν

Γð1
2
jnj − iνþ 1ÞΓð1

2
jnj þ iνÞ

Γð1
2
jnj þ iνþ 1ÞΓð1

2
jnj − iνÞ : ð9Þ

The explicit form of En;ν
Q ðrÞ has been discussed in

Refs. [3,4,14] and for n ¼ 0 they take the forms

En¼0;ν
Q ðrÞ¼ ðQ2

TÞiν2−6iνΓ2ð1þ iνÞ
�
J−iν

�
q�ρ
4

�
J−iν

�
qρ�

4

�

−Jiν

�
q�ρ
4

�
Jiν

�
qρ�

4

��
: ð10Þ

In Eqs. (8)–(10) we use the complex number representation
for the two-dimensional vectors: r ¼ ðx; yÞ → ðρ; ρ�Þ with
ρ ¼ xþ iy and ρ� ¼ x − iy; and QT ¼ ðQT;x; QT;yÞ →
ðq; q�Þ with q ¼ QT;x þ iQT;y and q� ¼ QT;x − iQT;y.
For QT → 0, Eq. (5) takes a simple form [see Ref. [3],

Eq. (32)]:

NBFKLðY;r;R;QT→0Þ

¼rR
8

X∞
n¼−∞

eiðφ−ψÞn
Z

∞

−∞
dνeωðν;nÞY

1

ðν2þðn−1
2
Þ2Þðν2þðnþ1

2
Þ2Þ

×

�
r2

R2

�
iν

; ð11Þ

where φ and ψ are angles with the x axis of r and R,
respectively.
Actually Eqs. (5) and (11) give the scattering amplitude

of two dipoles, which satisfies the initial condition:

NBFKLðY ¼ 0; r;R; bÞ ¼ NBAðr;R; bÞ

¼ 2π2ln2
�

r2R2

ðbþ 1
2
ðr − RÞÞ2ðb − 1

2
ðr − RÞÞ2

�
; ð12Þ

where NBA is the scattering amplitude due to exchange of
two gluons between the dipoles with sizes r and R at the
impact parameter b (see Refs. [3,51]).
The scattering amplitudes of Eqs. (5) and (11) can be

rewritten in a more general form for arbitrary values of n:

NBFKLðY; r;R;QTÞ ¼
Xn¼∞

n¼−∞

Z
∞

−∞
dνNinðn; νÞGn;ν

Q ðr;RYÞ;

ð13Þ

where

Gn;ν
Q ðr;R;YÞ ¼ eωðν;nÞYrEn;ν

Q ðrÞREn;−ν
Q ðRÞ ð14Þ

is the Green’s function of the BFKL Pomeron with the
intercept ωðν; nÞ (see Fig. 1). Equation (14) allows us to
find Ninðn; νÞ from the arbitrary initial condition for the
scattering amplitude at Y ¼ 0.

III. T-CHANNEL UNITARITY FOR THE
BFKL POMERON

The BFKL Pomeron is derived in LLA of perturbative
QCD using t and s channel unitarity constraints [2,9].
s-channel unitarity means that4

ImsNðY; r; R;QT ¼ 0Þ ¼
X
n

jNð2 → n; frigÞj2
Yn
i¼2

d2ri;

ð15Þ

where Nð2 → n; frigÞ is the amplitude of production of
n dipoles.
The BFKL Pomeron satisfies also the t-channel unitarity,

which in the channel where t ¼ −Q2
T > 0 is the energy has

the same form as Eq. (15):

ImtNðY;r;R;QTÞ¼
X
n

jNð2→ n;fkigÞj2
Yn
i¼2

d2ki
ð2πÞ2 ; ð16Þ

where Nð2 → n; fkigÞ is the amplitude of the production
of n gluons with the transverse momenta ki in the reaction

4For the sake of simplicity we write this constraint at QT ¼ 0.
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of scattering of two dipoles with sizes r and R and
energy jQ2

T j. Its transferred momentum is determined
by rapidity Y and the amplitude is analytically continued
to large values of Y. It should be mentioned that
Nð2 → n; frigÞ in Eq. (15) and Nð2 → n; fkigÞ in
Eq. (16) are different amplitudes, which are not Fourier
transforms of each other.
However, it is shown [2] that t-channel unitarity, ana-

lytically continued to the s-channel, can be rewritten as the
integration over two Reggeized gluons [see Fig. 2(a)] and
takes the form5

GBFKLðY;QT;r;RÞ

¼
Z

d2kT
ð2πÞ2G

BFKL
t ðY−y0;QT;r;kTÞGBFKL

t ðy0;QT;R;kTÞ;

ð17Þ

where GBFKL
t ðY − y0; QT; r; kTÞ is the analytical continu-

ation to t ¼ −Q2
T of the amplitude of dipole-dipole scatter-

ing in the t-channel, which produces two Reggeized gluons
with transverse momenta kT and it has the following
relation to dipole-dipole scattering amplitude:

GBFKLðY − y0; QT; r; r0Þ

¼ r02
Z

d2kT
ð2πÞ2 e

ikT ·r0GBFKL
t ðY − y0; QT; r; kTÞ: ð18Þ

Equation (17) can be rewritten through GBFKLðY−y0;r;
r0;QTÞ in the form [see Fig. 2(b)]

GBFKLðY;r;R;QTÞ

¼ 1

4π2

Z
d2r0

r04
GBFKLðY−y0;r;r0;QTÞGBFKLðy0;r0;R;QTÞ:

ð19Þ

The factor 1=4π2 in Eq. (19) we will discuss below.
First, let us show that Eq. (19) holds for the Green’s
function of Eq. (14). Using the orthogonality of En;μ

Q

[14], viz.,

1

4π2

Z
d2r
r2

En;−ν
Q ðrÞEn;μ

Q ðrÞ ¼ δðν − μÞ: ð20Þ

One can see that

Gn;ν
Q ðr; R;YÞ ¼ 1

4π2

Z
d2r0

r04
Gn;ν

Q ðr; r0;Y − y0ÞGn;ν
Q ðr0; R; y0Þ:

ð21Þ

At high energies the most contribution stems from n ¼ 0
Green’s function and Eq. (19) can be demonstrated directly
from Eq. (11) at QT → 0:

GBFKLðY;r;R;QT →0Þ¼2rR
Z

∞

−∞
dνeωðν;0ÞY

�
r2

R2

�
iν

: ð22Þ

Equation (19) can be rewritten as follows:

GBFKLðY; r; R;QTÞ

¼ 1

ð2πÞ2
Z

d2r0

r04

�
2rr0

Z
∞

−∞
dνeωðν;0ÞðY−y0Þ

�
r2

r02

�
iν
�

×

�
2r0R

Z
∞

−∞
dν0eωðν0;0Þy0

�
r02

R2

�
iν0�

¼ 2rR

�Z
∞

−∞
dνeωðν;0ÞðY−y0Þðr2Þiν

�
δðν − ν0Þ

×

�Z
∞

−∞
dν0eωðν0;0Þy0

�
1

R2

�
iν0
�

¼ 2rR
Z

∞

−∞

dν
2π

eωðν;0ÞY
�
r2

R2

�
iν

: ð23Þ

Note that we checked in Eq. (23) the numerical factor
1=4π2. We have checked that actually, Eq. (23) holds for
not only n ¼ 0 but for all n, but we skip these cumbersome
calculations, based on Eq. (20), in this paper.
Equation (19) can be rewritten in the impact parameter

representation in the form

GBFKLðY; r;R; bÞ

¼ 1

4π2

Z
d2r0

r04

Z
d2b0GBFKLðY − y0; r; r0; b − b0Þ

× GBFKLðy0; r0;R; b0Þ: ð24Þ

=

(Y,r)

(0,R)

QT G    (Y − y’,Q ,r,k)
BFKL

G     ( y’,Q ,R,k)
BFKL

Q TT

T

k =

QT

QT

(y’, r’)
QT

(Y,r)

(0,R)

(a) (b)

FIG. 2. t-channel unitarity for the BFKL Pomeron. The double
helix lines denote the Reggeizied gluons.

5Equation (17) was first written in Refs. [5,9].
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IV. T-CHANNEL UNITARITY: GENERAL CASE

The t-channel unitarity constraints for the dipole-
dipole amplitude can be rewritten in a general form in the
framework of the BFKL Pomeron calculus6 using Eq. (24)
(see Fig. 3):

NðY; r;R; bÞ ¼
X∞
n¼1

ð−1Þn−1
n!

Z
d2rid2bi
4π2

×
1

r4i
NnðY − y0; r; b; fri; bigÞ

× Nnðy0;R; 0; fri; bigÞ; ð25Þ

where NnðY − y0; r; b; fri; bigÞ is the amplitude of the
production of n BFKL Pomerons each of which produces
the dipole with size ri at the impact parameters bi. Y − y0 is
the rapidity between the initial dipole r and produced
dipoles ri.
Equation (25) is a modification of the Mueller, Patel,

Salam and Iancu (MPSI) approach [8,52] in which we
integrated over the sizes of the dipoles in the dipole-dipole
scattering amplitudes at low energies using the properties
of the BFKL Pomeron. This equation can be useful in
the case if we know the amplitudes Nn. For example in
Ref. [29] it shown that in the kinematic region Y − y0 ≤
ymax and y0 ≤ ymax (ymax ¼ 1

ω0
lnð 1

ᾱ2S
Þ) Nn are given by the

Balitsky-Kovchegov cascade (see Fig. 4). As it is shown in
Ref. [29] for y > ymax we cannot trust the BK cascade and
other interactions become essential. In this case Eq. (25)
allows us to sum the large Pomeron loops as it is shown in

Fig. 4. Equation (25) can be rewritten in this case in the
following form [53,54]:

NðY;r;R;bÞ¼
X∞
n¼1

ð−1Þnþ1

n!

Z Yn
i¼1

1

4π2
d2ri
r4i

d2bi
δ

δui
ZðY−y0;

×fuigÞjui¼1

δ

δu0i
Zðy0;fu0igÞju0i¼1; ð26Þ

where the generating functional ZðYfuigÞ has been dis-
cussed in Refs. [9,39].
In the next section we will give another example of

using Eq. (25).

V. DRESSED BFKL POMERON IN
PROTON-PROTON SCATTERING

A. The master equation

Our main idea is to use Eq. (25) to estimate the proton-
proton scattering. We believe that for real estimates we
need to find how to sum all Pomeron diagrams including
summing of the Pomeron loops. In spite of some progress
in this direction [36–42] we are still far away from the
solid theoretical approach both for dilute-dilute parton
system scattering and for dense-dense system interaction.

(Y,r,b)

(0,R,0)

=

(Y, r, b)

(0,R,0)

1

(y’,r’, b )2 2 (y’, r’ , b ’)n n

.  .  .  .  .
1 2 n

N  (Y−y’, r,b,{r ,b })n i i

N  (y’, R,0,{r ,b })n i i

(y’, ’,b )r1 1

FIG. 3. t-channel unitarity for a general scattering amplitude in the BFKL Pomeron calculus.

0

HJIMWLK

H

Y

y’

KLWMIJ

FIG. 4. The BFKL cascades, which are described by HJIMWLK
and byHKLWMIJ (see Ref. [29]). The wavy lines denote the BFKL
Pomerons. The gray circles are the triple Pomeron vertex while
the black circles denote 1

4π2

R
d2rid2bi

1
r4i
.

6Equation (25) has been discussed in Refs. [8,52–54] (see
also references therein) and it is valid for the BFKL Pomeron
calculus, in which the effective theory of QCD is reduced to the
BFKL Pomerons and their interactions. Equation (25) is origi-
nated from the t-channel unitarity, which is based on the gluon
Reggeization [2] in the BFKL Pomeron calculus. Since the gluon
Reggeization has been proven in the next to leading order in
leading log(1/x) approximation (see Ref. [55] and references
therein), we can trust this equation in this order. The equivalence
of this approach to the CGC one has not been proven except for
the region of y < ymax [29].
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The example of the first one is the hadron-hadron collisions
at high energies while for the second it is the nucleus-
nucleus scattering. In this paper we wish to realize a more
restricted goal: to build the first approximation to hadron-
hadron and/or nucleus-nucleus collisions. We propose
the dressed Pomeron contribution, which is shown in
Fig. 5, as the first approximation. In other words, we wish
to introduce not the exchange of the BFKL Pomeron as the
first approximation but we suggest to sum all Pomeron
diagrams that contribute to the vertex for interaction of the
BFKL Pomeron with the hadron (see Fig. 5).
We can see that the interaction of the BFKL Pomeron

with the proton is known from the deep inelastic scattering
(DIS) data and we have numerous attempts to describe this
interaction using the Balitsky-Kovchegov parton cascade
[45,57–71]. Therefore, we can develop a model for the
vertex.
Our master equation is shown in Fig. 5 and has a simple

form:

Np
pðY;bÞ¼ 1

4π2

Z
d2r0d2b0

r04
NpðY−y0;r0;b−b0ÞNpðy0;r0;b0Þ;

ð27Þ

where Np is the amplitude that can be found from the DIS
since all observables in these processes can be expressed
through the following amplitudes [51]:

NðQ;Y;bÞ¼
Z

d2r
4π

Z
1

0

dzjΨγ� ðQ;r;zÞj2Npðr;Y;bÞ: ð28Þ

Note that the wave functions are known at least at large
values of Q.
From Fig. 5 one can see that Eq. (27) is a generalization

of Eq. (24) in which the BFKL Pomeron interacts with the

hadron, developing fan diagrams. The “fan” diagrams lead
to the BK nonlinear equation (see for example Refs. [5,12]
and references therein).
One can see that the integral over r in Eq. (27) converges

both at r → 0 and at large r → ∞. Indeed, at large distances
NpðY; rÞ → 1 and, therefore, the integral is rapidly con-
verges at large distances due to the factor 1=r04. At r0 → 0
first we note that (i) the fan diagrams of Fig. 5 degenerate
to the exchange of one BFKL Pomeron; and (ii) for the
BFKL Pomeron exchange we need to use the DGLAP
(Dokshitzer, Gribov, Lipatov, Altarelli, and Parisi) evolu-
tion equation [72] instead of the BFKL one. For large
values of y0 the anomalous dimension of Npðy0; r0; b0Þ
has the form [73] γ ¼ ᾱSð1=ω − 1Þ, which leads to the
scattering amplitude N ∝ r02 exp ð2 ffiffiffiffiffiffiffiffiffiffiffi

ᾱSy0ξ
p

− ᾱSξÞ with
ξ ¼ − ln ðr02Q2

sðy0ÞÞ. One can see that at small r0 from
the equation, ξ > 4y0=ᾱS, N ∝ ðr02Þ1þᾱS providing the
convergence of the integral over r0 at small r0.
Hence we expect that the typical r0 is about of 1=Qs,

where Qs is the saturation scale, which gives the only
dimensional scale in the scattering amplitude at high
energies. Bearing this in mind we expect that the dressed
Pomeron will behave as Q2

sð12YÞ (for y0 ¼ 1
2
Y). Therefore,

the dressed Pomeron has the powerlike behavior with
intercept 1

2
λ if Q2

sðYÞ ∝ exp ðλYÞ. Since the phenomeno-
logical value of λ ¼ 0.2–0.3 we see that the value of the
intercept is about 0.1–0.15 in a good agreement with high
energy phenomenology.7 It should be stressed that this
estimate demonstrates that the typical values of r0 are rather
small (r0 ∼ 1=Qs). Therefore, we can safely apply the CGC
approach for these calculations and, hence, Eq. (27) gives
for the first time an estimate for a soft Pomeron on the solid
theoretical basis. One can see that this estimate of the
typical distances is valid for the general Eq. (25), making
the approach theoretically very attractive.

B. The simple model for the DIS

For better understanding of Eq. (27) we model the
scattering amplitude Npðy0; r0; bÞ in the following way:

Npðy; r; bÞ ¼ að1 − exp ð−τγ̄e−b2
B ÞÞ þ ð1 − aÞ τγ̄e−

b2
B

1þ τγ̄e−
b2
B

:

ð29Þ

Equation (29) reproduces the numerical solution to the
BK equation within good accuracy, as it has been discussed
in Ref. [42]; and it is able to describe the experimental data
[74]. Equation (29) leads to the scattering amplitude

Npðy0;r0;bÞ¼ τγ̄e−
b2
B for τ¼r2Q2

0expðλyÞ≪1. Comparing
this behavior with the scattering amplitude in the
vicinity of the saturation scale [56] we obtain that

p

HJIMWLK

KLWMIJ

y’

H

Y

0

p

p

p

=

FIG. 5. The contribution of the dressed Pomeron to the proton-
proton scattering. The Balitsky-Kovchegov cascades are de-
scribed by HJIMWLK and by HKLWMIJ (see Ref. [29]). The wavy
lines denote the BFKL Pomerons. The gray circles are the triple
Pomeron vertex while the black circle denotes 1

4π2

R
d2rd2bi

1
r4.

The double wavy line describes the dressed Pomeron.

7We will discuss this behavior below in more detail.
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τγ̄ ¼N0ðr2Q2
sðy;b¼ 0ÞÞγ̄ withQ2

sðy; bÞ ¼ Q2
0 exp ðλyÞe−

b2
γ̄B.

For τ > 1, Eq. (29) with a ¼ 0.65 gives the good para-
metrization of the solution to the nonlinear Balitsky-
Kovchegov (BK) equation for the leading twist [42]. For
the total cross section Eq. (27) takes the form

σpptot ¼
2

4π2

Z
d2r

�Z
d2bNpðy0; r; bÞ

�
2

=r4: ð30Þ

The integral over b can be taken explicitly, viz.,

Z
d2bNpðy; r; bÞ ¼ πBðð1 − aÞ lnðτγ̄ þ 1Þ

þ aðlnðτγ̄Þ þ Γð0; τγ̄ÞÞÞ: ð31Þ

Using Eq. (31) we can rewrite Eq. (30) as follows:

σpptot ¼
π

2
B2N

1
γ̄

0Q
2
0e

1
2
λY

Z
dτðð1 − aÞ lnðτγ̄ þ 1Þ

þ aðlnðτγ̄Þ þ Γð0; τγ̄ÞÞÞ2=τ2: ð32Þ

In Eq. (32), y0 ¼ 1
2
Y, which provides the best accuracy of

our estimates, and all factors in front come from the change
variable r0 to τ ¼ r02Q2

sðy0Þ.
For a ¼ 0.65 and γ̄ ¼ 0.63, which stems from the

leading order estimates, the integral over τ is equal to
4.96. Hence we have for the cross section

σpptot ¼
4.96π
2

B2N
1
γ̄

0Q
2
0e

1
2
λY: ð33Þ

The values of λ; N0; B and Q2
0 have been estimated in the

variety of models [57–71,74–77] which describe the

experimental data on the DIS from HERA. These
models lead to B ¼ 5.5 GeV−2, which can be fixed from
the production of the J=Ψ meson in the DIS; to N0 ¼
0.23–0.34 and of λ ¼ 0.2–0.25. In most models Q2

0≈
0.2 GeV2. Using these values for parameters we have
σpptot ¼ 39 mb instead of the experimental value of σpptot ¼
62 mb atW ¼ 540 GeV. However, the saturation model in
the next-to-leading order (see Ref. [76] for example) lead to
larger values of Q2

0.
In Fig. 6 we plot the values for the total cross section for

proton-proton scattering (solid line) that come fromEq. (29)
for two values of Q2

0 ¼ 0.2 GeV2 and Q2
0 ¼ 0.4 GeV2.

In Fig. 7 we show the dependence of the dressed
Pomeron of Eq. (29) on Y and y0 using this model.
From Fig. 7 one can see that the contribution of the
dressed Pomeron depends on the choice of y0. However,
this dependence is not very steep. As it is shown in
Ref. [52] the minimal corrections appear at y0 ¼ 1

2
Y,

which we will use in our further estimates.
It should be stressed that Fig. 6 is the first estimates of

the cross section for the soft process that has been made
in the CGC approach on solid theoretical ground. We
will present the more reliable estimates based on Eq. (27)
without using the simplified models. However, these first
estimates show us that the approach with the dressed
Pomeron can be rather useful. The simple model led to the
cross section which describes the energy behavior of the
experimental data. The values of the parameters have large
dispersions, but for the first estimate we believe that we
will be able to obtain a good agreement with the data of
the cross section values. However, we cannot reproduce
the values and energy dependence of σel and Bel from
Eqs. (36b) and (36c). We will come back to this problem
after making more reliable estimates beyond the sim-
ple model.

FIG. 6. σtot versus W. The curves are calculated, using
Eqs. (30)–(33). The solid curve corresponds to Q2

0 ¼ 0.2 GeV2

while the dashed one is for Q2
0 ¼ 0.4 GeV2. The data are taken

from Refs. [78,79]. λ ¼ 0.196, N0 ¼ 0.3, B ¼ 11 GeV−2. The
values of W were estimated from Y ¼ lnðs=s0Þ¼ lnðW2=s0Þ with
s0 ¼ 1 GeV2.

FIG. 7. The dressed Pomeron at b ¼ 0 versus Y at different
values of y0. The parameters of Eq. (29) are taken from
Ref. [75]: N0 ¼ 0.34, λ ¼ 0.195, Q2

0 ¼ 0.145 GeV2 and m ¼
0.75 GeV. The saturation scale is parametrized as QsðY; bÞ ¼
Q2

0 exp ðλYÞSðbÞ with SðbÞ ¼ ðmbK1ðmbÞÞ1γ̄ .
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C. Realistic estimates

At first sight for the amplitude Npðy0; r0; b0Þ in Eq. (27)
we can use the nonlinear BK equation [19]. However, since
the CGC approach suffers the severe theoretical problem of
violating the Froissart theorem at large impact parameters
(b) [80–83], we have to build models which give the
scattering amplitude with exponential decrease at large b.
All of these models use the theoretically solid behavior of
the scattering amplitude in the vicinity of the saturation
scale [τ ¼ r2Q2

sðy; bÞ ∼ 1] [56]:

Npðy; r; bÞ ¼ N0ðr2Q2
sðy; bÞÞγ̄ ð34Þ

with γ̄ ¼ 0.63 in the leading order of perturbative QCD.
However, for the b dependence of the saturation scale

the phenomenological exp ð−μbÞ or exp ð−b2=BÞ behav-
ior is taken instead of the powerlike decrease, which
follows from the BK equation. For τ > 1 it is assumed the
geometric scaling behavior of the scattering amplitude
[84–86], which leads to Np ¼ NpðτÞ. We need to use the
BK equation to find this function. However, only in
Refs. [74–76] such a procedure has been developed. In
other models the rough approximation to the BK equation
has been applied. For realistic estimates we chose the
model of Ref. [74], which includes all theoretical ingre-
dients from the CGC approach (see Ref. [87]) and
introduces the exponential decrease of the saturation scale
with b which follows from the Froissart theorem [48]. In
Fig. 8 we plot our estimates from Eq. (30) for all sets of
parameters of Ref. [74], which demonstrates that the
values of the cross sections can be close to the exper-
imental ones. One can see that sets 1 and 3 describe the
experimental data while all others lead to the cross
section, which is larger or smaller than the experimental
one. Such a large dispersion of the estimates is mostly
related to the energy dependence of the saturation scale,
which leads to different values of the typical distances in
the integral over r in Eq. (30).
The large differences between the estimates of the model

of Ref. [74] and of Ref. [71] and/or Eq. (33) stems from the
fact that the value of Q2

0 in Ref. [74] is about 1 GeV2 being
almost 3–5 times larger that in Fig. 6.

As we have pointed out in the Introduction and in Sec. V
B, the dressed BFKL Pomeron, which has been discussed
here, does not satisfy the Froissart theorem, since it leads to
the amplitude, which increases as a power of W at large
energies. It should be noted that Eq. (30) cannot describe
the energy dependence of the slope for the differential
elastic cross section as well as the value of σel.
Hence, the shadowing correction is needed, in spite

of including the part of them in our dressed Pomeron.
Therefore, as we discussed in the Introduction, we suggest
only the first approximation to the hadron-hadron scatte-
ing explaining how the phenomenological Donnachie-
Landshoff Pomeron arises in CGC approach.
Bearing this in mind we made the estimates for the

shadowing corrections using the eikonal formula:

AppðY; bÞ ¼ ið1 − exp ð−Np
pðY; bÞÞÞ: ð35Þ

The observables can be expressed through the amplitude
of Eq. (35) in the following form:

σtotðYÞ ¼ 2

Z
d2bImAppðY; bÞ; ð36aÞ

σelðYÞ ¼
Z

d2bjAppðY; bÞj2; ð36bÞ

Bel ¼
1

2

Z
b2d2bImAppðY; bÞ=

Z
d2bImAppðY; bÞ: ð36cÞ

In Fig. 9we compare our estimates, using Eqs. (35)–(36c)
for all six sets of parametrization of Ref. [74]. Even a brief
sight at Fig. 9 shows the wide spreading of the values for the
observables. This large dispersion of the predictions sup-
ports the idea that the DIS data is not enough for fixing the
parameters of the models. On the other hand, one can
conclude that we are able to describe both the soft exper-
imental data andDIS. In Fig. 9, sets 5 and 6 describe the data
quite well. It is interesting to note that both of these sets
introduce the shrinkage of the diffraction peak due to the
energy dependence of the impact parameter distribution for
the saturation scale (see, for example, Refs. [88,89]).
It is worthwhile mentioning that Eq. (35) is written

as the example of possible shadowing corrections just for

FIG. 8. σtot versus W from Eq. (30) for all sets of Ref. [74]. The solid black line corresponds to the saturation model of Ref. [71].
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understanding the scale of the effect. As has been discussed
in the Introduction, the theoretical approach to these
corrections is still in the embryonic stage. However,
applying the t-channel unitarity in its general form (see
Fig. 3) we see that all Pomerons (dipoles at rapidity y0)
enter at the same typical sizes r ¼ 1=Qs. Hence, we can try
to treat the shadowing corrections in the toy model: the
QCD approach in which all dipoles have the same size
[9,18,29,90–92].

VI. DIFFRACTION DISSOCIATION IN THE
REGION OF LARGE MASSES

In this section we are going to study the cross section of
the single diffractive dissociation. The physical picture of
the process we are going to consider is the following: in the
DIS the virtual photon interacts with the hadron or nucleus
breaking up into hadrons and jets in the final state. At the
same time the target hadron (nucleus) remains intact. The
particles produced as a result of the hadron breakup do not
fill the whole rapidity interval, leaving a rapidity gap

between the target and the slowest produced particle as
a function of the invariant mass of the produced hadronsM.
The diffractive production of hadrons with large mass is
intimately related to the triple Pomeron diagram which is
shown in Fig. 10. The three Pomeron vertices can be found
from the Balitsky-Kovchegov [19] nonlinear equation:

∂

∂Y
Nðx10;b;Y;RÞ

¼ ᾱS

Z
d2x2
2π

Kðx02;x12;x10Þ
�
N

�
x12;b−

1

2
x20;Y;R

�

þN

�
x20;b−

1

2
x12;Y;R

�
−Nðx10;b;Y;RÞ

−N
�
x12;b−

1

2
x20;Y;R

�
N
�
x20;b−

1

2
x12;Y;R

��
; ð37Þ

where xik ¼ xi − xk and x10 ≡ r, x20 ≡ r0 and x12 ≡ r − r0.
Y is the rapidity of the scattering dipole and b is the impact
factor. Kðx02; x12; x10Þ is the kernel of the BFKL equation
which has the following form:

FIG. 9. Comparison of σtot, σel and Bel with the experimental data for all sets of parametrization of Ref. [74]. The solid black line
corresponds to the saturation model of Ref. [71]. The data are taken from Refs. [78,79].
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Kðx02; x12; x10Þ ¼
x210

x212x
2
02

: ð38Þ The last term of Eq. (37) gives the triple Pomeron
contribution. Using Eq. (27) we can rewrite the equation
given by Fig. 10 in the following analytical form:

dσsdðY; yMÞ
dyM

¼ 2

4π2

Z
d2r
r2

Z
d2bNpðY − yM; r; bÞ

�
ᾱS

Z
d2b0

Z
d2r0

2π

1

r02
Np

�
yM; r0; b0 −

1

2
ðr − r0Þ

�

×
1

ðr − r0Þ2 Np

�
yM; r − r0; b0 −

1

2
r0
��

; ð39Þ

where Y − yM ¼ lnM2 where M is the mass of produced
hadrons (see Fig. 10).
In Eq. (39) the typical values of rðr0Þ are r∼

1=QsðY − YM; bÞ and r0∼1=QsðYM;b0Þ. For understanding
the dependence on yM we can consider two different cases.
(1) QsðY − YM; bÞ ≫ QsðYM; b0Þ

In this case we see that r ≪ r0 and the integral
over r0 takes the form

IðrÞ≡
Z
r0>r

d2r0

2π

1

r04
NðyM; r0; b0ÞNðyM; r0; b0Þ

∝ Q2
sðyM; b0Þ; ð40Þ

where we consider that b ∼ 1=μ ≫ rðr0Þ ∼ 1=Qs.
Hence, we infer that the rapidity dependence of
dσsdðY;yMÞ

dyM
is dσsdðY;yMÞ

dyM
∝
R
d2b0Q2

sðyM; b0Þ. However,
it is not correct. Indeed, the integration over r takes
the form

Z
d2r
r2

NpðY − yM; r; bÞIðrÞ: ð41Þ

This integral converges at large r only due to a
decrease of function IðrÞ which can occur only for

r > 1=QsðYM; bÞ. Therefore, in the region of
1=QsðYM; bÞ > r > 1=QsðY − YM; bÞ we have a
logarithmic integral which leads to the contribution:

Z
d2r
r2

NpðY − yM; r; bÞIðrÞ

¼ Cr0>r þ ln

�
QsðY − YM; bÞ
QsðYM; bÞ

�

¼ Cr0>r þ λðY − 2yMÞ: ð42Þ

Therefore, we expect that the contribution to the
diffraction production from this kinematic region
has a general form:

dσsdðY;yM;r0;rÞ
dyM

∝Q2
sðyM;b0ÞðCr0>rþλðY−2yMÞÞ:

ð43Þ

(2) QsðY − yM; bÞ ≪ QsðYM; b0Þ
In this kinematic region the typical r ≫ r0 and we

obtain the integral over r in the form

p

p

=

p

H

H

Y
p

0

yM
y’

JIMWLK

KLWMIJ

FIG. 10. The contribution of the dressed Pomeron to the diffraction production of large mass in the proton-proton scattering. The
Balitsky-Kovchegov cascades are described by HJIMWLK and by HKLWMIJ (see Ref. [29]). The wavy lines denote the BFKL Pomerons.
The gray circles are the triple Pomeron vertex while the black circle denotes 1

4π2

R
d2rid2bi 1

r4i
. The double wavy line describes the dressed

Pomeron. Y − yM ¼ lnM2, where M is the mass of produced hadrons. The vertical dashed line denotes the cut Pomeron.
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Z
d2r
2π

1

r4
NpðY − yM; r; bÞNpðyM; r; b0Þ

∝ Q2
sðY − yM; bÞ ð44Þ

leading to dσsdðY;yMÞ
dyM

∝
R
d2bQ2

sðY−yM;bÞ. Note that
NðyM; r; b0Þ → 1 in this kinematic region. Repeating
the same estimates as in case 1 for integration over r0
we conclude that

dσsdðY; yM; r0; rÞ
dyM

∝ Q2
sðY − yM; b0ÞðCr>r0 − λðY − 2yMÞÞ: ð45Þ

FromEqs. (43) and (45) we conclude that dσsdðY;yM ;r
0;rÞ

dyM
has maximum in the region of yM ≈ 1

2
Y. It is easy to

see that Cr>r0 > Cr0>r and hence the maximum is
shifted to yM > 1

2
Y.

Hence, we can expect that

σdiff ¼
Z

dyM
dσsdðY; yMÞ

dyM

∝
Z

d2bQ2
s

�
1

2
Y; b

�
ðConstþ λYÞ: ð46Þ

In Fig. 11 we plot the estimates for dσsdðY;yMÞ
dyM

in different
parametrizations of Ref. [74]. At not very large Y the cross

section increases with the increase of rapidity gap
(ygap ¼ Y − yM), which agrees with the result of the
traditional triple Pomeron description of the diffractive
dissociation. However, as ygap gets very high and reaches
the values of rapidity at saturation, the cross section reaches
a maximum and starts decreasing. One can see that
distribution over yM has a maximum in the region of
ym ≈ 1

2
Y, which has been expected from the qualitative

discussions above. It should be mentioned that such a
maximum follows from the nonlinear evolution equation
for diffractive dissociation processes in QCD [11].
In Fig. 12 the values of σdiff ¼ R

Y−y0
y0

dyM
dσsdðY;yMÞ

dyM
are

plotted. The value of y0 is chosen y0 ¼ 3, which reflects our
belief that we can consider the Pomeron exchange starting
with rapidity ≥ y0. One can see that the Y dependence in
this figure reproduces the estimates of Eq. (46). On the
other hand, the values turn out to be very large and, hence,
the shadowing corrections are needed.
Figure 13 shows the typical eikonal type shadowing

corrections [93], which suppress the large values of the
diffraction cross section. The sum of the diagrams in

Fig. 13 results in the following formula for dσsdðY;yMÞ
dyM

:

dσsdðY; yMÞ
dyM

¼
Z

d2be−2N
p
pðY;bÞ dσsdðY; yM; b;Eq:ð48ÞÞ

dyMd2b
;

ð47Þ

FIG. 11. Cross section of the single diffraction production dσsdðY;yMÞ
dyM

versus yM at different values of y for sets 1–6 of Ref. [74].

FIG. 12. Cross section of the single diffraction production
R
dym

dσsdðY;yMÞ
dyM

¼ σdiff versus Y for different sets of Ref. [74]. The solid
black line, which is denoted by RS, corresponds to the saturation model of Ref. [71].
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where

dσsdðY;yM;bÞ
dyMd2b

¼ 2

4π2

Z
d2b0

Z
d2r
r2

NpðY−yM;r;b−b0Þ

×

�
ᾱS

Z
d2r0

2π

1

r02
Np

�
yM;r0;b0−

1

2
ðr−r0Þ

�

×
1

ðr−r0Þ2Np

�
yM;r−r0;b0−

1

2
r0
��

: ð48Þ

It should be noted that the shadowing corrections in Fig. 13
stem from the simple eikonal model as well as Eq. (35), and
could beusedonly to show the scale of the effect. Inparticular,
for W ¼ 13 TeV we evaluated σs:d: ¼ 4 mb indicating that
the shadowing correction can be large.
The values for the cross section of diffractive production

with the simplified shadowing correction of Eq. (47) are
plotted in Fig. 14. One can see that the shadowing is very
important, but the simple eikonal formula cannot pretend to
take them all into account on the theoretical grounds. Again
as for σtot; σel and Bel, we see the need for the theoretical
approach for the shadowing corrections. The experience
with the simple models [9,18,29,90–92] shows the eikonal
formula can be used only as a rough estimate.

VII. CONCLUSIONS

In this paper we suggested a new approach to the
structure of the soft Pomeron, based on the t-channel
unitarity: we expressed the exchange of the soft Pomeron
through the interaction of the dipole of small size on the
order of 1=QsðYÞ [QsðYÞ is the saturation momentum]
with the hadrons. Thereby, it is shown that the typical
distances in so-called soft processes turns out to be
small r ∼ 1=Qsð12YÞ, where Y ¼ ln s. This fact opens new
possibilities for describing the soft interactions in the
framework of the color glass condensate (CGC) approach,
putting the high energy phenomenology on a solid
theoretical basis.
The energy dependence of the scattering amplitude due

to Pomeron exchange is determined by the saturation
momentum Np

pðIPÞ ∝ Q2
sð12YÞ [see Eq. (27)], which

increases as a power of energy. Therefore, the suggested
Pomeron leads to the violation of the Froissart theorem,
but Np

pðIPÞ ∝ Q2
sð12YÞ ∝ eλY with λ ≈ 0.1–0.13 is in perfect

agreement with phenomenological Donnachie-Landshoff
Pomeron [47]. We believe that our approach can be the
good first approximation to start discussion of the soft
process in the CGC approach.
We made an attempt to describe the value of the Pomeron

exchange directly from our knowledge of the deep inelastic
processes. First off, we have to mention that we cannot
describe DIS processes in the framework of CGC in spite of
the well-known Balitsky-Kovchegov evolution equation.
As we have discussed, the BK approach suffers from
unsolved difficulties, including the large impact parameter
(b) behavior that violates the Froissart theorem [80–82].
We have to use models which introduce to the BK equation
an additional exponential decrease at large b. Second, the
models have been checked against the experimental data on
the DIS. However, the energy range of the experimental
data are quite different from the one of soft interaction. The
lesson, which we learned, is that some sets of parametriza-
tions, which describe the DIS, lead to a reasonable
description of the soft high scattering but other sets cannot
describe. In spite of the large dispersion of the estimates we
see several general features, which could be useful in
further development of the CGC approach to soft inter-
action. First, almost in all estimates we need strong
shadowing corrections, both to obtain the reasonable values

FIG. 14. The estimates for the single diffractive cross section
using the simple eikonal formula of Eq. (47) for sets of
parameters in Ref. [74] and for the saturation model of Ref. [71]
(RS). The data are taken from Refs. [78,94–96].

yM

p

p

App− − + A
pp

A
pp

A
pp

FIG. 13. Shadowing correction to the single diffraction production. AppðY; bÞ is given by Eq. (35).
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of the experimental observable, and to describe the shrink-
age of the diffraction peak. The dressed Pomeron that we
have introduced cannot describe this shrinkage even on
qualitative level. Second, the best description σtot; σel; Bel
and σdiff we obtain from the impact parameter dependence
that incorporates in the BFKL equation the Gribov’s
diffusion (see Refs. [88,89] and references therein).
However, we can look on our attempts to obtain the

soft Pomeron from the DIS saturation approach at a
different angle, stating that sets 5 and 6 of Ref. [74] are
good candidates for the global fit of the DIS and soft
interaction experimental data at high energies. The
possibility of such combined description is both encour-
aging and exciting.
The approach, which we developed here, was started in

Refs. [5,9] for the exchange of the BFKL Pomeron, and it is
the modified version of the MPSI treatment [8,52], in

which we use the properties of the BFKL Pomeron to
absorb the QCD Born amplitude in the closed expression.
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