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In this article, we investigate the cos 2ϕt azimuthal asymmetry in ep → eJ=ψ jet X, where the J=ψ-jet
pair is almost back to back in the transverse plane, within the framework of the generalized parton model.
We use nonrelativistic QCD (NRQCD) to calculate the J=ψ production amplitude and incorporate both
color singlet and color octet contributions to the asymmetry. We estimate the asymmetry using different
parametrizations of the gluon transverse-momentum-dependent parton distributions in the kinematics that
can be accessed at the future electron-ion collider (EIC) and also investigate the impact of transverse-
momentum-dependent evolution on the asymmetry. We present the contributions coming from different
states to the asymmetry in NRQCD.
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I. INTRODUCTION

Transverse-momentum-dependent parton distributions
(TMDs) [1–6] give a tomographic picture of the nucleon
in terms of quarks and gluons in momentum space. TMDs
play an important role in processes where two scales are
involved—for example, in semi-inclusive deep inelastic
scattering (SIDIS), where, apart from the photon virtuality,
one measures the transverse momentum of the outgoing
particle, or a Drell-Yan (DY) process, where the transverse
momentum of the outgoing lepton pair provides the second
scale. For such processes, one can apply the generalized
factorization involving TMDs. However, the TMD factori-
zation has not been proven for all processes. In the
kinematical limit when the collinear factorization becomes
valid, the result based on TMD factorization should be
matched with that obtained using collinear factorization in
the same process, with the inclusion of soft factors in the
TMD framework [7–12]. To ensure gauge invariance, the
TMDs include gauge links or Wilson lines, which come
due to initial or final state interactions [13–16]. These
introduce process dependence in them. Recent results from
RHIC are in favor of the theoretical prediction of a sign

change of the Sivers function observed in SIDIS and DY
processes, respectively [17]. More data are needed to have a
firm understanding of the process dependence of the
TMDs. Gluon TMDs [18] till now are far less investigated
than quark TMDs. The positivity bound gives a constraint
on them [18]. Recently, there was an extraction of unpo-
larized gluon TMDs from LHCb data [19]. Gauge invari-
ance of the gluon TMDs requires the inclusion of two
gauge links in the definition, which makes the process
dependence more involved than the quark TMDs [20]. The
most common are one past- and one future-pointing gauge
link, [þ−] or [−þ] (f-type), and both past or both future
pointing, [−−] or [þþ] (d-type). The operator structures of
these two types of gluon TMDs are different [20]. In the
literature on small-x physics, these two gluon TMDs
are called Weizsacker-Williams (WW) [21,22] type and
dipole [23] type, respectively. These contribute in different
processes.
In an unpolarized proton, there is a nonzero probability

of finding linearly polarized gluons. The linearly polarized
gluon distributions were introduced in Ref. [18] and first
investigated in a model in Ref. [24]. Recently, these have
attracted quite a lot of attention, although till now they have
not been extracted using data. Linearly polarized gluon
distributions can be probed in ep and pp collisions
[25–38]. These give an azimuthal asymmetry of the form
cos 2ϕt [26]; also, they affect the transverse momentum
distribution of the outgoing particle. Depending on the
gauge links, the linearly polarized gluon distribution can be
WW or dipole type. These are time reversal even (T-even)
objects. In pp scattering processes, the initial and final state
interactions often affect the TMD factorization; the asym-
metries and cross sections also involve both f-type and
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d-type gluon TMDs, and disentangling the two is difficult
from the observables. The gauge link structure is simpler in
ep scattering processes [39], and the upcoming electron-
ion collider (EIC) at Brookhaven National Lab will play an
important role in probing the gluon TMDs, including the
linearly polarized gluon TMD over a wide kinematical
region.
cos 2ϕt asymmetry in J=ψ production in unpolarized ep

collision has been shown to be a useful observable to probe
the linearly polarized gluon TMD. Contribution to the
asymmetry comes already at the leading order (LO)
through the virtual photon-gluon fusion process [40]; this
contributes at z ¼ 1, where z is the fraction of the energy of
the photon carried by the J=ψ in the rest frame of the
proton. In the kinematical region z < 1 [41], one has to
incorporate higher-order Feynman diagrams. In this proc-
ess, the J=ψ produced needs to be detected in the forward
region or with its transverse momentum pT not so large;
otherwise, TMD factorization is not expected to hold. In
this work, we investigate the cos 2ϕt asymmetry in a
slightly different process, namely, when a J=ψ and a jet
are observed almost back to back in ep collision. Only the
WW-type gluon TMDs contribute in this process [42].
Here, the J=ψ produced can have large transverse momen-
tum, as the soft scale required for the TMD factorization is
provided by the total transverse momentum of the J=ψ-jet
pair, which is smaller than their invariant mass as they are
almost back to back [43]. In fact, by varying the invariant
mass of the pair, one can also probe the TMDs over a wide
range of scales and investigate the effect of TMD evolution
on the asymmetry. In Ref. [42], the upper bound of the
cos 2ϕt asymmetry was investigated in this process, as well
as the asymmetry in the small-x region. Here, we present a
calculation of the asymmetry using some recent para-
metrization of the gluon TMDs and also investigate the
effect of TMD evolution.
A widely used approach to calculate the amplitude of

J=ψ production is based on an effective field theory called
nonrelativistic QCD (NRQCD) [44–46]. Here, one assumes
that the amplitude for the J=ψ production process can be
factorized into a hard part where the cc̄ pair is produced
perturbatively and a soft part where the heavy quark pair
hadronizes to form a J=ψ . The hadronization process is
encoded in the long-distance matrix elements (LDMEs)
[47], which are usually extracted using the data. The cross
section is expressed as a double expansion in terms of the
strong coupling αs as well as the velocity parameter
associated with the heavy quark v [48,49], in the limit
v ≪ 1. For charmonium, v ≈ 0.3. The heavy quark pair in
the hard process is produced in different states denoted by
2sþ1LðcÞ

J , where s denotes the spin of the pair (singlet or
triplet), L is the orbital angular momentum, J is the total
angular momentum, and (c) denotes the color configura-
tion, which can be singlet or octet. The heavy quark pair
produced in the hard process emits soft gluons to evolve

into J=ψ . For the S-wave contribution, the dominant term
in the limit v ≈ 0 gives the result of the color singlet model
[50,51], where the heavy quark pair in the hard process is
assumed to be produced with the same quantum numbers as
the J=ψ , and in the color singlet state. In our work, we
include both color singlet (CS) and color octet (CO)
contributions.
The paper is arranged as follows: In Sec. II, we present

the TMD formalism adopted. In Sec. III, we investigate
the effect of the TMD evolution on the asymmetries. In
Secs. IV and V, we present two recent parametrizations of
the gluon TMDs, based on the spectator model and a
Gaussian parametrization, respectively. Numerical results
are presented in Sec. VI. The conclusion is discussed in
Sec. VII.

II. FORMALISM

We consider a semi-inclusive electroproduction of a J=ψ
and a jet:

e−ðlÞ þ pðPÞ → e−ðl0Þ þ J=ψðPψÞ þ jetðPjÞ þ X;

where the four-momenta of the particles are given in their
corresponding round brackets. Here, both the incoming
electron beam and the target proton are unpolarized with
their respective momenta l and P. The kinematics of the
process can be described in the following variables:

Q2 ¼ −q2; s ¼ ðPþ lÞ2; W2 ¼ ðPþ qÞ2; ð1Þ

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
; z ¼ P · Pψ

P · q
: ð2Þ

The virtuality of the scattering photon is given byQ2, and s
is the square of the electron-proton center of mass energy,
whereas W is the invariant mass of photon-proton system.
xB is the Bjorken-x variable, y is the inelasticity variable
that gives the fraction of the energy of the electron taken by
the scattering virtual photon, and the variable z defines the
fraction of energy of the photon carried by the outgoing
J=ψ particle in the proton rest frame. We consider a virtual
photon-proton center of mass frame where they move along
þz and −z directions, respectively. To define the kinemat-
ics, we use the light-cone coordinate system. We use two
lightlike vectors, one of which is chosen to be in the
direction of the proton momentum, P ¼ n− and the other
n ¼ nþ, such that P · n ¼ 1 and n2− ¼ n2þ ¼ 0. In terms of
these vectors, the momenta of the particles involved in the
process can be written as follows.
Momenta of the initial proton and virtual photon can be

expressed as

Pμ ¼ nμ− þM2
p

2
nμþ ≈ nμ−; ð3Þ
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qμ ¼ −xBnμ− þ Q2

2xB
nμþ ≈ −xBPμ þ ðP · qÞnμþ; ð4Þ

where Mp is the proton mass and Q2 ¼ xBys. The
expressions for the incoming and outgoing lepton momenta
can be written in terms of light-cone coordinates using the
inelasticity variable y as

lμ ¼ ð1 − yÞxB
y

Pμ þ ðP · qÞ
y

nμ þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

Ql̂μ⊥; ð5Þ

l0μ ¼ lμ − qμ: ð6Þ

At the partonic level process, J=ψ can be produced either
through the gluonic channel: gþγ⋆→J=ψþg, or through
the quark (antiquark) channel: qðq̄Þ þ γ⋆ → J=ψ þ qðq̄Þ.
However, in the small-x region, the gluonic channel
dominates over the quark (antiquark) channel [42].
Hence, we have considered the contribution from the
gluonic channel only in the following estimate of the
asymmetry. The above processes contribute at the next-
to-leading order in αs and in the kinematic region z < 1.
The outgoing energetic gluons produced in this process
give the jet. Now, we can express the momentum of the
initial gluon, pg, the final J=ψ , and jet with momentum Pψ
and Pj, respectively, in terms of the lightlike vectors as

pμ
g ¼ xPμ þ ðpg · P −M2

pxÞnμ þ pμ
T ≈ xPμ þ pμ

T; ð7Þ

Pμψ ¼ P2
ψ⊥ þM2

ψ

2zP · q
Pμ þ zðP · qÞnμ þ Pμ

ψ⊥; ð8Þ

Pμj ¼
P2
j⊥

2ð1 − zÞP · q
Pμ þ ð1 − zÞðP · qÞnμ þ Pμ

j⊥; ð9Þ

where x is the collinear momentum fraction of the initial
gluon and Pψ⊥ and Pj⊥ are the transverse momenta of J=ψ
and jet, respectively. The incoming and the outgoing
scattered lepton form the leptonic plane. All the azimuthal
angles of the final state particles are defined with respect to
the leptonic plane with ϕl ¼ ϕl0 ¼ 0.
For the process under consideration, TMD factorization

has not formally beenprovenyet, although it is expected to be
valid. In our study,we have assumedTMD factorization. The
total differential scattering cross section for the unpolarized
process, ep → J=ψ jet X, can be written as [26]

dσ¼ 1

2s
d3l0

ð2πÞ32El0

d3Pψ
2Eψð2πÞ3

d3Pj
2Ejð2πÞ3

×
Z

dxd2pTð2πÞ4δ4ðqþpg−Pj−PψÞ

×
1

Q4
Lμμ0 ðl;qÞΦνν0

g ðx;p2
TÞMgγ�→J=ψg

μν M�gγ�→J=ψg
μ0ν0 : ð10Þ

The function Mμν represents the scattering amplitude of
J=ψ production in the photon-gluon fusion process:
γ�ðqÞ þ gðpgÞ → QQ̄ðPψÞ þ gðPjÞ partonic subprocess.
The leptonic tensor Lμμ0 describes the electron-photon
scattering and can be written as

Lμμ0 ¼ e2ð−gμμ0Q2 þ 2ðlμl0μ0 þ lμ
0
l0μÞÞ; ð11Þ

where e represents the electronic charge. The gluon
correlator Φνν0

g ðx;p2
TÞ describes the gluon content of the

proton. At the leading twist, for the case of an unpolarized
proton, it can be parametrized in terms of two TMD gluon
distribution functions as [18]

Φνν0
g ðx;p2

TÞ ¼ −
1

2x

�
gνν

0
⊥ fg1ðx;p2

TÞ

−
�
pν
Tp

ν0
T

M2
p

þ gνν
0

⊥
p2
T

2M2
p

�
h⊥g
1 ðx;p2

TÞ
�
: ð12Þ

Here, gνν
0

⊥ ¼ gνν
0 −Pνnν

0
=P ·n−Pν0nν=P ·n. The quantities

fg1ðx;p2
TÞ and h⊥g

1 ðx;p2
TÞ represent the unpolarized and

linearly polarized gluon TMD, respectively.

A. J=ψ production in NRQCD framework

The Feynman diagrams for the dominant subprocess of
photon-gluon fusion, which results in the production of a
J=ψ and a jet, are shown in Fig. 1. The amplitude for the
production of J=ψ within the NRQCD framework can be
written as follows [36,51]:

Mðγ�g → QQ̄½2Sþ1Lð1;8Þ
J �gÞ

¼
X
LzSz

Z
d3k
ð2πÞ3 ΨLLz

ðkÞhLLz; SSzjJJzi

× Tr½Oðq; pg; Pψ ; kÞPSSzðPψ ; kÞ�; ð13Þ

where k is the relative momentum of the heavy quark or the
antiquark in the rest frame of the nonrelativistic quarko-
nium bound state, which is assumed to be very small as
compared with the rest mass of the quarkonium. Here,
ΨLLz

ðkÞ is the nonrelativistic bound-state wave function
with orbital angular momentum L, Lz. The Clebsch-
Gordan coefficients hLLz; SSzjJJzi project out their angu-
lar momentum. The mass of the quarkonium, Mψ , is taken
to be twice the heavy quark mass. The Oðq; pg; Pψ ; kÞ
represents the amplitude for the production of the heavy
quark antiquark pair QQ̄, without the inclusion of the
polarization of the quark and antiquark. This can be
calculated by considering the contributions from all the
above Feynman diagrams and can be written as
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Oðq; pg;Pψ ; kÞ ¼
X8
i¼1

CiOiðq; pg; Pψ ; kÞ; ð14Þ

where i denotes the contribution from the individual
Feynman diagrams given in Fig. 1 and Ci corresponds
to the color factor for each diagram. The Oiðq; pg; Pψ ; kÞ
for the above Feynman diagrams are written as

O1 ¼ 4g2sðeecÞε�λg ðPjÞγν
Pψ þ 2=k− 2qþMψ

ðPψ þ 2k− 2qÞ2 −M2
ψ

× γμ
−Pψ þ 2=k− 2Pj þMψ

ðPψ − 2kþ 2PjÞ2 −M2
ψ
γλ;

O2 ¼ 4g2sðeecÞε�λg ðPjÞγλ
Pψ þ 2=kþ 2Pj þMψ

ðPψ þ 2kþ 2PjÞ2 −M2
ψ

× γν
−Pψ þ 2=kþ 2pg þMψ

ðPψ − 2k− 2pgÞ2 −M2
ψ
γμ;

O3 ¼ 4g2sðeecÞε�λg ðPjÞγν
Pψ þ 2=k− 2qþMψ

ðPψ þ 2k− 2qÞ2 −M2
ψ

× γλ
−Pψ þ 2=kþ 2pg þMψ

ðPψ − 2k− 2pgÞ2 −M2
ψ
γμ;

O4 ¼ 4g2sðeecÞε�λg ðPjÞγν
Pψ þ 2=k− 2qþMψ

ðPψ þ 2k− 2qÞ2 −M2
ψ
γχ

×
½gμλðpg þ PjÞχ þ gλχðpg − 2PjÞμ þ gχμðPj − 2pgÞλ�

ðpg − PjÞ2
:

ð15Þ

The expressions for the remaining O5, O6, O7, and O8 can
be obtained by reversing the fermionic current and replac-
ing k to −k.
In the NRQCD framework, the outgoing QQ̄ pair can be

formed in the color singlet (CS) state or in the color octet
(CO) state. The color factor Ci corresponding to the CO
case are given as [52]

C1 ¼ C6 ¼ C7 ¼
X
jk

h3j; 3̄kj8ciðtatbÞjk;

C2 ¼ C3 ¼ C5 ¼
X
jk

h3j; 3̄kj8ciðtbtaÞjk;

C4 ¼ C8 ¼
X
jk

h3j; 3̄kj8ciifabdðtdÞjk: ð16Þ

The SU(3) Clebsch-Gordan coefficients for CS and CO
states are given by, respectively,

h3j; 3̄kj1i ¼ δjkffiffiffiffiffiffi
Nc

p ; h3j; 3̄kj8ci ¼
ffiffiffi
2

p
ðtcÞjk; ð17Þ

where Nc is the number of colors and tc is the generator
of SU(3) in the fundamental representation. Their proper-
ties are given by Tr½tatb�¼δab=2 and Tr½tatbtc� ¼
1
4
ðdabc þ ifabcÞ. By using these relations along with the

relation in Eq. (17), one obtains the color factors for
individual Feynman diagrams for the QQ̄ formed in color
octet states as

FIG. 1. Feynman diagrams for the partonic process γ�ðqÞ þ gðpgÞ → J=ψðPψ Þ þ gðPjÞ.
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C1 ¼ C6 ¼ C7 ¼
ffiffiffi
2

p

4
ðdabc þ ifabcÞ;

C2 ¼ C3 ¼ C5 ¼
ffiffiffi
2

p

4
ðdabc − ifabcÞ;

C4 ¼ C8 ¼
ffiffiffi
2

p

2
ifabc: ð18Þ

For the case of formation of a QQ̄ pair in the CS state, the
color factors are given by

C1 ¼ C2 ¼ C3 ¼ C5 ¼ C6 ¼ C7 ¼
δab

2
ffiffiffiffiffiffi
Nc

p : ð19Þ

The spin projection operator for the bound state of the J=ψ
includes the spinors of the heavy quark and antiquark, cc̄,
and is given as

PSSzðPψ ;kÞ¼
X
s1s2

�
1

2
s1;

1

2
s2

����SSz
	

×v

�
Pψ
2
−k;s1

�
ū

�
Pψ
2
þk;s2

�

¼ 1

4M3=2
ψ

ð−Pψ þ2=kþMψÞΠSSzðPψ þ2=kþMψÞ

þOðk2Þ; ð20Þ

where ΠSSz ¼ γ5 for spin singlet (S ¼ 0) and ΠSSz ¼
=εSzðPψÞ for spin triplet (S ¼ 1). The εSz is the spin
polarization vector of the outgoing cc̄ pair.
Now, since, in the rest frame of the bound state, k ≪ Pψ ,

one can Taylor expand the amplitude given in Eq. (13)
around the k ¼ 0 limit. In that expansion, the terms
corresponding to k0 give S-wave scattering amplitude
(L ¼ 0, J ¼ 0, 1) and terms linear in k correspond to
P-wave scattering (L ¼ 1, J ¼ 0, 1, 2), and the corre-
sponding amplitudes are given as

M½2Sþ1Sð1;8ÞJ �ðPψ ; kÞ

¼ 1ffiffiffiffiffiffi
4π

p R0ð0ÞTr½Oðq; pg; Pψ ; kÞPSSzðPψ ; kÞ�
���
k¼0

¼ 1ffiffiffiffiffiffi
4π

p R0ð0ÞTr½Oð0ÞPSSzð0Þ�; ð21Þ

M½2Sþ1Pð8Þ
J �ðPψ ; kÞ

¼ −i
ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPψÞhLLz; SSzjJJzi

×
∂

∂kα
Tr½Oðq; pg; Pψ ; kÞPSSzðPψ ; kÞ�jk¼0

¼ −i
ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPψÞhLLz; SSzjJJzi

× Tr½Oαð0ÞPSSzð0Þ þOð0ÞPSSzαð0Þ�; ð22Þ

where RL represents the radial wave function and the
shorthand notations used in the above expressions are

Oð0Þ ¼ Oðq; pg; Pψ ; kÞjk¼0;

PSSzð0Þ ¼ PSSzðPψ ; kÞjk¼0; ð23Þ

Oαð0Þ ¼
∂

∂kα
Oðq; pg; Pψ ; kÞ

���
k¼0

;

PSSzαð0Þ ¼
∂

∂kα
PSSzðPψ ; kÞ

���
k¼0

: ð24Þ

Following are the relations for the Clebsch-Gordan coef-
ficient and the polarization vector of J=ψ , which we can use
to calculate P-wave amplitudes [53]:

X
LzSz

hLLz; SSzjJJziεαSzðPψÞε
β
Lz
ðPψÞ ¼

ffiffiffi
1

3

r �
gαβ −

PαψP
β
ψ

M2
ψ

�
;

ð25Þ
X
LzSz

hLLz; SSzjJJziεαSzðPψÞε
β
Lz
ðPψÞ

¼ −
i

Mψ

ffiffiffi
1

2

r
ϵδζξϱgξαgϱβPδψε

ζ
Jz
ðPψ Þ; ð26Þ

X
LzSz

hLLz; SSzjJJziεαSzðPψ Þε
β
Lz
ðPψ Þ ¼ εαβJz ðPψÞ: ð27Þ

The εαJzðPψ Þ is the polarization vector corresponding to the
J ¼ 1 angular momentum state, that follows the current
conservation and obeys the following relations [53]:

εαJzðPψ ÞPψα ¼ 0; ð28Þ

TABLE I. Numerical values for two different sets of LDMEs.

h0jOJ=ψ
8 ð1S0Þj0i h0jOJ=ψ

8 ð3S1Þj0i h0jOJ=ψ
1 ð3S1Þj0i h0jOJ=ψ

8 ð3P0Þj0i=m2
c

Ref. [54] 1.8� 0.87 0.13� 0.13 1.2 × 102 1.8� 0.87 ×10−2 GeV3

Ref. [55] 8.9� 0.98 0.30� 0.12 1.2 × 102 0.56� 0.21 ×10−2 GeV3
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X
Jz

εαJzðPψ Þε
�β
Jz
ðPψÞ ¼

�
−gαβ þ PαψP

β
ψ

M2
ψ

�
¼ Qαβ: ð29Þ

The εαβJz ðPψÞ is the polarization tensor corresponding to
J ¼ 2 which is symmetric in the Lorentz indices and
follows the relations [53]

εαβJz ðPψ Þ¼ εβαJz ðPψÞ; εαJzαðPψ Þ¼0; εαJzðPψÞPψα¼0;

εαβJz ðPψ Þε
�μν
Jz

ðPψ Þ¼
1

2
½QαμQβνþQανQβμ�−1

3
½QαβQμν�:

ð30Þ

The radial wave function and its derivative evaluated at
origin R0ð0Þ, R0

1ð0Þ given in Eqs. (21) and (22) are related
to LDMEs by the following equations [42]:

h0jOJ=ψ
1 ð2Sþ1SJÞj0i ¼

Nc

2π
ð2J þ 1ÞjR0ð0Þj2; ð31Þ

h0jOJ=ψ
8 ð2Sþ1SJÞj0i ¼

2

π
ð2J þ 1ÞjR0ð0Þj2; ð32Þ

h0jOJ=ψ
8 ð3PJÞj0i ¼

2Nc

π
ð2J þ 1ÞjR0

1ð0Þj2: ð33Þ

The two different sets of LDMEs that we have used in our
numerical calculation are given in Table I. Now, using the

aforementioned formalism, together with the symmetry
relations among the amplitudes corresponding to different
Feynman diagrams for each state, which have been calcu-
lated in Ref. [52], we could write the amplitude for the CS

state ð3Sð1Þ1 Þ and CO states ð3Sð8Þ1 ; 1Sð8Þ0 ; 3Pð8Þ
Jð0;1;2ÞÞ as follows.

B. 3Sð1;8Þ1 amplitude

The final expression for the 3Sð1Þ1 state and 3Sð8Þ1 state can
be written as

M½3Sð1Þ1 �ðPψ ; pgÞ ¼
1

4
ffiffiffiffiffiffiffiffiffiffi
πMψ

p R0ð0Þ

×
δab

2
ffiffiffiffiffiffi
Nc

p Tr


X3
i¼1

Oið0ÞðPψ þMψ Þ=εSz
�
;

ð34Þ

M½3Sð8Þ1 �ðPψ ;pgÞ¼
1

4
ffiffiffiffiffiffiffiffiffiffi
πMψ

p R0ð0Þ

×

ffiffiffi
2

p

2
dabcTr


X3
i¼1

Oið0ÞðPψ þMψÞ=εSz
�
;

ð35Þ

where
P

3
i¼1Oið0Þ is given as

X3
i¼1

Oið0Þ ¼ 4g2sðeecÞε�λg


γνðPψ − 2qþMψÞγμð−Pψ − 2Pj þMψ Þγλ

ðs −M2
ψ Þðu −M2

ψ þ q2Þ þ γλðPψ þ 2Pj þMψ Þγνð−Pψ þ 2pg þMψÞγμ
ðs −M2

ψ Þðt −M2
ψÞ

þ γνðPψ − 2qþMψ Þγλð−Pψ þ 2pg þMψ Þγμ
ðt −M2

ψÞðu −M2
ψ þ q2Þ

�
: ð36Þ

The symmetry relations, given in Ref. [52], lead to the cancellation of contributions from Feynman diagrams 4 and 8 for the
3Sð1;8Þ1 amplitude.

C. 1Sð8Þ0 amplitude

The total amplitude for the 1Sð8Þ0 state can be written as

M½1Sð8Þ0 �ðPψ ; pgÞ ¼
1

4
ffiffiffiffiffiffiffiffiffiffi
πMψ

p R0ð0Þi
ffiffiffi
2

p

2
fabcTr½ðO1ð0Þ −O2ð0Þ −O3ð0Þ þ 2O4ð0ÞÞðPψ þMψ Þγ5�: ð37Þ

O1ð0Þ, O2ð0Þ, and O3ð0Þ are given in Eq. (36), and

O4ð0Þ ¼ g2sðeecÞε�λg
γνðPψ − 2qþMψÞγχ

uðu −M2
ψÞ

½gμλðpg þ PjÞχ þ gλχðpg − 2PjÞμ þ gχμðPj − 2pgÞλ�: ð38Þ
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D. 3Pð8Þ
J amplitude

The 3Pð8Þ
J amplitude can be written as [52]

M½3Pð8Þ
J �ðPψ ;pgÞ ¼

ffiffiffi
2

p

2
fabc

ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

×
X
LzSz

εαLz
ðPψÞhLLz;SSzjJJzi

×Tr½ðO1αð0Þ−O2αð0Þ−O3αð0Þ
þ 2O4αð0ÞÞPSSzð0Þ þ ðO1ð0Þ−O2ð0Þ
−O3ð0Þ þ 2O4ð0ÞÞPSSzαð0Þ�: ð39Þ

E. Total differential cross section and the asymmetry

The structure of the differential cross section as defined
in Eq. (10) has a contraction of tensors which can be
schematically written as

MiMj ¼ Lμμ0 ðl; qÞΦνν0
g ðx;pTÞMiμνMjμ0ν0 ; ð40Þ

where i, j ¼ 1, 2, 3, 4 corresponds to the Feynman
diagrams given in Fig. 1 and we have MiMj ¼ MjMi

for i ≠ j. We have already defined all tensors in the above
convolution, and contributions to the amplitudes come

from all the CS and CO states ð3Sð1;8Þ1 ; 1Sð8Þ0 ; 3Pð8Þ
Jð0;1;2ÞÞ. We

have summed over all the polarization states of the out-
going gluon using the relation given as

X2
λa¼1

ελaμ ε
λa
μ0 ¼−gμμ0 þ

Pjμnψμ0 þPjμ0nψμ
Pj ·nψ

−
PjμPjμ0

ðPj ·nψÞ2
; ð41Þ

where nψμ ¼ Pψμ=Mψ . We use the frame where the
incoming virtual photon and proton move along the z axis.
The azimuthal angles of the lepton scattering plane are
defined as ϕl ¼ ϕl0 ¼ 0. We integrate out the azimuthal
angle of the final lepton l0 [56], and we can write

d3l0

ð2πÞ32El0
¼ dQ2dy

16π2
: ð42Þ

Moreover, for the other phase factors, one can write

d3Pψ
ð2πÞ32Eψ

¼ dzd2Pψ⊥
ð2πÞ32z ;

d3Pj
ð2πÞ32Ej

¼ dz̄d2Pj⊥
ð2πÞ32z̄ ; ð43Þ

and conservation of the four-momenta can be written as

δ4ðqþ pg − Pψ − PjÞ

¼ 2

ys
δð1 − z − z̄Þδ

�
x −

z̄ðM2 þ P2
ψ⊥Þ þ zP2

j⊥ þ zz̄Q2

zð1 − zÞys
�

× δ2ðpT − Pj⊥ − Pψ⊥Þ; ð44Þ

where we have used the relation Q2 ¼ xBys. Now, we
define the sum and difference of the transverse momentum
of J=ψ and jet as

qt ≡ Pψ⊥ þ Pj⊥; Kt ≡ Pψ⊥ − Pj⊥
2

: ð45Þ

From Eq. (44), we have z̄ ¼ ð1 − zÞ and qt ¼ pT . We use
TMD factorization in the kinematic region jqtj ≪ jKtj.
This leads to the situation where the outgoing J=ψ and
jet are almost back to back in the transverse plane, i.e.,
the xy plane, with respect to the virtual photon-proton
colliding axis, i.e., the z axis, thus allowing us to set
Kt ≃ Pψ⊥ ≃ −Pj⊥. ϕt and ϕ⊥ are the azimuthal angles,
respectively, for qt and Kt and are defined with respect to
the leptonic plane as illustrated in Fig. 2. Finally, integrat-
ing over z̄, pT , and x, the differential cross section, in
Eq. (10), as a function of z, y, xB, qt, and Kt can be
rewritten as

dσ
dzdydxBd2qtd2Kt

¼ 1

ð2πÞ4
1

16szð1− zÞQ4

X
i;j

MiMj: ð46Þ

In the following calculation, we have kept only the zeroth-

and first-order terms in ð q2tM2
P
Þ. Thus, we obtain the total

differential cross section [42]

FIG. 2. The schematic representation of back-to-back J=ψ and jet production in the transverse plane.
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dσ
dzdydxBd2qtd2Kt

¼ 1

ð2πÞ4
1

16szð1 − zÞQ4

�
ðA0 þ A1 cosϕ⊥ þ A2 cos 2ϕ⊥Þfg1ðx;q2

t Þ

þ q2
t

M2
P
h⊥g
1 ðx;q2

t ÞðB0 cos 2ϕt þ B1 cosð2ϕt − ϕ⊥Þ þ B2 cos 2ðϕt − ϕ⊥Þ

þ B3 cosð2ϕt − 3ϕ⊥Þ þ B4 cosð2ϕt − 4ϕ⊥ÞÞ
�
: ð47Þ

The analytic expressions of the coefficients Ai’s and Bi’s
are very lengthy, which we have not included in this article.
They are available upon request.
The TMDs come with various azimuthal modulations.

These modulations can be used to extract information about
the ratio of TMDs. This can be done by defining the
asymmetries as [42]

AWðϕS;ϕtÞ≡2

R
dϕSdϕtdϕ⊥WðϕS;ϕtÞdσðϕS;ϕt;ϕ⊥ÞR

dϕSdϕtdϕ⊥dσðϕS;ϕt;ϕ⊥Þ
: ð48Þ

Here, we are interested in one particular asymmetry, i.e.,
cos 2ϕt asymmetry, to extract the linearly polarized gluon
TMD. This can be written as

hcos 2ϕti≡ Acos 2ϕt

¼ 2

R
dϕtdϕ⊥ cos 2ϕtdσðϕt;ϕ⊥ÞR

dϕtdϕ⊥dσðϕt;ϕ⊥Þ
: ð49Þ

Now, by plugging the differential scattering cross section
from Eq. (47) into the above equation, we get the cos 2ϕt
asymmetry as a function of z, y, xB, and Kt:

hcos 2ϕti≡ Acos 2ϕt ¼
R
qtdqt

q2t
M2

p
B0h

⊥g
1 ðx;q2

t ÞR
qtdqtA0f

g
1ðx;q2

t Þ
: ð50Þ

For estimating the cos 2ϕt asymmetry numerically, we have
used two recent parametrizations of the gluon TMDs and
also estimated the effect of TMD evolution. The following
section gives the details of the TMD evolution formal-
ism used.

III. TMD EVOLUTION

The evolution of the TMDs [57,58] with the scale affects
the asymmetries measured in the energies of different
experiments, and it is important to estimate the effect of
this evolution to obtain the angular asymmetries of produced
hadrons measured by the HERMES, COMPASS, and JLab
as well as the future EIC experiments at different energies.
The TMD evolution is usually studied in the impact
parameter space [57]. The impact-parameter-dependent
TMDs can be written as Fourier transforms of the TMDs:

f̂ðx;b2
t ;Q2

fÞ ¼
1

2π

Z
d2qteiqt·btfðx;q2

t ; Q2
fÞ: ð51Þ

In the TMD evolution approach, TMDs not only evolvewith
the intrinsic transverse momentum of the parton but also
evolve with the probing scale. The expression for TMD
evolution at a given final scaleQf can be obtained by solving
the Collins-Soper evolution equation and renormalization
group equation. Using this approach, the expression for the
gluon TMD in the impact parameter space can be written
as [7,59,60]

f̂ðx;b2
t ; Q2

fÞ ¼
1

2π

X
p¼q;q̄;g

ðCg=p ⊗ fp1 Þðx;Q2
i Þ

× e−
1
2
SAðb2

t ;Q
2
f;Q

2
i Þe−Snpðb

2
t ;Q

2
fÞ; ð52Þ

whereQi is the initial scale of TMD, defined in terms of bt as
Qi ¼ 2e−γE=bt and γE ≈ 0.577. Cg=p are coefficient func-
tions, and fp1 ðx;Q2Þ are collinear parton distributions for a
species of partons like quark and antiquark or gluon. The
exponents SA and Snp are the perturbative and nonperturba-
tive Sudakov factors, respectively. We note that the Sudakov
factor SA is spin independent and, thus, the same for all (un)
polarized TMDs [35,61]. As stated before, a formal proof of
TMD factorization for this process remains to be done, and
herewe study the effect of TMDevolution on the asymmetry
assuming such factorization. The subsections below contain
a description of the TMD evolution formalism used and the
relevant formulas.

A. Coefficient functions and perturbative
Sudakov factor

The coefficient function can be written as a series of
strong coupling constant αs [62]:

Cg=pðx;QiÞ¼ δgpδð1−xÞþ
X∞
k¼1

X
p¼g;q;q̄

Ck
g=pðxÞ

�
αsðQiÞ

π

�
k
:

ð53Þ

The Sudakov factor as the leading order of αs can be
written as [62]
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SAðb2
t ;Q2

f;Q
2
i Þ¼

CA

π

Z
Q2

f

Q2
i

dη2

η2
αsðηÞ

�
log

Q2
f

η2
−
11−2nf=CA

6

�

¼CA

π
αs

�
1

2
log2

Q2
f

Q2
i
−
11−2nf=CA

6
log

Q2
f

Q2
i

�
:

ð54Þ

The running of the coupling αs is ignored in Eq. (54),
because it starts at α2s . TheCA ¼ Nc, nf denotes the number
of active flavors. In bt ≪ 1=ΛQCD, the Sudakov factor can
be Taylor expanded. Furthermore, by substituting the
expressions from Eqs. (53) and (54), the unpolarized gluon
TMD at LO without a nonperturbative Sudakov factor is
given as [62]

f̂g1ðx;b2
t ;Q2

fÞ ¼
1

2π

�
fg1ðx;Q2

i Þ −
αs
2π

�

CA

2
log2

Q2
f

Q2
i

−
11 − 2nf=CA

6
log

Q2
f

Q2
i

�
fg1ðx;Q2

i Þ

− 2
X
p

ðC1
g=p ⊗ fp1 Þðx;Q2

i Þ
��

: ð55Þ

Scale evolution of the collinear parton distribution func-
tions (PDFs) are given by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equation. Using this evolution
equation, one can evolve fg1ðx;Q2

i Þ from the initial scaleQi
to the final scale Qf where Qi < Qf:

fg1ðx;Q2
i Þ ¼ fg1ðx;Q2

fÞ −
αs
2π

ðPgg ⊗ fg1 þ Pgi ⊗ fi1Þðx;Q2
fÞ

× log
Q2

f

Q2
i
þOðα2sÞ: ð56Þ

Here, Pgg and Pgi are leading-order splitting functions,
which are given as

Pggðx̂Þ ¼ 2CA



x̂

ð1 − x̂Þþ
þ 1 − x̂

x̂
þ x̂ð1 − x̂Þ

�

þ δð1 − x̂Þ 11CA − 4nfTR

6
; ð57Þ

Pgqðx̂Þ ¼ Pgq̄ðx̂Þ ¼ CF
1þ ð1 − x̂Þ2

x̂
; ð58Þ

where CF ¼ ðN2
c − 1Þ=2Nc and TR ¼ 1=2. In Eq. (57), the

first term involves the plus prescription and, thus, avoids an
infrared divergence because of (1 − x̂) in the denominator.
The plus prescription is given as [62]

Z
1

y
dz

GðzÞ
ð1− zÞþ

¼
Z

1

y
dz

GðzÞ−Gð1Þ
1− z

−Gð1Þ log
�

1

1− z

�
:

ð59Þ

The ⊗ symbol denotes convolution of the two quantities;

ðP ⊗ fg1Þðx;Q2Þ ¼
Z

1

x

dx̂
x̂
Pðx̂; Q2Þf

�
x
x̂
; Q2

�
: ð60Þ

After convolution and substitution of Eq. (56) in Eq. (55),
we have the final equation for the unpolarized gluon
TMD as

f̂g1ðx;b2
t ;Q2

fÞ ¼
1

2π

�
fg1ðx;Q2

fÞ −
αs
2π


�
CA

2
log2

Q2
f

Q2
i

−
11CA − 2nf

6
log

Q2
f

Q2
i

�
fg1ðx;Q2

fÞ

þ ðPgg ⊗ fg1 þ Pgi ⊗ fi1Þðx;Q2
fÞ log

Q2
f

Q2
i

− 2fg1ðx;Q2
fÞ
��

: ð61Þ

Now, we can write the above equation in the qt space by
making one-to-one correspondence between the functions
in impact parameter and momentum space using a general
formula [35,63,64]:

f̂ðnÞðx;b2
t Þ≡ 2πn!

M2n

Z
∞

0

dqtqt

�
qt
bt

�
n
JnðqtbtÞfðx;q2

t Þ; ð62Þ

where n is the rank of function in qt space. Since the
unpolarized vector-meson production generally has a rank-
zero structure, we can write the unpolarized gluon TMD
together with the nonperturbative Sudakov factor in terms
of qt space as

fg1ðx;q2
t Þ¼

1

2π

Z
∞

0

btdbtJ0ðbtqtÞ
�
fg1ðx;Q2

fÞ−
αs
2π


�
CA

2
log2

Q2
f

Q2
i
−
11CA−2nf

6
log

Q2
f

Q2
i

�
fg1ðx;Q2

fÞ

þðPgg ⊗ fg1þPgi ⊗ fi1Þðx;Q2
fÞ log

Q2
f

Q2
i
−2fg1ðx;Q2

fÞ
��

×e−Snpðb2
t Þ: ð63Þ
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Now let us write the expression for the linearly polarized
gluon distribution function h⊥g

1 ðx;b2
t Þ. The perturbative tail

of h⊥g
1 can be computed in the same way as the perturbative

tail of fg1, with the key difference that its expansion in
powers of the QCD coupling constant begins at OðαsÞ.
Using Eq. (3.13) in Ref. [62] and then performing the
Fourier transformation using Eq. (62), we write the linearly
polarized gluon distribution at LO in terms of the unpo-
larized collinear PDFs fa1ðx̂; Q2

fÞ in the bt space as

h⊥gð2Þ
1 ðx;b2

t ;Q2
fÞ ¼

2αS
π2M2

p

1

b2
t



CA

Z
1

x

dx̂
x̂

�
x̂
x
− 1

�
fg1ðx̂;Q2

fÞ

þCF

X
p¼q;q̄

Z
1

x

dx̂
x̂

�
x̂
x
− 1

�
fp1 ðx̂;Q2

fÞ
�
:

ð64Þ

Here, we have used the general formula for the Bessel
integral [65]:

Z
∞

0

dkkλ−1JνðkxÞ ¼ 2λ−1x−λ
Γð1=2ðνþ λÞÞ

Γð1=2ð2þ νþ λÞÞ ; ð65Þ

where JνðzÞ is the Bessel function of the first kind of the
order of ν. The qt dependence for h⊥g

1 in the gluon
correlator has a rank-two tensor structure in the non-
contracted transverse momentum; thus, we could write
the linearly polarized gluon TMD h⊥g

1 in the qt space as

q2
t

M2
p
h⊥gð2Þ
1 ðx;q2

t Þ

¼ αs
π2

Z
∞

0

dbtbtJ2ðqtbtÞ


CA

Z
1

x

dx̂
x̂

�
x̂
x
− 1

�
fg1ðx̂;Q2

fÞ

þCF

X
p¼q;q̄

Z
1

x

dx̂
x̂

�
x̂
x
− 1

�
fp1 ðx̂;Q2

fÞ
�
× e−Snpðbt

2Þ: ð66Þ

B. Nonperturbative Sudakov factor

In the above Eqs. (63) and (66), the perturbative part is
strictly valid in the perturbative domain, which means low
bt (or bt ≪ 1=ΛQCD). However, in order to perform the
corresponding Fourier transform, we need to integrate
the expression from small to large bt. As a result, the
perturbative expression for the Sudakov factor given above
should not be used alone; rather, one needs to introduce a
nonperturbative Sudakov factor, and this should suppress
the large bt domain. The functional form of the non-
perturbative Sudakov factor is constrained by two con-
ditions, one of which is it has to be equal to 1 for bt ¼ 0 and
for large bt it is supposed to decrease monotonically and
ultimately should vanish. The functional form attributed to
Snp is quadratic in bt with e−Snp reaching 0 within a certain
value of bt called bt lim. However, when bt gets too small,

the lower scaleQi ¼ 2e−γE=bt will be larger than final scale
Qf, and, hence, we expect the evolution should stop.
This could be resolved by taking a bt prescription as given
below [66]:

bt⋆ðbcðbtÞÞ ¼
bcðbtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bcðbtÞ

btmax

q ; ð67Þ

where

bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2t þ

�
2e−γE

Qf

�
2

s
:

This prescription constrains the QiðbtÞ ¼ 2γE=bt⋆ðbtÞ
range in between 2γE=btmax (for bt → ∞) and Qf (for
bt → 0). Motivated by Ref. [66], we choose the Gaussian
behavior of e−Snp as

Snp ¼ A
2
log

�
Qf

Qnp

�
b2c; Qnp ¼ 1 GeV: ð68Þ

The parameter A controls the width of the nonperturbative
Sudakov factor for a particular Qf. In this calculation, we

have taken the final scale as Qf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þ K2
t

q
. We have

taken A ¼ 2.3 GeV2, which is calculated for Kt ¼ 1 GeV.
The Kt dependence present in Qf does not affect the value
of A, as Kt increases the e−Snp remains below the con-
vergence criteria at the given bt lim. The value of btmax for
the following numerical study is 1.5 GeV−1, which is
consistent with Ref. [66], the Collins-Soper-Sterman for-
malism given for Z boson production [67], and the Collins-
Soper-Sterman formalism implemented by Ref. [68].
Below, we present two recent parametrizations of the gluon
TMDs that we have used.

IV. SPECTATOR MODEL

In this section, we discuss a recent parametrization of the
gluon TMDs based on a spectator model [69]. According to
this model, the remnant after the gluon emission from the
nucleon is treated as a single spectator particle, which is on
shell, with mass MX. The mass can take a range of values
given by a spectral function. The nucleon-gluon-spectator
coupling is encoded in an effective vertex that contains two
form factors. The expression for a given TMD reads as

Fgðx;q2
t Þ ¼

Z
∞

M
dMXρXðMXÞF̂gðx;q2

t ;MXÞ: ð69Þ

Here, ρXðMXÞ is the spectral function and can be written as

ρXðMXÞ ¼ μ2a



A
Bþ μ2b

þ C
πσ

e−
ðMX−DÞ2

σ2

�
; ð70Þ
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where μ ¼ M2
X −M2 and fXg≡ fA;B; a; b; C;D; σg are

free parameters. The parameter B in the above equation is
set at B ¼ 2.1, and MX can take real values in the
continuous range according to the above spectral function.
The nucleon massM is taken to be 1. The parameters a and
b have a strong influence on the spectral function; at larger
MX, its asymptotic trend depends on the sign of the
difference a − b [69]. For a − b < 0, the value of ρX
approaches zero for large MX. We consider integration
in Eq. (69) over the range 1 < MX < 10 GeV. The value of
different parameters that we used for our numerical
results are given in Table II below. These model parameters
have been fixed by fitting the NNPDF data at scale
Q ¼ 1.64 GeV [69]. We assumed the same set of param-

eters to probe the TMDs atQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þ K2
t

q
. In this model,

we do not have direct inference of scale dependency on the

TMDs unlike the case of Gaussian parametrization.
However, the longitudinal momentum fraction x depends
on Q, but going from some low Q ¼ 1.64 GeV to some

relatively large Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mψ þ K2

t

q
(≈6.75 GeV for Mψ ¼

3.1 GeV and Kt ¼ 6 GeV) hardly changes the x range. The
leading-twist T-even unpolarized and linearly polarized
gluon TMDs can be written as [18,24]

f̂g1ðx;q2
t ;MXÞ ¼ −

1

2
gij½Φijðx;qt; SÞ þΦijðx;qt;−SÞ�

¼ ½ð2Mxg1 − xðM þMXÞg2Þ2½ðMX −Mð1 − xÞÞ2 þ q2
t �

þ 2q2
t ðq2

t þ xM2
XÞg22 þ 2q2

t M2ð1 − xÞð4g21 − xg22Þ�½ð2πÞ34xM2ðL2
Xð0Þ þ q2

t Þ2�−1; ð71Þ

ĥ⊥g
1 ðx;q2

t ;MXÞ ¼
M2

εijt δ
jmðpj

tpm
t þ gjmq2

t Þ
εlnt δ

nr½Φnrðx;qt; SÞ þΦnrðx;qt;−SÞ�

¼ ½4M2ð1 − xÞg21 þ ðL2
Xð0Þ þ q2

t Þg22� × ½ð2πÞ3xðL2
Xð0Þ þ q2

t Þ2�−1: ð72Þ

Here, g1;2ðp2Þ are model-dependent form factors and can
be written as

g1;2ðp2Þ ¼ κ1;2
p2

jp2 − Λ2
Xj2

¼ κ1;2
p2ð1 − xÞ2

ðq2
t þ L2

XðΛ2
XÞÞ2

; ð73Þ

where κ1;2 and ΛX are normalization and cutoff parameters,
respectively, and

p2 ¼ −
q2
t þ L2

Xð0Þ
1 − x

; ð74Þ

where p is the gluon momentum and

L2
XðΛ2

XÞ ¼ xM2
X þ ð1 − xÞΛ2

X − xð1 − xÞM2: ð75Þ

The form factors given above are dipolar in nature; the main
advantage of using dipolar form factors consists in the
possibility of canceling gluon-propagator singularities,
quenching the effects of large transverse momenta where
a pure TMD description is not any more adequate, and
removing logarithmic divergences emerging inpt-integrated
densities.

V. GAUSSIAN PARAMETRIZATION
OF THE TMDs

The most widely used parametrizations of the TMDs are
Gaussian in nature. Here, both the TMDs fg1 and h⊥g

1 are
assumed to be factorized into a product of an x-dependent
part given in terms of the collinear PDFs and an
exponential factor which is a function of only the trans-
verse momentum ðqtÞ. The width of the Gaussian is
usually expressed in terms of the average value of the trans-
verse momentum, which is taken as a model parameter
[36–38]:

fg1ðx;q2
t Þ ¼ fg1ðx; μÞ

1

πhq2
t i
e−q

2
t =hq2t i; ð76Þ

h⊥g
1 ðx;q2

t Þ ¼
M2

pf
g
1ðx; μÞ

πhq2
t i2

2ð1 − rÞ
r

e
1−

q2t
rhq2t i; ð77Þ

where rð0 < r < 1Þ is a parameter and in our case we take
r ¼ 1=3. The term fg1ðx; μÞ is the collinear PDF which
follows the DGLAP evolution equation. The Gaussian
width here is hq2

t i ¼ 0.25 GeV2. The linearly polarized

TABLE II. Corresponding values for replica 11.

Parameter Replica 11 Parameter Replica 11

A 6.0 κ2 (GeV2) 0.414
a 0.78 σ (GeV) 0.50
b 1.38 ΛX (GeV) 0.448
C 346 κ1 (GeV2) 1.46
D (GeV) 0.548

cos 2ϕt AZIMUTHAL ASYMMETRY IN BACK-TO-BACK … PHYS. REV. D 106, 034009 (2022)

034009-11



gluon distribution in the parametrization above satisfies the
positivity bound [18], but does not saturate it:

q2
t

2M2
p
jh⊥g

1 ðx;q2
t Þj ≤ fg1ðx;q2

t Þ: ð78Þ

VI. RESULTS AND DISCUSSION

In the present work, we have numerically calculated the
cos 2ϕt azimuthal asymmetry in the unpolarized electro-
production of the J=ψ process: ep → eJ=ψ jet X, within a
TMD factorization approach. As depicted in Fig. 2, we
have J=ψ and jet almost back to back in the transverse
plane as we consider the kinematics jqtj ≪ jKtj, which is
the required condition to assume TMD factorization.
Contributions from the virtual photon-quark (antiquark)
initiated subprocesses in the unpolarized cross section is
very small in the kinematics considered [42] as compared
with the gluon initiated subprocess: γ� þ g → J=ψ þ g.
Therefore, in the numerical estimate of the asymmetry, we
have included only the gluon-photon fusion subprocess and

neglected the contribution from the quark (antiquark)
initiated subprocesses. We have used the MSTW2008
[70] set of collinear PDFs and adopted two sets of
LDMEs for the study of azimuthal asymmetry as listed
in Table I with the charm mass mc ¼ 1.3 GeV. We used a
NRQCD framework for the J=ψ production rate and
included contributions from both color singlet and color
octet states in the asymmetry. We also calculated the
asymmetry taking into consideration contribution only
from the CS and compared it with the full NRQCD result
incorporating both CS and CO contributions (NRQCD).

The contraction of the different states, i.e., 1Sð8Þ0 , 3Sð1;8Þ1 , and
3Pð8Þ

Jð¼0;1;2Þ, is calculated using FeynCalc [71,72]. We have

investigated the effect of TMD evolution on the asymmetry.
For the gluon TMDs, we use two parametrizations,
Gaussian and based on the spectator model, as discussed
above. The J=ψ mass is taken to be Mψ ¼ 3.1 GeV. The

collinear PDFs are evaluated at the scale Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þ K2
t

q
.

The numerical results are presented in the kinematical
region that can be accessed at the future EIC.
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FIG. 3. cos 2ϕt asymmetry calculated in TMD evolution approach for eþ p → eþ J=ψ þ jetþ X, in both NRQCD and in the CS; as
functions of (a) Kt, (b) y, and (c) z. We have used

ffiffiffi
s

p ¼ 140 GeV. In (a) and (b), we have used z ¼ 0.7. In (a), we have taken
0.1 ≤ y ≤ 1 for the range of y integration, and in (b), we have used fixed values of Kt. In (c), we have taken Kt ¼ 3 GeV and fixed
values of y. We have used the Chao-Ma-Shao-Wang-Zhang (CMSWZ) set of LDMEs [55].
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We have imposed a cut on the variable z, namely,
0.1 < z < 0.9, to estimate the asymmetry. As z → 1, the
final state gluon becomes soft, which leads to infrared
divergences. We impose the upper cut to avoid this gluon
becoming soft. The contribution of J=ψ production from
fragmentation of the final hard gluon comes from the lower
z region, and we impose the lower cut to minimize this
contribution. The asymmetry gets maximized around
z ¼ 0.7 for the kinematics we have considered. Hence,
we took z ¼ 0.7 for all plots where z is fixed. In addition,
we also show the cos 2ϕt asymmetry as a function of z. In
our estimate, we have neglected the contribution of J=ψ
production via feed-down from excited ψð2SÞ and the
decays of χc states.
In Figs. 3–5, we show a comparison of the cos 2ϕt

azimuthal asymmetry using three different models or para-
metrizations of the gluon TMDs. Later, in Fig. 7, we have
compared them with the asymmetry calculated by satisfying
the upper bound of the TMDs [Eq. (78)]. In all plots, we
have shown the results when only the CS contributions are

included (CS), aswell aswhenbothCSandCOcontributions
are included in NRQCD (NRQCD).
In Fig. 3, we plot the cos 2ϕt azimuthal asymmetry in the

TMD evolution approach as a function of Kt, y, and z at the
center of mass energy

ffiffiffi
s

p ¼ 140 GeV. The integration
ranges are qt ∈ ½0.0 − 1.0� and y ∈ ½0.1 − 1.0�. The range
of qt is considered to satisfy the condition jqtj ≪ jKtj.
A similar set of plots is shown for the spectator model and
for the Gaussian parametrization of the gluon TMDs in
Figs. 4 and 5, respectively. In all these plots, we see that, in
contrast to the CS case, the NRQCD framework gives a
significant contribution to cos 2ϕt azimuthal asymmetry atffiffiffi
s

p ¼ 140 GeV. The magnitude of the asymmetry does not
change that much if we take a somewhat lower value of

ffiffiffi
s

p
,

for example,
ffiffiffi
s

p ¼ 65 GeV.
In the upper left panel (a) in Figs. 3–5, we have plotted

the cos 2ϕt asymmetry as functions of Kt at
ffiffiffi
s

p ¼140GeV.
In these plots, we integrated qt and y in the range (0,1) and
(0.1,1), respectively. We see that the cos 2ϕt asymmetry is
maximum (negative) for lower Kt and monotonically
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FIG. 4. cos 2ϕt asymmetry calculated in the spectator model for the eþ p → eþ J=ψ þ jetþ X process, in both NRQCD and in the
CS; as functions of (a) Kt, (b) y, and (c) z. We have used

ffiffiffi
s

p ¼ 140 GeV. In (a) and (b), we have used z ¼ 0.7. In (a), we have taken
0.1 ≤ y ≤ 1 for the range of y integration, and in (b), we have used fixed values of Kt. In (c), we have taken Kt ¼ 3 GeV and fixed
values of y. We have used the CMSWZ set of LDMEs [55].
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decreases as we go in the higher Kt region. The maximum
asymmetry we obtained is ≈29% in the spectator model at
Kt ¼ 1 GeV followed by the Gaussian parametrization,
≈17%. Incorporation of the TMD evolution results in a
smaller asymmetry, ≈1% at Kt ¼ 1 GeV.
The y dependence of cos 2ϕt azimuthal asymmetry is

shown in the upper right panel (b) in Figs. 3–5 atffiffiffi
s

p ¼ 140 GeV; we have shown the results both in
NRQCD and in the CS. We plotted the asymmetry for
two fixed values of Kt, namely, 2 and 4 GeV. We have
plotted the asymmetry in the range of y ∈ ½0.1; 1�; however,
in the lower y region, the magnitude of the asymmetry is
similar in both the spectator and the Gaussian models,
whereas in the TMD evolution approach, the asymmetry is
maximum around y ¼ 0.44 at Kt ¼ 2 GeV in NRQCD.
The asymmetry is small in the TMD evolution approach;
however, we obtain a significant asymmetry, ≈29%, in the
spectator model followed with ≈18% in the Gaussian
model at Kt ¼ 2 GeV and y ¼ 0.1.
In all the above discussed plots of the asymmetry as

functions of Kt and y, we have taken a fixed value of

z ¼ 0.7. However, in the lower panel (c) in Figs. 3–5, we
have plotted the cosð2ϕtÞ asymmetry as functions of z atffiffiffi
s

p ¼ 140 GeV and Kt ¼ 3 GeV for both NRQCD and the
CS. We have taken fixed values of y, namely, 0.1 and 0.8.
The peak of the asymmetry is ≈12% at z ≈ 0.7 in NRQCD
and ≈2% at z ≈ 0.4 in the CS at y ¼ 0.1. In all these plots,
we have used LDMEs from Ref. [55].
In Fig. 6, we have plotted both the TMDs fg1 and h

⊥g
1 and

their ratio q2t h
⊥g
1

2M2
Pf

g
1

as functions of qt for all three para-

metrizations. In all these plots, we have used similar
kinematics as we considered for the plots in Figs. 3–7.
In this kinematics, the x values of the gluon TMDs are of
the order of 10−3–10−2. We have plotted at the probing
scale, which is the virtuality of photon, Q2 ¼ M2

ψ þ K2
t ,

where Kt ¼ 3 GeV and at the fixed values of y ¼ 0.3 and
z ¼ 0.7. This sets x ≈ 0.012. From the plots of the ratio
q2t h

⊥g
1

2MPf
g
1

[Fig. 6(d)], we see that the TMDs in the spectator

model indeed saturate the positivity bound, whereas the
Gaussian parametrizations and TMD evolution approach
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FIG. 5. cos 2ϕt asymmetry calculated using Gaussian parametrization of TMDs for the eþ p → eþ J=ψ þ jetþ X process, as
functions of (a) Kt, (b) y, and (c) z. We have used

ffiffiffi
s

p ¼ 140 GeV. In (a) and (b), we have used z ¼ 0.7. In (a), we have taken
0.1 ≤ y ≤ 1 for the range of y integration, and in (b), we have used fixed values of Kt. In (c), we have taken Kt ¼ 3 GeV and fixed
values of y. We have used the CMSWZ set of LDMEs [55].
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satisfy the positivity bound but do not saturate it except for
qt ≈ 0.36 GeV, where Gaussian parametrization is saturat-
ing the positivity bound. Moreover, the ratio is larger in the
case of the Gaussian as compared with the TMD evolution
approach for almost the whole range of qt considered. In
the spectator model, tails of the TMDs in the small-x
domain depend on the trend of spectral function at large
MX [69]. We have checked that the spectator model results

in Eqs. (12) and (15) in Ref. [69] for the ratio q2t h
⊥g
1

2M2
Pf

g
1

at

x ¼ 0.001 without integrating over the spectral function
and does not saturate the positivity bound when MX is
large. However, if we multiply by the spectral function and
integrate over MX, the TMDs saturate the positivity bound
when x is of the order of 10−3–10−2; this could be because
the spectral function is zero for higher values of MX in
replica 11. However, in the higher x region, the TMDs do
not saturate the bound but satisfy it for the whole range of
the transverse momentum, qt.
In Fig. 7, we show a comparison of the upper bound

of the asymmetry with that calculated in spectator
model, Gaussian model, and TMD evolution approach atffiffiffi
s

p ¼ 140 GeV. The upper bound of the asymmetry is

calculated by saturating the positivity bound of TMDs in
Eq. (78) and fixing all the parameters mentioned above. We
have shown the result in both NRQCD and CS as a function
of Kt at y ¼ 0.3 (upper panel) and as a function of y at
Kt ¼ 2 GeV in the lower panel. In the case of TMD
evolution, the nonperturbative Sudakov factor corresponds
to bt lim ¼ 2 GeV−1. For all the plots the range of integra-
tion of qt ∈ ½0.0–1.0� GeV, z ¼ 0.7 and we have fixed the

virtuality of photon Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þ K2
t

q
.

We can see that the asymmetry calculated with the
spectator model is maximum and agrees with the upper
bound. As seen from Fig. 7, the asymmetry incorporating
TMD evolution is significantly smaller than that calculated
using Gaussian and spectator models for the gluon TMDs.
This is because the denominator of the asymmetry receives
contribution from the unpolarized gluon distribution which
has a LO term Eq. (61), whereas the numerator contains the
linearly polarized gluon distribution whose leading con-
tribution comes at OðαsÞ. If we exclude the LO term in the
unpolarized gluon TMD, we find the asymmetry increases
approximately 3 times. We also find that the magnitude of
the asymmetry does not change much if

ffiffiffi
s

p
is lower.
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FIG. 6. Unpolarized and linearly polarized gluon TMDs as a function of qt calculated in the spectator model (a), Gaussian model (b),
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p ¼ 140, Kt ¼ 3.0 GeV, y ¼ 0.3, and z ¼ 0.7. (d) shows the comparison between the
positivity bound for all the parametrizations.
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Lastly, in Fig. 8, we show the upper bound for the
absolute value of jAcos 2ϕt j within the NRQCD using two
sets of LDMEs, as well as the contributions coming from

individual states, i.e., 1Sð8Þ0 , 3Sð1;8Þ1 , and 3Pð8Þ
j . One can see

from Fig. 8(a) that, for the LDME set CMSWZ [55], the

dominating contribution comes from one single state, 1Sð8Þ0 ;
while from Fig. 8(b) one can see that, for the Sharma-Vitev
(SV) set of LDME [54], the dominating contribution comes
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FIG. 7. Upper bound of the asymmetry compared with the absolute values of Acos 2ϕt calculated in the spectator model, Gaussian
model, and TMD evolution, respectively, for e− þ P → e− þ J=ψ þ jetþ X at
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s

p ¼ 140. The left panel shows the asymmetry in
NRQCD and the right panel in CS. We have taken y ¼ 0.3 in the upper panels [(a) and (b)] and Kt ¼ 2 GeV in the lower
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from two states, 1Sð8Þ0 and 3Pð8Þ
j . So, we can conclude that

the asymmetry depends on the LDME set chosen. It is
worth mentioning here that our results for the upper bound
of the asymmetry do not match with those presented in
Ref. [42] even if we plot it using the same scale as in this
reference. We have traced this mismatch to a difference in

the sign of the contribution coming from the 3Pð8Þ
0 state to

the coefficient B0.

VII. CONCLUSION

We have presented a calculation of the cos 2ϕt asym-
metry in almost back-to-back production of a J=ψ and a jet
in ep collision, using TMD factorization and a generalized
parton model. This asymmetry is sensitive to the still-
unknown linearly polarized gluon distribution. We present
a numerical estimate of the asymmetry in the kinematical
region that will be accessible at the future EIC. We have
used NRQCD to calculate the J=ψ production rate and two

recent parametrizations for the gluon TMDs, one based on a
Gaussian-type distribution and another based on a spectator
model. The asymmetry is quite sizable; in fact, in the
spectator model, the asymmetry agrees with the upper
bound that is obtained by saturating the positivity condition
of the gluon TMDs. TMD evolution affects the asymmetry
at the energy of the EIC, making it smaller. The asymmetry
also depends on the LDMEs used, and the dominating
contribution comes from different states. We conclude that
the back-to-back production of J=ψ and a jet at the future
EIC will be a very useful channel to probe the linearly
polarized gluon TMDs.
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