
Thermal and thermoelectric responses of hot QCD medium in time-varying
magnetic fields

K. K. Gowthama ,1,* Manu Kurian,1,2,† and Vinod Chandra1,‡
1Indian Institute of Technology Gandhinagar, Gandhinagar-382355, Gujarat, India

2Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8, Canada

(Received 3 June 2022; accepted 25 July 2022; published 9 August 2022)

The thermal response of the hot QCD matter has been studied in the presence of a time-varying magnetic
field. The impact of the magnetic field, its time dependence, and the collision aspects of the medium on
thermal transport have been studied within the relativistic kinetic theory. The decay time of the magnetic
field in the medium seems to have a strong dependence on thermal conductivity. The applicability of the
Wiedemann-Franz law for the QCD medium has been investigated in the presence of time-varying external
electromagnetic fields. The phenomenological significance of thermal transport in heavy-ion collision
experiments has also been investigated by relating the thermal conductivity to the elliptic flow through the
Knudsen number. The investigations are extended to study the thermoelectric behavior of hot QCD
medium and its dependence on the magnetic field. The time dependent magnetic field is observed to
significantly influence the thermoelectric behavior of the medium.
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I. INTRODUCTION

The prime focus of experiments at Relativistic Heavy Ion
Collider (RHIC) and Large Hadron Collider (LHC) is to
study and characterize the properties of strongly interacting
matter: the quark-gluon plasma (QGP) [1–5]. The evolution
of the QGP produced in these experiments is modeled by
relativistic hydrodynamics, and transport coefficients of the
medium act as the input parameters governing the evolution
[6,7]. The theoretical description of the hadron elliptic flow
within dissipative hydrodynamics at collision experiments
at RHIC and LHC provide insights into various transport
processes in the QCD medium. Advances are made on the
phenomenological constraints on shear and bulk viscosities
of the QGP medium and is an interesting area of contem-
porary physics [8–10].
Recent measurements on directed flow of D0=D̄0 at the

RHIC and LHC gave indications of the presence of a strong
magnetic field in the early stages of collision experiments
[11,12]. The strength of the generated magnetic field is
expected to be in the order of 1018–1019 G [13–16] and
decay in space and time, depending on the electromagnetic

responses of the medium. However, a proper framework to
model the evolution of the generated field in the QGP
medium is not completely developed so far. Several recent
studies inferred that the magnetic field might persist for a
longer time in the medium and will affect the equilibrium
and nonequilibrium properties of the medium [17–21].
QCD thermodynamics and momentum transport processes
have been studied both in the weak magnetic field [22–26]
and strong field regimes [27–32]. Several attempts have
been made to explore the electromagnetic responses of the
medium to constant and inhomogeneous fields [22,33–41].
Recent investigations [42,43] suggested the significance

of nonvanishing temperature gradient over the spatial
separations of nonequilibrium fluid and chemical potential
gradient in the QCD medium in the context of spin Hall
current at the heavy-ion collision experiments. The current
study focuses on the thermal and thermoelectric transport
processes due to the temperature gradient in the QCD
medium in the presence of a time-evolving magnetic field.
The thermal transport process has received less attention

as compared to the momentum and electric charge transport
in the QCD medium. This is due to the fact that the baryon
number is not significant in the high energetic collision
experiments. But, the baryon number and chemical poten-
tial cannot be neglected for the lower energetic collision
experiments at RHIC beam energy scan and for upcoming
programs at the Facility for Antiproton and Ion Research
(FAIR). The thermal response of the medium due to the
temperature gradient has been studied [44–47], and the heat
current is shown to be along the direction of the local
temperature gradient. The phenomenological significance
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of thermal transport on the elliptic flow at collision
experiments has been studied [48]. The inclusion of a
constant magnetic field generates an extra “Hall-like”
component along the direction perpendicular to both the
magnetic and the thermal driving force [23,49]. The current
study is on the thermal transport process of the QCD
medium with a background time-varying magnetic field.
The focus of the regime is where the time inhomogeneity of
the external magnetic field is not large such that the
collisional aspects in the medium cannot be neglected in
the analysis. A general decomposition of heat current in the
presence of a time-varying magnetic field is formulated.
The relative significance of thermal response to the electric
charge transport in the QCD medium is analyzed.
The validity of the Wiedemann-Franz law is studied for
the chosen range of temperature. The dependence of the
magnetic field evolution in the medium on thermal con-
ductivity and its phenomenological significance are also
explored in the analysis.
Thermoelectric response of the QCD medium in the

presence of a time-varying magnetic field is another aspect
of focus. The decaying magnetic field will give rise to an
induced electric field and hence electric current in the QCD
medium. In addition to that, the temperature gradient in an
electrically conducting medium generates the electric
current, which can be described as the thermoelectric or
Seebeck effect. The thermoelectric properties of the con-
densed matter systems have been well explored and
recently started receiving attention for the QCD medium
[50]. In Refs. [51–54], the impact of the magnetic field on
Seebeck and Nernst coefficients has been investigated.
In the current study, a general formalism to describe
the thermoelectric behavior of the QCD medium is
presented while considering the time evolution of the
magnetic field.
The manuscript is organized as follows. In Sec. II, the

formalism for the thermal transport of the QCD medium in
a time-varying weak magnetic field is described within the
transport theory. Section III is devoted to discussions on the
phenomenological significance of thermal transport in
heavy-ion collision experiments. In Sec. IV, the thermo-
electric behavior of the QCD medium is discussed in the
presence of a time-evolving magnetic field. The results and
the followed discussions on the thermal and thermoelectric
responses of the QCD medium are presented in Sec. V.
Finally, the analysis is concluded with an outlook
in Sec. VI.
Notations and conventions: The subscript k represents

the particle species. The electric charge of kth species
particle with flavor f is denoted by qfk. The gluonic
degeneracy factor gg ¼

P
f 2Nc and gq=q̄ ¼ 2NcNf for

quarks and anti quarks, with Nf being the number of
flavors. The velocity of the particles is defined as v ¼ p

ϵk
,

where p is the momentum and ϵk is the energy. The vector
components are denoted by the Latin indices Ai for the

vector A. The quantity E ¼ jEj and B ¼ jBj denote the
magnitude of the electric and magnetic fields, respectively.

II. THERMAL TRANSPORT IN HOT QCD
MEDIUM

The energy-momentum tensor Tμν and particle flow Nμ

of the QGP medium can be defined in terms of quarks/
antiquarks and gluonic momentum distribution function as
follows,

TμνðxÞ ¼
X
k

gk

Z
dPkp

μ
kp

ν
kfkðx; pkÞ; ð1Þ

and

NμðxÞ ¼
X
k

gk

Z
dPkp

μ
kfkðx; pkÞ; ð2Þ

respectively. Here, dPk ≡ d3jpkj
ð2πÞ3ϵk is the integral measure.

The near-equilibrium momentum distribution function of
the medium particles can be defined as,

fk ¼ f0k þ δfk; f0k ¼
1

1� exp ðβðϵk ∓ μÞÞ ; ð3Þ

where f0k is the equilibrium part and δfk measures the
nonequilibrium correction to the momentum distribution
with δfk=f0k ≪ 1. Employing Eq. (3) in Eq. (1) and Eq. (2),
the macroscopic quantities can be represented with equi-
librium and nonequilibrium parts as Tμν ¼ T0 μν þ
ΔTμνðxÞ and Nμ ¼ N0 μ þ ΔNμðxÞ. The thermal response
of the hot QCD medium can be studied in terms of
dissipative net heat flow. The heat current for single
component particle can be defined as,

Iik ¼ ΔT0i
k − hkΔNi

k; ð4Þ

where hk is the enthalpy per particle. Employing Eq. (1)
and Eq. (2), the microscopic definition of heat flow takes
the form as,

Ik ¼
X
k

Z
dPkpkðϵk − hkÞδfk: ð5Þ

The nonequilibrium part of the distribution function can be
obtained by solving the Boltzmann equation by choosing
the appropriate collision integral and has the following
form,

pμ
k∂μfkðx; pkÞ þ ðqfkFμνpkμÞ∂ðpÞμ fk ¼ C½fk�; ð6Þ

where C½fk� is the collision kernel of the form, C½fk� ¼
− δfk

τRk
in the relaxation time approximation (RTA) and Fμν is
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the electromagnetic field strength tensor. We now proceed
to discuss the various cases of the magnetic field.

A. Case 1, (B= 0)

Within the RTA, an iterative Chapman-Enskog like
solution can be obtained for δfk as [24],

δfk ¼ τRk

�
βfp0

k∂0T þ pi
k∂iTg þ

T
p0
k

�
p0
k∂0

�
μ

T

�

þ pi
k∂i

�
μ

T

��
−

1

p0
k

fp0
kp

ν
k∂0uν þ pi

kp
ν
k∂iuνg

�
∂f0k
∂ϵk

;

ð7Þ

where τRk
is the thermal relaxation time. The δfk can be

decomposed into different independent thermodynamic
forces such as bulk pressure, shear viscous, and thermal
driving forces. The current focus is on the thermal
driving force due to the temperature gradient in the medium,
Xi ¼ ∂iT

T − ∂iP
nkhk

. The Eq. (7) can be further simplified by
employing relativistic Gibbs-Duhem relation, ∂iðμTÞ ¼
− hk

T2 ð∂iT − T
nkhk

∂iPÞ, and energy-momentum conservation
equation as,

δfk ¼ τRk

∂f0k
∂ϵk

ðϵk − hkÞvk:Xþ δfk shear þ δfk bulk: ð8Þ

B. Case 2, (constant B)

In a weakly magnetized QGP, the magnetic field can
be considered as a perturbation in the system as its
strength is much lesser than that of the temperature scale
of the medium. By solving the Boltzmann equation in
the presence of a weak magnetic field within RTA, the

nonequilibrium part of the distribution due to the thermal
driving force can be defined as follows [24],

δfk ¼ τRk

ðϵk − hkÞ
ð1þ τ2Rk

Ω2
ckÞ

½ðvk:XÞ þ τRk
Ωckvk:ðX × bÞ

þ τRk
Ω2

ckðb:XÞðvk:bÞ�
∂fok
∂ϵk

; ð9Þ

where Ωck ¼ qfk jBj
ϵk

and b is the direction of the magnetic
field. It is important to emphasize that for a strongly
magnetized medium, the charged particle will have
1þ 1-dimensional constrained Landau level dynamics,
which is beyond the scope of the current analysis.

C. Case 3, (time evolving B)

The evolution of the magnetic field affects the transport
process in the conducting medium. We start with an ansatz
for δfk in the presence of time dependent magnetic field as,

δfk ¼ ðp:ΞÞ ∂f
0
k

∂ϵk
; ð10Þ

where Ξ can be defined in terms of the external perturbation
and its time derivative that can deviate system slightly away
from equilibrium. We consider the leading order source
terms as B;X; ðX ×BÞ; _B; ðX × _BÞ. As we considered the
case of a slowly varying magnetic field, the terms with two
and higher order space-time derivatives are neglected.
Hence, the quantity Ξ takes the form as follows,

Ξ ¼ α1Bþ α2Xþ α3ðX ×BÞ þ þα4 _Bþ α5ðX × _BÞ:
ð11Þ

The unknown functions αi [i ¼ ð1; 2;…; 5Þ] can be
obtained by substituting Eq. (11) in the Boltzmann equa-
tion. Employing Eq. (11) in Eq. (6), we obtain

ϵkv:½ _α1Bþ α1 _Bþ _α2Xþ α3ðX × _BÞ þ _α3ðX ×BÞ þ _α4 _Bþα4B̈þ _α5ðX × _BÞ þ α5ðXþ B̈Þ� − ðϵk − hkÞv:X
− α2qfkv:ðX × BÞ þ α3qfkv:XðB:BÞ − α3qfkv:BðB:XÞ þ α5qfkv:Bð _B:XÞ − α5qfkv:

_BðB:XÞ
¼ −

ϵk
τR

½α1v:Bþ α2v:Xþ α3v:ðX ×BÞ þ α4v: _Bþ α5v:ðX × _BÞ�: ð12Þ

Comparing the tensorial structures on both sides of Eq. (12)
and solving the followed coupled equations, we can obtain
αi. The detailed calculation of αi is presented in Appen-
dix A. The general forms of the coefficients αi are obtained
as follows,

α1 ¼ −
iðB:XÞ
Fϵk

I0eη0 þ
iðB:XÞ
2Fϵk

I1eη1 þ
iðB:XÞ
2Fϵk

I2eη2 ; ð13Þ

α2 ¼ −i
F
2ϵk

I1eη1 þ i
F
2ϵk

I2eη1 ; ð14Þ

α3 ¼
I1
2ϵk

eη1 þ I2
2ϵk

eη1 ; ð15Þ

α4 ¼ −τRα1 −
qfkτ2R
ϵk

α3ðB:XÞ; ð16Þ
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α5 ¼ −τRα3; ð17Þ

where the functions ηj and Ij as defined in Eq. (A8),
depend on the profile of the magnetic field evolution.
Further, employing Eq. (10) in Eq. (5), the heat current
in the presence of time decaying magnetic field can be
defined as,

I ¼ κ0TXþ κ1TðX ×BÞ þ κ2TðX × _BÞ; ð18Þ

with κ0, κ1, and κ2 as thermal transport coefficients. It is
important to emphasize that the coefficients α1, α4 vanish
due to the parity considerations and with the choice of
direction of the magnetic field in the medium. The
components of the heat current will dependent on the
magnetic field evolution in the medium. To that end, we
have considered two different profiles for the time depen-
dent magnetic field.

1. Setup I

Here, the form of the magnetic field is adopted from
Refs. [55,56] as,

eB ¼ eB0ρðτÞρBðrÞ; ð19Þ

where ρðτÞ ¼ e−
τ
τB with τB as the decay parameter of the

magnetic field, describes the evolution of the field with
respect to the proper time. A higher value of τB indicates a
slowly varying magnetic field, and a lower value represents
a rapidly decaying field. In the presence of a conducting
medium, the magnetic field is expected to vary slowly, i.e.,
with a higher value of τB. As the focus is on the time-
evolving fields, the spatial distribution ρBðrÞ of the field is
neglected in the present analysis. We consider the case with
inhomogeneity of the external field to be small (i.e., a larger
value of decay parameter τB) such that collisional aspects of
the QCD medium cannot be neglected. In this limit, the
cyclotron frequency (proportional to the strength of the
magnetic field eB is in the same range of inverse of decay
parameter τB. This condition imposes constraints on the
strength of the magnetic field (to be in the weak field limit)
and inhomogeneity of the field (to be in the case of a
magnetic field with small inhomogeneity). Further, we fix
the direction of the temperature gradient and magnetic field
in the medium for the quantitative estimation. For the case
where magnetic field direction is transverse to the temper-
ature gradient in the medium and in the limit where
cyclotron frequency Ωk is approximately equal to the
inverse of the magnetic decay time, we obtain,

ηj ¼ −
τ

τR
þ aj

0
B@i

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
τB

τ

1
CA; ð20Þ

Ij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ τR
τB

q
B0

e

�
1
τR
þ 1

τB
−aji

ffiffiffiffiffiffi
1þτR

τB

p
τB

�
τ

�
1
τR
þ 1

τB
− aji

ffiffiffiffiffiffiffiffi
1þτR

τB

p
τB

� : ð21Þ

The coefficients αi for the particular choice of magnetic
field are obtained by substituting Eq. (20) and Eq. (21) in
Eqs. (13)–(22). Employing the forms of distribution func-
tion and magnetic field as in Eq. (19), the heat current takes
the form as,

I ¼ κ0TXþ ðκ̄1 þ κ̄2ÞTðX × bÞ; ð22Þ

where b is the direction of the chosen B and _B. The first
term in Eq. (22) denotes the leading order contribution to
heat current in the medium. The thermal conductivity κ0
takes the form as follows,

κ0 ¼
1

3T

X
k

gk

Z
dPk

p2
k

ϵk
ðϵk − hkÞ2

M1

M2
1 þM2

2

�
−
∂f0k
∂ϵk

�
;

ð23Þ

where the effects of magnetic field evolution are entering

through M1 ¼ ð 1τR þ 1
τB
Þ, M2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þτR=τB

p
τB

. The presence of
the magnetic field in the medium modifies κ0 and, in the
limit of B ¼ 0 and constant magnetic field, the thermal
conductivity κ0 reduce to the forms in Ref. [57] and
Ref. [23], respectively. The coefficients κ̄1 and κ̄2 asso-
ciated with the thermal transport arises due to the magnetic
field in the medium, and take the following forms,

κ̄1 ¼
1

3T

X
k

gk

Z
dPk

p2
k

ϵk
ðϵk − hkÞ2

1

τBðM2
1 þM2

2Þ
�
−
∂f0k
∂ϵk

�
;

ð24Þ

κ̄2 ¼
1

3T

X
k

gk

Z
dPk

p2
k

ϵk
ðϵk − hkÞ2

τR
τ2BðM2

1 þM2
2Þ
�
−
∂f0k
∂ϵk

�
:

ð25Þ

In Eq. (24), the term with κ̄1 describes the “Hall-like”
thermal response. The magnetic field can induce anisotropy
in the transport processes in the medium. Similar to the case
of electric charge transport, in the presence of a magnetic
field, there will be a flow of particles in the direction
perpendicular to the magnetic field and source of pertur-
bation (temperature gradient in the case of thermal trans-
port, and electric field in the case of electric charge
transport) due to the Lorentz force term. This corresponds
to a Hall-like heat current in the thermal transport process.
The component κ̄2 is the additional component that arises
due to the chosen time decay of the magnetic field in
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the medium. We have employed the decomposition of
heat current with κ0, κ̄1, and κ̄2 to highlight each contri-
butions separately. In the limit of constant magnetic field
(τB → ∞), κ̄2 vanishes. Also, in the case of a vanishing
magnetic field, the term associated with both κ̄1 and κ̄2
vanishes and reduces back to the isotropic result. Further,
we proceed to explore the dependence of the choice of
magnetic evolution on thermal transport in the medium.

2. Setup II

Here, we have adopted the form of the magnetic field as
in Ref. [58] in which the time dependence of the field can
be described as follows,

BðτÞ ¼ eB0

1þ τ=τB
: ð26Þ

Following the similar formalism as employed in the case of
setup I, the functions αi can be obtained for this particular
choice of the magnetic field evolution. The heat current
takes the same form as described in Eq. (22) for the setup II
with the form of conductivities as follows,

κ0 ¼
1

3T

X
k

gk

Z
dPk

p2
k

ϵk
ðϵk − hkÞ2

�
1þ A1

A2

��
−
∂f0k
∂ϵk

�
;

ð27Þ

κ̄1 ¼
1

3T

X
k

gk

Z
dPk

p2
k

ϵk
ðϵk − hkÞ2

ð1− 1=τBÞ
A2

�
−
∂f0k
∂ϵk

�
;

ð28Þ

κ̄2 ¼
1

3T

X
k

gk

Z
dPk

p2
k

ϵk
ðϵk − hkÞ2

τRð1− 1=τBÞ
τBA2

�
−
∂f0k
∂ϵk

�
;

ð29Þ

where Aj (j ¼ 1, 2) takes the form as A1¼

ϵk
qfkτB

 
τB
τR
− 1

τR
− τB

τ2R
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τRϵk

qfkB0τ
2
B

q
τB

!
, A2¼ τB

 
1
τ2R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τRϵk

qfkB0τ
2
B

q
τ2B

!
.

III. PHENOMENOLOGICAL SIGNIFICANCE OF
THERMAL TRANSPORT IN HEAVY-ION

COLLISION EXPERIMENTS

In this section, we consider the significance of thermal
transport in the presence of a time-evolving magnetic
field in the context of collision experiments. The thermal
conductivity obtained can be employed to study the
Knudsen number [59]. The impact of thermal conductivity
of the medium on the elliptic flow is explored in Ref. [48]
for the case of a vanishing magnetic field. The current study
focus on the dependence of magnetic field evolution on

thermal transport and its impact on the elliptic flow
coefficient. Another aspect is the comparative study of
thermal and electric charge transport in the QCD medium.
The relative significance of thermal conductivity to elec-
trical conductivity can be quantified in terms of Lorenz
number L.

A. Knudsen number and elliptic flow

Knudsen number, Kn, is defined as the ratio of the
mean path (λ) of the constituent particle to the size of the
system, l,

Kn ¼ λ

l
: ð30Þ

IfKn is equal to or greater than one, then the mean free path
is comparable to the system size, and the continuum
assumption of hydrodynamics is no longer applicable.
Hydrodynamical modeling applies when the mean free
path is less than the system size, Kn ≪ 1. The mean free
path is related to the thermal conductivity as λ ¼ 3κ0

vCv
where

v is the relative speed, andCv is the specific heat at constant
volume. Hence, the Knudsen number can be expressed in
terms of thermal conductivity as,

Kn ¼ 3κ0
lvCv

: ð31Þ

For the quantitative estimation, we have chosen v ≈ 1 and
l ¼ 1 fm [25]. The elliptic flow v2 can be expressed in
terms of the Knudsen number as [48],

v2 ¼
vh2

1þ Kn
Kn0

; ð32Þ

where vh2 is the elliptic flow at the hydrodynamical limit,
Kn → 0, the quantity Kn0 is a number obtained to fit the
Monte-Carlo simulations of the relativistic Boltzmann
equation [48]. In our present analysis we have taken
vh2 ¼ 0.3� 0.02 and Kn0 ¼ 0.7 [60]. The effects of a
time-varying magnetic field on the thermal conductivity
and hence the elliptic flow are discussed in detail in the
results and discussion section.

B. Thermal versus electric charge transport

The relative significance of thermal and charge transport
can be studied through the Wiedemann-Franz law, char-
acterized by the Lorenz number L,

L ¼ Thermal conductivity
Electrical conductivity × T

: ð33Þ

The value of L indicates if the medium is a good thermal or
electrical conductor. In condensed matter physics, it is
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observed that for metals, the Lorenz number, L, is a
constant as the temperature varies. This section aims to
study the behavior of the Lorenz number as a function of
temperature in the presence of a time-varying, weak
magnetic field and to explore the validity of the
Wiedemann-Franz law in different directions.
To study the charge transport of the medium in the

presence of an external electric field, E is introduced in
the direction transverse to that of the magnetic field. The
electric current density in the QCD medium can be defined
as [61],

j ¼ jeêþ jHðê × b̂Þ: ð34Þ

The Ohmic current je is along the direction of the electric
field ê, and Hall current jH is perpendicular to both the
electric and magnetic field. For the case of a time-evolving

magnetic field, we have je ¼ jð0Þe and jH ¼ jð0ÞH þ jð1ÞH with

jð0Þe ¼ 2E
3
Nc

X
k

X
f

ðqfkÞ2
Z

dPk
p2
k

ϵ2k

�
−
∂f0k
∂ϵk

�
N2; ð35Þ

jð0ÞH ¼ 2E
3
Nc

X
k

X
f

ðqfkÞ3
Z

dPk
p2
k

ϵ3k

�
−
∂f0k
∂ϵk

�
N1; ð36Þ

jð1ÞH ¼ 2E
3τB

Nc

X
k

X
f

ðqfkÞ3
Z

dPk
p2
k

ϵ3k

�
−
∂f0k
∂ϵk

�
τRN1; ð37Þ

where Nj (j ¼ 1, 2) functions can be defined as N1 ¼
ð 1τR þ 1

τB
ÞN, N2 ¼ −ðτRN1 −

τ2R
τ2B
NÞ=ð1þ ðτRτBÞ2Þ with,

N ¼

2
64 1

τR
þ 1

τB
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
τB

3
75
−1

: ð38Þ

The electric conductivities can be written in terms of the

currents as, σe¼jð0Þe =E, σð0ÞH ¼jð0ÞH =EB and, σð1ÞH ¼ jð1ÞH =EB.
It is important to note that if we switch on the time
dependence of the external electric field, the current density
will have more components with _E and _E × _B as source
terms. It can be seen that the thermal and electric charge
transport processes are analogous to each other. The thermal
driving force is the source of the response in thermal
transport, whereas the electric field plays a similar role in
the case of charge transport. The coefficient κ0 is analogous
to theOhmic conductivity associatedwith the electric charge
transport in the medium. Notably, similar to the behavior
of κ̄1 and κ̄2, Hall conductivity and its correction due to
time-varying magnetic field tends to zero in the limit of
vanishing chemical potential. The temperature and time-
varying magnetic field dependence of the Lorentz number
are discussed in the results section. Now, we proceed with

the thermoelectric behavior of the QCD medium in the
presence of a time-evolving magnetic field.

IV. IMPACT OF MAGNETIC FIELD
ON THERMOELECTRIC BEHAVIOR

OF QCD MEDIUM

In the presence of a time-varying magnetic field, there
are different sources of the induced electric field in the
conducting QGP medium. Most of the analyses consider
the electric field due to the time decay of the magnetic field
by using Faraday’s law. Recently, it has been realized that
the Seebeck effect can act as another source of the induced
electric field, which is due to the local temperature gradient
in the medium. Hence, the electric field induced in the
medium Eind can be expressed as,

Eind ¼ EF þET;

where EF is the electric field due to Faraday’s law,
∇ ×E ¼ ∂B

∂t and ET is the electric field induced due to
the local temperature gradient in the medium.
We follow the same prescription as in Ref. [62] to

explore the thermoelectric effect of the QGPmedium. Here,
we consider the case of an induced electric field from the
temperature gradient, and hence we employ ET ≡E with
E ¼ jEj in the rest of the analysis. The net current density
of the QGP medium can be expressed as,

j ¼ 2Nc

X
f

Z
dPkvðqqfq − qq̄fq̄Þ; ð39Þ

with the nonequilibrium part of the distribution function
δfk ¼ fk − f0k takes the form as,

δfk ¼ p:½β1Eþ β2Bþ β3Xþ β4ðX ×BÞ þ β5 _B

þβ6ðX × _BÞ þ β7ðE ×BÞ þ β8ðE × _BÞ� ∂f
0
k

∂ϵk
: ð40Þ

The induced electric field can be obtained by considering
the steady-state solution, j ¼ 0, to obtain a relation
between E and ∇T. The electric field induced due to the
temperature gradient in the presence of a magnetic field is
along two directions, say along the direction of ∇T and
∇T × B respectively, and characterized by the Seebeck
coefficient SB and Nernst coefficient NB,

�
Ex

Ey

�
¼
�

SB NB

−NB SB

� dT
dx
dT
dy

!
: ð41Þ

The Seebeck and Nernst coefficients in the presence of a
time-varying magnetic field can be defined as follows,
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SB ¼ L1L3 þ L2L4 þ L2L6 þ L5L4 þ L5L6

L2
1 þ ðL2 þ L5Þ2

; ð42Þ

NB ¼ L1L4 þ L6L1 − L2L3 − L5L3

L2
1 þ ðL2 þ L5Þ2

; ð43Þ

where the integrals Li, i ¼ 1, 2..6 take the following forms,

L1 ¼
2E
3
Nc

X
k

X
f

ðqfkÞ2
Z

dPk
p2
k

ϵ2k

�
−
∂f0k
∂ϵk

�
N2; ð44Þ

L2 ¼
2E
3
Nc

X
k

X
f

ðqfkÞ3
Z

dPk
p2
k

ϵ3k

�
−
∂f0k
∂ϵk

�
N1; ð45Þ

L3¼
Nc

3T

X
k

X
f

qfk

Z
dPk

p2
k

ϵ2k

ðϵk−hkÞM1

M2
1þM2

2

�
−
∂f0k
∂ϵk

�
; ð46Þ

L4¼
Nc

3T

X
k

X
f

qfk

Z
dPk

p2
k

ϵ2k

ðϵk−hkÞ
τBðM2

1þM2
2Þ
�
−
∂f0k
∂ϵk

�
; ð47Þ

L5¼
2E
3τB

Nc

X
k

X
f

ðqfkÞ3
Z

dPk
p2
k

ϵ3k

�
−
∂f0k
∂ϵk

�
τRN1; ð48Þ

L6¼
Nc

3T

X
k

X
f

qfk

Z
dPk

p2
k

ϵ2k

τRðϵk−hkÞ
τ2BðM2

1þM2
2Þ
�
−
∂f0k
∂ϵk

�
: ð49Þ

We discuss the impact of the magnetic field, its time
evolution, and chemical potential on the thermal and
thermoelectric behavior of the QGP medium in the next
section.

V. RESULTS AND DISCUSSIONS

We initiate the discussions with the transport coefficients
associated with the thermal response of the QCD medium.

The thermal transport process in the presence of a time-
varying magnetic field is quantified by the thermal con-
ductivity κ0, which is leading order in terms of thermal
relaxation time and Hall-like conductivities (κ̄1 and κ̄2) as
described in Eq. (22). The impact of the time dependence of
the magnetic field on the temperature behavior of the κ0
with nonvanishing chemical potential is depicted in Fig. 1
(left panel). The choice of the magnetic field evolution in
the medium (with setup I and setup II) is shown to have a
significant impact on thermal conductivity. The proper time
evolution of κ0 in the QCD medium for eB0 ¼ 0.08 GeV2

at μ ¼ 100 MeV is shown in Fig. 1 (right panel). Notably,
the impact of the magnetic field evolution has more visible
effects on the initial time.
In Fig. 2 (left panel), the effect of magnetic field decay

parameter τB and chemical potential on κ0 is shown.
Quantitatively, κ0 increases with an increase in the decay
parameter. This indicates that the magnetic field which
decays slowly or persists longer in the QCD medium has
more impact on the thermal transport of the medium. It is
also important to emphasize that the thermal response of
the medium is more visible in the high baryon density
regimes. The magnetic field induces anisotropy in the
thermal transport of the QCD medium and gives rise to
heat current along the direction transverse to that of the
magnetic field and temperature gradient. Relative signifi-
cance of κ0, κ̄1 and κ̄2 are shown in Fig. 2 (right panel) for
various values of τB. The decay of the magnetic field is seen
to have a significant role in the ratio, especially in the lower
temperature regime.
The temperature behavior of the Knudsen number in the

presence of a time-evolving magnetic field is depicted in
Fig. 3. The impact of the time dependence of the magnetic
field on the Knudsen number is seen to be more pro-
nounced in the temperature regime near the transition
temperature. The Knudsen number obtained preserves
the continuum hypothesis, and hydrodynamics applies to

FIG. 1. Left: temperature dependence of thermal conductivity κ0 for two different choices of magnetic field. The result is compared
with the transport theory estimation with constant magnetic field [59]. Right: the proper time evolution of κ0 in the QGP medium. We
consider eB0 ¼ 0.08 GeV2 and μ ¼ 100 MeV for the analysis.
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the system of hot QCD matter as Kn ≪ 1. It is seen that the
Knudsen number increases with the decay rate of the
magnetic field. A longer persisting magnetic field can
affect the elliptic flow in the heavy-ion collision experi-
ments. The dependence of elliptic flow v2 on the tempera-
ture in a weakly magnetized medium is depicted in Fig. 4.
The dependence of elliptic flow on the time dependence of
the magnetic field is realized with various choices of τB. We
have observed that the longer the magnetic field persists,
the larger its effect on v2, and the effect is more pronounced
in the low temperature regime. We have compared the
results with the observation from Ref. [63].
The relative importance of thermal and electric charge

transport in the QCD medium is analyzed using the
Wiedemann-Franz law. The impact of chemical potential
and temperature of the medium in the presence of a time-
evolving magnetic field is shown in Fig. 5. As the magnetic
field induces anisotropy in the medium, the Lorentz
number is estimated in two different directions, say along
the direction of the source of perturbations (thermal driving

force and the electric field) and the direction perpendicular
to the magnetic field in the medium. The thermal and the
charge transport in the transverse direction of the magnetic
field will have respective corrections due to the time
dependence of the field in the medium as κH ¼ κ̄1 þ κ̄2
and σH ¼ σð0ÞH þ σð1ÞH . It is observed that the Wiedemann-
Franz law is violated in both directions, and the value is
dependent on the decay parameter of the magnetic field τB.
In Fig. 6, the thermoelectric coefficients are plotted as a

function of quark chemical potential and temperature in the
presence of an evolving magnetic field. It is important to
note that along with the temperature gradient, a nonvanish-
ing chemical potential is required for the thermoelectric
transport in the medium. The interplay of chemical poten-
tial and temperature on the Seebeck coefficient and Nernst
coefficient is analyzed. It is observed that the temperature
has a dominant role on the Seebeck coefficient than the
chemical potential. However, for the case of the Nernst

FIG. 2. Left: the effect of chemical potential and magnetic field decay parameter on κ0 at a constant temperature T ¼ 200 MeV.
Curved lines denote constant value contours of κ0. Right: temperature dependence of the ratio of Hall-like thermal conductivity κ̄1 and
κ̄1 þ κ̄2 to κ0, for two different choices of magnetic field at μ ¼ 100 MeV.

FIG. 3. The temperature behavior of Knudsen number Kn for
various values of magnetic field decay parameter, τB ¼ 2, 3, 6 fm
at μ ¼ 100 MeV.

FIG. 4. Elliptic flow v2 as a function of multiplicity. The result
is compared with that from [63]. Inset plot: the temperature
dependence of v2 for various magnetic field decay parameter
values, τB ¼ 2, 3, 6 fm at μ ¼ 100 MeV.
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coefficient, the chemical potential seems to have a stronger
dependence than the temperature of the medium.

VI. CONCLUSION AND OUTLOOK

We have explored the thermal and thermoelectric
responses of the hot QCD medium in the presence of a
time-varying magnetic field. We have obtained a general
form of the heat current by solving the relativistic transport
equation within the RTA for two different choices of
magnetic field evolution in the medium. The thermal
response due to the temperature gradient in the QCD
medium has been quantified in terms of thermal

conductivity. The decay time of the magnetic field and
chemical potential in the medium seems to have a strong
dependence on the induced heat current and temperature
behavior of associated transport coefficients. The additional
components of heat current due to the magnetic field and its
time evolution in the medium have been explored in the
analysis. The general framework of the thermal transport
presented in the current study is consistent with other
parallel studies and reproduce the results with constant and
vanishing magnetic field with the appropriate choice of
the field.
The phenomenological relevance of the thermal transport

of the medium with a time-evolving magnetic field has

FIG. 5. The relative significance of thermal to electric charge transport is plotted against temperature on the x-axis and chemical
potential on the y-axis along two different directions, (left panel) κ0

σeT
and (right panel) κH

σHT
for a constant value of magnetic field decay

rate, τB ¼ 5 fm. Curved lines denote constant value contours of depicted quantities.

FIG. 6. Left: the Seebeck coefficient SB is plotted against temperature on the x-axis and chemical potential on the y-axis. Right: the
same plot for Nernst coefficient NB. The analysis has been carried out for a constant value of magnetic field decay rate, τB ¼ 5 fm.
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been investigated by studying elliptic flow. Further, we
have analyzed the relative significance of thermal and
electric charge transport in the hot QCD medium by
evaluating the Lorenz number along two directions, along
the direction of sources of perturbation and the direction
perpendicular to that of the magnetic field. It is seen that the
Wiedemann-Franz law is violated in the QCD medium,
especially in the temperature regime near the transition
temperature, in the presence of the time-dependent weak
magnetic field. Finally, we have explored the dependence
of magnetic field evolution on Seebeck and Nernst coef-
ficients associated with the thermoelectric response of the
QCD matter. The impacts of the decay time of magnetic
field, chemical potential, and temperature on the thermo-
electric coefficients of the QCDmedium have been studied.
The thermal transport of the medium will be more

relevant for upcoming experiments at FAIR as the baryon
chemical potential will be significant in lower energetic
collisions. The current analysis can be extended to explore
the viscous coefficients of the QCDmedium in the presence
of inhomogeneous electromagnetic fields. The chirality,
spin, and rotational effects of the medium on the electric
charge transport is another interesting aspect to explore in
the near future.
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APPENDIX A: CALCULATION OF αi

In the present study, we consider the case of a slow-
varying magnetic field to include the collisional aspects of
the medium. Hence, the terms with _α4 and _α5 are neglected
in the present analysis as we are neglecting terms with
second and higher order derivatives of the external pertur-
bation. Comparing the tensorial structure on both sides of
Eq. (12), we get,

_α1 ¼ −
1

τR
α1 þ

qfkðB:XÞ
ϵk

α3 ðA1Þ

_α2 ¼ −
�
1

τR
α2 þ

�
qfkðB:B −B: _BÞ

ϵk

�
α3 −

ϵk − hk
ϵk

�
; ðA2Þ

_α3 ¼ −
1

τR
α3 þ

qfk
ϵk

α2; ðA3Þ

along with the coupled equations,

α4 ¼ −τR
�
α1 þ

τRqfkðB:XÞ
ϵk

α5

�
; α5 ¼ −τRα3: ðA4Þ

Further, Eq. (A1)–(A3) can be expressed in terms of matrix
equation as,

dX
dt

¼ AX þ G; ðA5Þ

where the matrices take the following forms,

X ¼

0
B@

α1

α2

α3

1
CA; A ¼

0
BBB@

− 1
τR

0
qfk
ϵk
ðB:XÞ

0 − 1
τR

− qfkF
2

ϵk

0
qfk
ϵk

− 1
τR
;

1
CCCA;

G ¼

0
B@

0
ϵk−hk
ϵk

0

1
CA; ðA6Þ

where F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB − τR _BÞ

q
. Equation (A5) can be solved by

diagonalizing the matrix A and employing the variation of
constants method by considering the parameters c1, c2, and
c3 to be dependent on time as, c1ðτÞ, c2ðτÞ, and c3ðτÞ. The
solution is as follows,

α1 ¼ c1eη1 þ ζc2eη2 − ζc3eη3 ;

α2 ¼ −c2iFeη2 þ c3iFeη3 ; α3 ¼ c2eη2 þ c3eη3 : ðA7Þ

The functions c1ðτÞ, c2ðτÞ and c3ðτÞ can be defined as

c1 ¼ −i ðϵk−hkÞϵk
ζI1, c2 ¼ i ðϵk−hkÞ

2ϵk
I2, and c3 ¼ −i ðϵk−hkÞ

2ϵk
I3

for the parameter ζ ¼ iðB:XÞ
F . The integrals ηj and Ij

(j ¼ 1, 2, 3), take the following forms,

ηj ¼ −
τ

τR
þ aj

qfki

ϵk

Z
Fdτ; Ij ¼

Z
e−ηj

F
ðω − hkÞdτ;

ðA8Þ

with a1 ¼ 0, a2 ¼ 1 and a3 ¼ −1. Substituting Eq. (A8) in
Eq. (A7), we obtain the form of αi.

APPENDIX B: CALCULATION OF βi

Substituting the form of δfk as defined in Eq. (40) in the
Boltzmann equation with the RTA collision kernel,

∂fk
∂t

þ v:
∂fk
∂x

þ qfkðEþ v ×BÞ: ∂fk
∂p

¼ −
δfk
τR

: ðB1Þ

Following the same formalism as in Appendix A, the
coefficients βi, i ¼ 1…8 can be described as follows,
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β1 ¼ −
Ω̃k

2
ðI1eη1 þ I2eη2Þ; ðB2Þ

β2¼−
iðB:XÞ
Fϵk

I0eη0 þ
iðB:XÞ
2Fϵk

I1eη1 þ
iðB:XÞ
2Fϵk

I2eη2 ; ðB3Þ

β3 ¼ −i
F
2ϵk

I1eη1 þ i
F
2ϵk

I2eη1 ; ðB4Þ

β4 ¼
I1
2ϵk

eη1 þ I2
2ϵk

eη1 ; ðB5Þ

β5 ¼ −τRα1 −
qfkτ2R
ϵk

α3ðB:XÞ; ðB6Þ

β6 ¼ −τRα3; ðB7Þ

β7 ¼
qfki

2ϵk
ðI1eη1 − I2eη2Þ; ðB8Þ

β8 ¼ −
τRqfki

2ϵk
ðI1eη1 − I2eη2Þ; ðB9Þ

with, Ω̃k ¼ qfkF
ϵ .
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