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In-hadron condensates, defined as the scalar form factors at zero-momentum transfer, are investigated for
flavor-symmetric mesons in pseudoscalar and vector channels under the rainbow-ladder (RL) truncation
within the Dyson-Schwinger equations framework. We confirm the efficiency of the in-hadron condensates
in describing the effects of dynamical chiral symmetry breaking from both global and structural
perspectives by comparing the meson masses, the dimensionless in-hadron condensates, and the partial
wave decompositions of in-hadron condensates as functions of current-quark mass. From partial wave
analysis, πð1300Þ is inferred as a radial excitation dominated by s waves, while ρð1450Þ needs further
studies beyond the RL truncation. This work provides a new insight into the studies of hadron properties
with partial wave analysis for the in-hadron condensates.
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I. INTRODUCTION

The chiral symmetry and its breaking are essential in
quantum chromodynamics (QCD) and play an important
role in hadron physics [1–4]. Because of the nonvanish-
ing current-quark mass, the chiral symmetry is broken
explicitly. The current mass of u=d quark is 3–5 MeV.
However, the constitute mass of the u=d quark inside the
nucleon is 300–500 MeV. It is believed that this large
mass gap stems from the so-called dynamical chiral
symmetry breaking [5,6].
Theoretical studies on dynamical chiral symmetry

breaking require nonperturbative tools, such as effective
field models [7–9], the functional renormalization group
method [10,11], the Dyson-Schwinger equations (DSEs)
approach [12–16], and lattice QCD [17,18]. In particular,
starting from the first principle, the DSEs approach
preserves the dynamical chiral symmetry breaking and
the quark confinement of QCD simultaneously. The DSEs
approach has been successfully applied to study the
hadron properties [19–22], hot and dense nuclear matter
[23–25], and QCD phase transitions [26–28].
With the DSEs approach, the effects of dynamical chiral

symmetry breaking can be reflected in quantities such as

quark mass function [29,30], sigma-term [31,32], and
hadron decay constants [33]. The vacuum quark condensate
is the order parameter of dynamical chiral symmetry
breaking, which can measure the effects more directly
[34,35]. However, the vacuum quark condensate is not well
defined since it badly diverges at finite current-quark mass
[35,36]. Besides, quarks are confined inside hadrons. The
confinement effect is not considered in the vacuum quark
condensate, which might be related to the large cosmo-
logical constant [37,38].
In Refs. [33,34], the “in-hadron condensate” is first

proposed from the Gell-Mann–Oakes-Renner (GMOR)
relation [39]. This in-hadron order parameter of dynamical
chiral symmetry breaking is finite at nonvanishing current-
quark mass and might reduce the cosmological constant to
the observed value [40]. However, this original definition is
only valid in the pseudoscalar channel and is hard to extend
to other channels. In Ref. [41], the scalar form factor at
zero-momentum transfer is proved as an equivalent quan-
tity to measure the effects of dynamical chiral symmetry
breaking, which can be easily extended to all hadrons [32].
Besides, it can also describe the responses of hadron
masses to the current-quark mass, which can help to place
constraints on the fundamental constants of nature by using
observational data [42].
The scalar form factor at zero-momentum transfer,

named in-hadron condensate hereafter, can not only mea-
sure the global effects of dynamical chiral symmetry
breaking, but also provide a structural perspective for the
effects of dynamical chiral symmetry breaking. It is known
that hadrons have rich and complicated Dirac tensor
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structures constrained by Poincaré covariance [43–45]. By
organizing the Dirac tensors with respect to spin and orbital
angular momentum of quarks, “partial wave analysis” can
be used to distinguish the contributions of corresponding
partial waves to the in-hadron condensates [46,47].
In this work, we solve the gap equation for the quark

propagator, the homogeneous Bethe-Salpeter (BS) equa-
tion for BS amplitude, and the inhomogeneous BS equation
for scalar vertex within the DSEs framework under the
rainbow-ladder (RL) truncation scheme. To measure the
global effects of dynamical chiral symmetry breaking,
the hadron masses and the in-hadron condensates are
calculated for the ground and first-excited states of flavor-
symmetric mesons in pseudoscalar and vector channels.
Afterward, the partial wave analyses are performed to the
in-hadron condensates to provide a structural perspective
for the effects of dynamical chiral symmetry breaking.
This paper is organized as follows. In Secs. II and III, the

definition of the in-hadron condensate and the theoretical
framework of the DSEs approach are introduced, respec-
tively. In Sec. IV, the calculated results and discussions are
presented. Finally, a summary is given in Sec. V.

II. QUARK CONDENSATES:
FROM VACUUM TO IN-HADRON

In the chiral limit, the vacuum quark condensate is
defined as

−hq̄qivac0 ¼ Z4tr
Z

Λ

q
Sm̂¼0ðqÞ; ð1Þ

where Sm̂¼0ðqÞ is the quark propagator in the chiral limit,
where q is the momentum and Z4 is the corresponding
renormalization constant.

R Λ
q represents a Poincaré invari-

ant regularization of the four-dimensional integral with Λ
the regularization mass scale. The trace is over color and
Dirac space.
Much success has been achieved in describing the effects

of dynamical chiral symmetry breaking by using the
vacuum quark condensate. Nevertheless, it suffers from
some problems. For example, the vacuum quark condensate
is badly divergent for finite current-quark mass. Although
this divergence can be partly eliminated by using sub-
traction schemes, ambiguities still exist, especially at large
current-quark mass [1,28,36,48–51]. In addition, the cos-
mological constant derived from the vacuum quark con-
densate is about 1046 times larger than the observed
value [40]. It is argued that the quark condensate can be
modified by the strong interaction inside the hadrons,
where the vacuum quark condensate fails to provide a
reasonable and realistic measure [38].
To settle these problems, it is natural to generalize the

definition of the quark condensate from vacuum to in-
hadron. As pion is the lightest hadron and the Goldstone

boson associated with dynamical chiral symmetry break-
ing, the in-pion condensate is first investigated. In
Ref. [33], the GMOR relation [39] is reconsidered, which
connects the pion decay constant fπ and mass Mπ with the
vacuum quark condensate,

f2πM2
π ≈ −ðmu þmdÞhq̄qivac0 ; ð2Þ

where mu=d is the current-quark mass, and fπ is related to
h0jq̄γ5γμqjΠi with jΠi as the pion state. Alternatively, the
quantity on the left-hand side of Eq. (2) can be obtained
with the decay constant ρπ by equating pole terms of the
corresponding axial and pseudoscalar vertices in axial-
vector Ward Takahashi identity (AV-WTI) [33],

f2πM2
π ¼ ðmu þmdÞfπρπ; ð3Þ

where ρπ is defined as iρπ ¼ −h0jq̄iγ5qjΠi.
Comparing Eqs. (2) and (3), one can naturally define the

in-pion condensate [34,37,41] as

−hq̄qiπ ≔ fπρπ: ð4Þ

This definition is valid for nonvanishing current-quark mass
and can return to the vacuum quark condensate in the chiral
limit, as long as the chiral limit residue of the bound state
pole in the pseudoscalar vertex is defined as [33]

ρ0π ¼ −
1

f0π
hq̄qivac0 ; ð5Þ

where f0π is the value of fπ in the chiral limit. The in-pion
condensate has been used to measure the effects of dynami-
cal chiral symmetry breaking inside the pion [33,34,37].
This definition in Eq. (4) is valid only for pseudoscalar
mesons and is hard to extend to other hadrons [34].
In Ref. [41], it is proved that the in-pion condensate can

also be represented through the scalar form factor at zero-
momentum transfer Q2 ¼ 0,

Sπð0Þ ¼ −hΠj 1
2
ðūuþ d̄dÞjΠi: ð6Þ

In addition, the scalar form factor at zero-momentum
transfer can be extended to other channels to measure
the effects of dynamical chiral symmetry breaking inside
the corresponding hadrons. Generally, the scalar form
factor at zero-momentum transfer for the flavor-symmetric
meson can be represented with the expectation value of the
operator q̄q in the meson state jPi [41]

SPð0Þ ¼ −hPjq̄qjPi; ð7Þ

where P is the meson momentum and is related to the
meson mass MP via the on-shell condition P2 ¼ −M2

P.
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Constrained by the AV-WTI, the scalar form factor is
related to the hadron mass MP and the current-quark mass
mq by [32,52]

SPð0Þ ¼ MP
∂MP

∂mq
: ð8Þ

This relation can be viewed as a consequence of the
Feynman-Hellmann theorem [53]. It is found that the
dimensionless quantity SPð0Þ=MP is equivalent to
the response of hadron mass to the current-quark mass,
therefore it is a measure of the global effects of dynamical
chiral symmetry breaking.
Within the DSEs framework, the quantity SPð0Þ can also

be calculated from the loop integration

SPð0Þ ¼ tr
Z

Λ

q
Γ̄Pðq;−PÞSðqþÞΓsðqþ; 0ÞSðqþÞ

× ΓPðq;PÞSðq−Þ; ð9Þ

where Sðq�Þ are the renormalized dressed quark propa-
gators with momentum q� ¼ q� 1

2
P. ΓPðq;PÞ represents

the BS amplitude of the meson and Γsðqþ; 0Þ is the scalar
vertex with zero momentum. The corresponding diagram is
shown in Fig. 1. It is obvious that Eq. (9) can be used to
analyze the partial wave contributions of the BS amplitudes
to the in-hadron condensates, which makes it feasible to
probe the effects of dynamical chiral symmetry breaking
from a structural perspective.

III. DYSON-SCHWINGER EQUATION APPROACH

The equations of motion for Green’s functions of QCD
fields are described by a set of infinite coupled equations,
i.e., DSEs. The accurate solutions of the DSEs are
impossible to obtain. To solve the DSEs in practice, the
truncation schemes as well as the interaction models are
necessary. In this work, the RL truncation in Refs. [54,55]
and a simplified version of the interaction in Ref. [56] are
employed to solve the quark propagator Sðq�Þ, the BS
amplitude ΓPðq;PÞ, and the scalar vertex Γsðqþ; 0Þ
in Eq. (9).

A. The quark propagator

The Dyson-Schwinger equation for the quark propagator
is known as the gap equation, which reads [19]

S−1ðqÞ ¼ Z2ði=qþ ZmmqÞ þ ΣðqÞ; ð10Þ

where ΣðqÞ is the self-energy,

ΣðqÞ ¼ g2Z1

Z
Λ

k
DμνðlÞ

λa

2
γμSðkÞ

λa

2
Γνðk; qÞ: ð11Þ

The renormalization constants Z1, Z2, and Zm correspond
to the quark-gluon vertex, quark propagator, and current-
quark mass, respectively. λ

a

2
is the fundamental representa-

tion of SUð3Þ color symmetry. DμνðlÞ with l ¼ q − k is the
renormalized dressed gluon propagator and Γνðk; qÞ is the
renormalized dressed quark-gluon vertex. g is the coupling
constant. The corresponding diagram of Eqs. (10) and (11)
is shown in Fig. 2.
For the dressed gluon propagator and the dressed quark-

gluon vertex, the following ansatz in Ref. [56] is used:

Z1g2DμνðlÞΓνðk; qÞ ¼ l2Gðl2ÞDfree
μν ðlÞγν; ð12Þ

where the dressed quark-gluon vertex Γνðk; qÞ in the quark
self-energy in Eq. (11) is truncated to the tree level γν.
Dfree

μν ðlÞ ¼ ðδμν − lμlν=l2Þ=l2 is the free gluon propagator
in the Landau gauge. The nonperturbative dressing effect
is absorbed in the effective interaction function Gðl2Þ,
which is supposed to compensate for all the missing
pieces in the quark-gluon vertex [56,57]. Because the
nonperturbative features are insensitive to the ultraviolet
behavior of the interaction, in this work we adopt a
simplified version of the interaction in Ref. [56], where
only the infrared part is kept,

Gðl2Þ ¼ 8π2

ω4
De−l

2=ω2

: ð13Þ

In this case the renormalization procedure can be skipped.
In Eq. (13) the parameters D and ω control the strength
and width of the interaction, respectively. It is found
that the observables of vector and pseudoscalar mesons
are insensitive to variations of ω ∈ ½0.4; 0.6� as long as
Dω ¼ const. In this work, the parameters are chosen to be
ω ¼ 0.5 GeV with Dω ¼ ð0.85 GeVÞ3 to obtain both
fπ ¼ 0.093GeV and Mπ ¼ 0.138 GeV at the current-
quark mass mu=d ¼ 5 MeV.

FIG. 1. The diagram for the in-hadron condensate in Eq. (9).
P and q� are the momenta of the mesons and quark propagators.
Q is the transfer momentum with Q2 ¼ 0. FIG. 2. The diagram for the gap equation in Eqs. (10) and (11).
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B. The Bethe-Salpeter amplitude of the mesons

The BS amplitude of the mesons can be solved from the
renormalized homogeneous BS equation, which reads

½ΓPðq;PÞ�αβ ¼
Z

Λ

k
Kαγ;βδðq; k;PÞ½SðkþÞΓPðk;PÞSðk−Þ�γδ:

ð14Þ

Kαγ;δβðq; k;PÞ is the quark-antiquark scattering kernel with
α, β, γ, and δ as the Dirac and color indices. The momentum
k� ¼ k� 1

2
P are carried by the quark and antiquark

propagators, respectively, with k as the relative momentum.
For this eigenequation, solutions exist only for particular,
separated values of P2. The corresponding diagram is
shown in Fig. 3.
To solve the homogeneous BS equation, the truncation

of the quark-antiquark scattering kernel K is performed
with respect to the constraints of AV-WTI [58–60].
Considering that the quark-gluon vertex is truncated to
the tree level in Eq. (12), here we choose the one-gluon
exchange for the scattering kernel,

Kαγ;βδðq; k;PÞ ¼ −Gðl2Þl2Dfree
μν ðlÞ

�
γμ

λa

2

�
αγ

�
γν
λa

2

�
βδ

:

ð15Þ

The united truncation scheme combining Eq. (12) for the
quark-gluon vertex and Eq. (15) for the scattering kernel
is the so-called RL truncation [61]. It is the first term
in a nonperturbative, systematic, and symmetry-preserving
approximation. RL truncation preserves the one-loop
renormalization group properties of QCD and has provided
a uniformly accurate description and prediction for a wide
range of hadron properties [12,62–64].
For mesons with spin parity JP, the BS amplitude

ΓPðq;PÞ can be expanded in the corresponding tensor
basis τiPðq;PÞ,

ΓPðq;PÞ ¼
XN
i¼1

τiPðq;PÞF iðq2; q · PÞ; ð16Þ

where F iðq2; q · PÞ is the scalar coefficient function. N is
the dimension of the tensor basis determined by the meson

spin J. In this work, we focus on the pseudoscalar
(JP ¼ 0−) and vector (JP ¼ 1−) mesons at ground states
and first-excited states, where N ¼ 4 for J ¼ 0 and N ¼ 8
for J ¼ 1. The orthogonal Dirac bases are summarized in
Tables I and II for pseudoscalar and vector mesons,
respectively [43]. The basis elements are organized with
respect to their quark spin S and orbital angular momentum
L in the meson’s rest frame, where L ¼ 0, 1, and 2
corresponds to s, p, and d waves, respectively [47]. In
the Dirac bases, P̂ ¼ P=jPj is the unit vector of the meson
momentum, and qμ⊥ ¼ qμ − q · P̂P̂μ is the relative momen-
tum transverse to the corresponding meson momentum P.
The Dirac matrix γμ⊥ ¼ γμ − γ · P̂P̂μ is also transverse to P.

C. The scalar vertex

The scalar vertex can be obtained by solving the
inhomogeneous BS equation. With RL truncation, it reads

Γsðq;QÞ¼1þg2
Z

Λ

k
DμνðlÞ

λa

2
γμSðkþÞΓsðk;QÞSðk−Þ

λa

2
γν;

ð17Þ

where Dμν is the dressed gluon propagator with ansatz
given in Eq. (12). Sðk�Þ are the quark propagator as the
solutions of Eqs. (10) and (11). The diagram is shown
in Fig. 4.
Equation (17) can be solved with an iterative algorithm

and the solution can be expanded with the full Dirac basis
in a scalar channel,

FIG. 3. The diagram for the homogeneous BS equation in
Eq. (14).

TABLE I. The orthogonal Dirac basis for pseudoscalar
(JP ¼ 0−) channel with S and L as the spin and the orbital
angular momentum.

i τi S L

1 γ5 0 0
2 γ5γ · P̂ 0 0
3 γ5γ · q⊥ 1 1
4 γ5½γ · q; γ · P̂� 1 1

TABLE II. Similar to Table I but for vector (JP ¼ 1−) channel.

i τi S L

1 γμ⊥ 1 0

2 γμ⊥γ · P̂ 1 0

3 qμ⊥1 0 1

4 qμ⊥γ · P̂ 0 1

5 ½γμ⊥; γ · q⊥� 1 1

6 γμ⊥½γ · q; γ · P̂� − 2qμ⊥γ · P̂ 1 1

7 qμ⊥γ · q⊥ − 1
3
q2⊥γ

μ
⊥ 1 2

8 qμ⊥½γ · q; γ · P̂� − 1
3
q2⊥½γμ⊥; γ · P̂� 1 2
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f1; γ ·Q; γ · q; ½=q; =Q�g: ð18Þ

Since the in-hadron condensate is defined as the scalar
form factor at zero-momentum transfer Q2 ¼ 0 in Eqs. (7)
and (9), the Dirac basis is reduced to f1; γ · qg.

IV. RESULTS AND DISCUSSION

To measure the total effects of chiral symmetry breaking,
including both the dynamical and explicit parts, the masses
of the pseudoscalar and vector mesons at ground and first-
excited states are investigated as shown in Fig. 5. It is
obvious that the meson massesMP increase monotonically
with the increase of the current-quark mass mq. In the
heavy quark region shown in the right panel, similar linear
tendencies are found for all the channels. At mq ≲ 4 GeV,
the relative difference between MP and 2mq are much
smaller than that at mq ≲ 1 GeV for all these channels,
which indicates the effects of dynamical chiral symmetry
breaking are weaker compared to that of explicit chiral
symmetry breaking for heavy quarks. In the chiral limit
shown in the left panel, the mass of the Goldstone boson π
vanishes. With the increase of mq, Mπ increases approx-
imately proportional to ffiffiffiffiffiffimq

p according to Eq. (2). This
nonlinearity indicates the interactions between the quarks
inside π are significant, which clearly demonstrates the
nonperturbative nature of the light quarks. Besides, in the
chiral limit, the vector meson ρ and the excited states π0
and ρ0 possess nonvanishing masses, which are generated
totally from the dynamical chiral symmetry breaking.
It is expected that the vector meson is heavier than the

pseudoscalar meson for both ground and excited states.
This is the case for heavy quarks, as shown in the right
panel in Fig. 5. However, for light quarks near the chiral
limit, the mass of the first-excited state in the vector channel
is found smaller than that in the pseudoscalar channel, i.e.,
Mρ0 < Mπ0 . With the increase of the current-quark mass,
there exists a crossing point at about 0.3 GeV, after which
the mass ordering of the first-excited states is changed to be
Mρ0 > Mπ0 and remains stable until the heavy quark limit.
To measure the effects of dynamical chiral symmetry

breaking, the dimensionless in-hadron condensates
SPð0Þ=MP are calculated as functions of current-quark
mass mq for different channels, as shown in Fig. 6. In the
heavy quark region, the current-quark mass dependencies
of SPð0Þ=MP are quite weak and the differences among
different channels are negligible. According to Eq. (7), this

behavior of SPð0Þ=MP indicates that the responses of
meson masses MP to the current-quark mass mq are linear,
which is consistent with the results shown in the right panel
of Fig. 5. Near the chiral limit, the values of SPð0Þ=MP are
significant and decrease rapidly as the current-quark mass
increases. Since, in the chiral limit, the meson masses are
generated totally from dynamical chiral symmetry break-
ing, the rapid decreasing of SPð0Þ=MP probably implies
that the global effects of dynamical chiral symmetry
breaking is also decreasing. Additionally, with the increase
of the current-quark mass, a crossing behavior for
SPð0Þ=MP between the first-excited states in pseudoscalar
and vector channels is also found. After the crossing point

FIG. 4. The diagram for the scalar vertex in Eq. (17).

FIG. 5. The meson massesMP as functions of the current-quark
mass mq in different channels: pseudoscalar ground state (π
channel), pseudoscalar first-excited state (π0 channel), vector
ground state (ρ channel), and vector first-excited state (ρ0 channel).
The gray dashed line represents 2mq. The light quark region
[0, 1] GeV (left) and the heavy quark region [3, 4] GeV (right) are
shown.

FIG. 6. Similar to Fig. 5 but for dimensionless in-hadron
condensates SPð0Þ=MP.
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at about 0.8 GeV, the ordering of the SPð0Þ=MP remains
stable until the heavy quark limit. By comparing the meson
masses MP in Fig. 5 and the dimensionless in-hadron
condensates SPð0Þ=MP in Fig. 6, we find that SPð0Þ=MP
and MP are consistent in measuring the global effects of
dynamical chiral symmetry breaking.
To probe the effects of dynamical chiral symmetry

breaking from a structural perspective, the relative partial

wave contributions to the in-hadron condensates SðS;LÞP ð0Þ=
SPð0Þ for pseudoscalar and vector mesons are shown in
Figs. 7 and 8, respectively. The cross terms are not
depicted, as their contributions can be easily obtained
and are not of interest here. For pseudoscalar mesons at
both ground and first-excited states, it is clear that s waves
with ðS; LÞ ¼ ð0; 0Þ contribute the majority of the in-
hadron condensates. This indicates that the dynamical

chiral symmetry breaking is mainly contributed by the s
waves. The ordering of the partial wave contributions of the
first-excited state is the same as that of the ground state,
which indicates the first-excited state in the pseudoscalar
channel is a radial excitation. At the current-quark mass
mu=d ¼ 5 MeV, the mass of the first-excited state in the
pseudoscalar channel obtained in this work is 1080 MeV,
which is close to the mass of the detected πð1300Þ in
experiment. This indicates that πð1300Þ is probably a radial
excitation dominated by s waves.
For vector mesons at ground state in the left panel of

Fig. 8, the contribution of the s waves with ðS; LÞ ¼ ð1; 0Þ
dominates the in-hadron condensates and increases steadily
with the increase of the current-quark mass. The second
important contribution is from p waves with ðS;LÞ¼ð0;1Þ,
which shows a decreasing tendency with respect to the
current-quark mass. Similar behavior is found for p waves
with ðS; LÞ ¼ ð1; 1Þ with less contribution. The contribu-
tion of d waves is negligible. In the heavy quark limit, the
contributions of p and d waves vanish and the s waves
contribute the vast majority.
For the first-excited state of vector mesons shown in the

right panel of Fig. 8, the relative partial wave contributions

to the in-hadron condensates SðS;LÞP ð0Þ=SPð0Þ are found
similar to the ground state at the heavy quark limit. In light
quark region, with the increase of the current-quark mass,
the contribution of the s waves with ðS; LÞ ¼ ð1; 0Þ
increases and the contribution of the pwaves with ðS; LÞ ¼
ð0; 1Þ decreases rapidly. A crossing point is found at
about 0.7 GeV. Besides, the contributions of p waves with
ðS; LÞ ¼ ð1; 1Þ and d waves with ðS; LÞ ¼ ð1; 2Þ are
affected by this novel behavior of the s and p waves.
Near the chiral limit, the ordering of the partial wave
contributions of the first-excited state is different from that
of the ground state, which indicates the first-excited state in
the vector channel is not a radial excitation. At the current-
quark mass mu=d ¼ 5 MeV, while the mass of the first-
excited state in the vector channel obtained in this work is
970 MeV, which is largely different from the mass of the
detected ρð1450Þ in experiment. Considering that the
effects beyond the RL truncation might be important for
the first-excited states in the vector channel, no conclusion
can be drawn as to whether the ρð1450Þ is dominated by
p waves from this calculation.
From the global perspective in Fig. 6, in the heavy quark

limit, the ordering of the in-hadron condensates of the
ground and first-excited states in pseudoscalar and vector
channels is as expected. In the light quark region, the
crossing point of the in-hadron condensates between the
first-excited states in pseudoscalar and vector channels is
about 0.8 GeV. From the structural perspective in Figs. 7
and 8, in the heavy quark limit, the partial wave contri-
butions to the in-hadron condensates of the ground and
first-excited states in pseudoscalar and vector channels are
all dominated by s waves. In the light quark region, the

FIG. 7. The relative partial wave contributions to the in-hadron
condensates SðS;LÞP ð0Þ=SPð0Þ as functions of current-quark mass
mq for pseudoscalar mesons at ground state (left) and first-excited
state (right).

FIG. 8. Similar to Fig. 7 but for vector mesons.
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crossing point of the contributions of s and p waves for the
first-excited state in the vector channel is about 0.7 GeV.
These clearly demonstrate that, on the one hand, it is
consistent between the global and the structural perspective
of in-hadron condensates in describing the dynamical chiral
symmetry breaking. On the other hand, the global effects of
dynamical chiral symmetry breaking can be understood
with the partial wave contributions to in-hadron conden-
sates. Furthermore, the crossing point of the meson masses
in Fig. 5 is smaller than that of the in-hadron condensates
in Fig. 6. With the increase of current-quark mass, the
ordering of the meson masses is as expected after 0.3 GeV,
while the ordering of the in-hadron condensates is not as
expected until 0.8 GeV. That is to say, in the current-quark
mass region at about 0.3–0.8 GeV, the meson mass spectra
seem reasonable, but are not supported by the structural
information of mesons. This indicates that mass is not a
precise measure to the dynamical chiral symmetry break-
ing. In comparison, the in-hadron condensate can not only
measure the global effects of dynamical chiral symmetry
breaking, but also provide a structural perspective for the
effects of dynamical chiral symmetry breaking.
It should be noticed that the meson masses, in-hadron

condensates, and partial wave contributions are all obtained
with the DSEs approach under the RL truncation, which
truncates the quark-gluon vertex and the quark-antiquark
scattering kernel to the tree level and preserves the AV-WTI.
As the pseudoscalar mesons are strongly constrained by the
symmetry embodied in AV-WTI, the calculated properties of
the first-excited state in the pseudoscalar channel is reliable
qualitatively. Whereas for the first-excited state of the vector
meson, the missing contribution from the higher orders
might lead to non-negligible effects on spin-orbital inter-
action and thus on the partial waves, especially when the
current-quark mass is close to the chiral limit. Thus, the
relative partial wave contributions to in-hadron condensates
might be changed beyond the RL truncation.
Attempts have been made beyond the RL truncation

[59,65–68]. In Ref. [59], the dressed-quark anomalous
chromomagnetic moment is included and the mass ordering
of the first-excited states in pseudoscalar and vector
channels has been corrected. In future work, it would be
interesting to study the meson mass spectra and the relative
partial wave contributions to in-hadron condensates with a
more realistic truncation scheme.

V. SUMMARY

By using the DSEs approach, the scalar form factors at
zero-momentum transfer are calculated as the in-hadron
condensates for the ground and first-excited states of the
flavor-symmetric mesons in pseudoscalar and vector chan-
nels. The responses of the dimensionless in-hadron con-
densates and the meson masses to the current-quark mass
are consistent in describing the global effects of dynamical
chiral symmetry breaking. In-hadron condensates also
provide a structural perspective to the effects of dynamical
chiral symmetry breaking by comparing the relative partial
wave contributions. In the pseudoscalar channel, for the
ground and first-excited states, the in-hadron condensates
are dominated by the s-wave contributions. In the vector
channel, for the ground state, the in-hadron condensates are
dominated by the s-wave contributions, while for the first-
excited state, they are dominated by the p-wave contribu-
tions. By comparing the theoretical results of the meson
masses in pseudoscalar and vector channels with exper-
imental values, the πð1300Þ is inferred as a radial excitation
dominated by s waves, while no conclusion can be drawn
whether the ρð1450Þ is a p-wave-dominated excitation
under the RL truncation.
Comparing the crossing behaviors of the meson masses

MP, the dimensionless in-hadron condensates SPð0Þ=MP,

and the partial wave contributions SðS;LÞP ð0Þ=SPð0Þ, we
confirm the efficiency of the in-hadron condensates in
describing the effects of dynamical chiral symmetry break-
ing from both global and structural perspectives. This work
provides new insight into the studies of hadron properties
with partial wave analysis for the in-hadron condensates.
In the future, we plan to extend this analysis with a more
realistic scheme beyond the RL truncation.
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