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We present the differential predictions for the rapidity distribution of a pair of leptons through the Drell-
Yan (DY) process at the LHC taking into account the soft-virtual (SV) as well as next-to-soft-virtual (NSV)
resummation effects in QCD perturbation theory to next-to-next-to-leading-order plus next-to-next-to-
leading-logarithmic (NNLO + NNLL) accuracy. We perform the resummation in two-dimensional Mellin
space using our recent formalism [A. H. Ajjath ef al., Phys. Rev. D 103, L111502 (2021)] by limiting
ourselves to contributions only from quark-antiquark (¢g) initiated channels. The resummed corrections to
the fixed-order results are computed through a matched formula using the minimal prescription procedure.
We find that the resummation at next-to-leading-logarithmic (next-to-next-to-leading-logarithmic) level
brings about 3.98% (1.24%) corrections. We also observe that the sensitivity to the renormalization scale
gets improved substantially by the inclusion of NSV resummed predictions at NNLL accuracy. Further, the
lack of quark gluon (gg) initiated contributions to the NSV part in the NNLL resummed predictions leaves
large factorization scale dependence, indicating their importance at NSV level as we go to higher orders in

perturbation theory.
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I. INTRODUCTION

The production of a pair of leptons, known as the Drell-
Yan (DY) production [1], is one of the well-studied processes
at TeV colliders such as Tevatron and the LHC. This is
possible due to wealth of precise theoretical predictions both
in standard model (SM) and beyond SM, taking into account
corrections from various sources. Being a least-contaminated
process, DY production is used as a luminosity monitor [2] at
the LHC. In addition, precise data on the rates allow one to
fit the parton distribution functions of hadrons [3-5]. Any
deviation from the precise predictions can be used to set
bounds on the parameters of models of new physics.

While the DY process at leading order (LO) is purely
electroweak, the radiative corrections are dominated by
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QCD, and it has been an active area of interest for several
decades; see Refs. [6,7] for first next-to-leading-order
(NLO) results in perturbative QCD for the DY process,
and for invariant mass distribution of a pair of leptons at
next-to-next-to-leading order (NNLO), see Refs. [8,9]. For
the same observable at next-to-next-to-next-to-leading-
order (N’LO) level, the dominant soft-virtual (SV) con-
tributions were obtained in Refs. [10,11] prior to the
complete result [12] at N*LO becoming available recently.
Electroweak (EW) correction beyond LO can be found in
Refs. [13,14]. In addition to invariant mass distribution,
other differential distributions, namely, rapidity and trans-
verse momentum, are known to N°LO in QCD; see
Refs. [15-24]. For, mixed QCD and EW corrections, see
Ref. [25], and for parton showers matched with NLO QCD
results, see MC@NLO [26], POWHEG [26,27] and aMC@NLO
[28] frameworks.

The fixed-order predictions are improved by resumming
large threshold logarithms resulting from soft gluons; see
Refs. [29-35]. For the transverse momentum distribution,
at small pr, the resulting large logarithms exponentiate in
the impact parameter space [36,37]. In the soft-collinear
effective theory (SCET), one performs resummation in
momentum space; see Ref. [38] for inclusive production
and Ref. [39] for transverse momentum distribution. In the
Mellin space, resummation of large logarithms of the
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Feynman variable x; which describes the longitudinal
momentum of the final state was achieved in Ref. [30],
and it was found that there were two thresholds that could
be resummed to all orders; also see Ref. [40] for a different
scheme. In Ref. [41], the resummation of rapidity of W= in
the Mellin-Fourier space was performed following a con-
jecture (see Ref. [42]), and later on, it was applied for Drell-
Yan production in Refs. [43,44]. A similar approach in
SCET can be found in Refs. [45,46].

Following Refs. [20,21,30], in Refs. [47,48], we studied
the soft gluon resummation for the rapidity distributions of
Higgs boson and also of a pair of leptons produced in
hadron colliders. In the threshold limit, i.e., when the
scaling variables z; — 1 and z, — 1, the soft gluons
contribute through delta functions and plus distributions
in the partonic cross sections. These contributions can be
resummed to all orders both in z;, z, space and in Ny, N,
space. The resummed results known to desired logarithmic
accuracy can be used to predict certain highest logarithms
in the fixed order; see Refs. [21,23,49]. The threshold limit
denoted by (z; — 1, z, — 1) corresponds to (N; — oo,
N, — o0) in the Mellin-Mellin (M-M) space, giving large
logarithms of the form In"(N;), wheren = 1,---and i = 1,
2 and the resummation in M-M space resums terms of the
form w = a,f,In(N|N,) through a process-independent
function g(w) and a process-dependent but N;-independent
function go. Here, a, = ¢?(u%)/16x%, with g, being the
strong coupling constant and yy being the renormalisation
scale. The constant f3, is the leading coefficient of the beta
function in QCD.

Contrary to naive expectation, in certain inclusive
[12,50,51] and differential [52] observables, one finds that
the contributions from subleading threshold logarithms,
called next-to-soft-virtual (NSV) terms, contribute signifi-
cantly at every order in perturbation theory. They are found
to be present in most of the partonic channels unlike the
leading logarithms. Thanks to the availability of these
fixed-order results to unprecedented accuracy, there are
enormous developments in the understanding of these
subleading terms. In particular, questions related to their
structure to all orders are still open; see Refs. [53—65] for
more details. Recently, in a series of articles [66-69], we
studied a variety of inclusive observables to understand
these subleading logarithms. Remarkably, we found that
there exists a systematic way to sum them up to all orders in
z as well as in the Mellin N spaces, exactly the way one
sums up leading threshold ones. This was achieved only for
the diagonal channels. One finds that resummation of both
SV and NSV terms can be achieved N space. Later on, this
was extended to study NSV terms present in rapidity
distributions [70] of a pair of leptons in DY and a Higgs
boson in gluon fusion as well as in bottom quark annihi-
lation. For a generic case of n-colorless particles in the
final state, see Ref. [71]. Like the inclusive one, these
subleading logarithms can be resummed to all orders in

multidimensional space (spanned by z; or N;) along with
the leading threshold logarithms In the present paper, we
discuss the phenomenological aspects of resummed NSV
terms for the production of a pair of leptons at the LHC. In
the subsequent sections, we briefly recapitulate the relevant
theoretical results followed by a detailed study on the
numerical impact of NSV contributions, and finally we
conclude our findings.

II. THEORETICAL OVERVIEW

In the QCD improved parton model, the double-
differential distribution of a pair of leptons in the DY
process with respect to their invariant mass ¢> and rapidity
y can be written as

d’c? s 2, 1d ld
A G 3 SN / dzy [1dz
da-dy ab=4.q.9”* X 22
Xfa(_’”F)fb<_7//‘F>
X Ay (2122, 4 HE M) (1)

where o (x9, x9, ¢%) is the Born cross section. The dimen-
sionless scaling variable 7 is given by 7 = ¢*>/S = x%x9,
where ¢ is the momentum of the pair of leptons and
S = (p; + p,)? is the center-of-mass energy of the incom-

ing hadron with momenta p;. The rapidity y of the lepton
pair is given by y = lln('72 1) = 1ln( ) The parton dis-
tribution functions of incoming partons a and b are non-
perturbative and are denoted by fa( ,yF) and f b( ,yF)

where xV/z, and x9/z, are their momentum fractions
respectively, and are renormalized at the factorization scale
pp. A (ag.z1,22. ¢ %) are the Drell-Yan coefficient
functions (CFs) obtained from the partonic subprocesses
after mass factorization at the scale x4y and are calculable
order by order in QCD perturbation theory in powers of a.
These CFs beyond leading order in perturbation theory
contain distributions such as §(1 — z;) and [#} with
m < 2n, n being the order of perturbation and regular
functions of z;. Distributions show up only in the diagonal
CFs, called SV terms and denoted by Aflv, while the regular

part, also called the hard part, is given by A7 ab The leading
terms in the hard part in the threshold expansion are
nothing but the NSV terms. Unlike the SV terms, the
NSV terms get contributions from both diagonal as well as
nondiagonal channels. Each term belonging to NSV con-
tribution contains a pair of either 6(1 —z;),i =1, 2, or

Di(z;),i = 1,2;1 > 0, where D)(z;) = [h‘[(l—_z)h and regu-

1-z;
lar term logk(1 —z;), j = 1,2;k > 0. Following the work
by Catani and Trentadue [30], in Refs. [20,21,23], the
resummation of SV terms for the rapidity distribution to all
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orders was achieved in the scaling variables z; in z;, 2
space and later extended it to N, N, space in Refs. [47,48]
by performing two-dimensional Mellin transformations in
the large N, N, limit to obtain resummed result in the
M-M space. In the Mellin N; space, when N, are large, the
NSV terms take the form In*N;/N;, with (j,[=1,2),
(k=0,1---) up to 1/N%/Ni a.p>1. In Ref. [70],
restricting to diagonal channels, they were systematically
resummed to all orders along with SV terms.

The diagonal CF, taking into account both SV and NSV,

denoted by A§Z+NSV, was shown to exponentiate in
Ref. [70] as

ASVH\ISV Cexp(Wy(a”, ug Hp Z1. 220 €))|eor  (2)
where the symbol “C” refers to convolution which acts on
any exponential of a function f(z) takes the following
expansion:

€S = 5(1 = 2) + 1 f() + 3 (F ® )+ ()
Here, we keep only SV distributions, namely, §(Z;)6(Z;),
8(z))Di(z;), Di(z1)Di(z;), and NSV terms D;(z;) In*(z;)
and §(z;) In*(z;) with (1, j = 1,2)(i,k = 0,1, ...) resulting
from the convolutions. In (2), € is the complex valued
parameter in the dimensional regularization scheme. The
function W in the above equation has the integral repre-
sentation in z space

Zl)(/#q Z“i_’qu( (2 )22)+QZ(as(Q%)7Zz>>

2
F

0

w1 —

+

+ (;—I{qus(q@,zz)+2Lq<as<q%z>,zz>
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9%y = CrCA(10) + CH(=10), 45 =C2(—4),
1 2 4
) _ = Cpn ( 0856 3 30

—
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a3 729 T27937
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where z; = 1 —z;, 7 = ¢*(1 — 2)), ¢3, = ¢°Z1Z, and the
subscript + indicates standard plus distribution.

In (4), P%a,.z) = P(a,.2) —2B(a,)5(z;), with
P4(ay,7;) being the splitting function in QCD which takes
the form

Pi(a,.z) =2 <Aq_(as)

(Zl)+

+ BY(a,)8(z) + L9(a,. z,>>, 5)

with A? and B? being the cusp and collinear anomalous
dimensions, L%(ay,7;) = C9(ay)In(z;) + D(a,). The
cusp (A9), the collinear (B?) anomalous dimensions, and
the constants C? and DY to third order are available in
Refs. [72-74]. The anomalous dimensions A4, B, C4, and
D1 can also be found in the Appendix of Ref. [69]. In (5),
we drop those terms which contribute to nondiagonal NSV
and beyond NSV terms throughout. The function QY in (4)
is given as

_ 2 _
Qilas, 7)) = Z—IDZ(%) + 205 (a5, 7). (6)
In the above equation, the SV coefficient DZ is known to

third order [47] in QCD, and the NSV coefficient go{;, g 18
parametrized in the following way:

The upper limit on the sum over k is controlled by the
dimensionally regularized Feynman integrals that contrib-
ute to order aj. The constant g in (4) results from the
finite part of the virtual contributions and pure 5(z;) terms
of real emission contributions. The NSV coefficients (pzzgm
in (7) are known to third order [70] and are listed below,

1000 56
CrCy (——2843 —?Cz) + CE(-16¢5),

_C3+T

196 11816 208
o, tsis, 8,

1432 32,
9 57 —& +?C2)

5548 1312 32, 448
o St Cz) +Ct <23 +480 -0 Cz>
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256 28 244
(p;g) = CrCyny (—T—Egg) +CpC3 ( 5

+CaCy <—
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3952 64
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where the constants C, = N, and Cr = (N2 —1)/2N,. are
the Casimirs of SU(N,.) gauge group, n; is the number of
active flavors, and ¢; are the Riemann zeta functions.

In Ref. [70], we systematically computed the analytic
expression of resummed CFs in the M-M space after
performing the double Mellin transformation on Af in
(2) as

A?J.NI.N2 / dz; ZN 1 Z]» Zz)
i=1,2
= Ga0exP(¥in, n,): )

where g, =
q
Wi, v, takes the form

[+ i =d
20 ds Gg,- Here, the resummed result for

‘PZNI N =gi (@) InN,
I _

+Z (gdH-Z +N_193,i+1(w)>

Za h CU Nl

+ (N1 < Ny, (10)

where

hZ,o(w, N)) = hgoo(w) + hZOI(a)) In Ny,

Zhdlk

hi(@,N;) = ) Ink N, (11)

with @ = a,fiyIn N|N,. The SV resummation coefficients,
which comprises uZ]Z.O and 93,1" are extensively discussed in
Refs. [47,75,76]. The NSV coefficients g}, and A, are
listed in Appendixes A and B. Our next task is to include
these resummed contributions consistently in the fixed-
order predictions to understand the phenomenological
relevance of the NSV resummed results in the context of
rapidity distribution for the lepton pair production in the
Drell-Yan process.

(8)

III. PHENOMENOLOGY

In this section, we study the impact of resummed soft
virtual plus next-to-soft-virtual (SV + NSV) results for the
rapidity distribution of a pair of leptons produced through Z
and y* in the collision of two hadrons at the LHC with
center-of-mass energy 13 TeV. We take ny = 5 flavors, the
MMHT2014(68cl) Parton distribution function (PDF) set
[77] and the corresponding a,(M,) through the Les
Houches Accord PDF (LHAPDF) [78] interface at each
order in perturbation theory. For the fixed-order rapidity
distribution, we use the publicly available code VRAP0.9
[16,17]. The resummed contribution is obtained from
AZ,N,,Nz in (9) after performing Mellin inversions, which
are done using an in-house FORTRAN-based code. The
resummed results are matched to the fixed-order result in
order to avoid any double-counting of threshold logarithms.
The matched result is given below in (13). Here, ¢, is the
charge of the electron. The numerical values for the various
parameters are taken from the Particle Data Group 2020
[79] and are listed below,

Mz =91.1876 GeV, I'y =2.4952 GeV,

s2, = 0.22343, a=1/128, =1-s2,
ge =—-1/4+s5 g =1/4- 2/3sw
gy =-1/4+1/3s2 = 0.03363, (12)
A2 N'LO+N'LL 72 +q.N"LO citico dN
2 = 2 +oj / e
dq*dy dq*dy abeagy oo 27
cyFico dN2 N =N,
< —Ni=N2 5
x [z—ioo 2ri (T) @

X fan, (/hzr)fb,m (ﬂ}zr)

X (AZ.NI,NZ

NLL AZ.NI,NZ |trN"LO)v (13)

q . .
where o3 is given by
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ot 47::12 {eq _2¢%(4* = M3)e,9l gy
3¢*N ((q> = M%)* + MTS)cysy
3q4FZB§
" Tea (- M3)7 + MATD) 7

< (0=35))]

The first term in (13) (d?69N"10 /dgdy) corresponds to
contributions resulting from fixed-order results up to
N"LO. The second term, on the other hand, contains only
SV and NSV logarithms but to all orders in perturbation
theory. The subscript “¢7” in AZ,NI,NZ indicates that it is

(14)

truncated at the same order as the fixed order after
expanding in powers of a,. Hence, at a given order a?,
the nonzero contribution from the second term starts at
order a"*! and includes SV and NSV terms from higher
orders. The Mellin space PDF (f; y) can be evolved using
QCD-PEGASUS [80]. Alternatively, we use the technique
described in Refs. [30,81] to directly deal with PDFs in the
z space. The contour ¢; in the Mellin inversion in (13) can
be chosen according to the minimal prescription [82]
procedure. Note that the same minimal prescription pro-
cedure for the SV terms [82] will go through for the Mellin
inversion of NSV terms as well. This is because the
inclusion of NSV logarithms does not introduce any new
Landau pole. Further, the Landau pole problem is directly
related to the fact that the coupling a; enters into the
nonperturbative region, which results because of the
integration of the argument of running coupling. And
the position of the Landau pole is decided by the argument
of a, in the integral representation (4), which is used to
resum the large SV and NSV logarithms. Since the
inclusion of NSV terms does not alter the argument of
a, in (4) from the SV case, the Landau pole will remain
same as that of SV resummation. In addition, as already
noted in Ref. [82], there will not be any power corrections
induced for the SV resummation, and this observation
continues to be valid for the NSV case as well due to the
minimal prescription formula in (13).

Our numerical results for the fixed order are based on
NNLO computation of the CFs in which parton distribution
functions are taken up to NNLO accuracy. Although the

results of fixed-order rapidity distribution at N3LO are
presented in Ref. [24] for the Drell-Yan process, the
corresponding numerical code is not publicly available;
therefore, we could not include N3LO results in our
analysis. The resummed SV and NSV results are computed
up to NNLL accuracy. To go beyond the NNLL accuracy,
we need the collinear anomalous dimensions C? and D4 to
fourth order as well as the four loop NSV coefficient (ijj,
which are currently not available. To distinguish between
SV and SV + NSV resummation, all along the paper, we
denote the former by N"LL and the latter by N"LL for the
nth-level logarithmic accuracy.

In Tables I and II, we list the resummed exponents which
are required to predict the tower of SVand NSV logarithms,
respectively, in AZ. N, ata given logarithmic accuracy. Let
us first discuss the predictions for the SV logarithms. As
shown in Table I, using the first set of resummed exponents
{9800- 951} which constitute to the SV-LL resummation,

we get to predict the leading SV logarithms of Azg\l,)l N, fo

all orders in perturbation theory, i.e., {In’ N| In* N,} with
[+ k=2i(l,k>0) at the order ai for all i > 1. Further,
using the second set of resummed exponents {3, ,.g7,}
along with the first set, one can predict extra the next-to-
leading SV logarithms, i.e., the towers {In’ N In* N, } with
I+ k=2i—1,2i —2for AZZ(\’,? v, With i > 2. These towers
of logarithms belong to the SV-NLL resummation. In
general, using the nth set {g7,,.95,,,} in addition to
the previous sets, we can predict the highest (2n + 1)
towers of SV logarithms in N; with /=1, 2, which
constitutes the SV-N"LL resummation, at every order in
al forall i >n+1, where n =0,1,2---.

Next, we discuss the predictions for the NSV logarithms
present in Acqi,Nl.Nz at a given logarithmic accuracy. As
presented in Table II, using the first set of resummed
exponents {34 oo, 9% 1. 951 1o} which constitute to the LL
resummation, we can predict the highest NSV logarithms
of AZ}(\Q N,
{h‘;%lnsz,h‘;\%lnkNl} with [ + k = 2i — 1 at the order
al for all i> 1. Similarly, using the second set of
resummation exponents {34, .¢%,.55,. hj,} along with
the first set, one can predict the next-to-highest NSV

to all orders in perturbation theory, i.e.,

q.(n)

TABLE 1. The set of resummed exponents {g% .95, (@)}, which is required to predict the tower of SV logarithms in A} NN, ata
given logarithmic accuracy in the Mellin N space. Here, i, j > 0, and L} = In' N; with [ = 1, 2.

PREDICTIONS: SV logarithms

GIVEN
R Aq’<2) Aqa(3) A‘L(“) A‘L(’l) . .
esummed exponents d.N,.N, AN N, NN, S d.N,.N, Logarithmic accuracy
931.0.0’ 93.1 {Ll] Lé} |i+j:4 {Lll Lé} | i+j=6 {Lll Lé} |i+j:8 {Ll] Lé} |i+j:2n LL
?]Z,o.] ’ ggl {Lll Lé} ‘ i+j=5.4 {Lll L§}|i+_,‘:7,6 {L'l Lé} | i+j=2n-12n-2 NLL
~q q . T
9a02 9d3 {LIL2 iy j=sa {L1L2} i j2n-3.2n-4 NNLL
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TABLE II. The set of resummed exponents {g%,,.95,(®). 35, (@), h], (@)}, which is required to predict the tower of NSV
logarithms in Aq’(").Nz at a given logarithmic accuracy in the Mellin N space. Here, i, j >0, LN 2 —'" N' In/ N,, and
Ly | =52 Ny

GIVEN PREDICTIONS: NSV logarithms

Resummed Logarithmic
€xponents A7 551) N, 35\7? N, Zjﬁ,) N, AZ;V)NZ accuracy
Froor 90 Gha Moo ALY LY Mivms AL L Miyos LY 2 LY Moo (LY 2 LY Mo [L
d0,0°Jd,1> Jd,1°""d.0 le’ Ny 1S li4j=3 NIZ’ Ny, 1S li4j=5 N|2’ Ny, 1S li4j=7 N, 2’ Ny 1S it j=2n-1

~q qa -4 pd NIT
94010 9a2> 9azs M {LN, 2 L 1 Hijea {LN, 2 L 1 Hivjmo {LN 2o Ly 1 i jmano NLL

~q qa -4 pd NNTT
94020 9a3> 9az- Mz {LN o L3 it s (LN 2 Ly,  Hitjmanms NNLL

logarithms to all orders, which includes the towers
{0k N, B2 10 Ny} with (+k=2i-2 for ASY)
with i > 2. These towers of logarithms contribute to the
NLL resummation. In general, using the nth set
{98 000 91> Tipar» 1, } in addition to the previous sets,
we get to predict the highest (n + 1) towers of NSV
logarithms in N; with [ =1, 2, which constitute to the
N"LL resummation, at every order in a’ for all i > n + 1.

Below, we present the resummed result given in (2) at
various logarithmic accuracy and discuss the resulting
predictions for the NSV logarithms in (N, N,) space as
displayed in Table 11 till af (N*LO). Note that we set u% =
u% = g* in the expressions of the predictions throughout.
We begin with the resummed result in the LL approxima-
tion given by

L -
AZN Ny, = 93.0,0 €xp langZ’l(w)

[y
N (G (@) + ho(@, N1))

+ (N1« Ny). (15)
Now, we expand the above expression up to af (N*LO)
and compare the predictions for leading NSV logarithms
against those from fixed-order results. Note that, as can be
seen from Table II, the LL resummation, which comprises
only one-loop anomalous dimensions and SV + NSV coef-
ficients from fixed-order NLO results, predicts the leading

logarithms {1“ N'l kN, NZIn"N 1 H ks {ln N‘l kN,,
11N 11N In' N
oy, In N1}|z+k s {7, tn sz, 5,2 N g, ete., at

a’ (NNLO) a’l (N3LO) at (N4LO) and so on, respectively,
as shown below. At a2 (NNLO), we have

a.(

2.1
d.N; N2|NSV L = L13v1{4c b+ Ly, L{12¢3}

L’%
+ Ly, {12C3 ) + —2{4c }

+ (N; < N,). (16)

At a} (N’LO), we find

AZN] N Insv_ir = L3, {4C3} + Ly',{20C3}
Lfvzz{4oc }+L§32{4oc }

+ Ly, {20C3) + —2{40 }

+ (N, < N,). (17)

The prediction at a* (N*LO) is

(4 8 56
AZZJ(VR,NleSV—E = L17v1{§ Ch +L61 3 —Ct

80
Ly, {56CH} + Ly, {T o }

280
+LV, {304} + Ly ,{56CH}

56 L] (8
L, 4 4
T} e

+ (N; < N,), (18)

where L/ , = = I N LY, = 1"NN’ and L¥ = In N, with

[ =1,2.0ur predlctlons for the leading NSV logarithms are
compared against the fixed-order results in Refs. [8,9,83] up
to third order.

Let us now turn to the resummed result at NLL accuracy,
which reads

AZJ%%@ (ngO+a¥gd01)exp|:langdl( ®) + g3, (@)
I,
+_(9d1( )+as9d2( o) + (0, Ny)

; ashz,xw,w} LN o Ny). (19)
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Note that at NLL accuracy we require anomalous dimensions up to two loops and second-order SV 4 NSV coefficients

obtained from NNLO results.
for the next-to-leading NSV logarithms {l“ N n* N,
and so on, respectively, and they are given by

110

.(3) 3)
y N2|NSV—E + L;‘v] { 9

T = 2
d.Ny.N, INsv—NTE = CsCr —
9

9 9
+ (N1 < Ny),

440 80
+Ly, { C,C2 —

(4 154
= AZ.N?,NJNSV-E + Lzﬁv, { 9

56

q.(4)

_ 3
d.N,.N, |NSV—NLL CaCy

3

3080
+L;-]3_{ 5 C,Ch —

560
9
308
3
112
3

+ (1524 560yE)c‘;} + L}v-f,z{

154 28
+=2 {— CAC3 —

C3
N9 o “rir 3T

where yp is the Euler-Mascheroni constant. The above
predictions for the next-to-leading NSV logarithms are in
agreement with results given in Refs. [8,9,83] up to third
order. Furthermore, we have compared our full third-order
results for A(z, z,) in z space (see Ref. [70] for the third-
order results in z space) with the results obtained using the
generalized threshold factorization approach presented in
Ref. [83]. From that comparison, we have found that our
third-order prediction is in complete agreement with results
given in Ref. [83] for terms of the type D;(z;)In’(Z,,),
i,j>0,l,m =1, 2 in the z space. However, we could not
compare the remaining §(Z;)In/(Z,,) terms in our result
because they were not available in Ref. [83].

Finally, using the NNLL resummation, which further
embeds the three-loop anomalous dimensions and third-
order SV + NSV coefficients obtained from N*LO results,

968
AZ N|.N, |Nsv NNLL — AZ N|.N, |Nsv Nz T L {27 CZ Cz

After expanding the above result up to day,
In. NzlnkN1}|,+k e N'l kN, N NzlnkNl}\Hk:(,, etc., at a3, af,

20
9

80
——C%n;+ (80 + 160yE)C13;} + L,Zv’iz{

—Ciny+ (32 + 1603/E)C%}

28
9

42
——Cin;+ (128 + 224yE)C‘;} + Lm{
—Cin; + (288 +
C,Ch —

J’ECF} (Ny < N»),

4 we obtain the predictions

440

C,C%
5 Ca

—Cins+ (24 + 4oyE)c;} + Lf\;}’z{

220
3

40
3

110 20
+ = {CAC2

CaCh—— Cins + (88 + 240;@0;}

N 9 9 C%nf + 4()}/EC13;}

(20)
112 308
5 Cins + <24 + T?’E) Cé}v} + Lls\},l,z{ 3 CaCi
770 140
3 3

2240 770
et (e

CACh ——=Cony+ (272 + 5607/E)C‘}}

140
~3 G

56

3 Cong+(32+ 224yE)c‘;}

(1)

we predict the next-to-next-to-leading logarithms
(o int Ny, B 10k N s at ad (NPLO), {525 Inf Y,
T2 In Ny}
expression at NNLL accuracy is given by

irj—7 at as (NSLO), and so on. The resummed

NNLL __ /- - -
gz,zvl,zv2 = (931,0,0 + asgz,o,l + aggg,o,z) exp[ln N 193,1 (@)

I _
+gio(@) +a,g)5(0) ‘f‘N_l(gZ.l(w) + a,5 (@)

+ a%gz,3 (@) + hz,o(val) + asth (w,Ny)

+ a;hi, (@, Ny))] + (Ny < Ny). (22)
The prediction for the next-to-next-to-leading NSV loga-
rithm at a? is provided below:

32

352

27

5392 616
+

3 - 24§2> C4Cy

1000 112
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4840 1760 160
4,1 2 2 2
+Ly, {————chcr 7 CECat >

27

Cing +

5 <25916 3080
!

27 + 3 }/E—12Oé'2> CACF

4712 560 9680
3520 320 48952 6160 8704 1120
- 27 nfCZCA—I—27 C2n2 ( 27 +— 3 }’E—240§2)CAC3 <7+ 3 7E>Can
9680 3520 320
+«4m0+uﬁz%+2mm%+@mgx#}+Lﬁ,{374262 27nﬂ?CA 270%@

6160 1120
+—<16644— yE-240§2)c;¢C;-<2884- ; yE>(Can4—( —800 + 1472y + 224072
4840 1760 160 6568 3080
4 1,4 2 2 2 2 .2
1096 560
98 oo 32, o B2 356 616
R g I VS ¥ | 3
56 12\ ., ) \
- ?+ 3 ve | Cpny + (=88 +32yp +224y3 +64L,)Cy . (23)

The above predictions for the NSV logarithms in rapidity

distribution AZ,(\I,: W, are found to reproduce the correspond-

ing predictions in the inclusive cross section A;’V‘(') com-

puted in Ref. [69] in the limit Ny = N, = N for i < 4.

In Ref. [69], it has been shown, in the context of DY

inclusive cross section up to N*LO in the Mellin N space,
that, although the total contribution of NSV logarithms is
smaller as compared to the SV counterpart, it is still
numerically sizeable to not be neglected. Despite being
formally subleading, the considerable contribution of the
NSV terms is due to their large coefficients, and this trend
was also observed in the case of Higgs boson production
through gluon fusion [68,84]. Here, even in the case of
rapidity distribution, we expect the same trend to be
observed. Keeping this in mind, we ask the following
questions that can shed light on the relevance of NSV terms
in the context of rapidity distribution in dilepton pair
production in the DY process at the LHC:

(1) In comparison to the fixed-order corrections, how
much is the effect of SV 4+ NSV resummed results
on the rapidity distribution?

(i) How sensitive is the SV 4 NSV resummed rapidity
distribution to the choices of factorization (ur) and
renormalization (up) scales?

(iii) How do the resummed NSV terms alter the pre-
dictions of SV resummed result?

In the following sections, we address the above questions in
detail. Let us begin with analyzing the impact of SV +
NSV resummed results in comparison to the fixed-order
results, which is the topic of the next section. We present

our results for the doubly differential distribution with
respect to invariant mass ¢ and rapidity y by plotting it as a
function of y for fixed values of g¢.

A. Fixed-order vs resummed rapidity distribution

In this section, we study the effects of SV + NSV resum-
mation on the fixed-order predictions for rapidity distribution
of dilepton pair production in the DY process for 13 TeV LHC.
Through (13), we get the resummed predictions at LL, NLL,
and NNLL matched with the corresponding fixed-order
results. The numerical impact of higher-order contributions
can be quantified through the K-factors defined below,

di” (ugr = 1r = q)

dg-d

K(q) = 25 , (24)
dg*dy (/’lR =HF =(q

where we have set renormalization () and factorization (i)
scales at g.

Figure 1 shows the K factors at LO + LL, NLO + NLL,
and NNLO + NNLL in the right panel in comparison to the
corresponding fixed-order ones depicted in the left panel as
a function of rapidity y at the central scale yp = ur = g,
where ¢ is fixed at M.

Below, in Table III, we show the K-factor values of both
fixed-order and resummed results for benchmark rapidity
values at the central scale up = ur = M,. We observe that
there is an enhancement of 32.9% and 36.9% when we go
from LO to NLO and NNLO, respectively, at the central
rapidity region. Furthermore, the fixed-order values at LO,
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FIG. 1. The K-factor values for resummed results (right panel)

in comparison to the fixed-order ones (left panel) till NNLO +
NNLL level as a function of rapidity (y) at the central scale
Hr = pp = M3.

NLO, and NNLO get incremented by the inclusion of SV +
NSV resummed predictions at LL, NLL, and NNLL by
4.9%, 3.98%, and 1.24%, respectively, around the central
rapidity region. This can be seen from the right panel of
Fig. 1, where the resummed curves are found to lie above
their respective fixed-order ones, implying the enhance-
ment resulting from the resummed corrections. It should be
noted that the K-factor curves of the resummed results at
NLO + NLL and NNLO + NNLL overlap for a wide range
of rapidity values, which was not observed for the case of
fixed-order predictions. This indicates that the perturbative
convergence is improved among the resummed results,
thereby leading to the reliability of perturbative predictions
by the inclusion of resummed corrections. We also notice
that the K-factor values are closer for NNLO and NNLO +
NNLL as compared to NLO and NLO + NLL over the full
rapidity region. This suggests that the resummed contri-
butions to the fixed-order rapidity distribution decrease as
we go to higher orders in perturbation theory.

From the above analysis of K factors, we have observed
that the resummed predictions not only bring in considerable
enhancement in the fixed-order results but also improve the
perturbative convergence till NNLO + NNLL accuracy.
However, both fixed-order and resummed predictions suffer
from the presence of unphysical scales, namely, the

TABLE III. K-factor values of fixed-order and resummed
results at the central scale g = pp = M.

y K Knio K Kanvio K

LO+LL NLO-+NLL NNLO-+NNLL
0 1.049 1.329 1.382 1.369 1.386
0.8 1.05 1.319 1.372 1.358 1.374
1.6 1.05 1.291 1.343 1.327 1.343
2.4 1.502 1.245 1.296 1.279 1.295

renormalization up and the factorization up scales.
Therefore, a careful study of perturbative uncertainties of
these predictions is needed by studying their sensitivity to the
choices of yp and up scales, which will be discussed in the
following subsection.

1. Seven-point scale uncertainties
of the resummed results

The uncertainty associated with the choice of renormal-
ization pup and the factorization up scales due to the
truncation of the perturbative series can be assessed using
the standard canonical seven-point variation, where y =
{ur,pg} is varied in the range % < g < 2, keeping the ratio
ugr/up not larger than 2 and smaller than 1/2. In Fig. 2, we
compare the seven-point scale uncertainties of the SV +
NSV resummed results (right panel) against fixed-order
ones (left panel) around the central scale choice (ug, pr) =
(M4, M) for 13 Tev LHC at various perturbative orders.
Here, we find that the central scale lines of resummed
predictions are shifted up with respect to that of correspond-
ing fixed-order results. This indeed suggests that there is a
systematic enhancement in the rapidity distribution when
we add the resummed corrections to the fixed-order results
as shown in Table IV. This was also observed from the
analysis of K-factor values given earlier. However, we
notice that the uncertainty bands of the resummed predic-
tions are wider than that of the corresponding fixed-order
ones over the entire rapidity range at every order of
perturbation. Nevertheless, the uncertainty band decreases
as we go to higher logarithmic accuracy from LO + LL to
NNLO + NNLL. In addition, the error band of NNLO +
NNLL is fully contained within the band of NLO + NLL
over most of the rapidity region, unlike the fixed-order case.

In Table IV, we present both fixed order and resummed
predictions at various perturbative orders along with their
asymmetric errors resulting from seven-point scale variation
for benchmark rapidity values. Here, we notice an increment
of 31.7% while going from LO +LL to NLO + NLL
accuracy, which further improves by 0.3% at NNLO +
NNLL for y = 0. Besides this, the scale uncertainty gets
reduced significantly while going from LO +LL to
NNLO + NNLL over the full range of rapidity. For instance,
the uncertainty ranges between (—16.19%, +15.36%) for
LO+LL, (=7.50%,+7.06%) for NLO + NLL, and
(—2.18%,+3.30%) at NNLO + NNLL for the central
rapidity region. However, there is no improvement in the
scale uncertainty of the resummed corrections when we
compare it against the fixed-order counterpart. This can be
explained due to following possibilities:

(1) The resummed logarithms are not dominant in this

region to show their numerical relevance.

(i1)) The lack of NSV resummed corrections from off-

diagonal channels can give rise to large scale
uncertainties in the resummed predictions.
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FIG. 2. Seven-point scale variation of the resummed result against fixed order around the central scale choice (ug, pp) = (M7, M)
for 13 Tev LHC. The dotted, dashed, and solid lines refer to the corresponding central scale values at each order.

Recall that the resummation is inevitable to cure the
perturbative series, which suffers from certain large loga-
rithmic terms at every order, in the kinematic threshold
region, where the invariant mass g approaches the hadronic
center-of-mass energy, which is 13 TeV in our case.
Therefore, to see the impact of the resummed contributions,
we need to extend our analysis to the higher invariant mass
region, which is of the order of TeV. We will discuss the oft-
diagonal channel contribution later in detail toward the end
of this section. Now, we move on to the analysis of the
seven-point scale uncertainty of the SV + NSV resummed
predictions in comparison to the fixed-order results for high
invariant mass ¢ = 2 TeV.

From the earlier discussions on the seven-point scale
uncertainty for ¢ = M,, we found that the uncertainty
bands of resummed predictions were wider than that of
fixed order at every order of perturbation. Nevertheless, the
widths of uncertainty bands were found to decrease as we
moved from LO + LL to NNLO + NNLL accuracy. In
addition, we also observed an appreciable amount of
increment in the rapidity distribution by the inclusion of
SV + NSV resummed effects. Now, here in Fig. 3, we
show the seven-point scale variation of the rapidity dis-
tribution for g =2 TeV. The fixed-order results are

depicted in the left panel up to NNLO accuracy, and
resummed predictions are given in the right panel up to
NNLO + NNLL accuracy. In general, we note that the
width of uncertainty bands corresponding to both fixed
order as well as resummed predictions are significantly
reduced as compared to the uncertainty bands for ¢ = M.
Interestingly, the NLO + NLL uncertainty band is better as
compared to NLO fixed-order band over the entire rapidity
region. Also, the NNLO uncertainty gets improved by the
inclusion of resummed NNLL corrections around the
central rapidity region. This indicates the relevance of
resummed contributions at this invariant mass region. This
was not observed for the case of ¢ = M, where the
resummed contributions were not prominent.

In Table V, we quote the central scale values of both fixed-
order and resummed rapidity distributions at ¢ = 2 TeV
along with the seven-point scale uncertainties for bench-
mark rapidity values. Here, we observe that the percentage
uncertainties of fixed order as well as resummed results get
reduced substantially at each perturbative order when we
compare them against the values given in Table IV. For
instance, the uncertainty at NNLO + NNLL is reduced from
(—2.18%,+3.3%) to (—0.31%,+0.53%) as we go from
q =My to g =2 TeV around the central rapidity region.

TABLEIV. Values of resummed rapidity distribution at various orders in comparison to the fixed-order results in pb/GeV at the central

scale up = pup = M, for 13 TeV LHC.

y LO NLO NNLO LO+LL NLO + NLL NNLO + NNLL
0 SSO0STIIRE  TRAOTTE  TS342ST SITOCLNE 7604979 7628373500
08 SAGTATHGE  TNTRNRE TADITOGNT sTA02IgE TsoMR 7559733
L6 S3203INT esR2SHNRE T0TSUENT ssoTaiNE 7160779 716003314

2.4 62.642+3‘154%

+12.63%
50.3271 5714 ~4.866%

643921013

04BN es2TWE 6518238
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Seven-point scale variation of the resummed result against fixed order around the central scale choice (up, pir) = (2,2) TeV

for 13 Tev LHC. The dotted, dashed, and solid lines refer to the corresponding central scale values at each order.

In addition, the uncertainty at NNLO + NNLL is
evidently small as compared to the uncertainty of
(—0.89%, +0.60%) at NNLO for y = 0. Similarly, the
uncertainty at NLO is (—2.93%, +2.84%), which comes
down to (—1.25%, +1.39%) at NLO + NLL for the same
value of y. As for the case of ¢ = M, there is a systematic
reduction in the uncertainties while going from LO + LL
to NNLO + NNLL over the entire rapidity region, which
can be seen from Table V. We also find that the resummed
contribution at NNLL brings in 0.86% correction to
NNLO, whereas it was 1.24% for the case of ¢ = M.
This suggests that the correction resulting from resumma-
tion at NNLL accuracy decreases as we go to higher ¢
values, leading to better reliability of resummed results.
To summarize, we found that the uncertainties of the
rapidity distribution decrease by the inclusion of the
resummed corrections at ¢ = 2 TeV over the full rapidity
region. Furthermore, the reliability of the perturbative results
due to resummed corrections is improved at this invariant
mass value. Thus, it can be inferred that the relevance of
resummation effects becomes evidently visible while going
from ¢ = M, to g =2 TeV. To understand these observa-
tions in a better way, we now turn to study the effect of each
scale individually on the SV + NSV resummed result.

2. Uncertainties of the resummed results
with respect to pur and pp

In the following, we examine the effect of up and up
scales individually on the resummed result. We begin with
plotting the dependence of the rapidity distribution on y as
a function of the rapidity y while fixing the scale uy at the
invariant mass ¢, for ¢ = 2 TeV as shown in Fig. 4. The
bands are obtained by varying the scale y by a factor of 2
up and down around the central scale ugr = ur =2 TeV.
Here, the resummed band depicted in the right panel at
NNLO + NNLL looks similar to that of the seven-point
variation band shown in Fig. 3 (right panel). This indicates
that the contribution to the width of NNLO + NNLL band
in Fig. 3 mainly comes from the uncertainties arising from
variations in the yj scale. Note that the uncertainties at
NNLO + NNLL arising from uy and seven-point variation
are identical, and they lie between (—0.31%, +0.53%) for
y = 0. Moreover, the yr scale uncertainties decrease as we
go to higher logarithmic accuracy in the resummed results.

Now, we move on to compare the yr scale uncertainty of
the resummed predictions with respect to the fixed-order
results. We observe that the uy scale uncertainty of NLO

gets improved by the inclusion of NLL resummed

TABLE V. Values of resummed rapidity distribution at various orders in comparison to the fixed-order results in 10~ pb/GeV at the

central scale yp = up =2 TeV for 13 TeV LHC.

y LO NLO NNLO LO+LL NLO + NLL NNLO + NNLL
0 2.5541 0050 3.323 555 3440153505 27675655 346011355 34705305
04 23S BIOSIEE 323ME 2601MEE soarli 32664355
0.8 1762557504 2.29513%0¢ 2409100535 1.96218°155% 2426113534 2.446 150550,
12 0.72919505% 0.93813503% 0.9861 75664 0.851%5 5155 101917355 101373064
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FIG. 4. up scale variation of the resummed results against the fixed order with the scale up held fixed at 2 for 13 TeV LHC. The dotted,
dashed, and solid lines refer to the corresponding central scale values at each order.

predictions, whereas the NNLO band increases when the
NNLL corrections are added. Let us try to understand why
the SV 4+ NSV resummed result at NNLO + NNLL is
more sensitive to the ur scale variation as compared to
fixed-order NNLO result. As mentioned earlier, we perform
the resummation of SV distributions and NSV logarithms
present in the diagonal partonic channel. Unlike the SV
distributions that get contribution only from the diagonal
quark-antiquark (¢gg) initiated channel, the NSV terms can
originate from off-diagonal channels like quark-gluon (gg),
gluon-gluon (gg), etc., as well. Under the u scale variation,
these various partonic channels get mixed due to the
Dokshitzer—Gribov—Lipatov—Altarelli—Parisi  evolu-
tion of the PDFs. Hence, it becomes essential to keep all
the contributing partonic channels at a particular perturba-
tive order as there can be compensations among those
channels, thereby reducing the scale uncertainty at that
order. The fixed-order results used for our numerical
analysis contain all the partonic channels, while the
resummed contributions are only from ¢g initiated chan-
nels. Thus, the scale dependence of the fixed-order result is
expected to go down in comparison to the corresponding
resummed prediction.

However, as mentioned above, the inclusion of
resummed corrections at NLL accuracy improves the
NLO error band. This suggests that the contribution of
qg channel is not prominent at NLO. We find that the one-
loop correction from the gg channel is 23.6%, while the
correction from the gg channel is only —2.5% of the NLO
rapidity distribution at the central rapidity value. Therefore,
there is an improvement in the y; scale uncertainty when
we sum up the collinear logarithms resulting from the
dominant gg channel at NLL. On the other hand, at NNLO
level, the a2 corrections from ¢g and ¢g channels are 4.5%

and —1.25%, respectively, to the NNLO rapidity distribu-
tion. As a result, the magnitude of the NNLO result is
determined by a significant cancellation between ¢g and gg
channels, which was not the case for NLO. Now, because of
the unavailability of the gg resummed collinear logarithms
in our analysis, the aforementioned cancellation at
NNLO + NNLL is not balanced. Thus, the pj variation
band of resummed prediction at NNLO + NNLL in Fig. 4
displays that the gg resummation is required to improve the
results.

Next, we try to understand the behavior of resummed
rapidity distribution in comparison to the fixed-order
counterpart under up scale variation. Figure 5 shows the
dependence of the rapidity distribution on up keeping pp
fixed at 2 TeV. The bands are obtained by varying the scale
ur by a factor of 2 up and down around the central scale
ur = pup =2 TeV. Here, the LO rapidity distribution,
being independent of the scale up, does not have a band
associated with it. On the other hand, there is a band when
we add the resummed corrections at LL accuracy to the LO
rapidity distribution. This is because the resummed cor-
rections at LL capture the leading logarithmic contributions
from all orders in perturbation theory, thereby giving rise to
up scale uncertainty. Moreover, the inclusion of resummed
corrections at both NLL and NNLL improves the pp scale
uncertainties of NLO and NNLO, respectively. This is in
contrast to the case of yj scale variation discussed earlier.
Although the improvement is minuscule at NLO, it is
substantial at NNLO due to NNLO + NNLL, which is
indeed the highlight of this plot here as compared to px
scale variations shown in Fig. 4. For instance, the up scale
uncertainty at NNLO is reduced from (—0.56%, +0.5%) to
((=0.16%,0%) for y = 0 by the inclusion of NNLL. As we
know, each partonic channel is invariant under up scale
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ug scale variation of the resummed results against the fixed order with the scale u held fixed at 2 for 13 TeV LHC. The dotted,

dashed, and solid lines refer to the corresponding central scale values at each order.

variation when taken to all orders. Hence, there is an
improvement when we include more higher-order correc-
tions within a channel, which is ¢g in this case, by keeping
the scale up fixed.

In conclusion, we observed that the uncertainties due to
both up and up scales decrease as we go to higher
logarithmic accuracy. As far as the up scale variation is
concerned, the resummation of collinear logarithms result-
ing from the gg channel also plays an important role. We
notice that having the gg resummed contribution is more
significant at NNLO level than at NLO due to relatively
larger contribution from gg channel at NNLO. As a result,
the seven-point scale uncertainty of the SV + NSV
resummed predictions at NNLO + NNLL is mostly driven
by the up scale variation. Note that the inclusion of SV +
NSV resummed predictions reduces the yp scale sensitivity
remarkably at NNLO + NNLL accuracy. So far, we have
discussed the effects of resummation on the fixed-order
results, taking into account SV distributions and NSV
logarithms together in the analysis. Now, let us turn to
understand which part of the SV + NSV resummation, i.e.,
whether it is the resummation of the distributions or of the
NSV logarithms, plays the main role in any kind of
improvement observed so far.

TABLE VL
NNLL level at the central scale yr = up = M.

B. SV vs SV+ NSV resummed results

In the previous section, we have studied the effects of SV +
NSV resummation on the fixed-order rapidity distribution in
detail. We observed that there is a considerable amount of
enhancement in the rapidity distribution by the inclusion of
SV 4+ NSV resummed predictions and more importantly the
U scale uncertainty gets reduced substantially at NNLO +
NNLL accuracy. On the other hand, the u scale uncertainty
shows improvement at NLO + NLL for higher values of ¢ but
not at NNLO + NNLL. In the following, we perform an
analysis on the inclusion of resummed NSV logarithms by
comparing it with the SV resummed results.

We begin with the analysis of K-factor values for SV +
NSV resummed results in comparison to the SV counter-
part till NNLO + NNLL level at the central scale pz =
ur = qfor g = M. In Table (VI), we compare the K-factor
values of SV and SV + NSV resummed predictions at
various orders for benchmark rapidity values. We find that
there is an increment of 3.15%, 2.75%, and 0.625% in the
rapidity distribution when going from LL to LL, NLL to
NLL, and NNLL to NNLL, respectively, at the central
rapidity region. Figure 6 demonstrates this trend for a wider
range of rapidity values. In addition, the K-factor curves of

The K-factor values for SV + NSV resummed results in comparison to the SV results till NNLO +

y KrosrL Kioiit Knro4nLL KNLosNiT KnnLo+NNLL KN\NLOLRNIE
0 1.017 1.049 1.345 1.382 1.374 1.386
0.8 1.017 1.05 1.336 1.372 1.362 1.374
1.6 1.017 1.05 1.307 1.343 1.332 1.343
2.4 1.016 1.05 1.260 1.296 1.283 1.295
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FIG. 6. The K-factor values for SV + NSV resummed results in
comparison to the SV ones till NNLO + NNLL level at the
central scale up = up = M.

NLL and NNLL almost overlap with each other for a wide
range of rapidity values, which is not observed for the case
of NLL and NNLL curves. This suggests that there is better
perturbative convergence when the NSV logarithms are
taken into account.

We now turn to study the scale uncertainties arising from
SV -+ NSV resmmation in comparison to the SV resumma-
tion. We first analyze the behavior of both SV and
SV + NSV resummed rapidity distributions as a function
of y under the seven-point scale variation as depicted in Fig. 7
for ¢ = 2 TeV. We observe that inclusion of SV as well as
SV + NSV resummed corrections reduces the uncertainty of
fixed-order results at both NLO and NNLO accuracy. This
reduction in the uncertainty is prominent for lower rapidity

values |y| < 0.5 as shown in the insets in Fig. 7. As can be
seen from the Table VII, the uncertainty at NLO + NLL is
comparable to that of NLO + NLL around the central
rapidity region. However, the uncertainty at NNLO +
NNLL gets worse when we add the resummed NSV
contributions at that accuracy. For instance, the uncertainty
at NNLO + NNLL lies in the range (—0.34%, +0.23%),
whereas it is increased to (—0.31%, +0.53%) at NNLO +
NNLL for y = 0. This hint toward our earlier findings in the
previous section that the sensitivity of the SV + NSV
resummed results to the unphysical scales increases due to
the lack of resummed NSV predictions from off-diagonal ¢g
channel. Next, we move on to compare the SV and SV +
NSV resummed predictions under the variation of each of
these scales separately.

We first consider the behavior of both SVand SV + NSV
resummed rapidity distributions as a function of y under the
up scale variation with the scale uy fixed at ¢ =2 TeV as
depicted in Fig. 8. In general, the bands corresponding to
SV + NSV resummed predictions are wider than that of SV
predictions over the entire rapidity region. We also find that
the width of the bands corresponding to fixed-order rapidity
distributions gets reduced with the inclusion of both SV
(NLL) and SV + NSV (NLL) resummed corrections at
NLO. For instance, the uncertainty is (—1.36%, +1.7%) at
NLO, whereas it is reduced to (—0%,0.46%) and
(=0.2%,+1.07%) at NLO+NLL and NLO + NLL,
respectively, for the central rapidity value. This can be
associated with the earlier observation of gg and gg
contributions at NLO. We have already seen that gg is
the dominating channel at NLO, and hence the uncertainty
is expected to get better as we include the resummed
corrections coming from that channel. On the other hand,
though the uncertainty at NNLO gets improved by the

5 le—7
3 —-0.5<y<0.0 00<y<0.5
[ [q=2TeV
o [B=ta2.201 fffffff _
| | MMHT2014
— + |13 TeV LHC
= i
[ i
9 af .
o L
&
Col
S 2+ L
"\O L
c_{; NLO NNLO
L NLO+NLL NNLO +NNLL
Ir mm NLO+NLL s NNLO+NNLL
0 L 1 1 | 1 1 1

-1.5 -1.0 -0.5

0.0 0.5 1.0 1.5

y

FIG. 7. Comparison of seven-point scale variation between SV and SV + NSV resummed results matched to NLO (left panel) and

NNLO (right panel) for g =2 TeV.
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TABLE VII. Fixed-order, SV, and SV 4 NSV resummed cross sections in 1077 pb/GeV with seven-point scale uncertainties in
percent around the central scale up = up =2 TeV.

y NLO NLO + NLL NLO + NLL NNLO NNLO + NNLL NNLO + NNLL
0 3.323 555 3.39271 50, 34601155 34405103595 3450310354 347050505
0.4 3.1051 35507 3.18031 50 324411508 3.23281 06000 32462103505 326600305
0.8 2.295 3900 2.3755H1827% 2.42611393% 2.40961-647% 2.429810398% 2.44610729%
12 0938ANN  09946TBNE 1019277 0986SINE 100447933 1013173507

addition of NNLL SV resummed corrections, it gets worse  resummed terms come only from the diagonal gg channel;
when we include the NSV corrections through NNLL.  therefore, they do not need any compensating factor to

These observations can be seen from the insets in Fig. 8 for ~ reduce its uncertainty. In contrary to this, the NSV
lower rapidity values |y| <0.5. As we know, the SV  resummed predictions which we have included here are

5 le-7
— -0.5<y<0.0 f 0.0<y<0.5
| |pr=q=2TeV — i
o [pe=te2.2q1 % :
| | MMHT2014 L
— t |13 TeV LHC 3
>0
o [
Q 3f
o |
& |
- |
E -
S 2
E L
gg i NLO i NNLO
. NLO+NLL L NNLO +NNLL
Ir = NLO+NLL i mmm NNLO+NNLL
O L L L L L L L L L L L L L L L L L L L L L L L L L
-15 -1.0 -0.5 0.0 0.5 1.0 1.5
y

FIG. 8. Comparison of y scale variation between SV and SV 4 NSV resummed results matched to NLO (left panel) and NNLO (right
panel) with the scale uy held fixed at g =2 TeV.
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3
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NLO +NLL . NNLO +NNLL

mmm NLO+NLL i mmm NNLO+NNLL
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
y

FIG.9. Comparison of up scale variation between SV and SV + NSV resummed results matched to NLO (left panel) and NNLO (right
panel) with the scale uy held fixed at ¢ = 2 TeV.
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incomplete due to missing contributions from the off-
diagonal ¢gg channel. Consequently, the NSV included
results will show the residual yr uncertainty due to mixing
of various partonic channels. However, the scenario will be
different if we keep the scale up fixed and vary the
renormalization scale .

Figure 9 shows the comparison of SV and SV + NSV
resummed results under the uy scale variation for
g =2 TeV. Here, for the case of uy variation as well, the
uncertainties of fixed-order results get improved by the
inclusion of both SV and NSV resummed corrections.
Interestingly, at NNLO, the width of the bands gets reduced
substantially when the NSV resummed correction at NNLL
accuracy is added in comparison to its SV counterpart.
This improvement by the inclusion of NNLL NSV
resummed corrections is notable for lower rapidity values
ly| < 0.5 as shown in the insets in Fig. 9. The uncertainty
at NNLO around the central rapidity region lies
between (—0.57%,+0.5%), which gets reduced to
(—0.33%,40.22%) when the SV (NNLL) corrections are
added. And, it gets further improved to (—0.16%, 0%) with
the inclusion of NSV corrections (NNLL). This emphasizes
that the resummed NSV contributions play a vital role in
bringing down the up scale uncertainty as we go to higher
logarithmic corrections.

In summary, we found that the uncertainty becomes better
with the inclusion of both SV (NLL) and NSV (NLL)
resummed corrections at NLO under y as well as pp scale
variations. But at NNLO, under pu scale variation, the
inclusion of NSV NNLL corrections increases the uncer-
tainty, whereas the SV NNLL corrections bring it down
significantly. This indicates that the NSV resummed cor-
rections here require the resummed contributions from gg
channel as a compensating factor to improve the uncertainty.
Note that in all these analyses we studied the impact of fixed
order and resummed CFs using same PDF sets to desired
logarithmic accuracy for both of them. For studies related to
up variations, it is worthwhile to consider resummed PDFs if
they are available. However, as far as the yy uncertainty is
concerned, the NSV corrections show nice behavior espe-
cially at NNLO + NNLL accuracy with notable reduction in
the uncertainty. This suggests that the resummed NSV terms
play a substantial role in improving the yp scale uncertainty
in comparison to its SV counterpart.

IV. DISCUSSION AND CONCLUSION

Through this article, we provide for the first time the
numerical predictions for resummed next-to-soft-virtual
contributions up to NNLO + NNLL accuracy to the rapidity
distribution of pair of leptons in the Drell-Yan process at the
LHC. By restricting ourselves to the mechanism where only
neutral gauge bosons like photons and Z bosons produce
leptons, we have used our recent formalism [70] to system-
atically resum NSV logarithms to all orders. In our previous

work on the Drell-Yan inclusive cross section, we quantified
the significant contribution of the NSV logarithms in the
fixed-order predictions [69]. This serves as the motivating
factor to study the numerical significance of these collinear
logarithms in the case of rapidity distribution as well.

We have quantified the numerical effects of SV + NSV
higher-order predictions by providing the K-factor values
for central scale up = up = M,. We find that there is an
enhancement of 4.9%, 3.98%, and 1.24% at LO+ LL,
NLO + NLL, and NNLO + NNLL, respectively, by the
inclusion of SV + NSV resumed results. Also, there is an
improvement in the perturbative convergence over the fixed-
order results till NNLO + NNLL accuracy. The sensitivity of
our predictions to the unphysical scales g and pf is studied
using the canonical seven-point scale variation approach. We
have given the plot of seven-point scale variation for two
values of invariant mass, ¢ = M, and ¢ = 2 TeV. We find
that at ¢ = M, the uncertainty of resummed predictions is
more than the corresponding fixed-order results till NNLO.
However, at g = 2 TeV, the scale sensitivity at NLO + NLL
is decreased over the entire rapidity region, whereas at
NNLO + NNLL, it gets reduced around the central rapidity
region. Thus, by doing a comparative study of the scale
uncertainties at two different ¢ values, we infer that the
resummation effects become prominent as we go to higher
values of g. Nevertheless, there is a systematic reduction in the
uncertainty of the resummed results while moving to higher
logarithmic accuracy for both g = M, and g = 2 TeV.

Further analysis of the scale dependency revealed that
the seven-point scale uncertainties of resummed predictions
are largely governed by the factorization scale ur especially
at NNLO + NNLL. Moreover, the comparative study of
SV and SV + NSV resummed results shows that the NSV
part of the resummation increases the uncertainty due to up
scale variations. We know that different partonic channels
mix under factorization scale variations when they are
convoluted with appropriate PDFs. Therefore, the absence
of NSV contributions coming from the off-diagonal gg
channel increases the sensitivity to 4y scale at the hadronic
level. However, this missing compensation from the gg
channel is more evident at NNLO level due to considerable
contribution from gg channel at this order. This suggests
that the NSV resummation corresponding to gg channel is
necessary to improve the predictions as we go to higher
orders in perturbaton theory. In addition, as far as the pup
scale variation is concerned, resummed PDFs are also
useful to include for better results.

The independent study of renormalization scale variation
shows that the improvement in the scale uncertainty at
NLO + NLL is not quantitatively significant; however, at
NNLO + NNLL, there is a substantial decrease in pp scale
sensitivity as compared to the corresponding fixed-order
results. Note that the up scale uncertainty at NNLO is
reduced from (—0.56%, +0.5%) to (—0.16%, 0%) for the
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central rapidity region by the inclusion of NNLL. From the
comparison of SV and SV 4+ NSV resummed results, we
find that it is the inclusion of NSV resummed corrections at
NNLL accuracy to its SV counterpart, which brings down
the up scale dependency to a great extent. This is expected
because different channels, being renormalization group
invariant, do not mix under yy scale variation.
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APPENDIX A: NSV RESUMMATION
EXPONENTS g (o)

The NSV resummation exponents g, (w) given in (10)
are provided below:
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APPENDIX B: NSV RESUMMATION EXPONENTS hgjj(a))

The NSV resummation exponents hgq ; j(a)) given in (11) are provided below:
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where yp is the Euler-Mascheroni constant. Here, L, =In(l1 — ) with @ = fya,(u)InN\N,, L, :ln(;’—j) and
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