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We present the differential predictions for the rapidity distribution of a pair of leptons through the Drell-
Yan (DY) process at the LHC taking into account the soft-virtual (SV) as well as next-to-soft-virtual (NSV)
resummation effects in QCD perturbation theory to next-to-next-to-leading-order plus next-to-next-to-
leading-logarithmic (NNLOþ NNLL) accuracy. We perform the resummation in two-dimensional Mellin
space using our recent formalism [A. H. Ajjath et al., Phys. Rev. D 103, L111502 (2021)] by limiting
ourselves to contributions only from quark-antiquark (qq̄) initiated channels. The resummed corrections to
the fixed-order results are computed through a matched formula using the minimal prescription procedure.
We find that the resummation at next-to-leading-logarithmic (next-to-next-to-leading-logarithmic) level
brings about 3.98% (1.24%) corrections. We also observe that the sensitivity to the renormalization scale
gets improved substantially by the inclusion of NSV resummed predictions at NNLL accuracy. Further, the
lack of quark gluon (qg) initiated contributions to the NSV part in the NNLL resummed predictions leaves
large factorization scale dependence, indicating their importance at NSV level as we go to higher orders in
perturbation theory.
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I. INTRODUCTION

The production of a pair of leptons, known as the Drell-
Yan (DY) production [1], is one of thewell-studied processes
at TeV colliders such as Tevatron and the LHC. This is
possible due to wealth of precise theoretical predictions both
in standard model (SM) and beyond SM, taking into account
corrections from various sources. Being a least-contaminated
process, DY production is used as a luminosity monitor [2] at
the LHC. In addition, precise data on the rates allow one to
fit the parton distribution functions of hadrons [3–5]. Any
deviation from the precise predictions can be used to set
bounds on the parameters of models of new physics.
While the DY process at leading order (LO) is purely

electroweak, the radiative corrections are dominated by

QCD, and it has been an active area of interest for several
decades; see Refs. [6,7] for first next-to-leading-order
(NLO) results in perturbative QCD for the DY process,
and for invariant mass distribution of a pair of leptons at
next-to-next-to-leading order (NNLO), see Refs. [8,9]. For
the same observable at next-to-next-to-next-to-leading-
order (N3LO) level, the dominant soft-virtual (SV) con-
tributions were obtained in Refs. [10,11] prior to the
complete result [12] at N3LO becoming available recently.
Electroweak (EW) correction beyond LO can be found in
Refs. [13,14]. In addition to invariant mass distribution,
other differential distributions, namely, rapidity and trans-
verse momentum, are known to N3LO in QCD; see
Refs. [15–24]. For, mixed QCD and EW corrections, see
Ref. [25], and for parton showers matched with NLO QCD
results, see MC@NLO [26], POWHEG [26,27] and aMC@NLO

[28] frameworks.
The fixed-order predictions are improved by resumming

large threshold logarithms resulting from soft gluons; see
Refs. [29–35]. For the transverse momentum distribution,
at small pT , the resulting large logarithms exponentiate in
the impact parameter space [36,37]. In the soft-collinear
effective theory (SCET), one performs resummation in
momentum space; see Ref. [38] for inclusive production
and Ref. [39] for transverse momentum distribution. In the
Mellin space, resummation of large logarithms of the
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Feynman variable xF which describes the longitudinal
momentum of the final state was achieved in Ref. [30],
and it was found that there were two thresholds that could
be resummed to all orders; also see Ref. [40] for a different
scheme. In Ref. [41], the resummation of rapidity ofW� in
the Mellin-Fourier space was performed following a con-
jecture (see Ref. [42]), and later on, it was applied for Drell-
Yan production in Refs. [43,44]. A similar approach in
SCET can be found in Refs. [45,46].
Following Refs. [20,21,30], in Refs. [47,48], we studied

the soft gluon resummation for the rapidity distributions of
Higgs boson and also of a pair of leptons produced in
hadron colliders. In the threshold limit, i.e., when the
scaling variables z1 → 1 and z2 → 1, the soft gluons
contribute through delta functions and plus distributions
in the partonic cross sections. These contributions can be
resummed to all orders both in z1, z2 space and in N1, N2

space. The resummed results known to desired logarithmic
accuracy can be used to predict certain highest logarithms
in the fixed order; see Refs. [21,23,49]. The threshold limit
denoted by (z1 → 1, z2 → 1) corresponds to (N1 → ∞,
N2 → ∞) in the Mellin-Mellin (M-M) space, giving large
logarithms of the form lnnðNiÞ, where n ¼ 1; · · · and i ¼ 1,
2 and the resummation in M-M space resums terms of the
form ω ¼ asβ0 lnðN1N2Þ through a process-independent
function gðωÞ and a process-dependent but Ni-independent
function g0. Here, as ¼ g2sðμ2RÞ=16π2, with gs being the
strong coupling constant and μR being the renormalisation
scale. The constant β0 is the leading coefficient of the beta
function in QCD.
Contrary to naive expectation, in certain inclusive

[12,50,51] and differential [52] observables, one finds that
the contributions from subleading threshold logarithms,
called next-to-soft-virtual (NSV) terms, contribute signifi-
cantly at every order in perturbation theory. They are found
to be present in most of the partonic channels unlike the
leading logarithms. Thanks to the availability of these
fixed-order results to unprecedented accuracy, there are
enormous developments in the understanding of these
subleading terms. In particular, questions related to their
structure to all orders are still open; see Refs. [53–65] for
more details. Recently, in a series of articles [66–69], we
studied a variety of inclusive observables to understand
these subleading logarithms. Remarkably, we found that
there exists a systematic way to sum them up to all orders in
z as well as in the Mellin N spaces, exactly the way one
sums up leading threshold ones. This was achieved only for
the diagonal channels. One finds that resummation of both
SVand NSV terms can be achieved N space. Later on, this
was extended to study NSV terms present in rapidity
distributions [70] of a pair of leptons in DY and a Higgs
boson in gluon fusion as well as in bottom quark annihi-
lation. For a generic case of n-colorless particles in the
final state, see Ref. [71]. Like the inclusive one, these
subleading logarithms can be resummed to all orders in

multidimensional space (spanned by zl or Nl) along with
the leading threshold logarithms In the present paper, we
discuss the phenomenological aspects of resummed NSV
terms for the production of a pair of leptons at the LHC. In
the subsequent sections, we briefly recapitulate the relevant
theoretical results followed by a detailed study on the
numerical impact of NSV contributions, and finally we
conclude our findings.

II. THEORETICAL OVERVIEW

In the QCD improved parton model, the double-
differential distribution of a pair of leptons in the DY
process with respect to their invariant mass q2 and rapidity
y can be written as

d2σqðτ; q2; yÞ
dq2dy

¼ σqBðx01; x02; q2Þ
X

ab¼q;q̄;g

Z
1

x0
1

dz1
z1

Z
1

x0
2

dz2
z2

× fa

�
x01
z1

; μ2F

�
fb

�
x02
z2

; μ2F

�

× Δq
d;abðz1; z2; q2; μ2F; μ2RÞ; ð1Þ

where σqBðx01; x02; q2Þ is the Born cross section. The dimen-
sionless scaling variable τ is given by τ ¼ q2=S ¼ x01x

0
2,

where q is the momentum of the pair of leptons and
S ¼ ðp1 þ p2Þ2 is the center-of-mass energy of the incom-
ing hadron with momenta pi. The rapidity y of the lepton

pair is given by y ¼ 1
2
lnðp2:q

p1:q
Þ ¼ 1

2
lnðx01x0

2

Þ. The parton dis-

tribution functions of incoming partons a and b are non-

perturbative and are denoted by faðx
0
1

z1
; μ2FÞ and fbðx

0
2

z2
; μ2FÞ,

where x01=z1 and x02=z2 are their momentum fractions,
respectively, and are renormalized at the factorization scale
μF. Δ

q
d;abðas; z1; z2; q2; μ2FÞ are the Drell-Yan coefficient

functions (CFs) obtained from the partonic subprocesses
after mass factorization at the scale μF and are calculable
order by order in QCD perturbation theory in powers of as.
These CFs beyond leading order in perturbation theory

contain distributions such as δð1 − ziÞ and ½ln
m−1ð1−ziÞ
1−zi

�þ with

m ≤ 2n, n being the order of perturbation and regular
functions of zi. Distributions show up only in the diagonal
CFs, called SV terms and denoted byΔSV

d;q, while the regular

part, also called the hard part, is given byΔq;H
d;ab. The leading

terms in the hard part in the threshold expansion are
nothing but the NSV terms. Unlike the SV terms, the
NSV terms get contributions from both diagonal as well as
nondiagonal channels. Each term belonging to NSV con-
tribution contains a pair of either δð1 − ziÞ; i ¼ 1, 2, or

DlðziÞ; i ¼ 1; 2; l ≥ 0, where DlðziÞ ¼ ½lnlð1−ziÞ
1−zi

�þ and regu-

lar term logkð1 − zjÞ; j ¼ 1; 2; k ≥ 0. Following the work
by Catani and Trentadue [30], in Refs. [20,21,23], the
resummation of SV terms for the rapidity distribution to all
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orders was achieved in the scaling variables zi in z1, z2
space and later extended it to N1, N2 space in Refs. [47,48]
by performing two-dimensional Mellin transformations in
the large N1, N2 limit to obtain resummed result in the
M-M space. In the Mellin Nl space, when Nl are large, the
NSV terms take the form lnk Nj=Nl with ðj; l ¼ 1; 2Þ;
ðk ¼ 0; 1 � � �Þ up to 1=Nα

1=N
β
2;α; β ≥ 1. In Ref. [70],

restricting to diagonal channels, they were systematically
resummed to all orders along with SV terms.
The diagonal CF, taking into account both SV and NSV,

denoted by ΔSVþNSV
d;q , was shown to exponentiate in

Ref. [70] as

ΔSVþNSV
d;q ¼ C expðΨq

dðq2; μ2R; μ2F; z̄1; z̄2; ϵÞÞjϵ¼0; ð2Þ

where the symbol “C” refers to convolution which acts on
any exponential of a function fðzÞ takes the following
expansion:

CefðzÞ ¼ δð1 − zÞ þ 1

1!
fðzÞ þ 1

2!
ðf ⊗ fÞðzÞ þ � � � ð3Þ

Here, we keep only SV distributions, namely, δðz̄lÞδðz̄jÞ,
δðz̄lÞDiðzjÞ, DiðzlÞDkðzjÞ, and NSV terms DiðzlÞ lnkðz̄jÞ
and δðz̄lÞ lnkðz̄jÞ with ðl; j ¼ 1; 2Þði; k ¼ 0; 1;…Þ resulting
from the convolutions. In (2), ϵ is the complex valued
parameter in the dimensional regularization scheme. The
function Ψq

d in the above equation has the integral repre-
sentation in z space

Ψq
d ¼

δðz̄1Þ
2

�Z
q2 z̄2

μ2F

dλ2

λ2
Pqðasðλ2Þ; z̄2Þ þQq

dðasðq22Þ; z̄2Þ
�

þ

þ 1

4

�
1

z̄1

�
Pqðasðq212Þ; z̄2Þ þ 2Lqðasðq212Þ; z̄2Þ

þ q2
d
dq2

ðQq
dðasðq22Þ; z̄2Þ þ 2φf

d;qðasðq22Þ; z̄2ÞÞ
��

þ

þ 1

2
δðz̄1Þδðz̄2Þ lnðgqd;0ðasðμ2FÞÞÞ þ z̄1 ↔ z̄2; ð4Þ

where z̄l ¼ 1 − zl, q2l ¼ q2ð1 − zlÞ, q212 ¼ q2z̄1z̄2 and the
subscript þ indicates standard plus distribution.
In (4), Pqðas; z̄lÞ ¼ Pqðas; z̄lÞ − 2BqðasÞδðz̄lÞ, with

Pqðas; z̄lÞ being the splitting function in QCD, which takes
the form

Pqðas; z̄lÞ ¼ 2

�
AqðasÞ
ðz̄lÞþ

þ BqðasÞδðz̄lÞ þ Lqðas; z̄lÞ
�
; ð5Þ

with Aq and Bq being the cusp and collinear anomalous
dimensions, Lqðas; z̄lÞ≡ CqðasÞ lnðz̄lÞ þDqðasÞ. The
cusp (Aq), the collinear (Bq) anomalous dimensions, and
the constants Cq and Dq to third order are available in
Refs. [72–74]. The anomalous dimensions Aq, Bq, Cq, and
Dq can also be found in the Appendix of Ref. [69]. In (5),
we drop those terms which contribute to nondiagonal NSV
and beyond NSV terms throughout. The functionQq

d in (4)
is given as

Qq
dðas; z̄lÞ ¼

2

z̄l
Dq

dðasÞ þ 2φf
d;qðas; z̄lÞ: ð6Þ

In the above equation, the SV coefficient Dq
d is known to

third order [47] in QCD, and the NSV coefficient φf
d;q is

parametrized in the following way:

φf
d;qðasðλ2Þ; z̄lÞ ¼

X∞
i¼1

X∞
k¼0

âis

�
λ2

μ2

�
iϵ
2

Siϵφ
ði;kÞ
d;q ðϵÞ lnk z̄l;

¼
X∞
i¼1

Xi

k¼0

aisðλ2Þφq;ðkÞ
d;i lnk z̄l: ð7Þ

The upper limit on the sum over k is controlled by the
dimensionally regularized Feynman integrals that contrib-
ute to order ais. The constant gqd;0 in (4) results from the
finite part of the virtual contributions and pure δðz̄lÞ terms

of real emission contributions. The NSV coefficients φq;ðkÞ
d;i

in (7) are known to third order [70] and are listed below,

φq;ð0Þ
d;1 ¼ 2CF; φq;ð1Þ

d;1 ¼ 0;

φq;ð0Þ
d;2 ¼CFnf

�
−
268

27
þ8

3
ζ2

�
þCFCA

�
1000

27
−28ζ3−

56

3
ζ2

�
þC2

Fð−16ζ2Þ;

φq;ð1Þ
d;2 ¼CFCAð10ÞþC2

Fð−10Þ; φq;ð2Þ
d;2 ¼C2

Fð−4Þ;

φq;ð0Þ
d;3 ¼CFn2f

�
10856

729
þ32

27
ζ3−

304

27
ζ2

�
þCFCAnf

�
−
118984

729
þ196

3
ζ3þ

11816

81
ζ2−

208

15
ζ22

�

þCFC2
A

�
587684

729
þ192ζ5−

21692

27
ζ3−

40844

81
ζ2þ

176

3
ζ2ζ3þ

656

15
ζ22

�
þC2

Fnf

�
−
1144

9
þ96ζ3þ

1432

27
ζ2þ

32

5
ζ22

�

þC2
FCA

�
−
5143

27
þ460

9
ζ3−

5548

27
ζ2þ

1312

15
ζ22

�
þC3

F

�
23þ48ζ3−

32

3
ζ2−

448

15
ζ22

�
;

NEXT-TO-SOFT-VIRTUAL RESUMMED RAPIDITY … PHYS. REV. D 106, 034005 (2022)

034005-3



φq;ð1Þ
d;3 ¼CFCAnf

�
−
256

9
−
28

9
ζ2

�
þCFC2

A

�
244

9
þ24ζ3−

8

9
ζ2

�
þC2

Fnf

�
3952

81
−
64

9
ζ2

�

þC2
FCA

�
−
18436

81
þ544

3
ζ3þ

436

9
ζ2

�
þC3

F

�
−
64

3
−64ζ3þ

80

3
ζ2

�
:

φq;ð2Þ
d;3 ¼CFCAnf

�
−
10

3

�
þCFC2

A

�
34−

10

3
ζ2

�
þC2

Fnf

�
40

3

�
þC2

FCA

�
−96þ52

3
ζ2

�
þC3

F

�
16

3

�
;

φq;ð3Þ
d;3 ¼C2

Fnf

�
32

27

�
þC2

FCA

�
−
176

27

�
; ð8Þ

where the constants CA ¼ Nc and CF ¼ ðN2
c − 1Þ=2Nc are

the Casimirs of SUðNcÞ gauge group, nf is the number of
active flavors, and ζi are the Riemann zeta functions.
In Ref. [70], we systematically computed the analytic

expression of resummed CFs in the M-M space after
performing the double Mellin transformation on Δq

d in
(2) as

Δq
d;N1;N2

¼
Y
i¼1;2

Z
1

0

dziz
Ni−1
i Δq

dðz1; z2Þ

¼ g̃qd;0 expðΨq
d;N1;N2

Þ; ð9Þ

where g̃qd;0 ¼
P∞

i¼0 a
i
s g̃

q
d;0;i. Here, the resummed result for

Ψq
d;N1;N2

takes the form

Ψq
d;N1;N2

¼ gqd;1ðωÞ lnN1

þ
X∞
i¼0

ais

�
1

2
gqd;iþ2ðωÞ þ

1

N1

ḡqd;iþ1ðωÞ
�

þ 1

N1

X∞
i¼0

aish
q
d;iðω; N1Þ þ ðN1 ↔ N2Þ; ð10Þ

where

hqd;0ðω; NlÞ ¼ hqd;00ðωÞ þ hqd;01ðωÞ lnNl;

hqd;iðω; NlÞ ¼
Xi

k¼0

hqd;ikðωÞ lnk Nl; ð11Þ

with ω ¼ asβ0 lnN1N2. The SV resummation coefficients,
which comprises g̃qd;0 and gqd;i, are extensively discussed in
Refs. [47,75,76]. The NSV coefficients ḡqd;i and hqd;ik are
listed in Appendixes A and B. Our next task is to include
these resummed contributions consistently in the fixed-
order predictions to understand the phenomenological
relevance of the NSV resummed results in the context of
rapidity distribution for the lepton pair production in the
Drell-Yan process.

III. PHENOMENOLOGY

In this section, we study the impact of resummed soft
virtual plus next-to-soft-virtual (SVþ NSV) results for the
rapidity distribution of a pair of leptons produced through Z
and γ� in the collision of two hadrons at the LHC with
center-of-mass energy 13 TeV. We take nf ¼ 5 flavors, the
MMHT2014(68cl) Parton distribution function (PDF) set
[77] and the corresponding asðMZÞ through the Les
Houches Accord PDF (LHAPDF) [78] interface at each
order in perturbation theory. For the fixed-order rapidity
distribution, we use the publicly available code VRAP0.9

[16,17]. The resummed contribution is obtained from
Δq

d;N1;N2
in (9) after performing Mellin inversions, which

are done using an in-house FORTRAN-based code. The
resummed results are matched to the fixed-order result in
order to avoid any double-counting of threshold logarithms.
The matched result is given below in (13). Here, eq is the
charge of the electron. The numerical values for the various
parameters are taken from the Particle Data Group 2020
[79] and are listed below,

MZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

s2w ¼ 0.22343; α ¼ 1=128; c2w ¼ 1 − s2w;

gVe ¼ −1=4þ s2w gVu ¼ 1=4 − 2=3s2w

gVd ¼ −1=4þ 1=3s2w BZ
e ¼ 0.03363; ð12Þ

d2σq;N
nLOþNnLL

dq2dy
¼ d2σq;N

nLO

dq2dy
þσqB

X
ab∈fq;q̄g

Z
c1þi∞

c1−i∞

dN1

2πi

×
Z

c2þi∞

c2−i∞

dN2

2πi
ðτÞ−N1−N2δab

×fa;N1
ðμ2FÞfb;N2

ðμ2FÞ
× ðΔq

d;N1;N2
jNnLL−Δq

d;N1;N2
jtrNnLOÞ; ð13Þ

where σqB is given by
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σqB ¼ 4πα2

3q4N

�
e2q −

2q2ðq2 −M2
ZÞeqgVe gVq

ððq2 −M2
ZÞ2 þM2

ZΓ2
ZÞc2ws2w

þ 3q4ΓZBZ
e

16αMZððq2 −M2
ZÞ2 þM2

ZΓ2
ZÞc2ws2w

×

�
1þ

�
1 −

8

3
s2w

�
2
��

: ð14Þ

The first term in (13) ðd2σq;NnLO=dq2dyÞ corresponds to
contributions resulting from fixed-order results up to
NnLO. The second term, on the other hand, contains only
SV and NSV logarithms but to all orders in perturbation
theory. The subscript “tr” in Δq

d;N1;N2
indicates that it is

truncated at the same order as the fixed order after
expanding in powers of as. Hence, at a given order ans ,
the nonzero contribution from the second term starts at
order anþ1

s and includes SV and NSV terms from higher
orders. The Mellin space PDF (fi;N) can be evolved using
QCD-PEGASUS [80]. Alternatively, we use the technique
described in Refs. [30,81] to directly deal with PDFs in the
z space. The contour ci in the Mellin inversion in (13) can
be chosen according to the minimal prescription [82]
procedure. Note that the same minimal prescription pro-
cedure for the SV terms [82] will go through for the Mellin
inversion of NSV terms as well. This is because the
inclusion of NSV logarithms does not introduce any new
Landau pole. Further, the Landau pole problem is directly
related to the fact that the coupling as enters into the
nonperturbative region, which results because of the
integration of the argument of running coupling. And
the position of the Landau pole is decided by the argument
of as in the integral representation (4), which is used to
resum the large SV and NSV logarithms. Since the
inclusion of NSV terms does not alter the argument of
as in (4) from the SV case, the Landau pole will remain
same as that of SV resummation. In addition, as already
noted in Ref. [82], there will not be any power corrections
induced for the SV resummation, and this observation
continues to be valid for the NSV case as well due to the
minimal prescription formula in (13).
Our numerical results for the fixed order are based on

NNLO computation of the CFs in which parton distribution
functions are taken up to NNLO accuracy. Although the

results of fixed-order rapidity distribution at N3LO are
presented in Ref. [24] for the Drell-Yan process, the
corresponding numerical code is not publicly available;
therefore, we could not include N3LO results in our
analysis. The resummed SVand NSV results are computed
up to NNLL accuracy. To go beyond the NNLL accuracy,
we need the collinear anomalous dimensions Cq and Dq to
fourth order as well as the four loop NSV coefficient φq;4

d;4,
which are currently not available. To distinguish between
SV and SVþ NSV resummation, all along the paper, we
denote the former by NnLL and the latter by NnLL for the
nth-level logarithmic accuracy.
In Tables I and II, we list the resummed exponents which

are required to predict the tower of SVand NSV logarithms,
respectively, inΔq

d;N1;N2
at a given logarithmic accuracy. Let

us first discuss the predictions for the SV logarithms. As
shown in Table I, using the first set of resummed exponents
fg̃qd:0;0; gqd;1g which constitute to the SV-LL resummation,

we get to predict the leading SV logarithms of Δq;ðiÞ
d;N1;N2

to
all orders in perturbation theory, i.e., flnl N1 lnk N2g with
lþ k ¼ 2iðl; k ≥ 0Þ at the order ais for all i > 1. Further,
using the second set of resummed exponents fg̃qd;0;1; gqd;2g
along with the first set, one can predict extra the next-to-
leading SV logarithms, i.e., the towers flnl N1 lnk N2g with
lþ k ¼ 2i − 1; 2i − 2 forΔq;ðiÞ

d;N1;N2
with i > 2. These towers

of logarithms belong to the SV-NLL resummation. In
general, using the nth set fg̃qd;0;n; gqd;nþ1g in addition to
the previous sets, we can predict the highest (2nþ 1)
towers of SV logarithms in Nl with l ¼ 1, 2, which
constitutes the SV-NnLL resummation, at every order in
ais for all i > nþ 1, where n ¼ 0; 1; 2 � � �.
Next, we discuss the predictions for the NSV logarithms

present in Δq
d;N1;N2

at a given logarithmic accuracy. As
presented in Table II, using the first set of resummed
exponents fg̃qd;0;0; gqd;1; ḡqd;1, hqd;0gwhich constitute to the LL
resummation, we can predict the highest NSV logarithms

of Δq;ðiÞ
d;N1;N2

to all orders in perturbation theory, i.e.,

flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1g with lþ k ¼ 2i − 1 at the order

ais for all i > 1. Similarly, using the second set of
resummation exponents fg̃qd;0;1; gqd;2; ḡqd;2; hqd;1g along with
the first set, one can predict the next-to-highest NSV

TABLE I. The set of resummed exponents {g̃qd;0;n; g
q
d;nðωÞ}, which is required to predict the tower of SV logarithms in Δq;ðnÞ

d;N1;N2
at a

given logarithmic accuracy in the Mellin N space. Here, i, j ≥ 0, and Li
l ¼ lni Nl with l ¼ 1, 2.

GIVEN PREDICTIONS: SV logarithms

Resummed exponents Δq;ð2Þ
d;N1;N2

Δq;ð3Þ
d;N1;N2

Δq;ð4Þ
d;N1;N2

� � � Δq;ðnÞ
d;N1;N2

Logarithmic accuracy

g̃qd;0;0; g
q
d;1 fLi

1L
j
2gjiþj¼4 fLi

1L
j
2gjiþj¼6 fLi

1L
j
2gjiþj¼8

� � � fLi
1L

j
2gjiþj¼2n

LL

g̃qd;0;1; g
q
d;2 fLi

1L
j
2gjiþj¼5;4 fLi

1L
j
2gjiþj¼7;6

� � � fLi
1L

j
2gjiþj¼2n−1;2n−2 NLL

g̃qd;0;2; g
q
d;3 fLi

1L
j
2gjiþj¼5;4

� � � fLi
1L

j
2gjiþj¼2n−3;2n−4 NNLL
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logarithms to all orders, which includes the towers

flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1g with lþk¼2i−2 for Δq;ðiÞ

d;N1;N2

with i > 2. These towers of logarithms contribute to the
NLL resummation. In general, using the nth set
fg̃qd;0;n; gqd;nþ1; ḡ

q
d;nþ1; h

q
d;ng in addition to the previous sets,

we get to predict the highest (nþ 1) towers of NSV
logarithms in Nl with l ¼ 1, 2, which constitute to the
NnLL resummation, at every order in ais for all i > nþ 1.
Below, we present the resummed result given in (2) at

various logarithmic accuracy and discuss the resulting
predictions for the NSV logarithms in ðN1; N2Þ space as
displayed in Table II till a4s (N4LO). Note that we set μ2R ¼
μ2F ¼ q2 in the expressions of the predictions throughout.
We begin with the resummed result in the LL approxima-
tion given by

Δq;LL
d;N1;N2

¼ g̃qd;0;0 exp

�
lnN1g

q
d;1ðωÞ

þ 1

N1

ðḡqd;1ðωÞ þ hqd;0ðω; N1ÞÞ
�

þ ðN1 ↔ N2Þ: ð15Þ

Now, we expand the above expression up to a4s (N4LO)
and compare the predictions for leading NSV logarithms
against those from fixed-order results. Note that, as can be
seen from Table II, the LL resummation, which comprises
only one-loop anomalous dimensions and SVþ NSV coef-
ficients from fixed-order NLO results, predicts the leading

logarithms flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1gjlþk¼3, flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1gjlþk¼5, fln

l N1

N1
lnk N2;

lnl N2

N2
lnk N1gjlþk¼7, etc., at

a2s (NNLO), a3s (N3LO), a4s (N4LO), and so on, respectively,
as shown below. At a2s (NNLO), we have

Δq;ð2Þ
d;N1;N2

jNSV−LL ¼ L3
N1
f4C2

Fg þ L2;1
N1;2

f12C2
Fg

þ L1;2
N1;2

f12C2
Fg þ

L3
2

N1

f4C2
Fg

þ ðN1 ↔ N2Þ: ð16Þ

At a3s (N3LO), we find

Δq;ð3Þ
d;N1;N2

jNSV−LL ¼ L5
N1
f4C3

Fg þ L4;1
N1;2

f20C3
Fg

þ L3;2
N1;2

f40C3
Fg þ L2;3

N1;2
f40C3

Fg

þ L1;4
N1;2

f20C3
Fg þ

L5
2

N1

f4C3
Fg

þ ðN1 ↔ N2Þ: ð17Þ

The prediction at a4s (N4LO) is

Δq;ð4Þ
d;N1;N2

jNSV−LL ¼ L7
N1

�
8

3
C4
F

�
þ L6;1

N1;2

�
56

3
C4
F

�

þ L5;2
N1;2

f56C4
Fg þ L4;3

N1;2

�
280

3
C4
F

�

þ L3;4
N1;2

�
280

3
C4
F

�
þ L2;5

N1;2
f56C4

Fg

þ L1;6
N1

�
56

3
C4
F

�
þ L7

2

N1

�
8

3
C4
F

�

þ ðN1 ↔ N2Þ; ð18Þ

where Li;j
N1;2

¼ lni N1

N1
lnj N2, Lk

Nl
¼ lnk Nl

Nl
and Lk

l ¼ lnNl with
l ¼ 1, 2. Our predictions for the leadingNSV logarithms are
compared against the fixed-order results in Refs. [8,9,83] up
to third order.
Let us now turn to the resummed result at NLL accuracy,

which reads

Δq;NLL
d;N1;N2

¼ ðg̃qd;0;0 þ asg̃
q
d;0;1Þ exp

�
lnN1g

q
d;1ðωÞ þ gqd;2ðωÞ

þ 1

N1

ðḡqd;1ðωÞ þ asḡ
q
d;2ðωÞ þ hqd;0ðω; N1Þ

þ ash
q
d;1ðω; N1ÞÞ

�
þ ðN1 ↔ N2Þ: ð19Þ

TABLE II. The set of resummed exponents {g̃qd;0;n; g
q
d;nðωÞ; ḡqd;nðωÞ; hqd;nðωÞ}, which is required to predict the tower of NSV

logarithms in Δq;ðnÞ
d;N1;N2

at a given logarithmic accuracy in the Mellin N space. Here, i, j ≥ 0, Li;j
N1;2

¼ lni N1

N1
lnj N2, and

Li;j
N2;1

¼ lni N2

N2
lnj N1.

GIVEN PREDICTIONS: NSV logarithms

Resummed
exponents Δq;ð2Þ

d;N1;N2
Δq;ð3Þ

d;N1;N2
Δq;ð4Þ

d;N1;N2
� � � Δq;ðnÞ

d;N1;N2

Logarithmic
accuracy

g̃qd;0;0; g
q
d;1, ḡ

q
d;1; h

q
d;0 fLi;j

N1;2
; Li;j

N2;1
gjiþj¼3 fLi;j

N1;2
; Li;j

N2;1
gjiþj¼5 fLi;j

N1;2
; Li;j

N2;1
gjiþj¼7

� � � fLi;j
N1;2

; Li;j
N2;1

gjiþj¼2n−1 LL

g̃qd;0;1; g
q
d;2, ḡ

q
d;2; h

q
d;1 fLi;j

N1;2
; Li;j

N2;1
gjiþj¼4 fLi;j

N1;2
; Li;j

N2;1
gjiþj¼6

� � � fLi;j
N1;2

; Li;j
N2;1

gjiþj¼2n−2 NLL

g̃qd;0;2; g
q
d;3, ḡ

q
d;3; h

q
d;2 fLi;j

N1;2
; Li;j

N2;1
gjiþj¼5

� � � fLi;j
N1;2

; Li;j
N2;1

gjiþj¼2n−3 NNLL
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Note that at NLL accuracy we require anomalous dimensions up to two loops and second-order SVþ NSV coefficients
obtained from NNLO results. After expanding the above result up to a4s , we obtain the predictions

for the next-to-leading NSV logarithms flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1gjlþk¼4, fln

l N1

N1
lnk N2;

lnl N2

N2
lnk N1gjlþk¼6, etc., at a

3
s , a4s ,

and so on, respectively, and they are given by

Δq;ð3Þ
d;N1;N2

jNSV−NLL ¼ Δq;ð3Þ
d;N1;N2

jNSV−LL þ L4
N1

�
110

9
CAC2

F −
20

9
C2
Fnf þ ð24þ 40γEÞC3

F

�
þ L3;1

N1;2

�
440

9
CAC2

F

−
80

9
C2
Fnf þ ð80þ 160γEÞC3

F

�
þ L2;2

N1;2

�
220

3
CAC2

F −
40

3
C2
Fnf þ ð88þ 240γEÞC3

F

�

þ L1;3
N1;2

�
440

9
CAC2

F −
80

9
C2
Fnf þ ð32þ 160γEÞC3

F

�
þ L4

2

N1

�
110

9
CAC2

F −
20

9
C2
Fnf þ 40γEC3

F

�

þ ðN1 ↔ N2Þ; ð20Þ

Δq;ð4Þ
d;N1;N2

jNSV−NLL ¼ Δq;ð4Þ
d;N1;N2

jNSV−LL þ L6
N1

�
154

9
CAC3

F −
28

9
C3
Fnf þ

�
24þ 112

3
γE

�
C4
F

�
þ L5;1

N1;2

�
308

3
CAC3

F

−
56

3
C3
Fnf þ ð128þ 224γEÞC4

F

�
þ L4;2

N1;2

�
770

3
CAC3

F −
140

3
C3
Fnf þ ð272þ 560γEÞC4

F

�

þ L3;3
N1;2

�
3080

9
CAC3

F −
560

9
C3
Fnf þ

�
288þ 2240

3
γE

�
C4
F

�
þ L2;4

N1;2

�
770

3
CAC3

F −
140

3
C3
Fnf

þ ð152þ 560γEÞC4
F

�
þ L1;5

N1;2

�
308

3
CAC3

F −
56

3
C3
Fnf þ ð32þ 224γEÞC4

F

�

þ L6
2

N1

�
154

9
CAC3

F −
28

9
C3
Fnf þ

112

3
γEC4

F

�
þ ðN1 ↔ N2Þ; ð21Þ

where γE is the Euler-Mascheroni constant. The above
predictions for the next-to-leading NSV logarithms are in
agreement with results given in Refs. [8,9,83] up to third
order. Furthermore, we have compared our full third-order
results for Δq

dðz1; z2Þ in z space (see Ref. [70] for the third-
order results in z space) with the results obtained using the
generalized threshold factorization approach presented in
Ref. [83]. From that comparison, we have found that our
third-order prediction is in complete agreement with results
given in Ref. [83] for terms of the type DiðzlÞ lnjðz̄mÞ,
i; j ≥ 0; l; m ¼ 1, 2 in the z space. However, we could not
compare the remaining δðz̄lÞ lnjðz̄mÞ terms in our result
because they were not available in Ref. [83].
Finally, using the NNLL resummation, which further

embeds the three-loop anomalous dimensions and third-
order SVþ NSV coefficients obtained from N3LO results,

we predict the next-to-next-to-leading logarithms

flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1gjiþj¼5 at a

4
s (N4LO), flnl N1

N1
lnk N2;

lnl N2

N2
lnk N1gjiþj¼7 at a

5
s (N5LO), and so on. The resummed

expression at NNLL accuracy is given by

Δq;NNLL
d;N1;N2

¼ ðg̃qd;0;0 þ asg̃
q
d;0;1 þ a2s g̃

q
d;0;2Þ exp½lnN1g

q
d;1ðωÞ

þ gqd;2ðωÞ þ asg
q
d;3ðωÞ þ

1

N1

ðḡqd;1ðωÞ þ asḡ
q
d;2ðωÞ

þ a2s ḡ
q
d;3ðωÞ þ hqd;0ðω;N1Þ þ ash

q
d;1ðω;N1Þ

þ a2sh
q
d;2ðω;N1ÞÞ� þ ðN1 ↔ N2Þ: ð22Þ

The prediction for the next-to-next-to-leading NSV loga-
rithm at a4s is provided below:

Δq;ð4Þ
d;N1;N2

jNSV−NNLL ¼ Δq;ð4Þ
d;N1;N2

jNSV−NLL þ L5
N1

�
968

27
C2
AC

2
F −

352

27
nfC2

FCA þ 32

27
C2
Fn

2
f þ

�
5392

27
þ 616

3
γE − 24ζ2

�
CAC3

F

−
�
1000

27
þ 112

3
γE

�
C3
Fnf þ ð−68þ 272γE þ 224γ2E þ 64ζ2ÞC4

F

�
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þL4;1
N1;2

�
4840

27
C2
AC

2
F −

1760

27
nfC2

FCAþ
160

27
C2
Fn

2
f þ

�
25916

27
þ3080

3
γE−120ζ2

�
CAC3

F

−
�
4712

27
þ560

3
γE

�
C3
Fnf þð−360þ1184γEþ1120γ2Eþ320ζ2ÞC4

F

�
þL3;2

N1;2

�
9680

27
C2
AC

2
F

−
3520

27
nfC2

FCAþ
320

27
C2
Fn

2
f þ

�
48952

27
þ6160

3
γE−240ζ2

�
CAC3

F −
�
8704

27
þ1120

3
γE

�
C3
Fnf

þð−760þ1952γEþ2240γ2Eþ640ζ2ÞC4
F

�
þL2;3

N1;2

�
9680

27
C2
AC

2
F −

3520

27
nfC2

FCAþ
320

27
C2
Fn

2
f

þ
�
1664þ6160

3
γE−240ζ2

�
CAC3

F −
�
288þ1120

3
γE

�
C3
Fnf þð−800þ1472γEþ2240γ2E

þ640ζ2ÞC4
F

�
þL1;4

N1;2

�
4840

27
C2
AC

2
F −

1760

27
nfC2

FCAþ
160

27
C2
Fn

2
f þ

�
6568

9
þ3080

3
γE

−120ζ2

�
CAC3

F −
�
1096

9
þ560

3
γE

�
C3
Fnf þð−420þ464γEþ1120γ2Eþ320ζ2ÞC4

F

�

þ L5
2

N1

�
968

27
C2
AC

2
F −

352

27
nfC2

FCAþ
32

27
C2
Fn

2
f þ

�
356

3
þ616

3
γE−24ζ2

�
CAC3

F

−
�
56

3
þ112

3
γE

�
C3
Fnf þð−88þ32γEþ224γ2Eþ64ζ2ÞC4

F

�
: ð23Þ

The above predictions for the NSV logarithms in rapidity

distributionΔq;ðiÞ
d;N1;N2

are found to reproduce the correspond-

ing predictions in the inclusive cross section Δq;ðiÞ
N com-

puted in Ref. [69] in the limit N1 ¼ N2 ¼ N for i ≤ 4.
In Ref. [69], it has been shown, in the context of DY

inclusive cross section up to N3LO in the Mellin N space,
that, although the total contribution of NSV logarithms is
smaller as compared to the SV counterpart, it is still
numerically sizeable to not be neglected. Despite being
formally subleading, the considerable contribution of the
NSV terms is due to their large coefficients, and this trend
was also observed in the case of Higgs boson production
through gluon fusion [68,84]. Here, even in the case of
rapidity distribution, we expect the same trend to be
observed. Keeping this in mind, we ask the following
questions that can shed light on the relevance of NSV terms
in the context of rapidity distribution in dilepton pair
production in the DY process at the LHC:

(i) In comparison to the fixed-order corrections, how
much is the effect of SVþ NSV resummed results
on the rapidity distribution?

(ii) How sensitive is the SVþ NSV resummed rapidity
distribution to the choices of factorization (μF) and
renormalization (μR) scales?

(iii) How do the resummed NSV terms alter the pre-
dictions of SV resummed result?

In the following sections, we address the above questions in
detail. Let us begin with analyzing the impact of SVþ
NSV resummed results in comparison to the fixed-order
results, which is the topic of the next section. We present

our results for the doubly differential distribution with
respect to invariant mass q and rapidity y by plotting it as a
function of y for fixed values of q.

A. Fixed-order vs resummed rapidity distribution

In this section, we study the effects of SVþ NSV resum-
mation on the fixed-order predictions for rapidity distribution
of dilepton pair production in theDYprocess for 13TeVLHC.
Through (13), we get the resummed predictions at LL, NLL,
and NNLL matched with the corresponding fixed-order
results. The numerical impact of higher-order contributions
can be quantified through the K-factors defined below,

KðqÞ ¼
d2σ

dq2dy ðμR ¼ μF ¼ qÞ
d2σLO

dq2dy ðμR ¼ μF ¼ qÞ ; ð24Þ

wherewe have set renormalization (μR) and factorization (μF)
scales at q.
Figure 1 shows the K factors at LOþ LL, NLOþ NLL,

and NNLOþ NNLL in the right panel in comparison to the
corresponding fixed-order ones depicted in the left panel as
a function of rapidity y at the central scale μR ¼ μF ¼ q,
where q is fixed at MZ.
Below, in Table III, we show the K-factor values of both

fixed-order and resummed results for benchmark rapidity
values at the central scale μR ¼ μF ¼ MZ. We observe that
there is an enhancement of 32.9% and 36.9% when we go
from LO to NLO and NNLO, respectively, at the central
rapidity region. Furthermore, the fixed-order values at LO,
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NLO, and NNLO get incremented by the inclusion of SVþ
NSV resummed predictions at LL, NLL, and NNLL by
4.9%, 3.98%, and 1.24%, respectively, around the central
rapidity region. This can be seen from the right panel of
Fig. 1, where the resummed curves are found to lie above
their respective fixed-order ones, implying the enhance-
ment resulting from the resummed corrections. It should be
noted that the K-factor curves of the resummed results at
NLOþ NLL and NNLOþ NNLL overlap for a wide range
of rapidity values, which was not observed for the case of
fixed-order predictions. This indicates that the perturbative
convergence is improved among the resummed results,
thereby leading to the reliability of perturbative predictions
by the inclusion of resummed corrections. We also notice
that the K-factor values are closer for NNLO and NNLOþ
NNLL as compared to NLO and NLOþ NLL over the full
rapidity region. This suggests that the resummed contri-
butions to the fixed-order rapidity distribution decrease as
we go to higher orders in perturbation theory.
From the above analysis of K factors, we have observed

that the resummed predictions not only bring in considerable
enhancement in the fixed-order results but also improve the
perturbative convergence till NNLOþ NNLL accuracy.
However, both fixed-order and resummed predictions suffer
from the presence of unphysical scales, namely, the

renormalization μR and the factorization μF scales.
Therefore, a careful study of perturbative uncertainties of
these predictions is needed by studying their sensitivity to the
choices of μF and μR scales, which will be discussed in the
following subsection.

1. Seven-point scale uncertainties
of the resummed results

The uncertainty associated with the choice of renormal-
ization μR and the factorization μF scales due to the
truncation of the perturbative series can be assessed using
the standard canonical seven-point variation, where μ ¼
fμF; μRg is varied in the range 1

2
≤ μ

q ≤ 2, keeping the ratio
μR=μF not larger than 2 and smaller than 1=2. In Fig. 2, we
compare the seven-point scale uncertainties of the SVþ
NSV resummed results (right panel) against fixed-order
ones (left panel) around the central scale choice ðμR; μFÞ ¼
ðMZ;MZÞ for 13 Tev LHC at various perturbative orders.
Here, we find that the central scale lines of resummed
predictions are shifted up with respect to that of correspond-
ing fixed-order results. This indeed suggests that there is a
systematic enhancement in the rapidity distribution when
we add the resummed corrections to the fixed-order results
as shown in Table IV. This was also observed from the
analysis of K-factor values given earlier. However, we
notice that the uncertainty bands of the resummed predic-
tions are wider than that of the corresponding fixed-order
ones over the entire rapidity range at every order of
perturbation. Nevertheless, the uncertainty band decreases
as we go to higher logarithmic accuracy from LOþ LL to
NNLOþ NNLL. In addition, the error band of NNLOþ
NNLL is fully contained within the band of NLOþ NLL
over most of the rapidity region, unlike the fixed-order case.
In Table IV, we present both fixed order and resummed

predictions at various perturbative orders along with their
asymmetric errors resulting from seven-point scale variation
for benchmark rapidity values. Here, we notice an increment
of 31.7% while going from LOþ LL to NLOþ NLL
accuracy, which further improves by 0.3% at NNLOþ
NNLL for y ¼ 0. Besides this, the scale uncertainty gets
reduced significantly while going from LOþ LL to
NNLOþ NNLLover the full range of rapidity. For instance,
the uncertainty ranges between ð−16.19%;þ15.36%Þ for
LOþ LL, ð−7.50%;þ7.06%Þ for NLOþ NLL, and
ð−2.18%;þ3.30%Þ at NNLOþ NNLL for the central
rapidity region. However, there is no improvement in the
scale uncertainty of the resummed corrections when we
compare it against the fixed-order counterpart. This can be
explained due to following possibilities:

(i) The resummed logarithms are not dominant in this
region to show their numerical relevance.

(ii) The lack of NSV resummed corrections from off-
diagonal channels can give rise to large scale
uncertainties in the resummed predictions.

FIG. 1. The K-factor values for resummed results (right panel)
in comparison to the fixed-order ones (left panel) till NNLOþ
NNLL level as a function of rapidity (y) at the central scale
μR ¼ μF ¼ MZ.

TABLE III. K-factor values of fixed-order and resummed
results at the central scale μR ¼ μF ¼ MZ.

y KLOþLL KNLO KNLOþNLL KNNLO KNNLOþNNLL

0 1.049 1.329 1.382 1.369 1.386
0.8 1.05 1.319 1.372 1.358 1.374
1.6 1.05 1.291 1.343 1.327 1.343
2.4 1.502 1.245 1.296 1.279 1.295
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Recall that the resummation is inevitable to cure the
perturbative series, which suffers from certain large loga-
rithmic terms at every order, in the kinematic threshold
region, where the invariant mass q approaches the hadronic
center-of-mass energy, which is 13 TeV in our case.
Therefore, to see the impact of the resummed contributions,
we need to extend our analysis to the higher invariant mass
region, which is of the order of TeV.Wewill discuss the off-
diagonal channel contribution later in detail toward the end
of this section. Now, we move on to the analysis of the
seven-point scale uncertainty of the SVþ NSV resummed
predictions in comparison to the fixed-order results for high
invariant mass q ¼ 2 TeV.
From the earlier discussions on the seven-point scale

uncertainty for q ¼ MZ, we found that the uncertainty
bands of resummed predictions were wider than that of
fixed order at every order of perturbation. Nevertheless, the
widths of uncertainty bands were found to decrease as we
moved from LOþ LL to NNLOþ NNLL accuracy. In
addition, we also observed an appreciable amount of
increment in the rapidity distribution by the inclusion of
SVþ NSV resummed effects. Now, here in Fig. 3, we
show the seven-point scale variation of the rapidity dis-
tribution for q ¼ 2 TeV. The fixed-order results are

depicted in the left panel up to NNLO accuracy, and
resummed predictions are given in the right panel up to
NNLOþ NNLL accuracy. In general, we note that the
width of uncertainty bands corresponding to both fixed
order as well as resummed predictions are significantly
reduced as compared to the uncertainty bands for q ¼ MZ.
Interestingly, the NLOþ NLL uncertainty band is better as
compared to NLO fixed-order band over the entire rapidity
region. Also, the NNLO uncertainty gets improved by the
inclusion of resummed NNLL corrections around the
central rapidity region. This indicates the relevance of
resummed contributions at this invariant mass region. This
was not observed for the case of q ¼ MZ where the
resummed contributions were not prominent.
In Table V, we quote the central scale values of both fixed-

order and resummed rapidity distributions at q ¼ 2 TeV
along with the seven-point scale uncertainties for bench-
mark rapidity values. Here, we observe that the percentage
uncertainties of fixed order as well as resummed results get
reduced substantially at each perturbative order when we
compare them against the values given in Table IV. For
instance, the uncertainty at NNLOþ NNLL is reduced from
ð−2.18%;þ3.3%Þ to ð−0.31%;þ0.53%Þ as we go from
q ¼ MZ to q ¼ 2 TeV around the central rapidity region.

TABLE IV. Values of resummed rapidity distribution at various orders in comparison to the fixed-order results in pb/GeVat the central
scale μR ¼ μF ¼ MZ for 13 TeV LHC.

y LO NLO NNLO LOþ LL NLOþ NLL NNLO þ NNLL

0 55.008þ14.99%
−15.88% 73.107þ2.951%

−5.098% 75.342þ0.6439%
−0.9501% 57.730þ15.36%

−16.19% 76.049þ7.064%
−7.502% 76.283þ3.301%

−2.178%

0.8 54.674þ14.68%
−15.59% 72.137þ3.010%

−5.083% 74.237þ0.6864%
−1.011% 57.392þ15.05%

−15.91% 75.044þ7.098%
−7.482% 75.159þ3.322%

−2.233%

1.6 53.293þ13.83%
−14.80% 68.825þ3.075%

−4.988% 70.735þ0.7423%
−1.071% 55.972þ14.19%

−15.11% 71.607þ7.078%
−7.370% 71.600þ3.311%

−2.278%

2.4 50.327þ12.63%
−13.71% 62.642þ3.154%

−4.866% 64.392þ0.8200%
−1.172% 52.944þ12.98%

−14.02% 65.238þ7.092%
−7.251% 65.182þ3.323%

−2.370%

FIG. 2. Seven-point scale variation of the resummed result against fixed order around the central scale choice ðμR; μFÞ ¼ ðMZ;MZÞ
for 13 Tev LHC. The dotted, dashed, and solid lines refer to the corresponding central scale values at each order.

A. H. AJJATH et al. PHYS. REV. D 106, 034005 (2022)

034005-10



In addition, the uncertainty at NNLOþ NNLL is
evidently small as compared to the uncertainty of
ð−0.89%;þ0.60%Þ at NNLO for y ¼ 0. Similarly, the
uncertainty at NLO is ð−2.93%;þ2.84%Þ, which comes
down to ð−1.25%;þ1.39%Þ at NLOþ NLL for the same
value of y. As for the case of q ¼ Mz, there is a systematic
reduction in the uncertainties while going from LOþ LL
to NNLOþ NNLL over the entire rapidity region, which
can be seen from Table V. We also find that the resummed
contribution at NNLL brings in 0.86% correction to
NNLO, whereas it was 1.24% for the case of q ¼ MZ.
This suggests that the correction resulting from resumma-
tion at NNLL accuracy decreases as we go to higher q
values, leading to better reliability of resummed results.
To summarize, we found that the uncertainties of the

rapidity distribution decrease by the inclusion of the
resummed corrections at q ¼ 2 TeV over the full rapidity
region. Furthermore, the reliability of the perturbative results
due to resummed corrections is improved at this invariant
mass value. Thus, it can be inferred that the relevance of
resummation effects becomes evidently visible while going
from q ¼ Mz to q ¼ 2 TeV. To understand these observa-
tions in a better way, we now turn to study the effect of each
scale individually on the SVþ NSV resummed result.

2. Uncertainties of the resummed results
with respect to μR and μF

In the following, we examine the effect of μR and μF
scales individually on the resummed result. We begin with
plotting the dependence of the rapidity distribution on μF as
a function of the rapidity y while fixing the scale μR at the
invariant mass q, for q ¼ 2 TeV as shown in Fig. 4. The
bands are obtained by varying the scale μF by a factor of 2
up and down around the central scale μR ¼ μF ¼ 2 TeV.
Here, the resummed band depicted in the right panel at
NNLOþ NNLL looks similar to that of the seven-point
variation band shown in Fig. 3 (right panel). This indicates
that the contribution to the width of NNLOþ NNLL band
in Fig. 3 mainly comes from the uncertainties arising from
variations in the μF scale. Note that the uncertainties at
NNLOþ NNLL arising from μF and seven-point variation
are identical, and they lie between ð−0.31%;þ0.53%Þ for
y ¼ 0. Moreover, the μF scale uncertainties decrease as we
go to higher logarithmic accuracy in the resummed results.
Now, we move on to compare the μF scale uncertainty of

the resummed predictions with respect to the fixed-order
results. We observe that the μF scale uncertainty of NLO
gets improved by the inclusion of NLL resummed

TABLE V. Values of resummed rapidity distribution at various orders in comparison to the fixed-order results in 10−7 pb=GeV at the
central scale μR ¼ μF ¼ 2 TeV for 13 TeV LHC.

y LO NLO NNLO LOþ LL NLOþ NLL NNLO þ NNLL

0 2.554þ7.627%
−6.783% 3.323þ2.836%

−2.928% 3.440þ0.597%
−0.889% 2.767þ8.026%

−7.098% 3.460þ1.395%
−1.253% 3.470þ0.533%

−0.312%

0.4 2.385þ7.914%
−7.011% 3.105þ2.881%

−2.998% 3.233þ0.600%
−0.919% 2.601þ8.360%

−7.363% 3.244þ1.408%
−1.268% 3.266þ0.596%

−0.397%

0.8 1.762þ8.836%
−7.720% 2.295þ3.079%

−3.290% 2.409þ0.647%
−1.033% 1.962þ9.438%

−8.185% 2.426þ1.563%
−1.322% 2.446þ0.7901%

−0.653%

1.2 0.729þ10.72%
−9.208% 0.938þ3.655%

−3.914% 0.986þ0.788%
−1.266% 0.851þ11.70%

−9.918% 1.019þ2.368%
−1.458% 1.013þ1.380%

−1.206%

FIG. 3. Seven-point scale variation of the resummed result against fixed order around the central scale choice ðμR; μFÞ ¼ ð2; 2Þ TeV
for 13 Tev LHC. The dotted, dashed, and solid lines refer to the corresponding central scale values at each order.
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predictions, whereas the NNLO band increases when the
NNLL corrections are added. Let us try to understand why
the SVþ NSV resummed result at NNLOþ NNLL is
more sensitive to the μF scale variation as compared to
fixed-order NNLO result. As mentioned earlier, we perform
the resummation of SV distributions and NSV logarithms
present in the diagonal partonic channel. Unlike the SV
distributions that get contribution only from the diagonal
quark-antiquark (qq̄) initiated channel, the NSV terms can
originate from off-diagonal channels like quark-gluon (qg),
gluon-gluon (gg), etc., as well. Under the μF scale variation,
these various partonic channels get mixed due to the
Dokshitzer—Gribov—Lipatov—Altarelli—Parisi evolu-
tion of the PDFs. Hence, it becomes essential to keep all
the contributing partonic channels at a particular perturba-
tive order as there can be compensations among those
channels, thereby reducing the scale uncertainty at that
order. The fixed-order results used for our numerical
analysis contain all the partonic channels, while the
resummed contributions are only from qq̄ initiated chan-
nels. Thus, the scale dependence of the fixed-order result is
expected to go down in comparison to the corresponding
resummed prediction.
However, as mentioned above, the inclusion of

resummed corrections at NLL accuracy improves the
NLO error band. This suggests that the contribution of
qg channel is not prominent at NLO. We find that the one-
loop correction from the qq̄ channel is 23.6%, while the
correction from the qg channel is only −2.5% of the NLO
rapidity distribution at the central rapidity value. Therefore,
there is an improvement in the μF scale uncertainty when
we sum up the collinear logarithms resulting from the
dominant qq̄ channel at NLL. On the other hand, at NNLO
level, the a2s corrections from qq̄ and qg channels are 4.5%

and −1.25%, respectively, to the NNLO rapidity distribu-
tion. As a result, the magnitude of the NNLO result is
determined by a significant cancellation between qq̄ and qg
channels, which was not the case for NLO. Now, because of
the unavailability of the qg resummed collinear logarithms
in our analysis, the aforementioned cancellation at
NNLOþ NNLL is not balanced. Thus, the μF variation
band of resummed prediction at NNLOþ NNLL in Fig. 4
displays that the qg resummation is required to improve the
results.
Next, we try to understand the behavior of resummed

rapidity distribution in comparison to the fixed-order
counterpart under μR scale variation. Figure 5 shows the
dependence of the rapidity distribution on μR keeping μF
fixed at 2 TeV. The bands are obtained by varying the scale
μR by a factor of 2 up and down around the central scale
μR ¼ μF ¼ 2 TeV. Here, the LO rapidity distribution,
being independent of the scale μR, does not have a band
associated with it. On the other hand, there is a band when
we add the resummed corrections at LL accuracy to the LO
rapidity distribution. This is because the resummed cor-
rections at LL capture the leading logarithmic contributions
from all orders in perturbation theory, thereby giving rise to
μR scale uncertainty. Moreover, the inclusion of resummed
corrections at both NLL and NNLL improves the μR scale
uncertainties of NLO and NNLO, respectively. This is in
contrast to the case of μF scale variation discussed earlier.
Although the improvement is minuscule at NLO, it is
substantial at NNLO due to NNLOþ NNLL, which is
indeed the highlight of this plot here as compared to μF
scale variations shown in Fig. 4. For instance, the μR scale
uncertainty at NNLO is reduced from ð−0.56%;þ0.5%Þ to
(ð−0.16%; 0%Þ for y ¼ 0 by the inclusion of NNLL. As we
know, each partonic channel is invariant under μR scale

FIG. 4. μF scale variation of the resummed results against the fixed order with the scale μR held fixed at 2 for 13 TeV LHC. The dotted,
dashed, and solid lines refer to the corresponding central scale values at each order.
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variation when taken to all orders. Hence, there is an
improvement when we include more higher-order correc-
tions within a channel, which is qq̄ in this case, by keeping
the scale μF fixed.
In conclusion, we observed that the uncertainties due to

both μF and μR scales decrease as we go to higher
logarithmic accuracy. As far as the μF scale variation is
concerned, the resummation of collinear logarithms result-
ing from the qg channel also plays an important role. We
notice that having the qg resummed contribution is more
significant at NNLO level than at NLO due to relatively
larger contribution from qg channel at NNLO. As a result,
the seven-point scale uncertainty of the SVþ NSV
resummed predictions at NNLOþ NNLL is mostly driven
by the μF scale variation. Note that the inclusion of SVþ
NSV resummed predictions reduces the μR scale sensitivity
remarkably at NNLOþ NNLL accuracy. So far, we have
discussed the effects of resummation on the fixed-order
results, taking into account SV distributions and NSV
logarithms together in the analysis. Now, let us turn to
understand which part of the SVþ NSV resummation, i.e.,
whether it is the resummation of the distributions or of the
NSV logarithms, plays the main role in any kind of
improvement observed so far.

B. SV vs SV +NSV resummed results

In the previous section,we have studied the effects of SVþ
NSV resummation on the fixed-order rapidity distribution in
detail. We observed that there is a considerable amount of
enhancement in the rapidity distribution by the inclusion of
SVþ NSV resummed predictions and more importantly the
μR scale uncertainty gets reduced substantially at NNLOþ
NNLL accuracy. On the other hand, the μF scale uncertainty
shows improvement atNLOþ NLLfor higher values ofq but
not at NNLOþ NNLL. In the following, we perform an
analysis on the inclusion of resummed NSV logarithms by
comparing it with the SV resummed results.
We begin with the analysis of K-factor values for SVþ

NSV resummed results in comparison to the SV counter-
part till NNLOþ NNLL level at the central scale μR ¼
μF ¼ q for q ¼ MZ. In Table (VI), we compare the K-factor
values of SV and SVþ NSV resummed predictions at
various orders for benchmark rapidity values. We find that
there is an increment of 3.15%, 2.75%, and 0.625% in the
rapidity distribution when going from LL to LL, NLL to
NLL, and NNLL to NNLL, respectively, at the central
rapidity region. Figure 6 demonstrates this trend for a wider
range of rapidity values. In addition, the K-factor curves of

FIG. 5. μR scale variation of the resummed results against the fixed order with the scale μF held fixed at 2 for 13 TeV LHC. The dotted,
dashed, and solid lines refer to the corresponding central scale values at each order.

TABLE VI. The K-factor values for SVþ NSV resummed results in comparison to the SV results till NNLOþ
NNLL level at the central scale μR ¼ μF ¼ MZ.

y KLOþLL KLOþLL KNLOþNLL KNLOþNLL KNNLOþNNLL KNNLOþNNLL

0 1.017 1.049 1.345 1.382 1.374 1.386
0.8 1.017 1.05 1.336 1.372 1.362 1.374
1.6 1.017 1.05 1.307 1.343 1.332 1.343
2.4 1.016 1.05 1.260 1.296 1.283 1.295
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NLL and NNLL almost overlap with each other for a wide
range of rapidity values, which is not observed for the case
of NLL and NNLL curves. This suggests that there is better
perturbative convergence when the NSV logarithms are
taken into account.
We now turn to study the scale uncertainties arising from

SVþ NSV resmmation in comparison to the SV resumma-
tion. We first analyze the behavior of both SV and
SVþ NSV resummed rapidity distributions as a function
of y under the seven-point scale variation as depicted in Fig. 7
for q ¼ 2 TeV. We observe that inclusion of SV as well as
SVþ NSV resummed corrections reduces the uncertainty of
fixed-order results at both NLO and NNLO accuracy. This
reduction in the uncertainty is prominent for lower rapidity

values jyj ≤ 0.5 as shown in the insets in Fig. 7. As can be
seen from the Table VII, the uncertainty at NLOþ NLL is
comparable to that of NLOþ NLL around the central
rapidity region. However, the uncertainty at NNLOþ
NNLL gets worse when we add the resummed NSV
contributions at that accuracy. For instance, the uncertainty
at NNLOþ NNLL lies in the range ð−0.34%;þ0.23%Þ,
whereas it is increased to ð−0.31%;þ0.53%Þ at NNLOþ
NNLL for y ¼ 0. This hint toward our earlier findings in the
previous section that the sensitivity of the SVþ NSV
resummed results to the unphysical scales increases due to
the lack of resummed NSV predictions from off-diagonal qg
channel. Next, we move on to compare the SV and SVþ
NSV resummed predictions under the variation of each of
these scales separately.
We first consider the behavior of both SVand SVþ NSV

resummed rapidity distributions as a function of y under the
μF scale variation with the scale μR fixed at q ¼ 2 TeV as
depicted in Fig. 8. In general, the bands corresponding to
SVþ NSV resummed predictions are wider than that of SV
predictions over the entire rapidity region. We also find that
the width of the bands corresponding to fixed-order rapidity
distributions gets reduced with the inclusion of both SV
(NLL) and SVþ NSV (NLL) resummed corrections at
NLO. For instance, the uncertainty is ð−1.36%;þ1.7%Þ at
NLO, whereas it is reduced to ð−0%; 0.46%Þ and
ð−0.2%;þ1.07%Þ at NLOþ NLL and NLOþ NLL,
respectively, for the central rapidity value. This can be
associated with the earlier observation of qq̄ and qg
contributions at NLO. We have already seen that qq̄ is
the dominating channel at NLO, and hence the uncertainty
is expected to get better as we include the resummed
corrections coming from that channel. On the other hand,
though the uncertainty at NNLO gets improved by the

FIG. 6. The K-factor values for SVþ NSV resummed results in
comparison to the SV ones till NNLOþ NNLL level at the
central scale μR ¼ μF ¼ MZ.

FIG. 7. Comparison of seven-point scale variation between SV and SVþ NSV resummed results matched to NLO (left panel) and
NNLO (right panel) for q ¼ 2 TeV.
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addition of NNLL SV resummed corrections, it gets worse
when we include the NSV corrections through NNLL.
These observations can be seen from the insets in Fig. 8 for
lower rapidity values jyj ≤ 0.5. As we know, the SV

resummed terms come only from the diagonal qq̄ channel;
therefore, they do not need any compensating factor to
reduce its uncertainty. In contrary to this, the NSV
resummed predictions which we have included here are

FIG. 8. Comparison of μF scale variation between SVand SVþ NSV resummed results matched to NLO (left panel) and NNLO (right
panel) with the scale μR held fixed at q ¼ 2 TeV.

TABLE VII. Fixed-order, SV, and SVþ NSV resummed cross sections in 10−7 pb=GeV with seven-point scale uncertainties in
percent around the central scale μR ¼ μF ¼ 2 TeV.

y NLO NLOþ NLL NLOþ NLL NNLO NNLOþ NNLL NNLO þ NNLL

0 3.323þ2.836%
−2.928% 3.3927þ1.380%

−1.5263% 3.460þ1.395%
−1.253% 3.4405þ0.597%

−0.889% 3.4503þ0.226%
−0.337% 3.470þ0.533%

−0.312%

0.4 3.105þ2.881%
−2.998% 3.1803þ1.390%

−1.431% 3.244þ1.408%
−1.268% 3.2328þ0.600%

−0.919% 3.2462þ0.204%
−0.329% 3.2660þ0.596%

−0.397%

0.8 2.295þ3.079%
−3.290% 2.3755þ1.427%

−1.281% 2.426þ1.563%
−1.322% 2.4096þ0.647%

−1.033% 2.4298þ0.308%
−0.276% 2.446þ0.790%

−0.653%

1.2 0.9384þ3.655%
−3.914% 0.9946þ1.528%

−1.399% 1.0192þ2.368%
−1.458% 0.9865þ0.788%

−1.266% 1.0044þ0.725%
−0.583% 1.0131þ1.380%

−1.206%

FIG. 9. Comparison of μR scale variation between SVand SVþ NSV resummed results matched to NLO (left panel) and NNLO (right
panel) with the scale μF held fixed at q ¼ 2 TeV.
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incomplete due to missing contributions from the off-
diagonal qg channel. Consequently, the NSV included
results will show the residual μF uncertainty due to mixing
of various partonic channels. However, the scenario will be
different if we keep the scale μF fixed and vary the
renormalization scale μR.
Figure 9 shows the comparison of SV and SVþ NSV

resummed results under the μR scale variation for
q ¼ 2 TeV. Here, for the case of μR variation as well, the
uncertainties of fixed-order results get improved by the
inclusion of both SV and NSV resummed corrections.
Interestingly, at NNLO, the width of the bands gets reduced
substantially when the NSV resummed correction at NNLL
accuracy is added in comparison to its SV counterpart.
This improvement by the inclusion of NNLL NSV
resummed corrections is notable for lower rapidity values
jyj ≤ 0.5 as shown in the insets in Fig. 9. The uncertainty
at NNLO around the central rapidity region lies
between ð−0.57%;þ0.5%Þ, which gets reduced to
ð−0.33%;þ0.22%Þ when the SV (NNLL) corrections are
added. And, it gets further improved to ð−0.16%; 0%Þ with
the inclusion of NSV corrections (NNLL). This emphasizes
that the resummed NSV contributions play a vital role in
bringing down the μR scale uncertainty as we go to higher
logarithmic corrections.
In summary, we found that the uncertainty becomes better

with the inclusion of both SV (NLL) and NSV (NLL)
resummed corrections at NLO under μF as well as μR scale
variations. But at NNLO, under μF scale variation, the
inclusion of NSV NNLL corrections increases the uncer-
tainty, whereas the SV NNLL corrections bring it down
significantly. This indicates that the NSV resummed cor-
rections here require the resummed contributions from qg
channel as a compensating factor to improve the uncertainty.
Note that in all these analyses we studied the impact of fixed
order and resummed CFs using same PDF sets to desired
logarithmic accuracy for both of them. For studies related to
μF variations, it is worthwhile to consider resummedPDFs if
they are available. However, as far as the μR uncertainty is
concerned, the NSV corrections show nice behavior espe-
cially at NNLOþ NNLL accuracywith notable reduction in
the uncertainty. This suggests that the resummedNSV terms
play a substantial role in improving the μR scale uncertainty
in comparison to its SV counterpart.

IV. DISCUSSION AND CONCLUSION

Through this article, we provide for the first time the
numerical predictions for resummed next-to-soft-virtual
contributions up to NNLOþ NNLL accuracy to the rapidity
distribution of pair of leptons in the Drell-Yan process at the
LHC. By restricting ourselves to the mechanismwhere only
neutral gauge bosons like photons and Z bosons produce
leptons, we have used our recent formalism [70] to system-
atically resum NSV logarithms to all orders. In our previous

work on the Drell-Yan inclusive cross section, we quantified
the significant contribution of the NSV logarithms in the
fixed-order predictions [69]. This serves as the motivating
factor to study the numerical significance of these collinear
logarithms in the case of rapidity distribution as well.
We have quantified the numerical effects of SVþ NSV

higher-order predictions by providing the K-factor values
for central scale μR ¼ μF ¼ MZ. We find that there is an
enhancement of 4.9%, 3.98%, and 1.24% at LOþ LL,
NLOþ NLL, and NNLOþ NNLL, respectively, by the
inclusion of SVþ NSV resumed results. Also, there is an
improvement in the perturbative convergence over the fixed-
order results till NNLOþ NNLL accuracy. The sensitivity of
our predictions to the unphysical scales μR and μF is studied
using the canonical seven-point scale variation approach. We
have given the plot of seven-point scale variation for two
values of invariant mass, q ¼ MZ and q ¼ 2 TeV. We find
that at q ¼ MZ the uncertainty of resummed predictions is
more than the corresponding fixed-order results till NNLO.
However, at q ¼ 2 TeV, the scale sensitivity at NLOþ NLL
is decreased over the entire rapidity region, whereas at
NNLOþ NNLL, it gets reduced around the central rapidity
region. Thus, by doing a comparative study of the scale
uncertainties at two different q values, we infer that the
resummation effects become prominent as we go to higher
values ofq.Nevertheless, there is a systematic reduction in the
uncertainty of the resummed results while moving to higher
logarithmic accuracy for both q ¼ Mz and q ¼ 2 TeV.
Further analysis of the scale dependency revealed that

the seven-point scale uncertainties of resummed predictions
are largely governed by the factorization scale μF especially
at NNLOþ NNLL. Moreover, the comparative study of
SV and SVþ NSV resummed results shows that the NSV
part of the resummation increases the uncertainty due to μF
scale variations. We know that different partonic channels
mix under factorization scale variations when they are
convoluted with appropriate PDFs. Therefore, the absence
of NSV contributions coming from the off-diagonal qg
channel increases the sensitivity to μF scale at the hadronic
level. However, this missing compensation from the qg
channel is more evident at NNLO level due to considerable
contribution from qg channel at this order. This suggests
that the NSV resummation corresponding to qg channel is
necessary to improve the predictions as we go to higher
orders in perturbaton theory. In addition, as far as the μF
scale variation is concerned, resummed PDFs are also
useful to include for better results.
The independent study of renormalization scale variation

shows that the improvement in the scale uncertainty at
NLOþ NLL is not quantitatively significant; however, at
NNLOþ NNLL, there is a substantial decrease in μR scale
sensitivity as compared to the corresponding fixed-order
results. Note that the μR scale uncertainty at NNLO is
reduced from (−0.56%, þ0.5%) to (−0.16%, 0%) for the
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central rapidity region by the inclusion of NNLL. From the
comparison of SV and SVþ NSV resummed results, we
find that it is the inclusion of NSV resummed corrections at
NNLL accuracy to its SV counterpart, which brings down
the μR scale dependency to a great extent. This is expected
because different channels, being renormalization group
invariant, do not mix under μR scale variation.
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APPENDIX A: NSV RESUMMATION
EXPONENTS ḡqd;iðωÞ

The NSV resummation exponents ḡqd;iðωÞ given in (10)
are provided below:
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APPENDIX B: NSV RESUMMATION EXPONENTS hqd;ijðωÞ
The NSV resummation exponents hqd;ijðωÞ given in (11) are provided below:
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where γE is the Euler-Mascheroni constant. Here, Lω ¼ lnð1 − ωÞ with ω ¼ β0asðμ2RÞ lnN1N2, Lqr ¼ lnðq2
μ2R
Þ and

Lfr ¼ lnðμ2F
μ2R
Þ.
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