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We calculate the W-exchange contribution to the Ξþþ
cc → Ξþð0Þ

c πþ decay using light-cone sum rules.
The two-particle light-cone distribution amplitudes of the pion are used as nonperturbative input
for the sum rules calculation, and the perturbative kernel is calculated at the leading order. We obtain
the corresponding decay branching fractions by combining our W-exchange amplitudes with the
factorizable amplitudes given by various theoretical methods from the literature. It is shown that with
the factorizable amplitudes from heavy quark effective theory, we obtain the branching fraction ratio
BðΞþþ

cc → Ξþ0
c πþÞ=BðΞþþ

cc → Ξþ
c π

þÞ ¼ 1.42� 0.78, which is consistent with the experimental value of
1.41� 0.17� 0.1.

DOI: 10.1103/PhysRevD.106.034004

I. INTRODUCTION

The conventional quark model predicted the existence
of doubly heavy baryons consisting of two heavy quarks
(bottom or charm quarks) [1–6]. After pursuing the
doubly charmed baryons for decades, in 2017 the LHCb
collaboration announced the observation of the lowest-
lying state Ξþþ

cc with mass 3620.6�1.5ðstatÞ�0.4ðsystÞ�
0.3ðΞþ

c ÞMeV=c2 [7]. This new baryon was observed via
the decay channel Ξþþ

cc → Λþ
c K−πþπþ, which is consistent

with the prediction given by Ref. [8]. One year later, in
2018, a two-body decay channel Ξþþ

cc → Ξþ
c π

þ was
observed [9], which further confirms the existence of this
doubly charmed baryon. Recently, the LHCb collaboration
has observed a similar decay channel, Ξþþ

cc → Ξþ0
c πþ, and

measured the branching fraction ratio [10]:

BðΞþþ
cc → Ξþ0

c πþÞ
BðΞþþ

cc → Ξþ
c π

þÞ ≡
B0

B
¼ 1.41� 0.17� 0.1; ð1Þ

which means that the branching fraction of the decay into
Ξþ0
c is larger than that into Ξþ

c .
Nowadays, there are two main thrusts for the theoretical

research on doubly-heavy baryons. One is to find the
optimal decay channels where new doubly heavy states can
be observed by future experiments [11,12]. The other is to
study the recently observed decay processes, especially the

Ξþþ
cc → Ξþð0Þ

c πþ decay. The weak decay Ξþþ
cc → Ξþð0Þ

c πþ
receives contributions from the two topological diagrams as
shown in Fig. 1, the W-emission diagram (left) and the W-
exchange diagram (right). Generally, according to the naive
factorization [13–15], the W-emission diagram is approx-
imately factorizable so that it can be calculated by con-
sidering the baryon transformation matrix element and the
pion matrix element independently. For the decay of the
Ξþþ
cc , the transformation matrix element is parametrized by

form factors that have been evaluated in various theoretical
works based on QCD sum rules (QCDSR) [16], light-cone
sum rules (LCSR) [17–21], QCD factorization (QCDF)
[22,23], diquark effective theory [24], light-front quark
model (LFQM) [25–30], constituent quark model (CQM)
[31–33], nonrelativistic quark model (NRQCD), and heavy
quark effective theory (HQET) [22,34]. Further, the pion
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matrix element can be simply expressed by the pion decay
constant.
Unlike the weak decays of mesons, the W-exchange

diagrams in the baryon decays are generally nonfactoriz-
able, and this difficulty increases when we are facing the
decays of doubly heavy baryons. Nowadays, except an
SU(3) symmetry analysis [35,36] and a phenomenological
study [37], there is no QCD based or model-independent
study on the W-exchange contribution in doubly charmed
baryon decays. The mostly used approach to evaluate such
a contribution is the pole model [22,23,27,31,34]. Recently,
the combination of the factorizable contribution and the
nonfactorizable contribution from the pole-model leads to
the ratio B0=B between 0.81 and 0.83 [22,23], which means
that the branching fraction of the decay into Ξþ0

c is smaller,
which is obviously contrary to the experimental result.
Furthermore, if one includes the interference between the
W-emission and the W-exchange contributions, the B0=B
will become much larger, namely 6.74 [27].
This deviation of the theoretical prediction from the

experimental measurement implies that a more precise
theoretical calculation for the W-exchange contribution

in the Ξþþ
cc → Ξþð0Þ

c πþ decay is necessary. In this work, we
will use the method of LCSR to solve this problem. LCSR
were firstly proposed to study the transition form factors of
the radiative or semileptonic hadron decays [38–40]. In the
framework of LCSR, the required transition matrix element
can be extracted from a suitable correlation function at the
hadron level. The quark-hadron duality enables us to relate
this correlations function with the one at the quark-gluon
level, where it can be calculated by the operator-product
expansion (OPE), and all the nonperturbative contributions
come from the light-cone distribution amplitudes (LCDAs)
of a certain hadron in the decay. After decades of develop-
ment, a new technique of LCSR was proposed to study the
nonleptonic decay of the B mesons into two light mesons
[41–43]. This new technique of LCSR can be extended to
the case of heavy or doubly heavy baryon decays, and in
this work, we will use it to calculate the W-exchange

contribution in the Ξþþ
cc → Ξþð0Þ

c πþ decay.
This paper is organized as follows. In Sec. II, we

introduce a suitable correlation function to extract the
decay amplitude of Ξþþ

cc → Ξþð0Þ
c πþ. In Sec. III, we perform

the hadron level calculation for the correlation function
and extract the required decay amplitude. In Sec. IV, we

perform the quark-gluon level calculation for the correla-
tion function with the use of two-particle LCDAs of the
pion. In Sec. V, we give the numerical results on the decay

amplitudes and branching fractions of Ξþþ
cc → Ξþð0Þ

c πþ and
compare our results with those from the literature.
Section VI contains a brief summary of this work.

II. THE CORRELATION FUNCTION IN LCSR

In this section, we give a suitable correlation function for
the study of the Ξþþ

cc → Ξþð0Þ
c πþ decay in the framework of

the LCSR. The relevant effective Hamiltonian for this
decay is

Heff ¼
GFffiffiffi
2

p VcsV�
udðC1O1 þ C2O2Þ;

O1 ¼ s̄γμð1 − γ5Þcūγμð1 − γ5Þd;
O2 ¼ s̄aγμð1 − γ5Þcbūbγμð1 − γ5Þda; ð2Þ

where the C1, C2 are Wilson coefficients, and the subscripts
a, b are color indices. Generally, the transition matrix

element of the Ξþþ
cc → Ξþð0Þ

c πþ induced by O1;2 can be
parametrized as

hΞþð0Þ
c ðp − qÞπþðqÞjOið0ÞjΞþþ

cc ðpÞi
¼ iūðp − qÞðAð0Þi þ Bð0Þiγ5ÞuðpÞ: ð3Þ

Since the initial and final states are on shell, Að0Þi and Bð0Þi
are just constants. In this work, our main task is to obtain
the W-exchange contribution to Að0Þi and Bð0Þi, denoted as

Að0Þi
WE and Bð0Þi

WE in what follows.
Using the LCSR to calculate a transition matrix element,

one begins with an appropriate correlation function which
will be calculated both at the hadron and the quark-gluon
level. In our case, the correlation function corresponding to
the Ξþþ

cc → Ξþð0Þ
c πþ decay is chosen as

ΠOiðp; q; kÞ ¼ i2
Z

d4xe−iðp−qÞ·x
Z

d4yeiðp−kÞ·y

× h0jTfJΞð0Þ
c
ðyÞOið0ÞJ̄Ξcc

ðxÞgjπ−ðqÞi; ð4Þ

where the hadron currents are defined as [16]

FIG. 1. W-emission diagram (left) and W-exchange diagram (right) for the Ξþþ
cc → Ξþð0Þ

c πþ decay.
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JΞc
¼ 1ffiffiffi

2
p εabcðuTaCγ5sb − sTaCγ5ubÞQc;

JΞ0
c
¼ 1ffiffiffi

2
p εabcðuTaCγμsb þ sTaCγμubÞγμγ5Qc;

JΞcc
¼ εabcðQT

aCγμQbÞγμγ5uc: ð5Þ

Following Ref. [41], we have temporarily included the pion
in the initial state instead of the final state as in the real decay.
The advantage of this is to enable us to factorize out the

matrix element h0jJΞ0
c
jΞþð0Þ

c i without any ambiguity after

inserting the Ξþð0Þ
c state into the right-hand side of JΞ0

c
.

Actually, during the calculation at the hadron level, by
suitable analytic continuation this initial pion state will be
moved to the final state. We have also introduced an

auxiliary momentum k in the correlation function. This
momentum is unphysical and should be set to zero at the end
of the calculation. The reason why it must be introduced is
closely related to the analytic continuation mentioned
above, which will be explained in the next section.

III. HADRON LEVEL CALCULATION
IN THE LCSR

In this section, we derive the calculation of the corre-
lation function in Eq. (4) at the hadron level. For simplicity,
we take the case of the Ξþ

c as an example; the derivation for
the decays into Ξþ0

c is similar. We insert a complete set of
states with the same quantum numbers as JΞc

ðyÞ into the
correlation function,

ΠOi
H ðp; q; kÞWE ¼ i2

Z
d4xd4ye−iðp−qÞ·xeiðp−kÞ·y

X
�0;σ0

Z
d3 ⃗l
ð2πÞ3

1

2El
h0jJΞc

ðyÞjl; σ0;�0ihl; σ0;�0jOið0ÞJ̄Ξcc
ðxÞjπ−ðqÞi

þ
Z

∞

sΞc

ds0
ρΞc

ðs0; ðp − qÞ2; P2Þ
s0 − ðp − kÞ2 ; ð6Þ

where the integration over ρΞc
represents the contribution

from the continuous spectrum, �0 corresponds to the
positive or negative parity of the Ξc states, namely
Ξcð12�Þ, and σ0 denotes the spin of the Ξc. The momentum
of the one-particle state in the complete set l should be on
shell, l2 ¼ m�02

Ξc
. This means that the first matrix element in

Eq. (6) can be simply parametrized by the Ξc decay
constants λ�Ξc

:

h0jJΞc
ðyÞjl; σ0;þi ¼ λþΞc

uðl; σ0Þe−il·y;
h0jJΞc

ðyÞjl; σ0;−i ¼ λ−Ξc
iγ5uðl; σ0Þe−il·y; ð7Þ

while the second matrix element in Eq. (6) is a function
of p2; q2; k2; ðp − qÞ2, and P2 ¼ ðp − k − qÞ2. Generally
speaking, a matrix element like this should also depend
on l2, however, the on-shell condition has reduced such a
dependence.
Now it can be understood better why, we have to set the

pion as an initial state at the beginning. If the pion is set as a
final state, then the complete set of states inserted between
JΞc

andOi must be a composite state of Ξc and π, instead of
Ξc as Eq. (6) shows. As a result, in order to factorize out
a Ξc matrix element as shown in Eq. (7), we must separate
the Ξc and π in this composite state so that Ξc can be
annihilated by JΞc

independently. However, this requires
the further assumption on the decoupling of the inserted Ξc
and π, which is difficult to prove at the hadron level.
Therefore, to avoid this problem, we set the pion as an

initial state, but later it must be transformed to the final state
by the analytical continuation.
Furthermore, since one can replace the d3 ⃗l integration by a

four-momentum integration with the use of residue theorem,
Z

d3 l⃗
ð2πÞ3

1

2El
jlihlje−il·y¼

Z
d4l
ð2πÞ4e

−il·y 1

l2−m�02
Ξc

jlihlj; ð8Þ

after integrating over d4y, one arrives at

ΠOi
H ðp; q; kÞWE

¼ i3
Z

d4xe−iðp−qÞ·x
X
�0;σ0

1

ðp − kÞ2 −m�02
Ξc

× λ�0
Ξc
u�0ðp − k; σ0Þhp − k; σ0;�0jOið0ÞJ̄Ξcc

ðxÞjπ−ðqÞi

þ
Z

∞

sΞc

ds0
ρΞc

ðs0; ðp − qÞ2; P2Þ
s0 − ðp − kÞ2 ; ð9Þ

where, we have defined uþ ¼ u; u− ¼ iγ5u. To simplify the
calculation, we have chosen p2¼ k2¼ 0 and q2 ¼ m2

π ≈ 0.
Now the correlation function depends on three Lorentz
invariants ðp − kÞ2, ðp − qÞ2, and P2, while the matrix
element hp − k; σ0;�0jOið0ÞJ̄Ξcc

ðxÞjπ−ðqÞi only depends
on ðp − qÞ2 and P2.
Further, the same correlation function can be calculated at

the quark-hadron level by the OPE in the deep Euclidean
region, ðp−kÞ2∼ ðp−qÞ2∼P2≪ 0, which will be explic-
itly done in the next section. In principle, the expression of
the same correlation function at these two levels should be
equivalent:
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ΠOi
H ðp;q;kÞWE¼ΠOi

QCDðp;q;kÞWE

¼1

π

Z
∞

ðmcþmsÞ2
ds0

ImΠOi
QCDðs0;ðp−qÞ2;P2ÞWE

s0−ðp−kÞ2 ;

ð10Þ

where the ðp − kÞ2 dependence ofΠOi
QCD has been described

as in the form of a dispersion integral.We have omitted the u
quark mass and ðmc þmsÞ2 is the quark level threshold to
produce aΞc baryon.According to the quark-hadron duality,
the integration over the continuous spectrum at the hadron
level is canceled by the corresponding integration above a
certain threshold sΞc

at the quark-gluon level, which leads to
the following equation:

i3
Z

d4xe−iðp−qÞ·x
X
�0;σ0

1

ðp − kÞ2 −m�02
Ξc

λ�0
Ξc
u�0ðp − k; σ0Þhp − k; σ0;�0jOið0ÞJ̄Ξcc

ðxÞjπ−ðqÞiWE

¼ 1

π

Z
sΞc

ðmcþmsÞ2
ds0

ImΠOi
QCDðs0; ðp − qÞ2; P2ÞWE

s0 − ðp − kÞ2 : ð11Þ

Generally, this threshold parameter should be slightly
larger than the mass squared of the corresponding hadron
state. Here, it is chosen to be the same as in Ref. [16],
where a QCDSR was used to study the semileptonic
decay of the Ξcc → Ξc. It should be mentioned that in
principle sΞc

is a universal parameter that is process
independent so that this procedure should be reasonable.

Note that since ImΠOi
QCDðs0; ðp − qÞ2; P2ÞWE is an analytic

function of P2, the left-hand side of Eq. (11) shares this
property. Therefore one can extendP2 to the physical region,
namely P2 > 0, which allows us to replace the initial state
jπ−ðqÞi of the matrix element on the left-hand side by a final
state hπþð−qÞj. After that, a Borel transformation for ðp −
kÞ2 on both sides of Eq. (11) is performed, and we obtain

− i3
Z

d4xe−iðp−qÞ·x
X
�0;σ0

e−m
�02
Ξc

=T 02
λ�0
Ξc
u�0ðp − k; σ0Þhp − k; σ0;�0; πþð−qÞjOið0ÞJ̄Ξcc

ðxÞj0iWE

¼ 1

π

Z
sΞc

ðmcþmsÞ2
ds0e−s0=T 02

ImΠOi
QCDðs0; ðp − qÞ2; P2ÞWE: ð12Þ

Now it can be understood why, we have to introduce the auxiliary momentum k. The matrix element on the left-hand side of
Eq. (11) depends on twoLorentz invariants, ðp − qÞ2 andP2. Since ðp − qÞ2 is used for theBorel transformation, itmust stay in
thedeepEuclidean region.Thus the only variable that can be used for analytical continuation isP2.Note thatP2 ¼ ðp − q − kÞ2
depends on k. If there is no k, then there will be no P2 dependence and the analytical continuation cannot be realized.
Next, we insert another complete set of states with the same quantum numbers as J̄Ξcc

into the left-hand side of Eq. (12),
which becomes

−
X

�0;�;σ0;σ

e−m
�02
Ξc

=T 02 1

ðp − qÞ2 −m�2
Ξcc

λ�0
Ξc
λ�Ξcc

u�0ðp − k; σ0Þhp − k; σ0;�0; πþð−qÞjOið0Þjp − q; σ;�iWEū
�ðp − q:σÞ

þ
Z

∞

sΞcc

ds
ρΞcc

ðs; P2Þ
s − ðp − qÞ2 : ð13Þ

For the same reason as discussed before, the matrix element hp − k; s0;�0; πþð−qÞjOið0Þjp − q; s;�iWE only depends on
P2. The ðp − qÞ2 dependence on the right-hand side of Eq. (12) can be further expressed as a dispersion integral,

1

π2

Z
sΞc

ðmcþmsÞ2
ds0e−s0=T 02

Z
∞

4m2
c

ds
1

s − ðp − qÞ2 Im
2ΠOi

QCDðs0; s; P2ÞWE: ð14Þ

Now using the quark-hadron duality again to cancel out the ds0 integration above a certain threshold sΞcc
corresponding to

the lowest Ξcc state, and performing the Borel transformation for ðp − qÞ2, we arrive at
X

�0;�;σ0;σ

e−m
�02
Ξc

=T 02−m�2
Ξcc

=T2

λ�0
Ξc
λ�Ξcc

u�0ðp − k; σ0Þhp − k; σ0;�0; πþð−qÞjOið0Þjp − q; σ;�iWEū
�ðp − q; σÞ

¼ 1

π2

Z
sΞc

ðmcþmsÞ2
ds0

Z
sΞcc

4m2
c

dse−s
0=T 02

e−s=T
2

Im2ΠOi
QCDðs0; s; P2Þ: ð15Þ
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Due to the existence of the auxiliary momentum k, unlike Eq. (3), the matrix element appearing in Eq. (15) must be
parametrized by four terms:

hp − k; σ0;�0; πþð−qÞjOið0Þjp − q; σ;�iWE

¼ iū�0ðp − k; σ0Þ
�
A�0�
1;i ðP2Þ þ B�0�

1;i ðP2Þγ5 þ A�0�
2;i ðP2Þ =q

m�
Ξcc

þ B�0�
2;i ðP2Þ =qγ5

m�
Ξcc

�
u�ðp − q; σÞ: ð16Þ

The form factors A�0�
1;2;i and B�0�

1;2;i are functions of P
2. Using the sum rules equation given in Eq. (15), we can extract these

four functions. Summing up the spin indices, we have

ie−m
þ2
Ξc
=T 02−mþ2

Ξcc
=T2

λþΞc
λþΞcc

ð=p2 þmþ
Ξc
Þ
�
Aþþ
1;i þ Bþþ

1;i γ5 þ Aþþ
2;i

=q
m�

Ξcc

þ Bþþ
2;i

=qγ5
m�

Ξcc

�
ð=p1 þmþ

Ξcc
Þ

þ ie−m
−2
Ξc
=T 02−mþ2

Ξcc
=T2

λ−Ξc
λþΞcc

ð=p2 −mþ
Ξc
Þ
�
A−þ
1;i þ B−þ

1;i γ5 þ A−þ
2;i

=q
m�

Ξcc

þ B−þ
2;i

=qγ5
m�

Ξcc

�
ð=p1 þmþ

Ξcc
Þ

þ ie−m
þ2
Ξc
=T 02−m−2

Ξcc
=T2

λþΞc
λ−Ξcc

ð=p2 þmþ
Ξc
Þ
�
Aþ−
1;i þ Bþ−

1;i γ5 þ Aþ−
2;i

=q
m�

Ξcc

þ Bþ−
2;i

=qγ5
m�

Ξcc

�
ð=p1 −m−

Ξcc
Þ

þ ie−m
−2
Ξc
=T 02−m−2

Ξcc
=T2

λ−Ξc
λ−Ξcc

ð=p2 −mþ
Ξc
Þ
�
A−−
1;i þ B−−

1;i γ5 þ A−−
2;i

=q
m�

Ξcc

þ B−−
2;i

=qγ5
m�

Ξcc

�
ð=p1 −m−

Ξcc
Þ

¼ 1

π2

Z
sΞc

ðmcþmsÞ2
ds0

Z
sΞcc

4m2
c

dse−s
0=T 02

e−s=T
2

Im2ΠOi
QCDðs0; s; P2ÞWE; ð17Þ

with p1 ¼ p − q and p2 ¼ p − k. Note that there are 16
independent spinor structures, and this number is equal
to that of the form factors A�0�

1;2 and B�0�
1;2 . This

matching enables us to solve all of these form factors
from the equation above. Finally, what, we really

care about is the transition matrix element of positive
parity baryons with k ¼ 0 and P2 ¼ mþ2

Ξcc. Therefore,
considering the k → 0 limit, and using the equation of
motion, the matrix element in Eq. (16) can be sim-
plified as

hp − k; σ0;þ; πþð−qÞjOið0Þjp − q; σ;þijk→0;P2¼mþ2
Ξcc

¼ iūþðp − k; σ0Þ
��

Aþþ
1;i ðmþ2

ΞccÞ þ
�
1 −

mþ
Ξc

mþ
Ξcc

�
Aþþ
2;i ðmþ2

ΞccÞ
�
þ
�
Bþþ
1;i ðmþ2

ΞccÞ −
�
1þ mþ

Ξc

mþ
Ξcc

�
Bþþ
2;i ðmþ2

ΞccÞ
�
γ5

�
uþðp − q; σÞ;

≡ iūþðp; σ0ÞðAi
WE þ Bi

WEγ5Þuþðp − q; σÞ: ð18Þ

Now the four unknown form factors are reduced to two constants Ai
WE and B

i
WE (A

0i
WE and B

0i
WE for the case of Ξ0

c), which has
the same form as Eq. (27).

IV. QUARK-GLUON LEVEL

In this section, we use the OPE to calculate the correlation function in Eq. (4) at the quark-gluon level. In the deep
Euclidean region, ðp − kÞ2 ∼ ðp − qÞ2 ∼ P2 ≪ 0, theW-exchange contribution to the correlation function can be expressed
as a convolution of the perturbative kernel and a nonperturbative matrix element of the pion:

ΠO1

QCDðp;q;kÞασ ¼−ΠO2

QCDðp;q;kÞασ;

¼−2
ffiffiffi
2

p
εabcεebc

Z
d4xd4ye−iðp−qÞ·xeiðp−kÞ·y

× ½SQðy−xÞγνCSTQð−xÞCð1− γ5ÞγμCSTs ðyÞCγ5SuðyÞγμð1− γ5Þ�αβðγνγ5Þρσh0jū
ρ
eðxÞdβað0Þjπ−ðqÞi; ð19Þ
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where α, β, ρ, σ are spinor indices and SQ;u;s are the free
propagators of the c, u, s quarks. The superscript “T”
denotes the transposed in spinor space. The last matrix
element can be expressed by the LCDAs of the pion.
Figure 2 shows the Feynman diagram of the W-exchange
effect in the correlation function, where the gray bubble
denotes the pion LCDAs. The contribution from two-
particle LCDAs of pion up to the twist-3 order are defined
as [44,45]

h0jūρeðxÞdβað0Þjπ−ðqÞi

¼−
i
12

δaefπ

Z
1

0

due−iūq·x
�
ð=pγ5ÞβρφπðuÞþðγ5Þβρμπϕp

3πðuÞ

þ1

6
ðγ5σμνÞβρqμxνμπϕσ

3πðuÞ
�
; ð20Þ

where

φπðuÞ¼ 6uūð1þa2C
3=2
2 ðu− ūÞþa4C

3=2
4 ðu− ūÞÞ;

ϕp
3πðuÞ¼ 1þ30

f3π
μπfπ

C1=2
2 ðu− ūÞ−3

f3πω3π

μπfπ
C1=2
4 ðu− ūÞ;

ϕσ
3πðuÞ¼ 6uð1−uÞ

�
1þ5

f3π
μπfπ

�
1−

ω3π

10

�
C3=2
2 ðu− ūÞ

�
;

ð21Þ

are the twist-2, twist-3p, and twist-3σ LCDAs, respectively.
a2¼0.27, a4¼0.179, μπ ¼ 2.87GeV, f3π ¼ 0.0045 GeV2,

ωπ ¼ −1.5, and fπ ¼ 0.13 GeV [44]. Cα
n are the

Gegenbauer polynomials. Now the derivation becomes
straightforward, and we take the twist-2 LCDA as an
example. Its contribution to the correlation function is

ΠO1

QCDðp; q; kÞð2Þ ¼ −4
ffiffiffi
2

p
Nc

�
−

i
12

�
fπ

Z
1

0

duφπðuÞ
Z

d4xd4y
Z

d4k1
ð2πÞ4

d4k2
ð2πÞ4

d4k3
ð2πÞ4

d4k4
ð2πÞ4

× e−iūq·xe−ik1·ðy−xÞeik2·xe−ik3·ye−ik4·ye−iðp−qÞ·xeiðp−kÞ·y
1

ðk21 −m2
cÞðk22 −m2

cÞðk23 −m2
sÞk24

× ½ð=k1 þmcÞγνð=k2 −mcÞð1 − γ5Þγμð=k3 −msÞγ5=k4γμð1 − γ5Þ=qγ5γνγ5�; ð22Þ
with Nc the number of colors.
The double imaginary part of the correlation function is related to its double discontinuity, which can be extracted by the

cutting rules. Setting the momentum of each propagator on shell, we have

Im2ΠO1

QCDðs0; s; P2Þð2Þ ¼
1

ð2iÞ2Disc
2ΠO1

QCDðs0; s; P2Þð2Þ

¼ −4
ffiffiffi
2

p
Nc

�
−

i
12

�
fπð−2πiÞ4

1

ð2iÞ2
1

ð2πÞ
Z

1

0

duφπðuÞ
Z

dm2
34

Z
dΦΔðP2

1; p
2
2Þ
Z

dΦ2ðm2
34Þ

× ½ð=k1 þmcÞγνð=k2 −mcÞð1 − γ5Þγμð=k3 −msÞγ5=k4γμð1 − γ5Þ=qγ5γνγ5�: ð23Þ
Here, we have introduced an extra integration on m2

34 ¼ ðk3 þ k4Þ2 to express the double discontinuity of the correlation
function as a convolution of a two-bodyphase space integration

R
dΦ2ðm2

34Þ and a triangle diagram integration
R
dΦΔðP2

1; p
2
2Þ,

Z
dΦ2ðm2

34Þ ¼
Z

d3k3
ð2πÞ3

1

2Ek3

d3k4
ð2πÞ3

1

2Ek4

δ4ðk34 − k3 − k4Þ; k234 ¼ m2
34;

Z
dΦΔðP2

1; p
2
2Þ ¼

Z
d4k34d4k1d4k2δðk21 −m2

cÞδðk22 −m2
cÞδðk234 −m2

34Þδ4ðP1 − k1 − k2Þδ4ðp2 − k1 − k34Þ; ð24Þ

FIG. 2. Feynman diagram of the W-exchange contribution to
the correlation function in Eq. (4). The gray bubble denotes the
pion LCDAs, the black dots denote the baryon currents and the
white double crossed dot represents the four-fermion interaction
vertex from O1;2. The dashed lines with arrows denote the
external momentum flows.
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where P1 ¼ p − uq ¼ p1 þ ūq and p2
1 ¼ s; p2

2 ¼ s02. This
factorization for themomentum flows can also be understood
intuitively by Fig. 2. It is seen that the momentum flowing
into the left-lower corner of the triangle diagram is not p1

itself but P1 ¼ p − uq ¼ p1 þ ūq instead, and these
momenta are related as P2

1 ¼ up2
1 ¼ us.

For the contribution from the twist-3p and twist-3σ
LCDAs the calculation is similar. The only difference is
that the twist-3σ LCDA contains a term proportional to
the coordinate xν. Note that from Eq. (22) there is an
exponential term expðiuq · xÞ in the correlation function.
One can use it to express xν as ð−i=uÞð∂=∂qνÞ expðiuq · xÞ
so that the calculation can still be done in momentum space.

V. NUMERICAL RESULTS

In this section, we first give the numerical results for the
amplitudes of the Ξþþ

cc → Ξþð0Þ
c πþ decays, namely the

two constants Að0Þi
WE and Bð0Þi

WE in Eq. (18). In this work,
we use the MS masses for the quarks, mcðμÞ ¼ 1.27 GeV
and msðμÞ ¼ 0.103 GeV with μ ¼ 1.27 GeV [46]. The
masses of the u quark and the pion are neglected. The
masses and decay constants of the charm baryons with
positive or negative parity are listed in Table I, where the
decay constants are defined as in Eq. (7).
On the other hand, the LCSR contains two kinds

of extra parameters, the thresholds sΞcc
; sΞc

; sΞ0
c
and the

Borel parameters T2; T 02. For the threshold parameters,
we have argued that they are process independent and
will be taken from Ref. [41], sΞcc

¼ ð4.1� 0.1Þ2 GeV2,
sΞc

¼ ð3.2� 0.1Þ2 GeV2, and sΞ0
c
¼ ð3.3� 0.1Þ2 GeV2.

These are about 0.52 GeV2 larger than the squared masses
of the corresponding baryons. Since this difference to the
squared mass is only an empirical value proposed in
Ref. [53], we will consider the uncertainty of the thresholds
when evaluating the error of numerical results.
What concerns the Borel parameters, to simplify the

problem, we apply the following equation to relate the
two Borel parameters corresponding to the s and s0
channels [54]:

T2

T 02 ≈
M2

1 −m2
1

M2
2 −m2

≡ 1

κ
; ð25Þ

whereM1ð2Þ is themass of the initial (final) baryon andm1ð2Þ
is the mass of the quark before (after) the weak decay. In
Figs. 3 and 4, we present the Borel parameter dependence of

the Ξþþ
cc → Ξþ0

c πþ decay amplitudes Að0Þð2ÞðBð0Þð2ÞÞ;
Að0Þð3pÞðBð0Þð3pÞÞ, and Að0Þð3σÞðBð0Þð3σÞÞ contributed from
the twist-2, twist-3p, and twist-3σ LCDAs, respectively.
In each diagram, the blue band denotes the uncertainty from
the error of the threshold. The upper and lower red bands
denote the uncertainty from the error of the Monte Carlo
integrations. Generally, the window of Borel parameters is
chosen to satisfy three requirements. The first one is that
they must be small enough so that the contribution from
the continuous spectrum can be suppressed, which deter-
mines their upper bound. The second one is that theymust be
large enough to ensure the OPE convergence, which
determines their lower bound. The last one is that the result
must be stable in this window. To determine the upper
bound of the Borel parameter, we require that the pole
contribution must be larger than the continuous spectrum
contribution, namely:

R sΞc
ðmcþmsÞ2 ds

0 R sΞcc
4m2

c
dse−s

0=κT2

e−s=T
2

Im2ΠOi
QCDðs0;s;P2ÞR

∞
ðmcþmsÞ2 ds

0 R∞
4m2

c
dse−s

0=κT2

e−s=T
2

Im2ΠOi
QCDðs0;s;P2Þ > 0.5:

ð26Þ

The numerator represents the pole contribution, which is
just the integral on the right-hand side of Eq. (15). The
denominator is the same integral but the upper limits of s
and s0 are extended to infinity, so that it contains both pole
and continuous spectrum contributions. This requirement
shows that the upper bound of the Borel parameter is around
T2 ¼ 7 GeV2 for Ξþþ

cc → Ξþ
c π

þ and T2 ¼ 6 GeV2 for
Ξþþ
cc → Ξþ0

c πþ.
The lower bounds of the Borel parameters are deter-

mined in principle by the ratio between the contribution
from the leading order and next-to-leading order QCD
corrections to the perturbative kernel of OPE. However, in
this work, we have only considered the leading order
contribution so that this method cannot be used. From
Figs. 3 and 4, it can be seen that the upper bounds
given above are in a relatively stable region. Therefore,
although, we cannot determine the lower bound quantita-
tively, we can take a range below the upper bound of the
Borel parameter. Here, we set the window as 6 < T2 <
8 GeV2 for Ξþþ

cc → Ξþ
c π

þ and 5 < T2 < 7 GeV2 for
Ξþþ
cc → Ξþ0

c πþ. The amplitudes and the corresponding
errors from the uncertainties of sΞcc

; sΞ0
c
, and T2 are listed

in Table II. Note that most of the contributions from the

TABLE I. The masses and decay constants of the charmed baryons with positive or negative parity. The decay constants are defined as
in Eq. (7).

Baryon Ξccð12þÞ Ξccð12−Þ Ξcð12þÞ Ξcð12−Þ Ξ0
cð12þÞ Ξ0

cð12−Þ
Mass [GeV] 3.62 [47] 3.77 [48] 2.47 [47] 2.79 [49] 2.58 [47] 2.87 [48]

λ½GeV3� 0.109 [50,51] 0.159 [48] 0.038 [50,51] 0.042 [52] 0.076 [50,51] 0.084 [48]
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twist-3 LCDAs are larger than that from twist-2. In
principle, to make the twist-2 contribution dominate, we
have to set a much larger Borel parameter, which corre-
sponds with the convergence of the light-cone expansion.
However, such a large Borel parameter will exceed the
upper bound that, we have determined using Eq. (26),
where we demanded that the continuous spectrum contri-
bution must be suppressed. Taking this into account, we
have to keep the Borel parameter below or near this upper
bound. Otherwise the pole contribution will be polluted
from the continuous spectrum contribution, which may lead
to a considerable uncertainty. Therefore, choosing the Borel
parameter around this upper bound is the best choice
though it may sacrifice the twist-2 dominance to some
extent. On the other hand, This feature is also common
in the LCSR studies on the heavy-to-light decays.

For example, in the LCSR calculation of the B → π form
factors [44,55], the contribution of twist-3 is generally of
the same order or even larger than that of twist-2. The
highly suppressed contributions should come from the
LCDAs of twist-4 or higher.
Table III shows the comparison of our results with those

from the literature. Here, we have unified the definition of
the amplitudes from all of these works. The amplitudes
presented in the table are the parameters of the matrix
element induced by the effective Hamiltonian from Eq. (2)
instead of O1;2:

hΞþð0Þ
c ðp − qÞπþðqÞjHeffð0ÞjΞþþ

cc ðpÞifac;nf
¼ iūðp − qÞ½Að0Þfac;nf þ Bð0Þfac;nfγ5�uðpÞ; ð27Þ

FIG. 3. The Borel parameter dependence of the Ξþþ
cc → Ξþ

c π
þ decay amplitudes Að2ÞðBð2ÞÞ; Að3pÞðBð3pÞÞ, and Að3σÞðBð3σÞÞ from the

twist-2, twist-3p, and twist-3σ LCDAs, respectively. In each diagram, the blue band denotes the uncertainty from the error of the
threshold: sΞcc

¼ ð4.1� 0.1Þ2 GeV2 and sΞc
¼ ð3.2� 0.1Þ2 GeV2. The upper and lower red bands denote the uncertainty from the error

of Monte Carlo integrations.
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where “fac” means the factorizable or W-emission con-
tribution, while “nf” denotes the nonfactorizable or equiv-
alently the W-exchange contribution, and ðA; BÞð0Þtot ¼
ðA;BÞð0Þfac þ ðA; BÞð0Þnf . All the amplitudes in Table III

are in units of 10−2GF GeV2. Here, we have listed the W-
exchange amplitudes from the pole model (PM) [22,27,34]
and three-loop constituent quark model (3LCQM) [31]. We
have also listed the corresponding factorizable amplitudes

FIG. 4. The Borel parameter dependence of the Ξþþ
cc → Ξþ0

c πþ decay amplitudes A0ð2ÞðB0ð2ÞÞ; A0ð3pÞðB0ð3pÞÞ, and A0ð3σÞðB0ð3σÞÞ from the
twist-2, twist-3p, and twist-3σ LCDAs, respectively. In each diagram, the blue band denotes the uncertainty from the error of the
threshold: sΞcc

¼ ð4.1� 0.1Þ2 GeV2 and sΞ0
c
¼ ð3.3� 0.1Þ2 GeV2. The upper and lower red bands denote the uncertainty from the error

of Monte Carlo integrations.

TABLE II. Decay amplitudes of Ξþþ
cc → Ξþð0Þ

c πþ from the W-exchange contribution. The Borel parameters are set in the region
6 < T2 < 8 GeV2 for Ξþþ

cc → Ξþ
c π

þ and 5 < T2 < 7 GeV2 for Ξþþ
cc → Ξþ0

c πþ.

Ξþþ
cc → Ξþ

c π
þ Twist-2 Twist-3p Twist-3σ Total

AWE 0.0084� 0.0024 −0.077� 0.01 −0.056� 0.002 −0.124� 0.011
BWE −0.064� 0.01 0.052� 0.01 0.165� 0.025 0.153� 0.029

Ξþþ
cc → Ξþ0

c πþ Twist-2 Twist-3p Twist-3σ Total
A0
WE 0.0027� 0.0005 0.0089� 0.002 −0.018� 0.0003 −0.0062� 0.002

B0
WE 0.0023� 0.0006 0.052� 0.016 0.011� 0.003 0.066� 0.016
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from QCDSR [16], LFQM [27], nonrelativistic quark
model (NRQM) [22,34] and HQET [22,34]. The notation
LFQMþ PM for example in the first column means that
the factorizable amplitude is from LFQM while the W-
exchange amplitude is from PM. On the other hand,
3LCQM alone means that the factorizable and nonfactor-
izable amplitudes are both from 3LCQM. From the
comparison in Table III, one can find that our results for
theW-exchange amplitudes of Ξþþ

cc → Ξþ
c π

þ are consistent
with most of the results from literatures. However, in terms
of the W-exchange amplitudes of Ξþþ

cc → Ξþ0
c πþ, our

results are much larger than those from the literature,
which provides a possibility to explain the anomaly of
B0=B. Two issues deserve further discussion:

(i) We have only used the two-particle LCDAs of the
pion for the calculation up to the leading order.
Although the contribution from the higher-twist
LCDAs or QCD loop corrections is expected to
be suppressed, in principle they are still necessary
for improving the accuracy of the W-exchange
contribution, which will be included in a fu-
ture study.

(ii) From Table III, we see that the various predictions
on the factorizable contribution from the literature
are not totally consistent with each other. These
works assume the naive factorization which is based
on color transparency [13]. It states that in the
bottom hadron decays, the b quark is heavy enough
so that the emitted light meson flies quickly and
decouples from other hadrons before it is caught up
by the soft gluons. However, since the charm quark

is lighter, in the charmed hadron decays the effect of
soft gluon exchange may be important. Therefore,
such effects need to be worked out in the future.

Now, we calculate the decay branching fractions by
combining each factorizable amplitude from the literature
and the nonfactorizable amplitudes from this work, and
make a comparison among them. The decay width is
expressed as

Γð0Þ ¼ pc

8π

�ðmΞcc
þmΞð0Þ

c
Þ2 −m2

π

m2
Ξcc

jAtotð0Þj2

þ
ðmΞcc

−mΞð0Þ
c
Þ2 −m2

π

m2
Ξcc

jBtotð0Þj2
�
; ð28Þ

where pc is the magnitude of the pion three-momentum
in the rest frame of the Ξcc. The lifetime of the Ξþþ

cc

is chosen as τðΞþþ
cc Þ ¼ 2.56 × 10−13s, the Wilson coeffi-

cients are chosen as C1 ¼ 1.35 and C2 ¼ −0.64 [27],
GF ¼ 1.166×10−5 GeV−2, and Vcs ¼ 0.975; Vud ¼ 0.973
[46]. The branching fractions are listed in Table IV. In the
first five lines the branching fractions are evaluated by the
nonfactorizable amplitudes from this work and the factor-
izable amplitudes from the literature. The next four lines
present the branching fractions with both kinds of ampli-
tudes being evaluated in the literature. In the last three lines,
we also list the branching fraction calculated by consid-
ering the FSR [56], where the decay amplitudes are dressed
by the FSR effect so that their explicit value are not
presented. η is a parameter introduced to account for the

TABLE III. Comparison of the decay amplitudes of Ξþþ
cc → Ξþð0Þ

c πþ from this work with those from the literature. All the amplitudes
below are in unit 10−2GF GeV2. Here, we list theW-exchange amplitudes from the PM [22,27,34] and three-loop quark model (3LQM)
[31]. We also list the factorizable amplitudes from QCDSR [16], LFQM [27], NRQM [22,34], and HQET [22,34]. The notation
LFQMþ PM for example in the first column means the factorizable amplitude is from LFQM while theW-exchange amplitude is from
PM, otherwise both of them are from the same theoretical approach.

Ξþþ
cc → Ξþ

c π
þ Afac Anf Atot Bfac Bnf Btot

This work … −16.67� 1.41 … … 20.47� 3.89 …

QCDSR [16] −8.74� 2.91 … … 16.76� 5.36 … …

LFQMþ PM [27] 7.40 −10.79 −3.38 15.06 −18.91 −3.85
3LQM [31] −8.13 10.50 3.37 −12.97 18.53 5.56
NRQMþ PM [22,34] 7.38 0 7.38 16.77 24.95 41.72
HQETþ PM [22,34] 9.52 0 9.52 19.45 24.95 44.40

Ξþþ
cc → Ξþ0

c πþ A0fac A0nf A0tot B0fac B0nf B0tot

This Work … −0.83� 0.28 … … 8.86� 2.16 …

QCDSR [16] −3.55� 0.68 … … 34.13� 11.6 … …

LFQMþ PM [27] 4.49 −0.04 4.45 48.50 −0.06 48.44
3LCQM [31] −4.34 −0.11 −4.45 −37.59 −1.37 −38.96
NRQMþ PM [22,34] 4.29 0 4.29 53.65 0 53.65
HQETþ PM [22,34] 5.10 0 5.10 62.37 0 62.37
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off-shell effect of the particle exchange [56,57]. In the
last column, we list the values of B0=B from all the
theoretical methods mentioned above. We note that most
of the calculated B0=B are much larger or smaller than the
experimental value ðB0=BÞexp¼1.41�0.17�0.1. However,
the value obtained from HQETþ LCSR leads to the
fraction

ðB0=BÞHQETþLCSR ¼ 1.42� 0.78; ð29Þ

which agrees amazingly well with the experimental
value. Although there exists non-negligible uncertainty
for this theoretical result, it still implies that ðB0=BÞexp ¼
1.41 > 1 can be understood and realized theoretically
without introducing any physics beyond the Standard
Model. The absolute branching fraction of Ξþþ

cc → Ξþ
c π

þ
from HQETþ LCSR is

BðΞþþ
cc → Ξþ

c π
þÞHQETþLCSR ¼ 6.22� 1.94%: ð30Þ

Up to now, there is no experimental announcement on
this absolute branching fraction. Instead, in Ref. [27] the
authors have given an evaluation of it by phenomenological
methods:

BðΞþþ
cc → Ξþ

c π
þÞ ¼ 1.83� 1.01%; ð31Þ

which is consistent with our result within the uncertainties.
For the details on this phenomenological evaluation, we
refer to the discussion around the Eq. (38) in Ref. [27].
However, due to the lack of experimental measurements all

the theoretical predictions given above are still waiting to
be tested by future experiments.

VI. CONCLUSION

We have calculated the W-exchange contribution in the

Ξþþ
cc → Ξþð0Þ

c πþ decay with the use of the LCSR. The two-
particle LCDAs of pion are used as the nonperturbative
inputs for the sum rules calculation, and the perturbative
kernel is calculated at the leading order. We obtain the

relative decay branching fraction B0=B of Ξþþ
cc → Ξþð0Þ

c πþ
by combining our W-exchange amplitudes with the factor-
izable amplitudes from various theoretical methods in the
literature. We find that using the factorizable amplitudes
from heavy quark effective theory, we obtain the ratio
B0=B ¼ 1.42� 0.78, which is consistent with the exper-
imental value, 1.41� 0.17� 0.1. The corresponding abso-
lute decay branching fraction is consistent with that
evaluated in the literature, which should be tested by future
experiments.

ACKNOWLEDGMENTS

This work is supported in part by the NSFC and the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the funds provided to the
Sino-German Collaborative Research Center TRR110
“Symmetries and the Emergence of Structure in QCD”
(NSFC Grant No. 12070131001, DFG Project-ID
196253076—TRR 110). The work of U. G. M. was sup-
ported in part by the Chinese Academy of Sciences (CAS)
President’s International Fellowship Initiative (PIFI) (Grant

TABLE IV. Comparison of the decay branching fractions of Ξþþ
cc → Ξþð0Þ

c πþ from this work with those from the literature. The lifetime
of the Ξþþ

cc is chosen as τðΞþþ
cc Þ ¼ 2.56 × 10−13s [27]. In the first five lines the branching fractions are evaluated by the nonfactorizable

amplitudes from this work and the factorizable amplitudes from the literature. The next four lines present the branching fractions with
both these two kinds of amplitudes evaluated in the literature. In the last three lines, we also list the branching fraction calculated by
considering the final-state rescattering (FSR) [56]. η is an parameter introduced for the off-shell effect of particle exchange. In the last
column, we list the values of B0=B from all the theoretical methods mentioned in Table III.

Method Atot Btot BðΞþþ
cc → Ξþ

c π
þÞ A0tot B0tot BðΞþþ

cc →Ξþ0
c πþÞ B0=B

QCDSRþ LCSR −25.4� 4.32 37.23� 9.25 40� 14% −4.38� 0.96 42.99� 13.76 3.91� 2.5% 0.098� 0.14
LFQMþ LCSR −9.27� 1.41 35.53� 3.89 7.54� 2.22% 3.66� 0.28 57.36� 2.16 5.83� 0.5% 0.77� 0.42
3LCQMþ LCSR −24.8� 1.41 7.5� 3.89 35.55� 4.29% −5.17� 0.28 −28.73� 2.16 2.75� 0.35% 0.08� 0.02
NRQMþ LCSR −9.29� 1.41 37.24� 3.89 7.82� 2.25% 3.46� 0.28 62.51� 2.16 6.70� 0.54% 0.85� 0.44
HQETþ LCSR −7.18� 1.41 39.92� 3.89 6.22� 1.94% 4.27� 0.28 71.23� 2.16 8.85� 0.62% 1.42� 0.78

LFQMþ PM −3.83 3.85 0.69% 4.45 48.44 4.65% 6.74
3LCQM 3.37 5.56 0.71% −4.45 −38.96 3.39% 4.77
HQETþ PM 7.38 41.72 6.64% 4.29 53.65 5.39% 0.81
NRQMþ PM 9.52 44.40 9.19% 5.1 62.37 7.34% 0.8

FSRðη ¼ 1.0Þ … … 7.11% … … 4.72% 0.66
FSRðη ¼ 1.5Þ … … 8.48% … … 4.72% 0.56
FSRðη ¼ 2.0Þ … … 10.75% … … 4.74% 0.44
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