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The long-standing discrepancy of the muon anomalous magnetic moment (g − 2) is a hint of new
physics beyond the standard model of particle physics. In this paper, we show that heavy new physics
contribution can be fully tested at a muon collider with a center-of-mass energy up to Oð10Þ TeV with
Oð10Þ ab−1. Even if there is no new particle in this energy range, one can measure the g − 2 operator
directly via the channel to a Higgs boson and a monochromatic photon. In particular, the latter process,

which is the most challenging case, can be tested in the 20½50� × ð Li

40 ab−1Þ−1=2 TeVmuon collider at the 2 [5]

σ level with Li being the integrated luminosity if the efficiency of the detector built in the future is almost
perfect.

DOI: 10.1103/PhysRevD.106.033007

I. INTRODUCTION

The long-standing discrepancy of the muon anomalous
magnetic moment (g − 2) is the leading candidate sug-
gesting new physics beyond the standard model (BSM) that
couples to the standard model (SM) particles. The muon
g − 2 anomaly indicates the more than 3 σ level deviation of

Δaμ ¼ aEXPμ − aSMμ ¼ ð27.4� 7.3Þ × 10−10; ð1Þ

where aSMμ is the SM prediction of the muon g − 2 from the
so-called R-ratio approach [1,2] and aEXPμ is its experimental
result [3,4]. (see also [5–7]) The ongoing experiment E989 at
Fermilab [8] and the upcoming one at J-PARC [9] may
significantly increase the accuracy of the experimental value.
On the other hand, the leading order vacuum polarization
contribution was recently calculated by Borsanyi et al. in the
lattice QCD [10] and was argued to resolve the tension,
although the result is still in debate [11,12]. Therefore, in
order to confirm the discrepancy, efforts are being made on
both experimental and theoretical sides. For instance, the
MUonE experiment was proposed to perform a competitive
and independent determination of the hadronic vacuum
polarization (see Ref. [13] and the references therein). In
this paper, on the contrary, we propose a high energy test of

the g − 2. This is not bothered by the QCD nonperturbative
effect.
On the model-building side, if an ultraviolet (UV) theory

generates the g − 2 anomaly, the resulting low energy
effective theory should have the muon g − 2 operator
given by

ΔLeff ⊃
eΔαμ
4mμ

μ̄σμνFμνμ: ð2Þ

Here, mμ ≃ 0.11 GeV is the muon mass, where σμν≡
i½γμ; γν�=2, and Fμν is the field strength of photon. In this
UVexplanation, wemay either have new statesmuch heavier
than mμ to generate (2) or have a strongly coupled theory at
the high energy since (2) is a higher dimensional term.On the
contrary, the g − 2 may be also explained due to a weakly
coupled light particle, below or around the muon mass, i.e.,
an infrared (IR) explanation.
In this paper, we point out that the UV explanation

scenarios can be fully tested at a muon collider [14–16]
(see also recent studies for BSM [17–20]) with a center-
of-mass energy, Ecm, up to Oð10Þ TeV. This is because
the heavy new physics relevant to the discrepancy must
couple to the muon and thus, should leave traces in muon-
antimuon collisions. The new particles in the reachable
energy scales can be produced in the collider by the
diagram cutting the propagator in the g − 2 loop, and thus,
the g − 2 can be tested (see Fig. 1). In particular, if the
heavier BSM particle in the loop is produced, it must
decay according to the cutting of the g − 2 diagram. If the
BSM particles are so heavy that they are not reachable, or
if there exist just various higher dimensional operators
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without new particles, the process μμ̄ → hγ, where h is a
Higgs boson and γ is a monochromatic photon, via a
dimension six operator is a robust prediction (see Fig. 2).
This process has a suppressed SM background. Con-
sequently, the new physics contribution to the muon g − 2
can be measured at the muon collider by measuring this
cross section.
A muon collider test of the g − 2 was studied by the

authors of Ref. [21], by focusing on the lightest new
particle, which is assumed to be reachable at the muon
collider. In this paper, we will show that even if none of the
new particles is reachable, the muon g − 2 can be tested. In
the reachable case, on the other hand, we provide com-
plementary approaches, e.g., measuring the charged decay
products of a heavier new particle. This should be the
simplest way, in certain cases, e.g., if the lightest one does
not have a charge, and the heavier one is reachable. Also,
from the properties of the produced new particles, we may
“measure” the g − 2 by calculating the corresponding loop
contribution.

II. MUON g− 2 FROM GEV–TEV PHYSICS
AND MUON COLLIDER

Let us consider a general renormalizable UV theory.
The g − 2 operator (2) can be generated through loop
diagrams including new states. At the 1-loop level,1 the
diagram can be composed of the following set of particles:

ðX1; PSM
i Þ or ðX1; X2Þ; ð3Þ

where Xi and PSM
i denotes BSM particles and SM particles,

respectively. The sum of the electromagnetic charges of the
two particles is −1, which is the charge of the muon.
In either case, the BSM particles in the loop can be

produced in the muon collider by cutting the propagator. In
the left panel of Fig. 1, we display the general 1-loop
diagram for the g − 2, including both cases. In the right
panel, we show the collider production of the BSM
particles in the loop. If the heavier particle in the loop is
produced, it must decay, corresponding to the cutting of
both propagators. By detecting the BSM particle or its
decay, we can test the g − 2.

A. A general approach in renormalizable theory

Before discussing a detailed model, let us make a general
discussion. To test the former case, one may generally
measure the cross section of the SM process, μμ̄ →
PSM
i P̄SM

i , which is from a X1 mediated diagram (See
Appendix B). (If PSM

i is a neutrino, the discussion would
be almost the same as the second case.) In the context of
X1 ¼ Z0 or neutral BSM particle, it was shown in
Refs. [21,22] a significant enhancement of the scattering
cross section of μμ̄ → μμ̄ can be made and that the muon
collider should be possible to discriminate the scenario from
the SM. This is the case that Z0 is heavy enough. In fact, a
lightZ0 can also explain themuon g − 2 anomalywith a small
coupling,which is an IR scenario and is not our focus (see, on
the other hand, the Z0 search in DUNE, M3, and NA64
[23–25]).
In both cases, on the other hand, we can cut the

propagator of a BSM particle in the loop in Fig. 1. If
the center-of-mass scale is higher than the BSM scale, this
becomes the diagram for the production of the BSM
particle at the muon collider as the right top diagram in
Fig. 1. In the remainder of this subsection, we use the
notation of the latter case in Eq. (3), but our discussion
holds for the former case by replacing X1 to be X and X2 to
be PSM

i . Suppose that the typical coupling among the muon
(s) and the new particle(s) is g and the heaviest new particle

FIG. 1. A general approach to test the muon g − 2 in the muon
collider when the BSM particle masses are within reach of a
muon collider. The heavy BSM particle in the loop of the muon
g − 2 becomes on shell at the collider via the coupling relevant to
the g − 2. The BSM particle decays from the diagram by cutting
both propagators if the kinematics allows.

FIG. 2. The general effective theory approach for the collider
test of the muon g − 2. When the BSM particles are much heavier
than the collider reach, the operator can be directly measured via
μμ̄ → hγ process.

1At a higher loop, the production cross section at the muon
collider should be even enhanced, and the scenario is easier to be
tested. The tree-level process is not important in renormalizable
UV theory.
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in the loop is X1, whose mass is MX. The muon g − 2
contribution can be denoted in the form,

δαμ ¼ κ
m2

μg2

16π2M2
X
; ð4Þ

where κ is a model-dependent function of parameters. κ can
be either Oð1Þ or larger than 1. This notation follows the
SUSY models [26–29]. We will show an upper limit of κ in
a particular model from phenomenology. As one can see
from the left diagram in Fig. 1, g2 can be regarded as the
product of two couplings g2 ¼ jg1g2j in Eq. (4) with g1 and
g2 being the couplings for the two vertices (the photon
vertex has the coupling, ∼e, in the renormalizable model;
see c.f. Appendix B for a nonrenormalizable case). This is
the case in various models (see, e.g., Sec. II 2). We can
define the typical coupling g because the jg1g2j will be
required to be not very small in the UV explanation of the
muon g − 2. In addition, jg1j; jg2j < Oð1Þ from the per-
turbativity, and thus, we cannot have a large hierarchy
between jg1j and jg2j. This allows us to have jg1j ∼ jg2j ∼ g.
In addition, as we will see in Sec. II 2, a difference between
jg1j and jg2j will make the model easier to be tested.
To explain the discrepancy,

MX ¼ 340 GeV × g
ffiffiffi
κ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.7 × 10−9

δαμ

s
: ð5Þ

Therefore, even if g
ffiffiffi
κ

p ¼ ffiffiffiffiffiffi
4π

p
, which is around the pertur-

bative unitarity bound with κ ∼Oð1Þ, the mass of the new
state is around 1 TeV and thus, is reachable in the muon
collider with the center-of-mass energy Oð1–10Þ TeV. On
the other hand, if κ ≫ 1 and g ¼ Oð1Þ, MX may be much
heavier thanTeVbeyond the reach of the collider. The former
will be discussed in this section, while the last case will be
tested by the proposal in the next section.
The question is whether the heavy state can be signifi-

cantly produced. In fact, by cutting the heavy state
propagator in the loop for the muon g − 2, one gets a μþ
μ̄ → X1 þ X̄1 process. The corresponding cross section can
be estimated as

≃ κ2
g4

4πE2
cm

ðfor Ecm > 2MXÞ: ð6Þ

Here, κ2 is another model-dependent function of momen-
tum and parameters, and Ecm is the center-of-mass energy.
κ2 ¼ Oð1Þ if there is no suppression, e.g., chirality sup-
pression, in the production process.
By using (5) and eliminating g in (6), the lower bound of

the cross section can be obtained as

σ ≳ 6 pb ×
κ2
κ2

�
MX

250 GeV

�
4
�
20 TeV
Ecm

�
2
�

δαμ
2.7 × 10−9

�
:

ð7Þ

Here, we take the inequality because there could be other
processes like a Drell-Yan production of X1; X̄1 pair if X1 is
charged. The production via the diagram in Fig. 1 is a
t-channel process, while the Drell-Yan production is an
s-channel one. Thus, they typically have different angular
distributions of the produced particles.
The cross section (6) is suppressed if κ ≫ 1 and g ≪ 1.

Even in this case, κ2
κ2
≳ m2

μ

M2
X
should be satisfied because the

production involving the chirality flipping diagram is also
enhanced according to the cut (see Fig. 1). That said, it is
difficult to find a realistic model with g → 0; κ → ∞ to
explain the muon g − 2 (see Sec. II 2).
The number of events for X1; X̄1 pair production is

N ≃ 4 × 107
�

σ

1 pb

��
Li

40 ab−1

�
: ð8Þ

We remind that Li is the integrated luminosity. If X1 does
not carry any charge, X1 soon decays to a muon and a
charged new particle. This process should be searched for
analog to the dilepton search in the context of Z0 [30,31]. If
X1 is charged, on the other hand, it may decay into a muon
and a neutral state. Thus, the event should be

μþ μ̄ → X1 þ X̄1 → μþ μ̄þ X2 þ X̄2;

where X2 is assumed to be lighter than X1. The dominant
background, e.g., if X2 is neutral, is [20] μþ μ̄ →
vector bosons → μþ μ̄þ νμ þ ν̄μ. Notice that in the muon
collider, the center-of-mass colliding energy is given, unlike
the hadron collider. Thus, one can study the kinematics of the
out-going muons to identify the masses of the new particles,
e.g., for the background case, two outgoingmuons are almost
back to back. This is in contrast with the new physics case:
since X1 is massive, the produced muons are not so back to
back. In any case, the acoplanar dileptons in excess of
expectations of WW and ZZ production are the signal a la
slepton searches in lepton colliders [32,33]. (For comparison,
the SMcross section ofμμ̄ → μμ̄þmissing is below a few fb
with the center-of-mass energy∼10 TeV [20].) On the other
hand, we may also have more exotic decay products if X1

dominantly couples to them. Then they are easier to detect
than the neutral particles above and thus can certainly be
detected.
It is noteworthy to mention that one may measure the

masses and spins of X1, and X2, and the renormalizable
couplings to muon via the production cross sections, and
thus, one may reconstruct the g − 2 diagram (see Appendix
for the model of Sec. II 2). A more detailed study on
measuring the BSM couplings will be discussed elsewhere.
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B. Testing muon g− 2
in a muon-smuon-bino like system

In this part, we discuss the latter case of (3) in a concrete
model. Let us consider

Lint ¼ −g1μ̄LP̂LϕRλ − g2μ̄RP̂RϕLλþ δM2ϕ�
LϕR þ H:c:;

ð9Þ

where λ is a Majorana fermion with mass term Lλ ¼ Mλ
2
λcλ

while ϕL;R are complex scalars with mass terms LL;R ¼
−m2

LjϕLj2 −m2
RjϕRj2;μL andμR represent the left- and right-

handed muon, respectively. This Lagrangian with restricted
parameter relations can be identified as the one from the
minimal supersymmetric SM (MSSM), in which λ and
ϕL;R are identified as bino and smuons, respectively.
In the MSSM, δM2 ¼ −mμðμ tan β − AμÞv; g1 ¼ −

ffiffiffi
2

p
gY;

g2 ¼ 1=
ffiffiffi
2

p
gY , by neglecting the radiative corrections with

gY being the coupling of the Uð1ÞY symmetry, and v ≃
174 GeV is the vacuum expectation value (vev) of the Higgs
field, h, but we do not force this relation.2

The muon g − 2 contribution is calculated as (c.f.
Ref. [38])

δaμ ≃ −
g1g2
16π2

mμδM2Mλ

m2
Lm

2
R

f

�
m2

L

M2
λ

;
m2

R

M2
λ

�
; ð10Þ

wherewe have used themass insertion approximation on the
scalar mixings of δM2 and fðx; yÞ ¼ xyð−3þxþyþxy

ðx−1Þ2ðy−1Þ2 þ
2x log x

ðx−yÞðx−1Þ3 −
2y log y

ðx−yÞðy−1Þ3Þ. This satisfies 0 < fðx; yÞ < 1 and

fð1; 1Þ ¼ 1=6. δM2 should satisfy

δM2 ≲min ½m2
L;m

2
R�: ð11Þ

Otherwise, not only our approximation of mass insertion in
(10) is invalid, but also there are dangerous tachyonic scalars
or vacuum instability (c.f. Ref. [39]). Strictly speaking, the
vacuum stability requires a more stringent bound of
δM2

v ≲min ½mL;mR�. This makes the model easier to be
tested.
Let us check the minimal production cross section of the

new particles at the muon collider. By fixing g1, g2, δαμ

becomes the largest whenMλ ∼mL ∼mR ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
jδM2j

p
. With

the relation, we obtain the maximum contribution as

jδaμj≲ jg1g2j
16π2

mμ

Mλ
f ≃ 2× 10−9

�jg1g2j
0.02

��
1 TeV
Mλ

�
2
�

f
1=6

�
:

ð12Þ

As mentioned previously, jg1j ≫ jg2j or jg1j ≪ jg2j is
difficult to have. This is because the BSM particle scales
are around or higher than TeV, and jg1g2j has a lower bound
while max½jg1j; jg2j� >

ffiffiffiffiffiffiffiffiffiffiffijg1g2j
p

has an upper bound of
Oð1Þ from the perturbativity. This justifies the use of the
typical coupling g in the previous general discussion. More
precisely, the production cross section to ϕL;ϕR, or λ pair
through the new couplings are

σ
g1;2
μμ̄→ϕLϕ

�
L;ϕRϕ

�
R
∼

g41;2
128πE2

cm
× ðlog ð4=ϵ2Þ − 2Þ;

σ
g1;2
μμ̄→λλ̄

∼
g41 þ g42
32πE2

cm
: ð13Þ

Here, ϵ is the IR cutoff of our calculation by neglecting the
mass, e.g., ϵ ∼ jMλj=Ecm for jMλj ∼mL ∼mR. The cross
section of μμ̄ → ϕLϕ

�
R or μμ̄ → ϕRϕ

�
L is further suppressed

by ðδM2=ðm2
L −m2

RÞÞ2 or M2
λ=E

2
cm. Thus, the sum of the

cross sections are minimized at jg1j ¼ jg2j with fixing the
product jg1g2j and the dimensionful parameters. This
means that the BSM particles are more frequently produced
with jg1j ≠ jg2j.
In addition, there is also the usual Drell-Yan production

of ϕL pair or ϕR pair. This s-channel cross section mediated
by an off shell photon is given as

σDrell-Yanμμ̄→ϕLϕ
�
L;ϕRϕ

�
R
∼

e4

24πE2
cm

∼ 0.1 fb

�
20 TeV
Ecm

�
2

: ð14Þ

By taking into account the Z-boson contribution, the cross
section can differ by an Oð1Þ factor.
From Eq. (12), the smaller of jg1j and jg2j is larger than e

when jMλj is higher than TeV. Therefore, the cross section
in Eq. (13) can be larger than Eq. (14) when the BSM scales
are higher than TeV. Since the “sleptons” can be produced
with Li ¼ 40 ab−1 with Ecm ¼ 20 TeV, they can be easily
detected due to the clean environment like the case of
electron-positron collider (e.g., [32,33,39]). Also, when λλ̄
are produced, one can search for its decay product as
discussed previously.
So far, we have assumed that the new states relevant to

the muon g − 2 are all reachable at the muon collider. We
have discussed various processes relevant to the BSM
particles by noticing that the two kinds of loop components
in Eq. (3) must include a charged particle. Then from the
detection of the charged BSM particle or measurement of

2In the context of MSSM, the so-called Higgs mediation
mechanism [26], which is proposed by the present authors, can
lead to the sizable contribution to the muon g − 2 with this
effective Lagrangian. For scenarios involving the Higgs media-
tion in explaining the muon g − 2 anomaly, see Refs. [26–29,34],
and explaining both muon and electron g − 2 anomaly [35,36].
Also see Ref. [37] for the E7=SUð5Þ × Uð1Þ3 unification of
family. In the scenario, the mass degeneracy between bino and
wino is “predicted” to be within Oð1Þ%. Thanks to the Higgs
mediation, the bino can be the dominant dark matter with a bino-
wino coannihilation, and, moreover, the bottom-tau Yukawa
coupling unification can be achieved up to Oð1Þ%.
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the kinematics of the final leptonic charged states, the muon
collider can probe the g − 2. The production cross sections
of the BSM particles are larger than Oðfb − pbÞ, which
implies a number of events more than Oð103–6Þ. By
assuming that the detector sensitivity is ∼1 and no
significant background in this future lepton collider for
the new resonance or the leptonic kinematics c.f. [40,41],
we can conclude that the muon g − 2 can be tested in
this case.
A generic concern is that charged or all of the BSM

particles may be heavier than the reach of the collider. We
discuss the former case in Appendix B from the topology
and the muon chirality flip of the Feynman diagrams in
singlets extension of the SM effective theory. We show that
the maximal cutoff scale in the effective theory is
≲10 TeV, which implies that we probably do not have
this possibility. In addition, even if the effective theory is
valid, and even if the singlets dominantly decay into
missing energy, the whole singlet extended possibilities
are fully tested in the muon collider.
The most difficult situation is that all the BSM particles

are out of reach. Alternatively, there may be no new particle
with only higher-dimensional operators. Then the direct
production of particles is difficult/impossible at the muon
collider withOð10Þ TeV. Nevertheless, in the next section,
we show that the muon g − 2 can be directly tested by
measuring μμ̄ → hγ.

III. MEASURING MUON g− 2
IN EFFECTIVE THEORY

Now let us assume the possibility that no new physics
state is reachable at the muon collider. The g − 2 operator is
directly related with the coupling to the Higgs boson, h, as

ΔLeff ⊃
yμ
M2

hffiffiffi
2

p μ̄σμνFμνμ; ð15Þ

where we have used mμ ¼ yμv and have replaced v to be

vþ h=
ffiffiffi
2

p
from Eq. (2), and yμ=M2 is the dimension −2

coupling. In the symmetric phase, we may also have a
vertex of muons, Higgs field, and Z (W) boson, which will
increase detection channels. However, the embeddings of
the g − 2 operator in the electroweak symmetric terms are
model dependent, and we do not consider them. One may
also consider dimension > 6 terms to generate (2) with
several Higgs fields. In this case, still, we get a similar
dimension 6 term with several Higgs fields replaced by the
VEV, and the cross section of μμ̄ → hγ can be enhanced by
Oð1–10Þ from what we will show. A possible loophole
relevant to the generic higher dimensional term is the
cancellation among the higher dimensional terms. This will
be discussed in the next section, and we will show that the
multi-Higgs/gauge boson plus γ emission can be tested.
Since, in a natural setup, the contribution from the

dimension 6 terms should be dominant, we focus on the
single operator Eq. (15) in this section.
Here, to explain the anomaly (1),

M ≃ 7.6 TeV

�
2.7 × 10−9

Δαμ

�
1=2

: ð16Þ

Notice that (15) is a dimension-six term, which becomes
stronger in the collisions of muon-antimuon at higher
energy.3

The robust prediction of the muon g − 2 anomaly in the
effective theory is the enhancement on h and γ production of

μþ μ̄ → hþ γ; ð18Þ

at high energy. This provides a signal of a monochromatic
photon with energy ∼Ecm=2 and two fermions or four
fermions with the invariant mass of the Higgs boson. The
production cross section of hγ can be calculated as

σg−2μμ→γh ≃
y2μE2

cm

48πM4
∼ 0.1 ab

�
Ecm

20 TeV

�
2
�
7.6 TeV

M

�
4

; ð19Þ

where we have neglected the masses of the initial and final
states. Here, we have used yμ at the renormalization scale
μRG ∼mμ. For a more precise value, one may use the muon
Yukawa coupling at μRG ∼ Ecm to take into account a
dominant part of the renormalization group running of (15).
The cross section at the tree level is plotted in Fig. 3. The

process μþ μ̄ → hþ γ is absent in the SM at the tree level
with neglecting the muon mass. At the loop level, for
instance, the top-loop-induced contribution is

σSMμμ→γh ∼
y2t e6

ð4πÞ5
1

E2
cm

¼ 0.002 ab

�
20 TeV
Ecm

�
2

: ð20Þ

Thus, this can be safely neglected at a multi-TeV muon
collider. The background of μμ̄ → Zγ or μμ̄ → WþW−γ is
suppressed with multi-TeVof Ecm,

4 since the cross section
decreases with larger Ecm and since they have different
chiralities of initial muons (c.f. Refs. [42–44]).

3The scale that effective field theory is valid can be much
higher than the reach of the muon collider. This is because M in
our notation corresponds to

M� ≃ 310 TeV
M

7.6 TeV
; ð17Þ

of the higher dimensional term hffiffi
2

p
M2�

μ̄σμνFμνμ.
4In principle, we can also test the μμ̄ → hγ process in

renormalizable UV models for the muon g − 2. In this case,
the cross section is smaller at higher Ecm if the new particle
masses are much smaller than Ecm and the background process
may be dominant. It may be important to polarize the muons. This
may be possible since they are produced from pion decays.
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In this case, the cross section (19) is not as large as the
previous section’s ones. To check whether the muon
collider can provide a test, let us define the signal
significance by

NSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS þ NB

p ; ð21Þ

where NS ¼ Rdet × N is the number of events that are

detected with Rdet being the detector sensitivity. N ∼

4ð Li
40 ab−1Þð

σg−2μμ→γh

0.1 abÞ is the number of events that can happen
in the collider, and NB is the detected number of back-
ground events. For a 5 ½2� σ excess of the events from the
SM background by taking NB ∼ 0, we need at least 25 [4]
events to be detected. The 5σ [2σ] significance is achieved
if we build a 50½20� × ð Li

40 ab−1Þ−1=2 TeV muon collider if the
detector efficiency is perfect, Rdet ∼ 1.
The designs of the detectors of the muon collider are not

determined, and there are still several challenges. In
particular, the muon in the beam decays to eνν̄ [15],5

and the electron may radiate a photon. This photon,
together with a vector-fusion Higgs boson, may contribute
to the background of μμ̄ → hγ. Such a photon should be
difficult to carry the momentum around half of the center-
of-mass energy, and thus, we consider it irrelevant.
Alternatively, the specific environment might pay the price
of the detector sensitivity. The detector effects depend on
the future environment of the muon collider. To clarify
them is beyond our scope. In any case, as long as
Rdet ¼ 0.1–1, and NB ≲ NS, we can exclude the g − 2

operator at the 2σ level at Oð10Þ TeV, Oð10Þ ab−1 muon
collider.

In this section, we have discussed the most difficult case
for probing the g − 2 at the muon collider, and we have
found that it is viable. As a consequence, the muon g − 2
can be tested at the 20 TeV (50 TeV) muon collider at
2σð5σÞ level with 40 ab−1 luminosity if the detector
efficiency is perfectly good.

IV. PROBING MUON g − 2 WITH
UNNATURAL EFTS

So far, we pointed out that even if the BSM particles are
not reachable in the muon collider, the g − 2 can be tested
via μμ̄ → hγ in the EFT with the operator (15). We
implicitly assumed that there are no other terms that cancel
the amplitude of the process. In this section, we discuss
some unnatural EFTs that might hide the channel of
μμ̄ → hγ. We will show, even in this case, that the
Oð10Þ TeV muon collider can test the g − 2.6

Before discussing this in more detail, let us mention that
there are bounds for the largest center-of-mass energy from
the perturbative unitarity or the cutoff of the EFT. In
particular, when the center-of-mass energy is too large, the
EFT approach should not be applicable, while the criterion
on the scale depends on the underlying theory. In this
section, we will not take the bound as a guiding principle.

A. Generic SMEFT with cancellation
of the Higgs coupling

For concreteness and simplicity, let us consider the
following EFT coupling of the muon g − 2 operator,

LEFT ⊃ −FðH0Þμ̄σμνFμνμ: ð22Þ

Here, H0 ¼ vþ h=
ffiffiffi
2

p
is the CP-even neutral component

of the Higgs doublet. We neglect to write down the
electroweak partners of the neutral CP-even Higgs field
and the photon for the model-independent discussion. We
emphasize again that the gauge invariance should be
guaranteed when we recover the partners. Let us consider

FðH0Þ ¼
XNmax

i¼0

ci
v2þ2ið2iþ 1Þ!H

2iþ1
0 ; ð23Þ

where ci are the dimensionless coefficients, and Nmax
corresponds to the dimension of the highest dimensional
operator, dmax ¼ ð2Nmax þ 6Þ. We set a finite Nmax for the
convenience of analysis. We will check that our conclu-
sions do not change by varying Nmax. In general, we also
have terms, e.g., with derivatives and other fields. We will
discuss them in the last of this part.

1 5 10 50 100

0.001

0.010

0.100

1

10

Ecm [TeV]

h
g

2
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b]

FIG. 3. The cross section of μμ̄ → hγ via the muon g − 2
operator (15) by varying the center-of-mass energy. The red
(blue) band corresponds to the 1σ (2σ) region of the muon g − 2
anomaly.

5It may be also interesting to use the neutrino to probe the
muon g − 2 via, e.g., μ−ν̄μ → γW− from the same operator via the
equivalence theorem for the W− and the charged would-be
Nambu-Goldstone boson.

6We thank the two referees for suggesting we study the
loopholes in this section.
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To explain the muon g − 2 anomaly, we have

FðvÞ ¼
XNmax

i¼0

ci
vð2iþ 1Þ! ¼

eΔαμ
4mμ

: ð24Þ

With Nmax > 0, we have various operators with nonvanish-
ing ci to satisfy Eq. (24). They may all contribute to
μμ̄ → hγ. Thus, there may be a certain cancellation
between the amplitudes of hγ production from different
terms in Eq. (23), although it is unnatural.
To study the possibility, let us check the cross section of

μμ̄ → γnh. This can be approximated as

σμμ̄→γnh ∼
����F

ðnÞðvÞ
2n=2

����
2 E2n

cm

ð4πÞ2n−1n! ; ð25Þ

where the power of Ecm is from the dimensional argument,
and the denominator is for the phase space [remind that the
cross section corresponds to the imaginary part of an n-loop
diagram, and n! reflects the n identical (Higgs) bosons in
the final state]. We also defined FðnÞðXÞ≡ ∂

n

∂Xn FðXÞ. The
cancellation of the μ̄μ → nhγ happens if FðnÞðvÞ ≈ 0 and
ci ≠ 0 with i ≥ ðn − 1Þ=2. We note that in this setup, the
cancellation does not depend much on the center-of-mass
scale since FðnÞðvÞ does not depend on the center-of-mass
scale. Thus, it may be difficult to remove this cancellation
with experiments with several different Ecm.

7 On the other
hand, we cannot cancel the amplitude or the cross section
for all n. This is because we cannot satisfy both Eq. (24)
and FðnÞðvÞ ¼ 0 for all n ≥ 1.
To take account of the cancellation, we estimate the

“inclusive” g − 2 cross section,

σg−2tot ½Ecm; Nmax�≡
X2Nmaxþ1

n¼1

σμμ̄→γnh: ð26Þ

We can estimate the lowest value of the inclusive cross
section via the BSM process,

min
ci

σg−2tot ½Ecm; Nmax�; ð27Þ

for fixed Nmax, Ecm and Eq. (24) by varying ci. The

results are shown in Fig. 4 in the Nmax −
minci σ

g−2
tot ½Nmax;Ecm�

σg−2tot ½1;Ecm�
plane with Ecm ¼ 50 TeV (the upper red circles) and

Ecm ¼ 20 TeV (the lower black triangles).8 This result
means that including higher dimensional terms to cancel
μμ̄ → nhγ process with smaller n leads to a larger inclusive
cross section due to the process with a larger n. Thus, the

smallest cross section turns out to be ci≠0 ≈ 0, c0 ≈
veΔαμ
4mμ

.

To understand the behavior, let us focus on a
simple example with Nmax ¼ 1. We can easily find
that we have the cancellation of the amplitude of

the n ¼ 1 process, μ̄μ → hγ, only if c0 ¼ 3
2

veΔαμ
4mμ

,

c1 ¼ −3 veΔαμ
4mμ

. This leads to the higher dimensional scale,

ðv2þ2ið2iþ 1Þ!=ciÞ1=ð2iþ2Þ ∼ vðveΔα=mμÞ−1=ð2iþ2Þ. The
i ¼ 1 case has a much lower scale than i ¼ 0 case.
Therefore, the μμ̄ → 2hγ; 3hγ will be highly enhanced
at large Ecm. In fact, the minimal inclusive cross section

is obtained by minimizing σg−2tot ∼ ðc0 þ c1=2Þ2 ðEcmÞ2
ð8πv4Þ þ

ðc1Þ2 ðEcmÞ6
ð233!ð4πÞ5v8Þ, where we have neglected the subleading

2h production cross section in the large Ecm limit.
By using Eq. (24), we get the scaling as c1∼
−0.0005 veΔαμ

mμ
ð100vEcm

Þ4, c0 ≃
veΔαμ
4mμ

for Ecm ≫ 10v ∼ TeV.

This simple example also reflects why Nmax ≠ 1 has a
slightly smaller min½σg−2tot ½Nmax; Ecm��=σg−2tot ½1; Ecm� than 1.
This is because, strictly speaking, the amplitude of the
single Higgs production is slightly canceled by a negative
and nonvanishing c1. But we can ignore the tiny con-
tribution when Ecm ≫ 10v. Since we have performed the
analysis for the generic Nmax in Fig. 4, we can conclude
that the minimized inclusive cross section can be well
approximated by the operator discussed in the previous
section for Ecm ¼ Oð10Þ TeV.
The multi-Higgs boson production is also a background-

free process, and thus, it is easily detected. The SM
background for n > 1 might be μμ̄ → νν̄nhγ with νν̄ being
missed. For instance, the cross section is σμμ̄→nhγ <
e2=ð16π2Þ × fb ∼ 0.1 ab where we multiplied cross section

FIG. 4. Nmax vs min σg−2tot ½Nmax;Ecm�
σg−2tot ½1;Ecm�

. The red circle (black triangle)

corresponds to Ecm ¼ 50 TeV (20 TeV).

7Strictly speaking, the cancellation weakly depends on the Ecm
via renormalization group running. Since we neglect the radiative
correction to the cross section in the paper, we do not study the
probe of the process by comparing the logarithmically different
cross sections at different Ecm. Indeed, there is an extremely
unnatural scenario where the cancellation is up to n ¼ Oð100Þ so
that the Higgs production with a larger n is kinetically forbidden.
This scenario may only be tested by slightly changing Ecm.

8The combination min σg−2tot ½Nmax ;Ecm�
σg−2tot ½1;Ecm�

does not depend on Δαμ.
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of μμ̄ → 2hνν̄ [45] by e2=16π2, which is much smaller than
the signal’s cross section, which is just shown to be larger
than the cross section of the single Higgs production in
Fig. 3. In addition, this background event should have a
different feature from the signal event because the Higgs
bosons, as well as the photon, are produced from the
bremsstrahlung emission. They are soft. On the other hand,
the Higgs bosons and the photon in the signal events are
energetic. Therefore, we consider that the process is
background-free. To sum up, as long as the n ¼ 1 process
that was discussed in the previous section can be tested, the
cancellation of the amplitudes does not spoil our conclu-
sions. This is because the cancellation scenario has a larger
inclusive cross section due to μμ̄ → γnh process. This is
easier to be tested by assuming a perfect detector efficiency.
So far, we have focused on the higher dimensional

operators that do not include other fields than h; γ; μ; μ̄ (and
their gauge partners) and do not include derivatives to
discuss the cancellation of the amplitude for μμ̄ → nhγ.
Operators, including other SM fields, χ,9 may contribute to
the cancellation by mediating χ. We can study this case by
estimating the 1PI effective action by integrating out the
irrelevant fields χ. This 1PI effective action includes the
terms of the form (22) in the momentum space. However, ci
are momenta-dependent functions, which may be non-
local.10 The relevant amplitude can be estimated by the tree-
level diagrams by using the 1PI effective action. The
different point is that the cancellation, in this case, is
sensitive to Ecm. For instance, if a ci ∝ E2

cm term contrib-
utes to the cancellation relevant to cj ∝ E0

cm term, the
cancellation will be significantly violated if we increase
Ecm by a factor ofOð1Þ. This is also the case by considering
the diagram mediating h, γ, μ; μ̄. Thus, if we change Ecm
this possibility can be easily probed. Alternatively, we can
also measure the anomalous reaction involving χ for testing
this case.

B. HEFT without a Higgs singlet

Let us consider the so-called Higgs EFT [46–48] where
the EW symmetry breaking is nonlinearly realized. In this
case, the Higgs boson is a gauge singlet that may not be
relevant to the chirality flip of the muon.
The muon g − 2 operator is given as

fðhÞμ̄LÛ22Fμνσ
μνμR; ð28Þ

here,

Û ¼ exp

�
i
φa

v
σa

�
; ð29Þ

with φa being the electroweak (would-be) Nambu-
Goldstone fields and σa being the Pauli matrix with
a ¼ 1, 2, 3. Again, Fμν should be understood as the
electromagnetic component in the electroweak gauge
boson field strength. The gauge invariance is guaranteed
with the gauge transformation Û → ĝ−1L ÛĝR and
μ̄L → μ̄LĝL; μR → ĝ−1R μR. fðhÞ is a generic function for

the Higgs boson, but we take fðhÞ ¼ eΔαμ
4mμ

; i.e., it does not

include a Higgs boson but explains the muon g − 2. In this
case, we cannot use the hγ production to test the g − 2.
Instead, we note that

Û22 ¼ cos½jφj=v� − i
φ3

jφj sin ½jφj=v�; ð30Þ

with jφj≡ ffiffiffiffiffiffiffiffiffiffi
φaφ

ap
. By using this and the equivalence

theorem, there are multigauge boson production processes,
e.g.,

μ̄μ → nzZγ: ð31Þ

The amplitude can be estimated as jMj ∝
eΔαμ
4vmμ

j∂nφ3
U22jφa¼0j ¼ eΔαμ

4mμ

1
vnz . We get the cross section,

σg−2Z ∼
�
eΔαμ
4mμ

�
2 E2nz

cm

ð4πÞ2nz−1nz!v2nz
: ð32Þ

Again,we include thephase space suppression for theorder of
estimate. In this case, although there is no Higgs boson
production, the multigauge boson production rate is signifi-
cantly increased. The cross section is shown in Fig. 5 by
varying the number of the final Z bosons. One can see that
energeticEcm ¼ 50 TeV (red circle), 20 TeV (black triangle)
case the cross section increases significantly with large nz.
Note that the nz ¼ Oð10Þ background process is highly
suppressed within the SM.Also, we note that nz ≲Oð100Þ is
kinematically allowed in the Oð10Þ TeV muon collider.

FIG. 5. Nmax vs σ
g−2
Z for multi-Z boson production in the HEFT.

The red circle (black triangle, blue square) corresponds to Ecm ¼
50 TeV (20 TeV, 10 TeV). We take Δαμ ¼ 2.7 × 10−9. The
center-of-mass scale is much higher than the scale for the HEFT
validity.

9For χ being the BSM fields, see the earlier sections.
10Thus, this includes the possibility that the original Lagran-

gian involves the derivative terms.
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Such a blowup of the cross section seems to violate the
perturbativity. Thus, theEFTapproachmay not be applicable,
and we might not consider this model seriously. Here, we
found that evenwithout this prejudice, in themuon collider of
Ecm ≳ 10 TeV (blue square), this scenario can be tested by
themultigauge boson productions with integrated luminosity
smaller than Oð1Þ fb−1.

V. CONCLUSIONS

We have shown that the muon g − 2 anomaly explan-
ation by integrating heavy new states with a higher
dimensional operator, or both can be fully tested at a muon
collider with center-of-mass energy up to Oð10Þ TeV and
integrated luminosity ofOð10Þ ab−1. A model-independent
approach was proposed, i.e., to produce the heaviest
particle in the loop for the g − 2 and measure its further
decay into charged particles. When the heaviest particle is
not reachable, we can test the lighter charged particle. If
only gauge singlets are reachable, although it is not likely
from the validity of the effective theory, we can measure the
kinematics of its decay into the lighter charged SM
particles. If the decay is to missing energy, we can measure
the total number of the produced Higgs bosons, mono-
photons, or the cross sections of μμ̄ → charged SM
particles (see Appendix B). If all the heavy particle masses
are heavier than the reach of Oð10Þ TeV or there exist no
heavy particles but just higher dimensional terms, we can,
instead, measure μμ̄ → hγ, whose cross section is signifi-
cantly enhanced due to the nature of the higher dimensional
operator. The μμ̄ → hγ process, which is the prediction of
the most challenging scenario, can be tested at the 20 TeV
(50 TeV) muon collider with 40 ab−1 integrated luminosity
at the 2 ð5Þσ level if the detector efficiency is perfectly
good. This conclusion does not change even if the process
μμ̄ → hγ is unnaturally suppressed in some EFTs.
In our proposal, the QCD nonperturbative effects are no

more relevant, and our theoretical estimation is not both-
ered by them. Even if the muon g − 2 anomaly was due to
the wrong understanding of the QCD nonperturbative
effects, the muon collider can give a direction to get a
deeper understanding of the nonperturbative effects. More
detailed studies on collider phenomenology will be given in
our future work.
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Note added—Recently, we found Ref. [49] appeared. The
authors studied the test of various higher dimensional terms,
including the operator (15), at the muon collider in the
context of themuong − 2 anomaly. Their discussions on (15)
are consistent with ours. Instead of focusing on other higher
dimensional operators than (15), we have proposed a generic
approach to the muon g − 2 with either renormalizable/
nonrenormalizable models in the muon collider. Let us
mention several relevant recent works. Importantly,
Fermilab has confirmed the long-standing discrepancy of
the muon g − 2 [50]. The combined discrepancy is found to
be Δaμ ¼ aEXPμ − aSMμ ¼ ð2.51� 0.59Þ × 10−9, at the 4.2σ
level. There are also relevant works in the direction of the
muon collider in the context of the muon g − 2. The authors
of Ref. [51] have included the strategy proposed in this work
that was not included in their earlier work [21] to reach the
same conclusions as us, i.e., the no-lose theorem of themuon
collider. They also discussed several UV completions of the
g − 2 and their phenomena in detail, as well as the relation
with fine-tuning ofmodel parameters.Models of light singlet
extension (axions, hidden photons, CP-even scalars) at the
muon collider were also studied [52,53]. The authors of
Ref. [54] have investigated the μμ̄ → hγ in a concrete
renormalizable model. The behavior when the BSM particle
masses are smaller than Ecm is consistent with what we have
expected in footnote 4. The process of μμ̄ → hBSMs was
also studied. In most of the later studies, the estimations of
g − 2 and differential cross section, momentum distributions
of the reactions, assumptions on detector efficiencies, and
capability to reconstruct the Higgs decay products, and
collider-specific issues are discussed precisely by assuming
certain setups of a muon collider.11 Those studies strengthen
the motivation of a multi-TeV muon collider. However, the
loopholes, e.g., cancellation of μμ̄ → ðnÞhγ amplitudes with
various higher dimensional terms and the g − 2 operator in
Higgsless HEFT, were not discussed in those studies. Lastly,
two groups of lattice simulation have found a large discrep-
ancy between the lattice-driven method and the R-ratio
approach [56,57], confirming the result by Borsanyi et al.
[10]. Aswe havementioned, themuon collidermeasurement
of the g − 2, which does not suffer much from the QCD
uncertainty, is then important to understand the discrepancy.

APPENDIX A: COLLIDER
MEASUREMENT OF g − 2
1. Case of BSM in reach

So far we have shown that the light particles in the g − 2
can be tested in the muon collider diagrammatically. In our

11It is important to further include specific effects of a multi-
TeV muon collider, such as the collinear splittings of the
electroweak particles [55], in the background simulation for
the BSM processes of, e.g., μμ̄ → PSM

i P̄SM
i , hγ.
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approach, we can measure some of the couplings in the
loop.12 This kind of measurement should be important for
identifying the symmetry of the UV models. Let us assume
that the BSM particle masses, charges, and spins can be
measured if they are produced in the muon collider.
Here we focus on the model (9) for illustrative purposes.

A more generic discussion can be possible from the
diagrammatical approach by considering other possible
spins and charges of the internal particles. From the
detection of μμ̄ → λλ̄, we can measure the mass of λ and
a combination of the coupling of λ since the production rate
is proportional to g41 þ g42. To measure another combination
of g1 and g2, the production of the charged slepton is useful.
Note that the angular distributions of the momenta of the
outgoing particles are different between the Drell-Yan
process and the bino-mediated process. For the Drell-
Yan case, we obtain

d
d cos θ

σDrell-Yanμμ̄→ϕLϕ
�
L;ϕRϕ

�
R
∼

e4

32πE2
cm

ð1 − cos2θÞ: ðA1Þ

On the other hand, the bino-mediated one is given as

d
d cos θ

σ
g1;2
μμ̄→ϕLϕ

�
L;ϕRϕ

�
R
∼

g41;2
128πE2

cm

1þ cos θ
1 − cos θ

: ðA2Þ

Therefore, we expect that the new coupling g1;2 as well as the
photon coupling can bemeasured from the differential cross-
section, e.g., forward-backward asymmetry, of the pair
production for the charged sleptons. For Mλ ∼mL;R ≳
3 TeV, min½jg1j; jg2j�≳ e to explain the g − 2 by taking
max ½jg1j; jg2j� ¼

ffiffiffiffiffiffi
2π

p
. Measuring g1;2 may be promising

when the BSM particles are around or heavier than TeV.
Another possible measurement of the coupling is from

the decay. If the heavier BSM particles are produced, e.g.,
from the right-top diagram in Fig. 1 or from the Drell-Yan
process, they can decay as in the right-bottom diagram in
Fig. 1. From the decay branching fraction, we can measure
the coupling. For left-handed slepton there is an electro-
weak decay to a sneutrino and an (off shell) W boson. Since
the g − 2 loop diagram includes a “chirality” flip of the
slepton and bino, the cutting-induced decay may also
involve the chirality flip. By measuring the chirality of λ
or μ from the production, we can have the information of
δM2 andMλ. This decay measurement may be important in
the large κ case or when the chirality allowed process is
kinematically forbidden.
In addition, from μμ̄ → ϕLϕ

�
R;ϕRϕ

�
L, one can measure

δM2. The cross section is suppressedby ðδM2=ðm2
L −m2

RÞÞ2,
which leads to

σμμ̄→ϕLϕ
�
R;ϕ

�
LϕR

∼Oð10Þ fb M2
λ

E2
cm

�
δaμ

2.7 × 10−9

�
2

; ðA3Þ

wherewe have assumed jmL −mRj ∼mL ∼mR ∼Mλ; jg1j∼
jg2j and eliminated δM2 by using Eq. (10) for illustrative
purpose. Given mL;R;Mλ; g1;2 we see that the cross sections
of the production of the opposite chirality sleptons are
directly related to the value of the g − 2. Therefore, this
process is the measurement of the muon g − 2 at the muon
collider.

2. Case of BSM out of reach

Lastly let us discuss whether we can measure the g − 2
by measuring μμ̄ → hγ. In general, μμ̄ → hγ can happen
via other higher dimension operators, which are expected in
a generic model. Let us focus on other contributions from
dimension 6 operators to μμ̄ → hγ process with a compa-
rable cross section. To this end, we assume that the higher
dimensional operators satisfying the gauge symmetry
have the similar scale ∼M� ≡M= ffiffiffiffiffiyμp ∼ 310 TeV M

7.6 TeV.
If some operator’s scale is much lower than M�, one may
test those operators via other processes. We will neglect the
contribution with any further suppression by yμ, the SM
particle masses, or the Higgs vacuum expectation.
Let us first consider the operators with a chirality flip of

the muon. Then the operator should involve h; μL; μR, and a
photon or/and derivative(s) due to the dimensionality and
the gauge symmetry. One possible operator is the electric
dipole moment of the muon, whose contribution in the
collision does not differ from that of the g − 2 operator.
Another is the operator with derivatives,

L̃eff ∼
1ffiffiffi
2

p
M2�

∂
νhLμDνμR þ H:c:; ðA4Þ

where we did not use covariant derivative in the Higgs
boson since we concentrate on the electromagnetic part of
the theory as before. By performing partial integrations and
field redefinition, the resulting term is highly suppressed.
We also confirmed that this term does not contribute to the
μμ̄ → hγ by explicitly summing all tree-level diagrams
involving (A4) and renormalizable terms. Thus we do
not need to consider it. The discussion also implies that
μμ̄ → hγ cannot be canceled by the interference of different
diagrams with different dimension 6 operators with similar
scales ∼M�.
The discrimination of the EDM operator from the g − 2

one, on the other hand, is more challenging in the muon
collider. To measure the muon g − 2 at the muon collider,
the measurement of the muon EDM in the Fermilab [8],
J-PARC [59,60], and by the proposed frozen spin experi-
ments [61,62] are important. The future reach of the EDM
operator is three orders of magnitude smaller than the
corresponding muon g − 2 discrepancy of (1).12See also Ref. [58] for an approach in the ILC.
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APPENDIX B: SINGLET EXTENSION
OF SM EFFECTIVE THEORY

The most challenging possibility of the muon collider
test of the muon g − 2 is that there are no BSM particles in
the reach of the collider, which has been discussed in
Sec. III. The next to the most difficult case should be that
only singlet fields are within the reach, and they only decay
into weakly coupled particles, like the neutrinos or some
dark sector particles. Here, we study this case.
We consider that the singlet particles, ϕs, couple to the

SM sector in the effective theory with the cutoff scale Mϕ.
ϕ denotes either a boson or fermion by omitting the Lorentz
index unless otherwise stated. The singlet mass scale is
mϕð≪ MϕÞ. We will discuss both possibilities that the
singlet couplings are renormalizable or nonrenormalizable
to explain the g − 2. We use dimensional regularization to
define the loop calculation and assume that the g − 2
contribution arises by integrating out the BSM singlet
fields.
We will show that the maximal contribution to the muon

g − 2 involving higher dimensional terms are around

δamax;SESMEFT
μ ≡ emμv

16π2M2
ϕ

: ðB1Þ

By equating this to the observed value, we obtain
Mϕ ∼ 10 TeV. Any 1-loop contribution, δaSESMEFT

μ , due
to at least one higher dimensional term will be either
comparable to this or further suppressed by yμ or 1=Mϕ. In
addition, if δaSESMEFT

μ has a form of Eq. (B1) or if the
singlets generate the g − 2 via only renormalizable terms, it
is fully tested in the muon collider. In other words, we will
probe that any 1-loop contribution in the effective theory
satisfies either δaSESMEFT

μ ≪ δamax;SESMEFT
μ , i.e., the EFT is

invalid, or be fully tested in the muon collider.
First of all, let us systematically study the largest 1-loop

contribution to the g − 2 operator L̄μF
μν
i σμνHμR, where H

is the Higgs doublet field, with Fi being the field strength
for the Uð1ÞY gauge boson (i ¼ Y) or the SUð2ÞL gauge
boson (i ¼ 2), and Lμ being the left-handed muon doublet.
Here and hereafter, we consider the symmetric phase of the
electroweak gauge group, and diagonalize all the kinetic
and mass terms of the relevant fields. We note from the
topology that the g − 2 Feynman diagram can only contain
the vertices of the following combinations (e.g., Ref. [63]):

fV3; V4; V5; V6g ¼ f0; 0; 0; 1g; f1; 0; 1; 0g;
f2; 1; 0; 0g; f4; 0; 0; 0g; ðB2Þ

with Vi being the number of the i-point vertices. Those
vertices must include Lμ; μR; γ, which could be SUð2ÞL or
Uð1ÞY gauge boson, H and a nonzero even number of the
BSM singlet field ϕ so that ϕ does not appear in the
external lines.

1. f0;0;0;1g case

It is clear that the f0; 0; 0; 1g case requires a dimension
≥ 8 operator, which is suppressed by M4

ϕ. The contribution
is much smaller than Eq. (B1). For instance, the relevant
operators include ϕ2HL̄μF

μν
Y σμνμR with ϕ being a bosonic

dimension 1 field. We can also use the SUð2ÞL field
strength as well.

2. f1;0;1;0g case

The f1; 0; 1; 0g case includes the diagrams of a 1PI-type
and a reducible type. In the 1PI type, we need the 5-point
vertex to involve a single ϕ like ϕHL̄μF

μν
Y σμνμR which is

dimension 7. This is because the 3-point vertex, including
ϕ, which is a singlet, cannot change the chirality of the
muon. Thus the chirality should be flipped in the 5-point
vertex. Therefore, the contribution is subdominant com-
pared to Eq. (B1).
In the reducible type, the diagrams of order Eq. (B1) is a

renormalization of the SM vertex, e.g., the 5-point vertex
ϕ2

M2
ϕ
HL̄μμR, does not contribute to the g − 2 since closing the

loop of ϕ is the renormalization of the muon Yukawa
coupling. Since we always require the IR muon mass by
integrating out ϕ to be the measured one, the g − 2
contribution is canceled. In the f2; 1; 0; 0g case, we have
also this kind of renormalization diagram, which we will
not consider.

3. f2;1;0;0g and f4;0;0;0g cases

The most nontrivial cases are f2; 1; 0; 0g and f4; 0; 0; 0g.
In the two cases in the broken phase, we need a 1-loop
diagram with a charged internal line of SM fields and a
neutral internal line involving a BSM singlet. For clarity,
we separate the discussion into the three possibilities for the
chirality flip for the muon.

a. Chirality flip by the SM muon Yukawa coupling

The first possibility for the chirality flip is the SM
muon Yukawa interaction. In this case, the diagram should
be further suppressed by yμ. From the dimensional argu-
ment, even the largest higher dimensional contribution

δaSESMEFT
μ ¼ Oð em2

μ

16π2mϕMϕ
Þ is subdominant compared to

Eq. (B1) by noting Mϕ ≫ mϕ ≫ v. Strictly speaking, we

also have δaSESMEFT
μ ¼ Oð eAm2

μ

16π2m2
ϕMϕ

Þ if ϕ is a scalar field.

Since there is a dimension-1 parameter in the trilinear
coupling to the Higgs fields, AϕjHj2. However, A≲mϕ

from the vacuum stability. This contribution is smaller.
In general, e.g., in the following subsections, we can

safely neglect the superrenormalizable term. This is
because this trilinear term has two Higgs fields. Then,
we must further introduce a chirality flip by the SM lepton
Yukawa coupling for the 1-loop contributions that are
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∝ 1=Mϕ; 1=M2
ϕ. Therefore, we will not consider the super-

renormalizable term here and hereafter.
In the case of the renormalizable interactions, the scale of

the muon g − 2 operator is controlled bymϕ, which ismϕ ∼
102 GeV with Oð1Þ couplings to explain the g − 2. Since
this scenario belongs to the first case of (3), we can cut the
PSM
i line to get μμ̄ → PSM

i P̄SM
i process. Here, the final

states must be charged particles since the BSM particles are
singlets. The cross section is no need to be chirality
suppressed and is of the order,

σμμ̄→PSM
i P̄SM

i
∼O ðnbÞ m

2
ϕ

E2
cm

ðEcm ≫ mϕÞ: ðB3Þ

The scaling is same as the SM background, and the size is
comparable to the background. Given the large number of
the events, Eq. (8), this is fully measurable and tested in the
muon collider. As an example, we can consider the BSM to
be a right-handed neutrino with yνH�ϕL. In addition, we
need to have the mass term of this right-handed neutrino to
preserve a lepton number symmetry to forbid a too large
contribution to the active neutrino mass. The loop is closed
with the photon vertex, the SM muon Yukawa vertex, and
the two new vertices. This belongs to the f4; 0; 0; 0g case.

This diagram contributes to the g − 2 at the order ejyνj2m2
μ

16π2m2
ϕ
.

The cross section of μμ̄ → Wþ
longitudinalW

−
longitudinal is of the

order jyνj2
4πE2

cm
ðEcm ≫ mϕÞ. Thus, they are consistent with the

previous general discussion, and the model is fully tested.

b. Chirality flip by a higher dimensional
term of the SM particles

The second possibility is that the chirality flip resides in
the higher dimensional terms among the SM particles. As
well known in the context of the SM effective theory, such a
term only arises from dimension six. The largest 1-loop
contribution is Eq. (B1) from the dimensional analysis.
To reach Eq. (B1), the other vertices than the dimension-6

one must be renormalizable, and the size of the couplings is
Oð1Þ. Since, in this case, Mϕ can be as large as ∼10 TeV,
which is slightly below the reach of the 20 TeV muon
collider, the effective theory may not be valid.
To have more robust conclusions, let us study the

testability within the effective theory when δaSESMEFT
μ ∼

δamax;SESMEFT
μ . We can again cut the g − 2 loop and remove

the chirality flip to obtain the scattering processes,
μμ̄ → PSM

i P̄SM
i , which gives a similar order of contribution

as Eq. (B3). Indeed, we must have the BSM singlet couple
to the muon to form a loop from the requirement of the
renormalizable vertices. If the BSM singlet were not
coupled to either of the external muon lines in the g − 2
diagram, we would need ϕ-gauge boson interaction,
which is not renormalizable, or ϕ-Higgs interaction,
which will require an additional yμ suppression to close

the loop. Therefore, we can conclude that the muon g − 2
is fully testable in this case with the maximized
δaSESMEFT

μ ∼ δamax;SESMEFT
μ .

c. Chirality flip by a term involving ϕ

The last possibility is that the chirality flip is via the
vertex involving the BSM singlet. The gauge invariance
implies that the singlet vertex should have dimension ≥ 5.
For the dimension 6 case, the previous discussion in
Appendix B 3 b applies. Namely, we can have the dominant
contribution Eq. (B1), but again it is detected with the SM
process. For instance, we can considerHFμν

ϕ L̄μσμνlR with ϕ
being a gauge boson and Fμν

ϕ being the field strength or its
dual, l being a SM lepton. We can have the renormalizable
μ̄Rϕ

μγμlR to close the loop, which belongs to the case
f2; 1; 0; 0g. To have a large enough Mϕ, we need Oð1Þ
renormalizable couplings. This is fully tested via μ̄μ →
l̄RlR (or monophoton in the case lR ¼ μR).
When the chirality-flip interaction with the BSM singlets

is dimension 5, the important one is obtained from gauge
invariance,

ϕ

Mϕ
HL̄μlR: ðB4Þ

Here, ϕ is a BSM singlet scalar.13 This belongs to the case
of f2; 1; 0; 0g. Our discussion here does not change by
replacing L and R everywhere. We may consider closing

the loop for the g − 2 by introducing ∼ ∂μϕ
Mϕ

μ̄Rγ
μlR.

However, by performing an equation of motion, this term
becomes a similar term as (B4) with an additional sup-
pression by a leptonic Yukawa coupling.14 The possible
chiral anomaly induced term is loop suppressed, and we
can neglect it. Thus, the contribution involving the deriva-
tive coupling is subdominant.
The other possibility to close the loop without a Yukawa

coupling suppression is

ϕ

Mϕ
ðFμνFμν þ � � �Þ or

ϕ

Mϕ
ðFμνF̃μν þ � � �Þ: ðB5Þ

Here � � � denote terms involving W, Z gauge fields for the
gauge invariance. This term can be important only if

l ¼ μ: ðB6Þ

From a simplified Barr-Zee type loop, we obtain the
contribution of the order (B1). Mϕ ∼ 10 TeV implies that
the process of

13The Dirac neutrino dipole moment interaction does not
induce a chirality flip for a charged muon.

14By further introducing a Dirac neutrino Yukawa coupling of
Oð1Þ, we cannot get the 1-loop diagram.
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μ̄μ → ϕh; μ̄μ → ϕγ; ðB7Þ
via Eqs. (B4) and (B5) has a cross section of

σ ∼Oð0.1 pbÞ ðEcm ≫ mϕÞ; ðB8Þ
which is not sensitive to the energy scale. Since ϕ is
assumed to decay into invisible particles, this is a mono-
Higgs or monophoton process. On the other hand, the
background of the SM also has a cross section of the same

order at Ecm ¼ 20 TeV [15,20]. Thus, by measuring the
total number of the produced Higgs bosons/monophotons,
the singlet extensions in this part are fully tested in 40 ab−1
muon collider.
Lastly, we comment that we may have many ϕs with a

similar interaction to increase the cutoff scale Mϕ for
explaining the g − 2 in all the previous discussions. The
cross sections, discussed so far, are enhanced as well with
Ecm ≫ mϕ. Therefore, our conclusions do not change.

[1] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur.
Phys. J. C 77, 827 (2017).

[2] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D
97, 114025 (2018).

[3] G.W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D
73, 072003 (2006).

[4] B. L. Roberts, Chin. Phys. C 34, 741 (2010).
[5] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D

101, 014029 (2020).
[6] T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T.

Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè,
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[56] M. Cè, A. Gérardin, G. von Hippel, R. J. Hudspith, S.
Kuberski, H. B. Meyer, K. Miura, D. Mohler, K. Ottnad, P.
Srijit et al., arXiv:2206.06582.

[57] C. Alexandrou, S. Bacchio, P. Dimopoulos, J. Finkenrath,
R. Frezzotti, G. Gagliardi, M. Garofalo, K. Hadjiyiannakou,
B. Kostrzewa, K. Jansen et al., arXiv:2206.15084.

[58] M. Endo, K. Hamaguchi, S. Iwamoto, T. Kitahara, and T.
Moroi, Phys. Lett. B 728, 274 (2014).

[59] T. P. Gorringe and D.W. Hertzog, Prog. Part. Nucl. Phys.
84, 73 (2015).

[60] M. Abe, S. Bae, G. Beer, G. Bunce, H. Choi, S. Choi, M.
Chung, W. Da Silva, S. Eidelman, M. Finger et al., Prog.
Theor. Exp. Phys. 2019, 053C02 (2019).

[61] F. J. M. Farley, K. Jungmann, J. P. Miller, W.M. Morse,
Y. F. Orlov, B. L. Roberts, Y. K. Semertzidis, A. Silenko,
and E. J. Stephenson, Phys. Rev. Lett. 93, 052001 (2004).

[62] A. Adelmann and K. Kirch, arXiv:hep-ex/0606034.
[63] S. Weinberg, The Quantum Theory of Fields. Vol. 1:

Foundations (Cambridge University Press, Cambridge,
England, 1995).

WEN YIN and MASAHIRO YAMAGUCHI PHYS. REV. D 106, 033007 (2022)

033007-14

https://arXiv.org/abs/1902.06029
https://arXiv.org/abs/2002.07164
https://arXiv.org/abs/1405.5910
https://arXiv.org/abs/1405.5910
https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1142/S0217751X02009813
https://doi.org/10.1142/S0217751X02009813
https://doi.org/10.1103/PhysRevD.76.073002
https://doi.org/10.1103/PhysRevD.76.073002
https://doi.org/10.1103/PhysRevD.104.075021
https://doi.org/10.1103/PhysRevD.104.075021
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevD.105.015028
https://doi.org/10.1103/PhysRevD.105.015028
https://doi.org/10.1103/PhysRevD.105.075008
https://doi.org/10.1103/PhysRevD.105.075008
https://doi.org/10.1007/JHEP04(2022)129
https://doi.org/10.1007/JHEP04(2022)129
https://arXiv.org/abs/2203.06103
https://doi.org/10.1007/JHEP02(2022)154
https://doi.org/10.1007/JHEP02(2022)154
https://arXiv.org/abs/2206.06582
https://arXiv.org/abs/2206.15084
https://doi.org/10.1016/j.physletb.2013.11.068
https://doi.org/10.1016/j.ppnp.2015.06.001
https://doi.org/10.1016/j.ppnp.2015.06.001
https://doi.org/10.1093/ptep/ptz030
https://doi.org/10.1093/ptep/ptz030
https://doi.org/10.1103/PhysRevLett.93.052001
https://arXiv.org/abs/hep-ex/0606034

