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The double copy of the Coulomb solution in three dimensions is a nonvacuum solution that can be
obtained through different matter couplings. It is the static black hole solution of Einstein-Maxwell theory
or general relativity minimally coupled to a free scalar field (with one ghost sign in the action in both cases).
We consider generalizations of these matter couplings by paying particular attention to the regularity of the
static black solution on the gravity side and the corresponding single copy electric field in the gauge theory.
We show that (i) Einstein-Born-Infeld theory yields a singular double copy, which admits stable orbits for
certain choices of parameters, with a regular single copy electric field, and (ii) black hole solutions
constructed by Bueno et al. [Phys. Rev. D 104, L021501 (2021).] by coupling to the scalar field exemplify
mostly regular double copies with regular single copy electric fields and also admit stable orbits.
Additionally, we use these solutions to investigate the connection between horizons on the gravity side and
electric fields on the gauge theory side, which was previously observed in four dimensions.
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I. INTRODUCTION

The double copy has become an indispensable tool in the
study of scattering amplitudes since it allows one to obtain
gravitational amplitudes by “squaring” the Yang-Mills (YM)
ones [1,2]. It is also possible to construct perturbative
classical solutions from semiclassical tree-level amplitudes
[3–40]. Although it seems impossible to establish a map
between exact classical solutions due to the nonlinearity of
both Einstein and Yang-Mills equations, one can obtain a
linear structure for certain classes of spacetimes on the
gravity side, and then, map them to the linearized solutions
of YM theory, i.e., solutions of Maxwell’s theory. The
classical double copy, a nonperturbative manifestation of
the double copy idea, can be realized via two different but
related procedures. In theKerr-Schild (KS) double copy [41],
one takes advantage of the fact that the Ricci tensor with
mixed indices is linear in the perturbation for spacetimes
admitting KS coordinates [42]. Alternatively, one can work

with the Weyl spinor (the spinor form of the Weyl tensor),
which is a scalar under coordinate transformations but
transforms under local change of the spinor basis.
Analogous to the KS construction, for certain algebraically
special spacetimes, one can find a spinor basis which
linearizes the Weyl spinor and then relates it to a field
strength spinor corresponding to a solution of Maxwell’s
equations. Although the Weyl double copy [43] is more
general, the two procedures give identical results, as they
should, when both are applicable. There is a growing
literature on the subject providing various examples and
generalities [44–68] (see [69–71] for reviews), and we now
have a pretty good understanding of its origins and limi-
tations thanks to results from twistor theory [72–74].
It has been known since the seminal work of Born and

Infeld [75] that the singularity of the point charge solution
at the origin might be removed by considering nonlinear
generalizations of Maxwell’s theory. It is natural to ask
what the regularity of the single copy implies on the gravity
side. In [65], by assuming that the standard KS ansatz for
the double copy solution remains intact, the authors show
that in order to ensure the regularity on the gravity side, the
finiteness of the single copy electric field at the origin is not
enough and it should vanish. For example, the double copy
metric corresponding to the point charge solution of Born-
Infeld electrodynamics is not regular. Recently, regular
black hole metrics were constructed in [76] by starting from
solutions of various nonlinear electrodynamics theories
with an electric field vanishing at the origin and employing
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the KS ansatz. Although this approach sheds light on the
nature of the double copy solution, it is not clear how one
should modify the fields equations on the gravity side such
that the constructed metric is a solution. Therefore, it is
desirable to study the regularity in the usual setup where one
starts froma solution of a gravitational theory andmaps it to a
solution ofMaxwel’s theory. In 4D, such examples are given
in [64], and additionally, a simple but interesting connection
between horizons on the gravity side and the zeros of the
electric field on the gauge theory side was presented.
In this paper, we focus on the KS double copy in 3D,1

which sets the stage for an important consistency check
because there is noNewtonian limit of general relativity (GR)
in 3D(see [66] for a detailed explanationofwhy itmight be, in
principle, problematic for the KS construction). It was
understood that the KS double copy works also in 3D with
a crucial difference compared to higher dimensional versions:
The double copy of the Coulomb solution is a nonvacuum
solution [66]. As a result of the on-shell duality of a scalar and
a gauge vector in 3D, a static black hole with the required
Newtonian potential (Φ ∝ log r) that can be obtained by
minimally coupling GR to Maxwell’s theory or a free scalar
field provided that a ghost sign is taken for the Einstein-
Hilbert or the matter term in the action [68]. The former has
the advantage that the matter field vanishes at infinity. In
Einstein-Maxwell theory, one has the Coulomb electric field
(frt ∝ 1

r). When the scalar coupling is used, the scalar field
should be linear in the azimuthal angle (φ ∝ θ) to support the
black hole solution. Our aim in this work is to consider
generalizations of these matter couplings to extend the
observations mentioned above to 3D. We will obtain static
solutions admitting stable orbits, investigate the regularity of
the single and double copy solutions, and uncover the relation
between the horizons and the zeros of the electric field
whenever possible.
The outline of this paper is as follows: In Sec. II, we

review the basics of the KS double copy for a static
spacetime and discuss the regularity of the solutions. After
an investigation of Einstein-Born-Infeld theory as a gen-
eralization of Einstein-Maxwell theory in Sec. III, we move
on to generalizations of the scalar coupling in Sec. IV. We
end our paper with conclusions and discussions in Sec. V.

II. BASICS OF THE 3D KERR-SCHILD DOUBLE
COPY AND REGULARITY OF THE SOLUTIONS

For a spacetime admitting KS coordinates, it is possible
to write down the components of metric tensor in the
following form [84]:

gμν ¼ ημν þ ϕkμkν; ð2:1Þ
where ϕ is a scalar field and the vector kμ is null and
geodesic with respect to the full metric gμν and the flat

background metric ημν (see chap. 32 of [85] for a summary
of important properties). In these coordinates, the Ricci
tensor with mixed indices becomes linear in the perturba-
tion as follows:

Rμ
ν ¼

1

2
½∂α∂μðϕkνkαÞ þ ∂

α
∂νðϕkμkαÞ − ∂

α
∂αðϕkμkνÞ�:

ð2:2Þ

If one writes down the background line element in polar
coordinates

ημνdxμdxν ¼ −dt2 þ dr2 þ r2dθ2; ð2:3Þ

and parametrizes the null vector as

−kμdxμ ¼ dtþ dr; ð2:4Þ

the μ0 components become

Rμ
0 ¼

1

2
∂νFνμ; Fμν ¼ 2∂½μAν�; Aμ ≡ ϕkμ: ð2:5Þ

With minimal matter coupling, the trace-reversed gravita-
tional field equations are given by

Rμ
ν ¼

κ2

2
ðTμ

ν − δμνTÞ; κ2 ¼ 8πG; ð2:6Þ

where Tμν is the energy-momentum tensor and T is its
trace. Checking the μ0 components, one obtains the
Maxwell equations

∂νFνμ ¼ gJμ ð2:7Þ

where the source is given by

Jμ ¼ 4ðTμ
0 − δμ0TÞ; ð2:8Þ

and the gauge coupling is obtained by the identification2

κ2 → 4g. Therefore, for each solution of the gravitational
field equations that admit KS coordinates (2.1), the double
copy, one can obtain a single copy solution of Maxwell’s
equations.
Unlike higher dimensions, in order to obtain the

Coulomb’s solution as the single copy, one needs matter
coupling in 3D. One possibility is Einstein-Maxwell
theory described by the action

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

κ2
Rþ 1

8π
fμνfμν

�
; ð2:9Þ

1For recent developments in 3D double copy, see [77–83].
2We choose our conventions such that when G ¼ 1, which is

used in our numerical calculations, one has ∂νFνμ ¼ 2πJμ.

ALKAÇ, GÜMÜŞ, and OLPAK PHYS. REV. D 106, 026013 (2022)

026013-2



where fμν ¼ 2∂½μaν�. As shown in [68], one needs to
introduce the Maxwell term with a ghost sign in order to
obtain the correct Newtonian limit [ϕ ¼ c logðrÞ; c > 0].3

Taking ϕ ¼ ϕðrÞ, aμdxμ ¼ atðrÞdt, one obtains the follow-
ing static solution:

ϕðrÞ ¼ −8GM − 2Gq2 logðrÞ; aμdxμ ¼ −q logðrÞdt;
ð2:10Þ

where q is the charge and M is the mass parameter of the
black hole. The corresponding single copy solution is

Aμdxμ ¼ ϕðrÞkμdxμ ¼ ð8GM þ 2Gq2 logðrÞÞdt; ð2:11Þ

which is just the Coulomb’s solution with the identification
2Gq2 → −Q where Q is the charge of the point particle in
Maxwell’s theory.
Alternatively, one can consider the coupling to a free

scalar as

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

κ2
Rþ 1

2
ð∂φÞ2

�
; ð2:12Þ

with again a ghost sign for the matter term. Taking
ϕ ¼ ϕðrÞ, a static black hole solution is obtained provided
that φ ¼ pθ (p: constant). The solution is given by

ϕðrÞ ¼ −2GM logðrÞ; φ ¼
ffiffiffiffiffiffi
M
2π

r
θ: ð2:13Þ

The single copy gauge field

Aμdxμ ¼ 2GM logðrÞdt ð2:14Þ

is again the Coulomb’s solution this time with the iden-
tification 2GM → −Q.
The line element for the metric given in KS coordinates

(2.1)

ds2 ¼ ημνdxμdxνþϕðrÞðkμdxμÞ2
¼−½1−ϕðrÞ�dt2þ½1þϕðrÞ�dr2þ 2ϕðrÞdtdrþ r2dθ2;

ð2:15Þ

can be written in the Boyer-Lindsquit (BL) coordinates by
the following coordinate transformation

dt → dtþ ϕðrÞ
1 − ϕðrÞ dr; ð2:16Þ

as follows:

ds2 ¼ −hðrÞdt2 þ 1

hðrÞ dr
2 þ r2dθ2; hðrÞ ¼ 1 − ϕðrÞ.

ð2:17Þ

In BL coordinates, the existence of stable orbits can be
easily studied. For timelike particles, the geodesic motion is
governed by the equation

1

2
E2 ¼ 1

2

�
dr
dt

�
2

þ Veff ; ð2:18Þ

where the effective potential is given by

Veff ¼
1

2

�
L2

r2
þ 1

�
hðrÞ: ð2:19Þ

The energy and the angular momentum of the particle are
expressed in terms of the timelike and angular Killing
vectors ξðt;θÞ as

E ¼ −gμνξ
μ
ðtÞu

ν; L ¼ gμνξ
μ
ðθÞu

ν; ð2:20Þ

where uμ is the velocity of the particle. The Newtonian
potential VNewton can be obtained by neglecting GL2 terms
in the effective potential Veff . The stable orbits were shown
to exist in [68] for the vector coupling and in [66] for the
scalar coupling.
When the single copy is the Coulomb’s solution, both the

double copy and the single copy has a singularity at r ¼ 0.
In 3D, there are only three independent curvature invariants
that can be constructed from contractions of the metric and
the Riemann tensor [86–88]. For a general static solution
with the line element (2.15), they are given by

R ¼ ϕ0

r
þ ϕ00; ð2:21Þ

Rμ
νRν

μ ¼
�
ϕ0

r

�
2

þ 1

2
R2; ð2:22Þ

Rμ
νRν

ρRρ
μ ¼

�
ϕ0

r

�
3

þ 1

4
R3; ð2:23Þ

and the electric field corresponding to single copy is

EðrÞ≡ Frt ¼ −ϕ0ðrÞ ¼ h0ðrÞ: ð2:24Þ

We see that if ϕ0
r and ϕ00 are regular, then the double copy

solution is regular and it can be checked by looking at the
curvature scalar R alone. However; it is not guaranteed by
the regularity of the single copy electric field. For example,
if one takes the scalar potential corresponding to a point
charge in Born-Infeld electromagnetism

3One can also take the Einstein-Hilbert term with a ghost sign
but throughout this paper, we will use the matter terms with a
ghost sign.
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ϕðrÞ ¼ −Q log

"
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ Q2

b2

q
2

#
; ð2:25Þ

and studies a generalized static solution by assuming that
the KS ansatz (2.1) gets no correction, as suggested by [65],
the curvature scalar and the single copy electric field read

RðrÞ ¼ −
Q3

rðr2 þ Q2

r2 Þ3=2
;

EðrÞ ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ Q2

b2

q : ð2:26Þ

Around r ¼ 0, one has

RðrÞ ¼ −
b
r
þ 3b3r

2Q2
−
15b5r3

8Q4
þOðr5Þ;

EðrÞ ¼ b −
b3r2

2Q2
þ 3b5r4

8Q4
þOðr5Þ: ð2:27Þ

This is a simple example where we explicitly see that one
might have regular single copy electric fields despite
having a singularity on the gravity side. If we start from
a general KS scalar ϕðrÞ that is regular at r ¼ 0 as follows,

ϕðrÞ ¼ a0 þ a1rþ a2r2 þOðr3Þ; ð2:28Þ

where ai’s (i ¼ 0, 1, 2) are arbitrary constants, we obtain

RðrÞ ¼ a1
r
þ 4a2 þ 9a3rþOðr2Þ; ð2:29Þ

EðrÞ ¼ a1 þ 2a2rþOðr2Þ: ð2:30Þ

Therefore, the necessary and sufficient condition for the
regularity of both single and double copy solutions is
a1 ¼ 0, which is the vanishing of the single copy electric
field at the origin,4 i.e., Eðr ¼ 0Þ ¼ 0. In the next sections,
by considering more generalized matter couplings, we will
provide examples of different possibilities, in the usual
context of KS double copy without making any assump-
tions such as made in [65].

III. EINSTEIN-BORN-INFELD THEORY

One of the simplest and most natural generalizations of
Einstein-Maxwell theory is Einstein-Born-Infeld theory
described by the Lagrangian

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
ζ1
κ2

Rþ ζ2LBIðfÞ
�
; κ2 ¼ 8πG; ð3:1Þ

where we have introduced ζi ¼ �1 (i ¼ 1, 2) to control the
sign of the kinetic terms (−1: ghost, þ1: not ghost) and
the Lagrangian of the Born-Infeld electrodynamics is given
by [75]

LBIðfÞ ¼
b2

2π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

2b2

s !
; fμν ¼ 2∂½μaν�; ð3:2Þ

which reduces to that of Maxwell theory as b → ∞.
Assuming a static line element of the KS form (2.15)
and aμdxμ ¼ atðrÞdt, the matter equations

∂μ

0
B@ ffiffiffiffiffiffi−gp

fμνffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

2b2

q
1
CA ¼ 0 ð3:3Þ

are solved by the following scalar potential and the
corresponding independent nonzero component of the field
strength tensor

atðrÞ ¼ −q log
�
rþ ψðrÞ

2

�
; frt ¼

q
ψðrÞ ; ð3:4Þ

where

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q2

b2

s
: ð3:5Þ

With the energy-momentum tensor

Tμν ¼
1

2π

fμαfναffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

2b2

q þ gμνLBIðfÞ; ð3:6Þ

the trace-reversed Einstein equations read

Rμν − 2Λgμν ¼ ζ
κ2

4π

0
B@2fμαfvα − gμνf2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2

2b2

q þ 2gμνLBIðfÞ

1
CA;

ð3:7Þ
where ζ ¼ ζ1ζ2. The independent components of the left-
hand side of the equations are

ðLHSÞtt ¼
½ϕðrÞ − 1�½rϕ00ðrÞ þ ϕ0ðrÞ − 4Λr�

2r
;

ðLHSÞtr ¼
ϕðrÞ½rϕ00ðrÞ þ ϕ0ðrÞ − 4Λr�

2r
;

ðLHSÞrr ¼
½ϕðrÞ þ 1�½rϕ00ðrÞ þ ϕ0ðrÞ − 4Λr�

2r
;

ðLHSÞθθ ¼ rϕ0ðrÞ − 2Λr2; ð3:8Þ
with the following components at the right-hand side

4In 4D, one also needs to have a0 ¼ 0, which can be achieved
by changing a different integration constant in obtaining the
solution. However, this changes the asymptotic behavior of the
metric (see [65] for details).
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ðRHSÞtt ¼
2b2ζG½ϕðrÞ − 1�½r − ψðrÞ�2

rψðrÞ ;

ðRHSÞtr ¼ −
2b2ζGϕðrÞ½r − ψðrÞ�2

rψðrÞ ;

ðRHSÞrr ¼
2b2ζG½1þ ϕðrÞ�½r − ψðrÞ�2

rψðrÞ ;

ðRHSÞθθ ¼ −4b2ζGr½r − ψðrÞ�: ð3:9Þ

Similar to the Einstein-Maxwell case, the θθ component is
the easiest one to solve and it yields

ϕðrÞ ¼ −8GM þ ζGq2

þ 2ζGb2
�
r2 − rψðrÞ − q2

b2
log

�
rþ ψðrÞ

2

��
;

ð3:10Þ

which also solves the other components.5 Note that we have
chosen the integration constant such that the expansion
around b → ∞

ϕðrÞ ¼ −8GM þ 2ζGq2 logðrÞ þ ζGq4

4b2r2
þO

�
1

b3

�
; ð3:11Þ

gives the result for ζ ¼ −1 in the EM case (2.10) at the
leading order. The gravitational field in the Newtonian limit
is given by

g⃗ ¼ 1

2
∇⃗ϕ ¼ −

1

2
∇⃗h;

¼
2ζG

h
q2 þ b2r

�
r −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − q2

b2

q �i
ψðrÞ r̂; ð3:12Þ

which is attractive everywhere when ζ ¼ −1. Therefore, we
again need to choose one ghost sign in the action. For
ζ ¼ −1, the Ricci scalar and the electric field correspond-
ing to the single copy Aμ ¼ ϕkμ are given by

RðrÞ ¼ −
4G½q2 þ 2b2rðr − ψðrÞÞ�

rψðrÞ ;

EðrÞ ¼ 4G½q2 þ b2rðr − ψðrÞÞ�
ψðrÞ : ð3:13Þ

Checking their behavior as r → 0,

RðrÞ ¼ −
4Gbq
r

þ 8Gb2 −
6Gb3r

q
þOðr3Þ;

EðrÞ ¼ 4Gbq − 4Gb2rþ 2Gb3r2

q
þOðr3Þ; ð3:14Þ

one sees that, while the single copy electric field is regular
around the origin, we have a singularity on the gravity side.
For particle orbits, one can ensure to preserve the follow-

ingmain properties of the static solutionofEinstein-Maxwell
theory by choosing an appropriate set of parameters: (i) The
Newtonian potential VNewton possesses an infinite barrier at
short distances and becomes equal to the effective potential
Veff at large distances. (ii) Timelike particles are forbidden to
reach the infinity due to the logaritmic behavior of the
potential as r → ∞. (iii) There is a critical value Lc of the
angular momentum of the particle such that, when L > Lc,
the effective potential Veff develops a local minimum and a
local maximum, making stable orbits possible. We refer the
reader to Fig. 1 for an explicit demonstration of these
properties and the regularity of the solutions, together with
the charge density in the gauge theory.
Before proceeding further, we would like to note that,

similar to the Einstein-Maxwell theory, one can again make
use of the duality of scalars and gauge vectors to realize a
solution with the same physical properties. The matter part
of the Lagrangian is given by

5 10 15 20
r

5

10

15

h(r)

0.0 0.2 0.4 0.6 0.8 1.0
r

20

60

100

0.0 0.1 0.2 0.3 0.4 0.5
r

2
4
6
8

10

0.01 0.03 0.05
r

-0.5

0.5

1.5

2.5
L = 0.001 < L   cr

0.01 0.03 0.05
r

-1.0

0.0

1.0

2.0

L = 0.0065 = L   cr

0.01 0.03 0.05
r

-1

1

2

3 L = 0.015 > L   cr

E(r)
-R(r)

E(r) and -R(r)

Veff

VNewton

Veff

VNewton

Veff

VNewton

(r)

FIG. 1. Details of the static solution of Einstein-Born-Infeld theory for ðG ¼ 1;M ¼ 1; q ¼ 0.525; b ¼ 10Þ.

5The static solution for a nonzero cosmological constant and
no ghost sign in the action was given in [89,90].
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LscalarðφÞ ¼ −
b2

2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2π

b2
ð∂φÞ2

r �
; ð3:15Þ

which reduces to the free scalar Lagrangian as b → ∞ and
the scalar field should read

φ ¼
ffiffiffiffiffiffi
M
2π

r
θ; M ¼ q2; ð3:16Þ

in order to obtain the same solution as that of Einstein-
Born-Infeld theory up to an integration constant.

IV. GENERALIZATION OF THE SCALAR
COUPLING

In this section, we will study a generalization of the scalar
couplingwhich not only allows different possibilities regard-
ing the regularity of the single and double copies but also
demonstrates a simple relation between horizons on the
gravity side and the corresponding electric field inMaxwell’s
theory, which is based on the following observation [64]:
Since the single copy electric field is equal to the derivative of
the metric function in BL coordinates [EðrÞ ¼ h0ðrÞ], it
becomes zero at a maximum, a minimum, or a saddle point.
Since the horizons are located at the zeros of the metric
function [hðriÞ ¼ 0], there should exist at least one point
between two adjacent horizons where the electric field is
zero, corresponding to a minimum or maximum. The theory
that we will consider is described by the action [91]

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

κ2
ðR − 2ΛÞ −Q

�
; ð4:1Þ

where the matter term is given by

Q¼
X
n¼1

αnl2ðn−1Þð∂φÞ2n

−
X
m¼0

βml2ðmþ1Þð∂φÞ2m½ð3þ 2mÞRμν
∂μφ∂νφ−Rð∂φÞ2�:

ð4:2Þ
Here, αn and βm are arbitrary dimensionless constants.
The trace-reversed Einstein equations are in the following
form:

Rμν ¼
κ2

2
Θμν; Θμν ¼

1

ΓðφÞ
�
T̃μν þ

4Λ
κ2

gμν

�
: ð4:3Þ

We give the expressions for ΓðφÞ, T̃μν and the field equation
for the scalar field in Appendix since they are quite
cumbersome and do not play a direct role in our discussion.
Applying the usual prescription, we again obtain Maxwell’s
equations with a source defined in terms of the Θ tensor as
follows:

∂νFνμ ¼ gJμ; Jμ ¼ 4Θμ
0: ð4:4Þ

This theory admits a family of black holes and horizonless
spacetimes whose line elements in BL coordinates are in the
form (2.17). (See [91] for the most general form of the
solution.) For our purposes, it is enough to take nonzero
values for ðα1; α2; α3; β0; β1Þ and set all the other constants to
zero. In this case, for φ ¼ pθ (p:constant), all the field
equations are solved if the metric function is given by

hðrÞ ¼ ð1þ 8GMÞr4 − Λr6 − 8πGα1p2r4 logðrÞ þ 4πGα2l2p4 þ 2πGα3l4p6r2

8πGβ0l2p2r2 þ 24πGβ1l4p4 þ r4
; ð4:5Þ

where we have chosen the integration constant such that we recover the free scalar case when p ¼
ffiffiffiffi
M
2π

q
, α1 ¼ − 1

2
,

α2 ¼ α3 ¼ β1 ¼ β2 ¼ Λ ¼ 0. The curvature scalar and the single copy electric field can be easily calculated from
Eqs. (2.21) and (2.24), respectively. Their expansions around r ¼ 0 are given by

RðrÞ ¼ α3β0 − 6α2β1
6β21l

2
þ ½c1 þ c2 logðrÞ�r2

216πGβ31l
4p4

þOðr3Þ;

EðrÞ ¼ −
rðα3β0 − 6α2β1Þ

18β21l
2

þOðr3Þ; ð4:6Þ

where c1 ¼ c1ðG;M; p; α2; α3; β0; β1Þ and c2 ¼ c2ðG;p; α1; β1Þ are constants. From the expansions, we see that one can
obtain nonsingular single and double copies by taking β1 ≠ 0. When β0 ¼ β1 ¼ 0, the expansions around r ¼ 0 become

RðrÞ ¼ −
24πGα3l4p6

r6
−
8πGα2l2p4

r4
þ 8πGα1p2

r2
þ 6ΛþOðr3Þ;

EðrÞ ¼ −
8πGα3l4p6

r5
−
8πGα2l2p4

r3
−
8πGα1p2

r
− 2ΛrþOðr3Þ: ð4:7Þ

The expression for the electric field shows that one has a point charge at the origin with Q ¼ −8πGα1p2.
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We present four cases by using different sets of param-
eters, which are given in Table I:

(i) Case I: Taking a nonzero value for β1, we obtain
regular single and double copies. This is a horizon-
less geometry and the electric field EðrÞ becomes
zero at two points, which are maximum and mini-
mum of the metric function hðrÞ.

(ii) Case II: Again taking β1 ≠ 0 guarantees the regularity
of the single and double copies. There is one event
horizon and the electric field EðrÞ is zero only at the
origin,where theminimumof themetric functionhðrÞ
occurs. Stable orbits exist when L > Lcr.

(iii) Case III: β1 ≠ 0 yields regular single and double
copies. We have two event horizons and the electric

TABLE I. Choice of parameters for different solutions of the

scalar theory. We always take
ffiffiffiffi
M
2π

q
, α1 ¼ − 1

2
, as in the free scalar

case, and G ¼ 1, which leads to ∂νFνμ ¼ 2πJμ.

G M p l Λ α1 α2 α3 β0 β1

Case I (No Horizon) 1 1
4

ffiffiffiffi
M
2π

q
1 0 − 1

2
−10 30 1 1

Case II (Single Horizon) 1 1
4

ffiffiffiffi
M
2π

q
1 0 − 1

2
1 −5 1 1

Case III (Two Horizons) 1 1
4

ffiffiffiffi
M
2π

q
1 0 − 1

2
−100 100 1 1

Case IV (Three Horizons) 1 1
ffiffiffiffi
M
2π

q
1 −3 − 1

2
10 −5 0 0

1 2 3 4 5
r

1

2

3

h(r)

Veff

VNewton

0 2 4 6 8 10
r

0.5

1.0
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r
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r

-1.5
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1.5

(r)

FIG. 2. Details of case I presented in Sec. IV for parameters given in Table I.
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FIG. 3. Details of case II presented in Sec. IV for parameters given in Table I.
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field becomes zero at two points: A local maximum
(r ¼ 0) and a global minimum located between two
horizons.

(iv) Case IV: β1 ¼ 0 gives single and double copies
which are singular at the origin. There are three
event horizons and the electric field is zero at the
following points: a local maximum between the first
and the second horizons, and a local minimum
between the second and the third horizons.

All the details can be seen in Figs. 2–5. Although,
stable orbits exist for all values of the angular momentum

L in cases I, III, and IV, there is a critical value Lcr,
beyond which there arises a second region where a
particle in a stable orbit can be present. We do not
show them explicitly since it is sufficient to show the
existence of one such region for our purposes. As we
have shown at the end of Sec. II on general grounds, the
necessary and sufficient condition for the regularity of
the solutions on both gravity and gauge theory sides is
the vanishing of the electric field at the origin, which is
realized in Cases II and III and can be explicitly seen in
Figs. 3 and 4.

1 2 3 4 5
r

1

2

3

h(r)

Veff

2 4 6 8 10
r

-4

-2

2

4
L = 1

E(r)
-R(r)

1 2 3 4 5
r

-120
-100
-80
-60
-40
-20

20

E(r) and -R(r)

1 2 3 4 5
r

-10

-5

(r)

VNewton

FIG. 4. Details of case III presented in Sec. IV for parameters given in Table I.
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FIG. 5. Details of case IV presented in Sec. IV for parameters given in Table I. Note that in addition to the nonlocal charge distribution
shown in the figure, one has a point charge with Q ¼ 2 at the origin.
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V. SUMMARY AND DISCUSSIONS

In this paper, we have studied generalizations of the
matter couplings in 3D admitting a static black hole
solution which gives rise to the Coulomb’s solution as
its single copy. For these matter couplings, Einstein-
Maxwell theory or GR minimally coupled to a free scalar
field, both the double copy and the single copy solution has
a singularity at the origin. As a generalization of the former,
we studied Einstein-Born-Infeld theory and showed that
although the static black hole solution, which admits stable
particle orbits, is singular, the single copy electric field
is regular at the origin. For the latter, we have investi-
gated a theory recently discovered in [91], which forms an
extremely useful theoretical laboratory since the most
general solution offers different possibilities regarding
the regularity of the black hole solution and the number
of event horizons. We have given examples where both the
double and single copy are regular. Moreover, starting from
a horizonless geometry, we have considered spacetimes
with increasing number of event horizons and exhibited the
relation between the event horizons on the gravity side and
the corresponding electric field in Maxwell’s theory.
All these examples show that many physically important

properties of the KS double copy can also be realized in 3D
with the most notable exception that, in the simplest case
where the single copy is the Coulomb solution, the double
copy is a nonvacuum solution which can be obtained by
taking the Einstein-Hilbert term or the matter term with a
ghost sign in the action. In the generalizations that we have
considered in this paper, we introduced the couplings such
that one recovers the Coulomb case in an appropriate limit.
However, a wide range of different possibilities exists
without this requirement.
As a final note, we would like to mention that there exists

a different interpretation of the single copy in the case of a
nonminimal coupling on the gravity side. Writing the
gravitational field equations (4.3) by introducing an effec-
tive Newton constant as

Rμν ¼
κ2eff
2

Θ0
μν; κ2eff ¼

κ2

ΓðφÞ ; ð5:1Þ

where

Θ0
μν ¼ T̃μν þ

4Λ
κ2

; ð5:2Þ

one can obtain solutions to Maxwell’s equations with an
effective gauge coupling

∂νFνμ ¼ geffJμ; Jμ ¼ 4Θ0μ
0 ; ð5:3Þ

with the identification κ2eff → 4geff . In this picture, the
cosmological constant plays its usual role in the case of a
minimal matter coupling and produces a constant charge
density filling all space. However; a dynamical mechanism
for the evolution of the gauge coupling seems to be missing
on the gauge theory side. This might be an interesting
direction for future study.
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APPENDIX: DETAILS OF THE FIELD
EQUATIONS OF THE SCALAR THEORY

ΓðφÞ ¼ 1 −
κ2

2

X
m¼0

βml2ðmþ1Þð∂φÞ2ðmþ1Þ ðA1Þ

T̃μν ¼ T̃ð1Þ
μν þ T̃ð2Þ

μν þ T̃ð3Þ
μν ; ðA2Þ

where

T̃ð1Þ
μν ¼

X
n¼1

αnð∂φÞ2ðn−1Þl2ðn−1Þðn∂μφ∂νφ−gμνðn−1Þð∂φÞ2Þ;

T̃ð2Þ
μν ¼

X
m¼0

βml2ðmþ1Þð∂φÞ2ðm−1Þ½2ð3þ2mÞRαðμ∂νÞφ∂αφð∂φÞ2

þmð3þ2mÞ∂μφ∂νφRαβ
∂αφ∂βφ−ðmþ1Þð∂φÞ2

×ð∂μφ∂νφRþgμνRαβ
∂αφ∂βφ−gμνRð∂φÞ2Þ�;

T̃ð3Þ
μν ¼∇α∇ðμEνÞα−

1

2
□Eμν−

1

2
gμν□E; ðA3Þ

with

Eμν ¼
X
m¼0

βml2ðmþ1Þð∂φÞ2m½ð3þ 2mÞ∂μφ∂νφ − gμνð∂φÞ2�:

ðA4Þ
The equation for the scalar field reads

0 ¼ 2∇μ

�X
n¼1

nαnl2n−1ð∂ϕÞ2ðn−1Þ∂μϕ ðA5Þ

−
X
m¼0

βml2ðmþ1Þð∂ϕÞ2ðm−1Þ½mð3þ 2mÞ∂μϕRαβ
∂αϕ∂βϕ

þ ð3þ 2mÞð∂ϕÞ2Rμα
∂αϕ − ðmþ 1ÞRð∂ϕÞ2∂μϕ�

�
:

ðA6Þ
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