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The free fermionic classification method provides a powerful tool to investigate string vacua, which led
to the discovery of spinor-vector duality and exophobic string models. We extend the classification
methodology to bothN ¼ 1 andN ¼ 0 flipped SUð5ÞZ2 × Z2 heterotic string orbifolds with asymmetric
shifts. The impact of the asymmetric assignments on the phenomenological characteristics of these models
is investigated. Of particular interest is the analysis of untwisted moduli fixing for various choices of
asymmetric boundary conditions. Two classes of vacua with different characteristics are systematically
investigated with help from SAT/SMTalgorithms, which are shown to increase search efficiency by up to 2
orders of magnitude, as well as providing useful tools to find contradictions between various
phenomenological criteria. The general form of the partition function for the space of models is explained
and given for two specific example models for different choices of asymmetric boundary conditions.
Additionally, the distribution of one-loop cosmological constant contributions for samples in the two
different classes of models are depicted and discussed.
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I. INTRODUCTION

The heterotic string models in the free fermionic formu-
lation are among the string models studied in most detail to
date. These models correspond to Z2 × Z2 toroidal orbi-
folds [1] and detailed dictionaries can be used to translate
between the fermionic and bosonic representations [2].
Models in the free fermionic formulation are defined in
terms of a set of boundary condition basis vectors and the
associated generalized GSO (GGSO) phases in the one-loop
partition function [3], which is constrained by modular
invariance. The early phenomenological constructions con-
sisted of isolated examples, produced by a trial and error
method, with different unbroken SOð10Þ subgroups, and the
canonical grand unified theory (GUT) embedding of the
electroweak hypercharge [4–8].
Over the past two decades, systematic computerized

classification methods of the fermionic Z2 × Z2 orbifold
have been developed. The classification method works with
a fixed set of basis vectors and the enumeration of the string

vacua is obtained by random generation of sets of GGSO
projection coefficients. This program is progressive and
each step introduces new details to the analysis of the string
vacua. The first step entailed classification of N ¼ 1
supersymmetric (SUSY) vacua with unbroken SOð10Þ
gauge symmetry [9,10], which led to the discovery of
spinor-vector duality (SVD) [11,12]. The classification
methodology was subsequently extended to various sub-
groups of SOð10Þ in [13–16]. It led to the discovery of
exophobic string vacua [13], and provides a fishing tool to
extract models with particular phenomenological character-
istics [17,18].
The classification program was extended further to the

case of nonsupersymmetric (non-SUSY) heterotic string
models in Refs. [19–22]. This new direction fits in with the
recent renewed interest in non-SUSY string phenomenol-
ogy and new approaches to SUSY breaking in string theory.
These include mechanisms to break supersymmetry via
brane constructions [23–26] or via a stringy Scherk-
Schwarz mechanism [27–31]. The non-SUSY landscape
has also been further explored via coordinate-dependent
compactifications [30–33] which allows for interpolations
between various SUSY and non-SUSY theories [34–37].
This type of approach opens up the possibility to analyze the
possible suppression of the one-loop cosmological constant
via some interpolating parameters [38–41]. From the point
of view of the heterotic free fermionic classification pro-
gram, two classes of non-SUSY models were developed,
which are labeled as S models and S̃ models, where S
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models can be viewed as compactifications of the tachyon-
free SOð16Þ × SOð16Þ vacuum [42], whereas the S̃ models
correspond to compactifications of a tachyonic ten dimen-
sional vacuum [43–45]. From the classification perspective,
the novel aspect in these models is the proliferation of
sectors that can a priori produce tachyonic states [46].
Phenomenologically interesting models are those that are
tachyon-free, i.e., in which for a given choice of GGSO
projection coefficients all the tachyonic states are projected
out. This step substantially increases the sparsity of viable
models, necessitating adaptation of the classification meth-
odology towards more sophisticated computational tools.
Already in the supersymmetric classifications of SUð3Þ ×
SUð2Þ × Uð1Þ2 and SUð3Þ × Uð1Þ × SUð2Þ2 string vacua,
phenomenologically viable models were found with prob-
ability of the order 10−11, which occurs due to the prolif-
eration of chiral exotic sectors. Allowing for non-SUSY
configurations that are tachyon-free would decrease this
probability further by several orders of magnitude.
The application of fertility conditions to the SOð10Þ level

was shown to be an effective tool for increasing search
efficiency in Refs. [15,47] for these supersymmetric cases.
Furthermore, genetic algorithms have been applied in the
space of Pati-Salam free fermionic models in [48] to
improve the efficiency of fishing out viable models.
Other machine learning approaches to the string landscape
have become common in recent years and have been
employed in various other string constructions [49]. More
recently, it was shown that an algorithm ideally suited for
the free fermionic classification program is provided by
satisfiability modulo theories (SMTs), which can impose
constraints on spaces of free fermionic models and resolve
them using highly optimized Boolean operations which, in
the setup of Ref. [50], was shown to shorten the computer
running time by up to 3 orders of magnitude.
The classification methodology so far discussed has

solely been developed for models with symmetric boundary
conditions. The heterotic string in general, and the free
fermionic models in particular, allow for more general
assignments of boundary conditions, which are asymmetric
between the left- and the right-moving world sheet fer-
mions. These can be complicated assignments that realize
the non-Abelian gauge symmetries at higher level Kac-
Moody algebra [51], or more mundane assignments that
leave the gauge symmetries at level k ¼ 1. Although
symmetric in the Z2 × Z2 twists, these asymmetric assign-
ments produce asymmetric shift orbifold models, which
amount to nongeometric compactifications, a review of
which is given in Ref. [52]. Completing a first step towards
the extension of the classification methodology to such
asymmetric orbifolds is the objective of this paper. We
choose to study models with flipped SUð5Þ (FSU5) gauge
symmetry for both the N ¼ 0 and N ¼ 1 cases.
There are several profound phenomenological implica-

tions of choosing such asymmetric boundary condition

assignments rather than symmetric ones. Of crucial impor-
tance to us is how they help to realize moduli fixing [53],
top-quark Yukawa couplings from the untwisted sector
[54], and doublet-triplet splitting [55]. Furthermore, we
note that the early free fermionic constructions [5,6] do
utilize asymmetric boundary conditions, which gave rise to
a stringy explanation of the hierarchical top-bottom quark
mass splitting [56].
The fixing of some of the three complex and Kähler

structures that comprise the moduli space of the Z2 × Z2

orbifold is of particular significance in the context of
investigating the one-loop potential generating the (leading
order) vacuum energy of a string model. This is of key
interest in this work since we classify nonsupersymmetric
configurations. Various works on nonsupersymmetric
string vacua have attempted to use Scherk-Schwarz super-
symmetry breaking [27–31] and a so-called “super no-
scale” condition [57,58] to argue for a suppression of the
one-loop cosmological constant. Florakis and Rizos dem-
onstrated the existence of free fermion models with positive
vacuum energy at the minimum of the potential for one of
the radii [59,60]. However, in order to argue for stability of
the vacua one needs to incorporate all moduli into the
analysis, which is far too cumbersome in the symmetric
orbifold case to be performed. This is where asymmetric
orbifolds come into their own, as they give some control
over the fixing of certain moduli.
Our paper is organized as follows, in Sec. II we overview

the key aspects of free fermionic model building. In Sec. III
we explain the translation of free fermionic constraints into
the language of Boolean algebra. Then we turn to explain-
ing the construction of flipped SUð5Þ asymmetric orbifold
models for classification in Sec. IV. In Sec. V we classify
the asymmetric pairings of the internal fermions according
to key characteristics such as the number of untwisted
moduli they preserve. Following this, Sec. VI details
generic features of the FSU5 models we classify including
the structure of their partition functions, while Secs. VII
and VIII deal with classifying specific example classes of
models and their classification results. Finally, in Sec. IX
we give conclusions.

II. MODEL BUILDING IN THE FREE FERMIONIC
FORMULATION

The basic idea of the free fermionic formulation is to
build consistent models of the heterotic string directly in
four dimensions such that the additional degrees of freedom
required to cancel the conformal anomaly are free fermions
propagating on the string world sheet. In particular, the
spacetime light cone coordinates Xμðz; z̄Þ and ψμðzÞ, μ ¼ 1,
2, are accompanied by 18 additional internal holomorphic
Majorana-Weyl fermions: χI; yI; wIðzÞ, I ¼ 1;…; 6, and 48
antiholomorphic Majorana-Weyl fermions Φ̄ðz̄Þa. Of these,
32 are the gauge degrees of freedom of the 16-dimensional
gauge lattice of the heterotic string, which we complexify
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into 16 fermionic fields ψ̄1;…;5; η̄1;2;3, and ϕ̄1;…;8. The other
12 antiholomorphic real fermions we denote by ȳI; w̄I,
I ¼ 1;…; 6.
The real free fermions fyI; wIjȳI; w̄Ig can be thought

of as the (fermionic) coordinates of the internal six-
dimensional manifold. A pair fyI; wIg of the holomorphic
internal fermions can be replaced by a chiral boson XI

L
through the bosonization equation i∂XI

L ¼ yIwI and sim-
ilarly for the antiholomorphic side.
An important starting point for consistent model build-

ing is ensuring that there is an N ¼ 1 superconformal
algebra on the string world sheet from the holomorphic
(supersymmetric) degrees of freedom. This can be done by
realizing world sheet supersymmetry nonlinearly through
the world sheet supercurrent

TFðzÞ ¼ iψμ
∂XμðzÞ þ i

X6
I¼1

χIyIwI ð2:1Þ

with conformal weight ð3
2
; 0Þ. This results in a local

enhanced symmetry group SUð2Þ6, the adjoint represen-
tation of which is given by the six SUð2Þ triplets
fχI; yI; wIg. With this definition it is ensured that the N ¼
1 superconformal algebra holds for the holomorphic
degrees of freedom.
Models in the free fermionic formalism can now be

constructed by considering the toroidal world sheet and
defining a set of N basis vectors, vi ∈ B, specifying
boundary conditions, vðfÞ ∈ ð−1; 1�, according to

vi ¼ fvðψμÞ;…; vðϕ̄8Þg ð2:2Þ

for each free fermion f, as it is parallel transported around
the two noncontractible loops of the torus. Ramond (R)
boundary conditions correspond to vðfÞ ¼ 1, while
Neveu-Schwarz (NS) is vðfÞ ¼ 0. For the models under
consideration in this paper we also have some cases of
complex boundary conditions such that vðfÞ ¼ � 1

2
.

The partition function of the free fermions can be
written as

Zf ¼
X
α;β

C

�
α

β

�
Z

�
α

β

�
; ð2:3Þ

where α, β are linear combinations of the basis vectors,

C½α
β
� are the GGSO phases, and Z½α

β
� will be products of

Jacobi theta functions. More details on the form of this
partition function for the models we consider are given in
Sec. VI D. The specification of the GGSO phases in
agreement with modular invariance is thus a key compo-
nent of defining a consistent free fermionic model. A
general GGSO phase between sectors α ¼ mivi and β ¼
nivi can be decomposed into the GGSO phases between
basis vectors, vi, through the equation

C

�
α

β

�
¼ Γðα; βÞ

Y
i;j

C

�
vi
vj

�mini
; ð2:4Þ

where the details of the prefactor Γðα; βÞ can be found, for
example, in Ref. [3].
Once the basis vectors and GGSO phases are specified,

the modular invariant Hilbert space H of states jSαi is
found through implementing the one-loop GGSO projec-
tion according to

H ¼ ⨁
α∈Ξ

YN
i¼1

�
eiπvi·Fα jSαi ¼ δαC

�
α

vi

��
jSαi

�
Hα; ð2:5Þ

where Fα is the fermion number operator, Ξ is the additive
group given by the span of the basis vectors and δα ¼ 1;−1
is the spin-statistics index.
The sectors α in the model can be characterized

according to their left and right moving vacuum separately

M2
L ¼ −

1

2
þ αL · αL

8
þ NL;

M2
R ¼ −1þ αR · αR

8
þ NR; ð2:6Þ

where NL and NR are sums over the left and right moving
oscillator frequencies, respectively;

NL ¼
X
λ

νλ þ
X
λ�

νλ� ; ð2:7Þ

NR ¼
X
λ̄

νλ̄ þ
X
λ̄�

νλ̄� ; ð2:8Þ

where λ is a holomophic oscillator and λ̄ is an antiholo-
morphic oscillator and the frequency is defined through the
boundary condition in the sector α

νλ ¼
1þ αðλÞ

2
; νλ̄ ¼

1 − αðλÞ
2

: ð2:9Þ

Physical states must satisfy the Virasoro matching con-
dition, M2

L ¼ M2
R, such that massless states are those with

M2
L ¼ M2

R ¼ 0 and on-shell tachyons arise for sectors
with M2

L ¼ M2
R < 0.

The fermionization of the world sheet degrees of freedom
employed in the free fermionic construction demands that
the heterotic string is constructed at the self-dual point in the
moduli space where the radii are fixed to R ¼ ffiffiffiffiffiffiffiffiffi

α0=2
p

. At
this point the theory is consistent and, as was shown in [3],
the modular invariance constraints for one-loop and higher-
loop amplitudes can be completely solved. A key advantage
of the free fermionic formulation is that nongeometric
constructions [52] such as the asymmetric orbifolds studied
in this paper may be realized naturally. However, being
fixed at the self-dual point in the moduli space becomes
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restrictive when we wish to study stability issues that arise
for nonsupersymmetric string models. For example, it
becomes essential to introduce moduli dependence when
investigating the nontrivial one-loop potential arising in the
absence of supersymmetry or to understand the type of
supersymmetry breaking within the string model. To tackle
these issues it therefore requires a translation of the free
fermionic theory into a bosonic orbifold construction using
the tools reviewed in [61] and employed in [59,60].
For the purposes of initiating a systematic classification

of asymmetric orbifolds, the free fermionic construction is
the perfect starting point since it provides great computa-
tional power through the simplicity of representation for
world sheet boundary conditions, allowing for easy alge-
braic expressions for key features of the spectrum and
modular properties of the partition function. It then allows
for large spaces of string vacua to be analyzed with
computer programs dealing with these simple algebraic
expressions. Notably, the binary nature of the world sheet
boundary conditions in the free fermionic construction
allows for an immediate translation of phenomenological
constraints into a language interpretable by powerful SAT/
SMT computer algorithms trained on Boolean expressions.
This method will be explored in the next section.

III. SMTS AND FREE FERMIONIC
CLASSIFICATION

The advanced computer algorithms satisfiability modulo
theories were introduced as a tool for exploring the string
landscape in [50] where they increased the efficiency of
solving constraints from free fermionic models by three
orders of magnitude. Compared with the more primitive
SAT solvers that can only interpret Boolean formulas,
SMTs allow for operations over non-Boolean types such as
integers, reals, bitvectors, and arrays. There is a well-
known trade-off between efficiency and expressibility,
however, since a Boolean encoding of a problem will
drastically increase efficiency compared with even a simple
encoding in terms of integers. This too was demonstrated
for free fermionic constraints in [50].
It is a great advantage of the free fermionic construction

that phenomenological constraints reduce to elementary

algebraic expressions in terms of the GGSO phases C
h vi
vj

i
,

which are binary inputs. Therefore the reduction to Boolean
expression is almost immediate but it is worthwhile giving
some details on how to perform this reduction before we go
on to the specifics of the asymmetric orbifold models we
seek to classify. Before doing so, it is worth highlighting
that a quite different application of the SMT solver is
employed in Sec. V to classify the asymmetric pairings of
the internal fermions fyI; wIjȳI; w̄Ig according to various
characteristics they impose on the class of asymmetric
orbifold models. This pairing classification could be
performed with more familiar programming tools in

reasonable computing time since there are only 24 inputs.
However, the Z3 SMT tool [62] we use makes it very easy
to impose the constraints and completely classifies the
pairings in ∼25 sec, which would be tough to beat with
other approaches. This application demonstrates how
versatile the SMT tool can be in helping with a variety
of problems that require large sets of constraints to be
satisfied.

A. Boolean reduction

In the classification program of free fermionic models,
phenomenological criteria are typically constructed
through selection rules on certain sectors. Typically these
are massless sectors or, for nonsupersymmetric models, the
on-shell tachyonic sectors when ensuring that the models
are tachyon-free. Depending on the mass formulas (2.6),
the level-matching condition may necessitate that there are
left-moving oscillators, λ, or right-moving oscillators, λ̄,
acting on the ket vector of the sector α, which is given by
the combined degenerate Ramond vacua of all fermions
with αðfÞ ¼ 1 in α.
Given a basis, to determine whether a particular sector α

survives for a model depends solely on the GGSO phase
configuration. In particular, taking a sector with no oscil-
lators jαi and employing the notation of [60], the survival/
projection condition is encapsulated in the generalized
projector

Pα ¼
Y

ξ∈ϒðαÞ

1

2

�
1þ δαC

�
α

ξ

��
; ð3:1Þ

where

δα ¼
� þ1 if αðψμÞ ¼ 0 ⇔ sector is bosonic

−1 if αðψμÞ ¼ 1 ⇔ sector is fermionic:
ð3:2Þ

The ϒðαÞ is defined as a minimal linearly independent set
of vectors ξ such that ξ ∩ α ¼ ∅. To check whether the
sector α is projected simply amounts to checking Pα ¼ 0.
In the presence of a right-moving oscillator, λ̄, for

example, this generalized projector is modified to

Pα ¼
Y

ξ∈ϒðαÞ

1

2

�
1þ δαδ

λ̄
ξC

�
α

ξ

��
ð3:3Þ

such that

δλ̄ξ ¼
�þ1 if λ̄ ∈ ξ

−1 if λ̄ ∉ ξ
ð3:4Þ

and there would be an analogous insertion of δλξ for a left-
moving oscillator λ.
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The translation of these generalized projector equations
that build up to form our phenomenological criteria into a
Boolean language ripe for a SAT or SMT solver is
immediate. For example, the constraint Pα ¼ 0 for the
case (3.1) can be translated into a Boolean constraint by
taking the set

C ¼
�
δαC

�
α

ξ1

�
;…; δαC

�
α

ξn

��
; ð3:5Þ

with n ¼ jϒðαÞj. Using Eq. (2.4) we can rewrite the phases
C
h α
ξi

i
in terms of a product of basis GGSO phases C

h vi
vj

i
.

We then associate to each of these a Boolean. In the case of
a real GGSO phase this can be taken to be

Bij ¼

8>>><
>>>:

True if C
�
vi
vj

�
¼ −1

False if C

�
vi
vj

�
¼ þ1;

ð3:6Þ

where i; j ¼ 1;…; N such that N ¼ jBj is the number of
basis vectors. Then the product of such basis GGSO phases
can be rewritten in Boolean language as an exclusive or, ∨̄,
that returns True if there is an odd number of True

C
h vi
vj

i
’s in the product, and False if even. In this way,

each entry δαC
h α
ξi

i
of C can be recast as a Boolean clause

constructed through the ∨̄ of basis GGSO phases. There is
then the complication of dealing with any imaginary basis
GGSO phases. This is easy to resolve by consistently
taking �i as the binary to assign Boolean values to. Then
the set C can be redefined as a set of Boolean clauses.

Once this reduction to Booleans is complete, the con-
straint Pα ¼ 0 from (3.1) is equivalent to imposing

¬ðC1 ∧ … ∧ CnÞ; ð3:7Þ

where Ci ∈ C, i ¼ 1;…; n. It is precisely this kind of
constraint that can be added to a constraint system for an
SAT/SMT solver such as Microsoft’s open source solver Z3
that we employ in this work.
The absence of tachyonic sectors for nonsupersymmetric

models is a repeated application of this constraint for all on-
shell tachyonic sectors. A phenomenological constraint
such as checking for three generations requires a couple of
additional steps that need encoding into SMT language.
Once again, sectors giving rise to the fermion generations
need checking for survival via Pα ≠ 0, then additional
GGSO projection determining the chirality of the sectors
under the relevant observable gauge factors need encoding.
This can be done as a natural extension of the projections
done in Pα. Then, checking for 3 generations can be
handled easily through the use of a Boolean adder.

IV. ASYMMETRIC ORBIFOLD
CLASSIFICATION SETUP

In this work we begin the task of extending the classi-
fication methodology to the space of asymmetric orbifolds.
There are several appealing features of such asymmetric
orbifolds, including the presence of an untwisted doublet-
triplet splitting mechanism, realistic Yukawa couplings, and
the projection of untwisted moduli.
We can take the NAHE-set [63] as the starting point for

classifying large spaces of asymmetric orbifolds, which is
the set

1 ¼ fψμ; χ1;…;6; y1;…;6; w1;…;6jȳ1;…;6; w̄1;…;6; ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8g;
S ¼ fψμ; χ1;…;6g
b1 ¼ fψμ; χ12; y34; y56jȳ34; ȳ56; ψ̄1;…;5; η̄1g;
b2 ¼ fψμ; χ34; y12; w56jȳ12; w̄56; ψ̄1;…;5; η̄2g;
b3 ¼ fψμ; χ56; w12; w34jw̄12; w̄34; ψ̄1;…;5; η̄3g; ð4:1Þ

which gives rise to an SOð10Þ symmetric GUT and due to
the S vector can realize N ¼ 1 supersymmetry for appro-
priate choices of GGSO phases. We will then choose to add
the additional basis vectors

x ¼ fψ̄1;…;5; η̄1;2;3g;
z1 ¼ fϕ̄1;…;4g; ð4:2Þ

such that z1 reduces the dimension of the Hidden gauge
group and the x vector induces the enhancement SOð10Þ ×
Uð1Þ → E6 for certain choices of GGSO phases that can be
seen as taking us from the space of vacua with (2,0) world
sheet supersymmetry to those with (2,2).
The untwisted gauge group is

SOð10Þ × SOð4Þ3 ×Uð1Þ3 × SOð8Þ × SOð8Þ ð4:3Þ
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at this level, with the three SOð4Þ factors arising from the
three groups of internal fermions from the bk, k ¼ 1, 2, 3,
such that the NS sector gauge bosons can be written

ψμfȳ3;4;5;6gfȳ3;4;5;6gj0iNS;

ψμfȳ1;2; w̄5;6gfȳ1;2; w̄5;6gj0iNS

ψμfw̄1;2;3;4gfw̄1;2;3;4gj0iNS: ð4:4Þ

The NAHE-set naturally implements a Z2 × Z2 orbifolding
through the twist vectors bk that leave an untwisted moduli
space of �

SOð2; 2Þ
SOð2Þ × SOð2Þ

�
3

; ð4:5Þ

where each of the three factors is parameterized by the
moduli scalar fields from the NS sector

hij ¼ jχiiL ⊗ jȳjw̄jiR ¼

8><
>:

ði; j ¼ 1; 2Þ
ði; j ¼ 3; 4Þ
ði; j ¼ 5; 6Þ

: ð4:6Þ

In free fermionic models these untwisted moduli are in one-
to-one correspondence with marginal operators that generate
Abelian Thirring interactions. For the NAHE-set the only
such marginal operators left invariant are

JiLðzÞJ̄jRðz̄Þ≕ yiwi∷ȳjw̄j ≔

8><
>:

ði; j ¼ 1; 2Þ
ði; j ¼ 3; 4Þ
ði; j ¼ 5; 6Þ:

ð4:7Þ

From this it is straightforward to observe that the projection or
retentionofmoduli is governedby the boundary conditions of
the set of 12 internal real fermions fyI; wIjȳI; w̄Ig. In par-
ticular,wenote that if thebasis remains left-right symmetric in
these internal fermions then all the untwisted moduli of the
NAHE-set are retained. This is a central reason for attempting
to classify asymmetric orbifoldmodelswhere the internal real
fermions fyI; wIjȳI; w̄Ig are not left-right symmetric.
In order to make the connection between the fields hij

and the familiar three Kähler and three complex structure
moduli of the Z2 × Z2 orbifold we can construct six
complex moduli from the six real ones of Eq. (4.6). For
the first complex plane we can write

Hð1Þ
1 ¼ 1ffiffiffi

2
p ðh11þ ih21Þ¼

1ffiffiffi
2

p jχ1þ iχ2iL ⊗ jȳ1w̄1iR;

Hð1Þ
2 ¼ 1ffiffiffi

2
p ðh12þ ih22Þ¼

1ffiffiffi
2

p jχ1þ iχ2iL ⊗ jȳ2w̄2iR; ð4:8Þ

which can then be combined to define the Kähler and
complex structure moduli for the first complex plane

T1¼
1ffiffiffi
2

p ðHð1Þ
1 −iHð1Þ

2 Þ¼ 1ffiffiffi
2

p jχ1þiχ2iL⊗ jȳ1w̄1−iȳ2w̄2iR;

U1¼
1ffiffiffi
2

p ðHð1Þ
1 þiHð1Þ

2 Þ¼ 1ffiffiffi
2

p jχ1þiχ2iL⊗ jȳ1w̄1þiȳ2w̄2iR;

ð4:9Þ

and similarly for T2;3 and U2;3.
We choose to classify flipped SUð5Þ models such that a

single basis vector both breaks the SOð10Þ GUT and
assigns asymmetric pairings to the internal fermions.
This vector can then be taken to be of the general form

γ ¼ Aþ fψ̄1;…;5 ¼ η̄1;2;3 ¼ ϕ̄1;2;6;7 ¼ 1

2
g þ B; ð4:10Þ

where A ensures that the internal fermions are not sym-
metrically paired and B assigns appropriate boundary
conditions to the hidden complex fermions

B ¼ fBðϕ̄3Þ; Bðϕ̄4Þ; Bðϕ̄5Þ; Bðϕ̄8Þg; ð4:11Þ

where we choose real boundary conditions Bðϕ̄3;4;5;8Þ ¼ 0,
1 so as to be consistent with the modular invariance rules

Nγγ · γ ¼ 0 mod 8; ð4:12Þ

Nz1γz1 · γ ¼ 0 mod 4; ð4:13Þ

whereNγ is the smallest positive integer for whichNγγ ¼ 0

and Nz1γ is the least common multiple of Nz1 and Nγ.
The supercurrent constraint (2.1) imposes a different

constraint on these boundary conditions depending on
whether γ is fermionic or bosonic. In the bosonic case
we can write A as

A ¼ fAðy1Þ;…; Aðy6Þ; Aðw1Þ;…; Aðw6ÞjAðȳ1Þ;…; Aðȳ6Þ; Aðw̄1Þ;…; Aðw̄6Þg ð4:14Þ

and (2.1) thus imposes that the boundary condition of the holomorphic internal fermions are

ðyI; wIÞ ¼ ð1; 1Þ or ð0; 0Þ; I ¼ 1;…; 6 ð4:15Þ

to ensure a consistent supercurrent. On the other hand, if γ is fermionic then we choose A to be of the form
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A ¼ fψμ; χ12; Aðy1Þ;…; Aðy6Þ; Aðw1Þ;…; Aðw6ÞjAðȳ1Þ;…; Aðȳ6Þ; Aðw̄1Þ;…; Aðw̄6Þg ð4:16Þ

and the supercurrent consistency imposes that

ðyI; wIÞ ¼
� ð0; 0Þ or ð1; 1Þ; I ¼ 1; 2

ð1; 0Þ or ð0; 1Þ; I ¼ 3;…; 6
ð4:17Þ

and similar for the cases where Aðχ34Þ ¼ 1 or Aðχ56Þ ¼ 1

and Aðχ12Þ ¼ 0.
The next step towards classifying flipped SUð5Þ asym-

metric orbifolds is the addition of the symmetric shift
vectors:

ei ¼ fyi; wijȳi; w̄ig; i ¼ 1;…; 6 ð4:18Þ

so long as they are consistent with the choice of γ, in the
sense that they satisfy the modular invariance rule

Nγeiγ · ei ¼ 0 mod 4: ð4:19Þ

In the previous classifications of symmetric orbifolds all six
ei’s are present in the basis to impose the 12 symmetric
pairings between fyI; wIg and fȳI; w̄Ig to form 12 Ising
model operators. One corollary of this symmetric pairing is
that the rank of the untwisted gauge group from the
holomorphic sector takes its minimal value of 16.
However, asymmetric pairings will generate up to six
additional Uð1Þ’s from the pairing of two antiholomophic
internal fermions fȳI; w̄Ig.
Putting this all together, we can write the basis we take as

a starting point for exploring the space of asymmetric
orbifolds as

1 ¼ fψμ; χ1;…;6; y1;…;6; w1;…;6jȳ1;…;6; w̄1;…;6; ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8g;
S ¼ fψμ; χ1;…;6g;
ei ¼ fyi; wijȳi; w̄ig; i ⊂ f1; 2; 3; 4; 5; 6g;
b1 ¼ fψμ; χ12; y34; y56jȳ34; ȳ56; ψ̄1;…;5; η̄1g;
b2 ¼ fψμ; χ34; y12; w56jȳ12; w̄56; ψ̄1;…;5; η̄2g;
b3 ¼ fψμ; χ56; w12; w34jw̄12; w̄34; ψ̄1;…;5; η̄3g;
z1 ¼ fϕ̄1;2;3;4g;
x ¼ fψ̄1;…;5; η̄1;2;3g;

γ ¼ Aþ
�
ψ̄1;…;5 ¼ η̄1;2;3 ¼ ϕ̄1;2;5;6 ¼ 1

2

�
þ B: ð4:20Þ

We furthermore note the existence of the following
important linear combination of hidden fermions

z2 ¼ 1þ
X3
k¼1

bk þ z1 ¼ fϕ̄5;6;7;8g; ð4:21Þ

and the combination generating the internal fermions

G¼ Sþ
X3
k¼1

bk þ x¼ fyI;wIjȳI; w̄Ig; I ¼ 1;2;3;4;5;6:

ð4:22Þ

Our approach towards this classification will be twofold.
The first step is to classify the asymmetric pairings within γ
given through the A vector in both the bosonic case (4.14)
and fermionic case (4.16) with respect to their impact on

important characteristics of the resultant models such as the
number of retained moduli. The details are presented in the
next section. This step is new to the classification program
due to the asymmetric orbifolding. The second step is to
pick a particular pairing and perform a classification of the
resultant space of vacua according to their phenomeno-
logical features, such as the number of particle generations
at the flipped SUð5Þ level.

V. CLASSIFICATION OF
ASYMMETRIC PAIRINGS

Due to the centrality of the pairings of the internal
fermions fyI; wIjȳI; w̄Ig in determining important features
of the class of asymmetric orbifold models, a useful first
step towards classifying the asymmetric orbifolds is to
classify their possible pairings defined through the vector
A. The key criteria we can classify these pairings according
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to will be the untwisted moduli they retain and their number
of possible chiral generations.
A convenient tool for classifying these pairings is to

use an SAT/SMT solver such as Z3, as discussed in
Sec. III, where the input is a list of 24 Boolean variables
determining the boundary conditions fAðy1;…;6; w1;…;6Þj
Aðȳ1;…;6; w̄1;…;6Þg within A. This is sufficient for both the
bosonic case (4.14) and the fermionic case (4.16) with the
respective boundary conditions (4.15) and (4.17) from the
supercurrent condition. Imposing the relevant supercurrent
constraint, as well as ensuring the pairing is asymmetric
and consistent with the NAHE set allows us to generate all
possible pairings as output from the SAT/SMT solver.

A. Asymmetric pairings and three denerations

One key phenomenological feature impacted by the
choice of pairings in A is on the number of observable
spinorial sectors that are required to give rise to the particle
generations. In order to explore this further it will be helpful
to define two quantities that result from a choice of pairings
A. First, we have

E ¼ ðE1; E2; E3; E4; E5; E6Þ s:t:

×

�
Ei ¼ 1 if AðyiÞ ¼ AðwiÞ ¼ AðȳiÞ ¼ Aðw̄iÞ ¼ 0

Ei ¼ 0 else

ð5:1Þ

for i ¼ 1;…; 6. This simply quantifies which of the ei
symmetric shift vectors remain in the basis. We can note
that any asymmetric pairing automatically makes two
ei incompatible with modular invariance constraints and
therefore

max

�X
i

Ei

�
¼ 4: ð5:2Þ

The second quantity we can define is

Δ ¼ ðΔ1;Δ2;Δ3Þ s:t:

×
�
Δ1 ¼ 0 if Aðy3456Þ ¼ Aðȳ3456Þ
Δ1 ¼ 1 else

ð5:3Þ

and similarly for Δ2 and Δ3. This notation has been
employed, for example, in [53,64]. With this notation
defined we can now consider the fermion generations.
At the level of the NAHE-set f1; S; b1; b2; b3g, the

sectors b1; b2, and b3, if present in the massless spectrum,
give rise to sixteen copies of the 16 or 16 of SOð10Þ due to
the degeneracy of the sets of internal fermions
fy3;4;5;6jȳ3;4;5;6; η̄1g; fy1;2; w5;6jȳ1;2; w̄5;6; η̄2g, and fw1;2;3;4j
w̄1;2;3;4; η̄3g, respectively. The addition of x reduces the

degeneracy to eight copies of 16 or 16 by separating out the
η̄k for each plane.
In the classification program for symmetric orbifolds, the

basis contains all six symmetric shift ei vectors. These
symmetric shifts completely remove the degeneracy on the
three orbifold planes and the sectors giving rise to observ-
able spinorial states from the 16=16 of SOð10Þ are

F1
pqrs ¼ b1 þ pe3 þ qe4 þ re5 þ se6;

F2
pqrs ¼ b2 þ pe1 þ qe2 þ re5 þ se6;

F3
pqrs ¼ b3 þ pe1 þ qe2 þ re3 þ se4; ð5:4Þ

such that any sector Fk
pqrs, k ¼ 1, 2, 3, in the massless

spectrum produces exactly one 16 or 16.
This picture requires adjustment for the case of the

flipped SUð5Þ asymmetric orbifolds generated by the basis
of Eq. (4.20). In particular, the number and degeneracy of
each group of sectors Fk

pqrs will vary according to the
pairing choice A. More specifically, we will see that the
degeneracies of each plane can be written as a function of
E and Δ.
The impact of the inclusion of an ei vector in the basis

(4.20) on the degeneracy of each orbifold plane can be seen
to reduce the degeneracy of the orbifold plane k ¼ 1, 2, 3
by a factor of 2 if ei ∩ bk ≠ ∅. Similarly, an asymmetric
pairing in one of the three planes, i.e., Δk ¼ 1, will also
reduce the degeneracy by a factor 2.
We can now write the degeneracies as a vector

D ¼ ðD1; D2; D3Þ ð5:5Þ

for each orbifold plane such that

D1 ¼
8

2Δ1þE3þE4þE5þE6
; ð5:6Þ

D2 ¼
8

2Δ2þE1þE2þE5þE6
; ð5:7Þ

D3 ¼
8

2Δ3þE1þE2þE3þE4
; ð5:8Þ

and we note that

minðDkÞ ¼
1

2
; ð5:9Þ

which when true tells us that the sectors Fk
pqrs will give rise

to one component of the FSU5 representations of the 16 or
16 and not the whole SOð10Þ representation. In particular,
since the decomposition under SUð5Þ ×Uð1Þ is

16 ¼
�
10;þ 1

2

�
þ
�
5̄;−

3

2

�
þ
�
1;
5

2

�
; ð5:10Þ

FARAGGI, MATYAS, and PERCIVAL PHYS. REV. D 106, 026011 (2022)

026011-8



16 ¼
�
10;−

1

2

�
þ
�
5;þ 3

2

�
þ
�
1;−

5

2

�
; ð5:11Þ

sectors Fk
pqrs with Dk ¼ 1

2
will generate either the states

with representation ð10;þ 1
2
Þ or those transforming under

ð5̄;− 3
2
Þ þ ð1; 5

2
Þ, in the case of the sector being from 16.

Once we calculate the degeneracies ðD1; D2; D3Þ from A
we can immediately check a necessary, but certainly not
sufficient, condition for the presence of odd and, in
particular, three generations, which is simply

∃ k ∈ f1; 2; 3g∶Dk ≤ 1: ð5:12Þ

A sufficient condition for the presence of three generations
is presented in Sec. VI but the condition (5.12) can be
checked immediately from the pairing choice A so will be
tested for in the classification of pairings performed in this
section.

B. Asymmetric pairings and retained moduli

As mentioned in Sec. IV, the moduli scalar fields (4.6)
are in one-to-one correspondence with the marginal oper-
ators (4.7). From the form of these operators we can
immediately derive conditions on their retention/projection
depending on the boundary condition assignments from A.
The result is

JiLðzÞJ̄jRðz̄Þ
�
retained if ½AðyiÞ þ AðwiÞ þ AðȳjÞ þ Aðw̄jÞ� mod 2 ¼ 0

projected if ½AðyiÞ þ AðwiÞ þ AðȳjÞ þ Aðw̄jÞ� mod 2 ¼ 1:
ð5:13Þ

It will be useful when constructing the pairing classification
Tables I and II to write the number of retained moduli in
each orbifold plane as a triple

M ¼ ðM1;M2;M3Þ: ð5:14Þ

C. Results for classification of pairings

The result of the classification of asymmetric pairings
with a bosonic A are summarized in Table I and with
fermionic A for Table II. The data most important to
consider is the number of untwisted moduli retained in each
plane (5.14) and whether odd number generations are
possible through checking (5.12). The Z3 SMT classifies
all the asymmetric pairings in each case, bosonic and
fermionic, in approximately 20 sec.
Having classified the possible FSU5 pairings we

can now move to the second step of the asymmetric
orbifold classification where we fix the pairing and,
therefore, the basis vectors and then classify the space
of asymmetric orbifold models in reference to phenom-
enological characteristics.

VI. CLASS-INDEPENDENT ANALYSIS

A class of flipped SUð5Þ models is defined through the
basis (4.20) with a specific choice of A. This choice of A
tells us a concomitant consistent B and number of ei vectors
quantified by E. Two such classes will be investigated in
Secs. VII and VIII. Before inspecting a specific class, it is
worth seeing what we can say about all classes of models
derived from the generic basis (4.20) since several features
will be the same for all models.

TABLE I. Possible moduli and whether odd number genera-
tions are possible for all bosonic type asymmetric pairings of
internal fermions.

Untwisted moduli
in each torus

Odd number
generations possible Frequency

(2, 2, 0) No 992
(2, 0, 2) No 992
(0, 2, 2) No 992
(4, 2, 2) No 824
(2, 4, 2) No 824
(2, 2, 4) No 824
(0, 0, 0) No 256
(4, 0, 0) No 244
(0, 4, 0) No 244
(0, 0, 4) No 244
(4, 4, 0) No 200
(4, 2, 2) Yes 200
(4, 0, 4) No 200
(2, 4, 2) Yes 200
(2, 2, 4) Yes 200
(0, 4, 4) No 200
(4, 4, 4) No 146
(4, 4, 4) Yes 94
(4, 4, 0) Yes 56
(4, 0, 4) Yes 56
(0, 4, 4) Yes 56
(2, 2, 0) Yes 32
(2, 0, 2) Yes 32
(0, 2, 2) Yes 32
(4, 0, 0) Yes 12
(0, 4, 0) Yes 12
(0, 0, 4) Yes 12
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A. Supersymmetry constraints and class
parameter space

We seek to classify both N ¼ 0 and N ¼ 1 models and
so it is important to define a necessary and sufficient
condition for the presence ofN ¼ 1 supersymmetry. To do
this we first note that the gravitini and gaugini arise from

∂X̄μjSi; ð6:1Þ

fλ̄agfλ̄bgjSi; ð6:2Þ

respectively. Therefore the following GGSO phases are
fixed as follows:

C

�
S
ei

�
¼ C

�
S
z1

�
¼ C

�
S
x

�
¼ C

�
S
γ

�
¼ −1 ð6:3Þ

in order to preserve one gravitino. Furthermore, we note

that the phases C
h 1
S

i
and C

h S
bk

i
, k ¼ 1, 2, 3, determine

the chirality of the degenerate Ramond vacuum jSi and the
gravitino is retained so long as

C

�
1
S

�
¼ C

�
S
b1

�
C

�
S
b2

�
C

�
S
b3

�
; ð6:4Þ

which can, without loss of generality, be fixed to

C

�
1

S

�
¼ C

�
S

b1

�
¼ C

�
S

b2

�
¼ C

�
S

b3

�
¼ −1 ð6:5Þ

for a scan of N ¼ 1 vacua.
The number of independent GGSO phases for a class of

models will be determined from the number of basis
vectors, N, which can be written as

N ¼ 8þ
X
i

Ei: ð6:6Þ

Taking into account the constraints (6.3) and (6.4) for
N ¼ 1 models there are

NðN − 1Þ
2

− 7 −
X
i

Ei ð6:7Þ

independent GGSO phases.1 The space of N ¼ 0 vacua
can be defined as the space of models violating either
condition (6.3) or (6.4). In Ref. [46] breaking supersym-
metry with different phases is discussed and it is noted how
different breakings affect the spectra. If desired, we can
restrict the breaking to just shifts beyond the Z2 × Z2

orbifold sectors by preserving condition (6.4), such that b1,
b2, and b3 still preserve supersymmetry, then breaking
would originate from the vectors beyond the NAHE-set
through violating condition (6.3).

B. Phenomenological features

1. Observable spinorial representations

As discussed in Sec. VA the twisted sectors such as
those giving rise to the spinorial 16=16 representations of
SOð10Þ are impacted by the choice of A. To write these
Fk
pqrs for a particular A we must first note the presence of

the following possible linear combinations of the vector
(4.22), arising for certain E

8><
>:

e3456 ¼ Gþ e1 þ e2 ¼ fy3456; w3456jȳ3456; w̄3456g for E ¼ ð1; 1; 0; 0; 0; 0Þ
e1256 ¼ Gþ e3 þ e4 ¼ fy1256; w1256jȳ1256; w̄1256g for E ¼ ð0; 0; 1; 1; 0; 0Þ
e1234 ¼ Gþ e5 þ e6 ¼ fy1234; w1234jȳ1234; w̄1234g for E ¼ ð0; 0; 0; 0; 1; 1Þ:

ð6:8Þ

Then we can write the sectors giving rise to the fermion generations as

TABLE II. Possible moduli and whether odd number gener-
ations are possible for all fermionic type asymmetric pairings of
internal fermions.

Untwisted moduli
in each torus

Odd number
generations possible Frequency

(2, 4, 2) No 1024
(2, 2, 4) No 1024
(2, 2, 0) No 1024
(2, 0, 2) No 1024
(0, 2, 2) No 1024
(4, 2, 2) No 976
(0, 4, 4) No 256
(0, 4, 0) No 256
(0, 0, 4) No 256
(0, 0, 0) No 256
(4, 4, 0) No 244
(4, 0, 4) No 244
(4, 0, 0) No 244
(4, 4, 4) No 228
(4, 2, 2) Yes 48
(4, 4, 4) Yes 12
(4, 4, 0) Yes 12
(4, 0, 4) Yes 12
(4, 0, 0) Yes 12

1We can fix C
h 1
1

i
¼ þ1 without loss of generality and all other phases are determined from modular invariance rules.

FARAGGI, MATYAS, and PERCIVAL PHYS. REV. D 106, 026011 (2022)

026011-10



F1
pqrst ¼ b1 þ pE3e3 þ qE4e4 þ rE5e5 þ sE6e6

þ tE1E2ð1 − E3Þð1 − E4Þð1 − E5Þð1 − E6Þe3456;
F2
pqrst ¼ b2 þ pE1e1 þ qE2e2 þ rE5e5 þ sE6e6

þ tE3E4ð1 − E1Þð1 − E2Þð1 − E5Þð1 − E6Þe1256;
F3
pqrst ¼ b3 þ pE1e1 þ qE2e2 þ rE3e3 þ sE4e4

þ tE5E6ð1 − E1Þð1 − E2Þð1 − E3Þð1 − E4Þe1234; ð6:9Þ

where p; q; r; s; t ∈ f0; 1g.
In order to write down the number of 16 and 16, N16 and

N
16
, as a function of the GGSO coefficients we can

construct the generalized projectors for these sectors
PFk

pqrst
, k ¼ 1, 2, 3, such that

ϒðF1
pqrstÞ ¼ fxþ 2γ; z1; z2; E1e1; E2e2g;

ϒðF2
pqrstÞ ¼ fxþ 2γ; z1; z2; E3e3; E4e4g;

ϒðF3
pqrstÞ ¼ fxþ 2γ; z1; z2; E5e5; E6e6g; ð6:10Þ

where we recall that the vector z2 ¼ fϕ̄5;6;7;8g is the
combination defined in Eq. (4.21).
In order to determine whether a sector will give rise to a

16 or a 16 we can first define the chirality phases

X1
pqrs0 ¼ −chðψμÞC

�
F1
pqrs0

b2 þ rE5e5 þ sE6e6

��
;

X2
pqrs0 ¼ −chðψμÞC

�
F2
pqrs0

b1 þ rE5e5 þ sE6e6

��
;

X3
pqrs0 ¼ −chðψμÞC

�
F3
pqrs0

b1 þ pE3e3 þ qE4e4

��
; ð6:11Þ

where chðψμÞ is the spacetime fermion chirality and we
note that the sectors Fk

00001 do not have a chirality and,
instead, give rise to Dk=2 copies of both the 16 and the 16.
With these definitions we can write compact expressions

for N16 and N
16

N16 ¼
1

2

X
k¼1;2;3

p;q;r;s¼0;1

DkPFk
pqrs0

ð1þXk
pqrs0Þþ

Dk

2
PFk

00001
;

N
16
¼ 1

2

X
k¼1;2;3

p;q;r;s¼0;1

DkPFk
pqrs0

ð1−Xk
pqrs0Þþ

Dk

2
PFk

00001
: ð6:12Þ

Since the SOð10Þ breaking projection γ decomposes the
16=16 representations into those of SUð5Þ ×Uð1Þ accord-
ing to Eq. (5.10), we can write a compact expression for
each of the FSU5 quantum numbers. These of course
depend on the degeneracies (5.6) and can be written

n10 ¼
X

k¼1;2;3
p;q;r;s¼0;1

1

22−Δk
DkPFk

pqrs0
ð1þ Xk

pqrs0Þ
�
1þ ð1 − ΔkÞC

�
Fk
pqrs0

γ

��
þDk

2
PFk

00001
;

n5̄ ¼
X

k¼1;2;3
p;q;r;s¼0;1

1

22−Δk
DkPFk

pqrs0
ð1þ Xk

pqrs0Þ
�
1 − ð1 − ΔkÞC

�
Fk
pqrs0

γ

��
þDk

2
PFk

00001
;

n10 ¼
X

k¼1;2;3
p;q;r;s¼0;1

1

22−Δk
PFk

pqrs0
ð1 − Xk

pqrs0Þ
�
1þ ð1 − ΔkÞC

�
Fk
pqrs0

γ

��
þDk

2
PFk

00001
;

n5 ¼
X

k¼1;2;3
p;q;r;s¼0;1

1

22−Δk
DkPFk

pqrs0
ð1 − Xk

pqrs0Þ
�
1 − ð1 − ΔkÞC

�
Fk
pqrs0

γ

��
þDk

2
PFk

00001
: ð6:13Þ

The number of generations for a model is then

ng ¼ n10 − n10 ¼ n5̄ − n5: ð6:14Þ
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From this we can construct a necessary condition for three generation models to exist once A is specified

∃C
�
vi
vj

�
∶

X
k¼1;2;3

p;q;r;s¼0;1

1

21−Δk
DkPFk

pqrs0
Xk
pqrs0

�
1þ ð1 − ΔkÞC

�
Fk
pqrs0

γ

��
¼ 3 ð6:15Þ

and
X

k¼1;2;3
p;q;r;s¼0;1

2ΔkDkPFk
pqrs0

Xk
pqrs0ð1 − ΔkÞC

�
Fk
pqrs0

γ

�
¼ 0: ð6:16Þ

Checking that there exists a solution to this equation for a
class of models and enumerating such solutions can be
done easily by inputting this constraint into a SMT solver
such as Z3.

2. Heavy Higgs

Another key representation for phenomenology is the
presence of a Higgs breaking the SUð5Þ ×Uð1Þ that we
call the Heavy Higgs. This arises from the representation
ð10;þ 1

2
Þ þ ð10;− 1

2
Þ. The relevant sectors are

Bk
pqrst ¼ Sþ Fk

pqrst; k ¼ 1; 2; 3; ð6:17Þ

which in the case ofN ¼ 1 supersymmetric models are the
(bosonic) superpartners of the spinorials 16=16 sectors
(6.9). We note that the generalized projectors for these
sectors PBk

pqrst
, k ¼ 1, 2, 3, can be constructed such that

ϒðBk
pqrstÞ equals ϒðFk

pqrstÞ from Eq. (6.10).
We note that with a heavy Higgs the FSU5 GUT can be

broken and the particles of Standard Model arise from the
decomposition of the FSU5 representations (5.10) under
SUð3Þ × SUð2Þ ×Uð1Þ�

5̄;−
3

2

�
¼

�
3̄; 1;−

2

3

�
uc
þ
�
1; 2;−

1

2

�
L
;�

10;þ 1

2

�
¼

�
3; 2;þ 1

6

�
Q
þ
�
3̄; 1;þ 1

3

�
dc
þ ð1; 1; 0Þνc ;�

1;þ 5

2

�
¼ ð1; 1;þ1Þec ; ð6:18Þ

where L is the lepton doublet; Q is the quark doublet; dc,
uc, ec, and νc are the quark and lepton singlets.

3. Light Higgs

The light Higgs representations are electroweak Higgs
doublets. In N ¼ 1 supersymmetric models, a pair is
required to give masses to up and down quark, respectively.
In models in which spacetime supersymmetry is broken
entirely at the string level, this may be relaxed. However, as
the models descend from N ¼ 1 supersymmetric models,
they retain some of this underlying structure and mass
terms at leading order are generated to the respective Higgs
doublets pairs. We therefore require the existence of a pair

of light Higgs multiplets also inN ¼ 0 models. We further
note the existence of a doublet-triplet splitting mechanism
in the untwisted sector of the asymmetric models [55]. This
mechanism is operational in asymmetric models with the
breaking pattern SOð10Þ → SOð6Þ × SOð4Þ and is there-
fore not relevant in the flipped SUð5Þ models that are of
interest here. We note, however, that in flipped SUð5Þ
models the untwisted sector produces three pairs in 5þ 5̄
representation of SUð5Þ, which contain electroweak Higgs
doublets that may serve as light Higgs multiplets. However,
we note that the generation of hierarchical fermion masses
typically necessitates utilization of Higgs doublets that
arise from twisted sectors [65,66]. We therefore examine
here the conditions for obtaining vectorial representations
in the twisted sectors.
Sectors giving rise to vectorial 10 representations, that

include the twisted light Higgs, can be written,

Vk
pqrst ¼ Sþ Fk

pqrst þ x; ð6:19Þ

where the states are of the form fλ̄g1
2
jVk

pqrsti, k ¼ 1, 2, 3,
meaning that they have a single antiholomorphic oscillator
of frequency 1

2
, as defined in Eq. (2.9), accompanying the

degenerate Ramond vacuum. The SM Higgs boson will
arise when this sector with λ̄ ¼ ψ̄a, a ∈ f1; 2; 3; 4; 5g, is
retained in the massless spectrum of a model. For these
sectors the generalized projector Pfψ̄agVk

pqrst
takes the general

form of Eq. (3.3) and ϒðVk
pqrstÞ will be the same as

ϒðFk
pqrstÞ from Eq. (6.10).

We note that any surviving sector gives rise to a vectorial
10 decomposing under SUð5Þ ×Uð1Þ according to

10 ¼ ð5;−1Þ þ ð5̄;þ1Þ: ð6:20Þ

These two representations taken together can be identified
as the SM Higgs boson breaking the electroweak gauge
group. Therefore the number of light Higgs boson from the
twisted sectors is given by

n5h ¼ #½ð5;−1Þ þ ð5̄;þ1Þ�: ð6:21Þ
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4. Tachyonic sectors

Since we include nonsupersymmetric models in our
classification it is vital we check for the absence of on-
shell tachyons in order to ensure the stability of our models
for a 4D Minkowski background. In order to do this we
encode the GGSO projections for all on-shell tachyonic
sectors. Many tachyonic sectors can arise due to ei vectors,
certain γ combinations and other class-dependent combi-
nations and therefore are dependent on the choice of A and
require class-by-class analysis. However, we will always
have the untwisted tachyon

fλ̄gj0iNS ð6:22Þ

that is projected for all models through the S projection. In
addition, the following on-shell tachyonic sectors arise for
all classes of models

T ¼
� jz1i jz2i jxþ 2γi
jz1 þ xþ 2γi jz2 þ xþ 2γi jz1 þ z2 þ xþ 2γi

�
:

ð6:23Þ

All of these sectors, t ∈ T, must be projected from the
spectrum through appropriate definitions of their general-
ized projectors Pt ¼ 0. Once we specify the vector A we
can then determine the further class-dependent tachyonic
sectors and ensure their projection.

5. Enhancements

Additional space-time vector bosons may arise in all models derived from the basis (4.20). The following enhancements
arise independent of the class

�
ψμfλ̄g1

2
∶jz1i jz2i jxþ 2γijz1 þ xþ 2γijz2 þ xþ 2γi

ψμ∶ jxi jz1 þ z2i

�
ð6:24Þ

with the following subset being enhancements to the observable gauge factors

H ¼

8><
>:

ψμfψ̄ag∶ jz1i jz2i jxþ 2γi
ψμfψ̄ag∶ jz1 þ xþ 2γi jz2 þ xþ 2γi jxþ 2γ þ z1 þ z2i
ψμ∶ jxi

9>=
>;; ð6:25Þ

with a ¼ 1, 2, 3, 4, 5. Therefore, from these sectors we can restrict our analysis to models with observable gauge group
SUð5Þ × Uð1Þ ×Uð1Þi¼1;2;3 by imposing

∀h ∈ H∶ Ph ¼ 0: ð6:26Þ
In this case, for these generalized projectors we have

ϒðz1Þ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; x; b1; b2; z2g
ϒðz2Þ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; x; b1; b2; z1g

ϒðxþ 2γÞ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; x; xþ 2γ þ z1 þ z2g
ϒðxþ 2γ þ z1Þ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; x; xþ 2γ þ z2g
ϒðxþ 2γ þ z2Þ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; x; xþ 2γ þ z1g

ϒðxþ 2γ þ z1 þ z2Þ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; x; xþ 2γg
ϒðxÞ ¼ fS; E1e1; E2e2; E3e3; E4e4; E5e5; E6e6; z1; z2g: ð6:27Þ

Additional enhancements may arise depending on the specific form of γ which can be analyzed class by class.

6. Exotics

Another important consideration for ensuring reasonable phenomenology is the absence of chiral exotics. The exotics
sectors in general depend on the class, in particular on the exact form of γ since combinations of γ will be those that can
generate exotics.
However, we can note here the following exotic sectors with ðαL · αL;αR · αRÞ ¼ ð4; 4Þ

f fψ̄ag1
2
∶jSþ z1ijSþ z2ijSþ xþ 2γijSþ z1 þ xþ 2γijSþ z2 þ xþ 2γi g; ð6:28Þ
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where a ∈ ½1;…; 5�. We note that these are the would-be
gaugini of the enhancements (6.24). These sectors will not
contribute to a chiral anomaly as they are automatically
vectorlike. It will then be necessary to analyze the other
exotics at the level of a particular class of vacua.

C. Asymmetric pairings, yp-type Yukawa couplings,
and Higgs doublet-triplet splitting

Top quark Yukawa couplings in the string models
derived from the Z2 × Z2 heterotic orbifold take the
general form

λtSQLSuRVHu: ð6:29Þ

It can be demonstrated that this coupling can come either
from a coupling of the type TkTkUk, k ¼ 1, 2, 3, or of the
type TkTlTm, k ≠ l ≠ m ¼ 1, 2, 3, where T indicates a
twisted sector and U indicates the (untwisted) Neveu-
Schwarz sector. The assignment of asymmetric boundary
conditions determines which of the two couplings can
appear at leading order in the string vacua [56].
The asymmetric boundary conditions for the internal

world sheet fermions fyI; wIjȳI; w̄Ig induce a doublet-
triplet splitting mechanism of the untwisted 5 and 5̄
representations [55]. The mechanism is induced by the
basis vectors that break the SOð10Þ symmetry to the Pati-
Salam subgroup, with respect to the three pairs of untwisted
vectorial 5 and 5̄ multiplets, where symmetric boundary
conditions retain the color triplet pairs, and project the
electroweak doublets, whereas asymmetric boundary con-
ditions project the triplets and retain the doublets. Thus, in
the case of models with solely symmetric boundary
conditions, only flipped SUð5Þ models can produce cubic
level couplings of the type TkTkUk, utilizing the Higgs
doublets from the NS sector.
Similar to the stringy doublet-triplet splitting mechanism

that is determined by the assignment of asymmetric versus
symmetric boundary conditions, the asymmetric/symmetric
assignment selects between up-/down-quark Yukawa cou-
plings at leading order [54,56,64]. This Yukawa coupling
selection mechanism operates in the basis vector that
breaks the SOð10Þ symmetry to the SUð5Þ ×Uð1Þ sub-
group, where symmetric boundary conditions select a
down-quark type Yukawa coupling, whereas asymmetric
boundary conditions select an up-quark type Yukawa
coupling. Hence, this Yukawa coupling selection mecha-
nism can be utilized in flipped SUð5Þ and standardlike
string models.
Given that we consider flipped SUð5Þ models, repre-

sentations in the 5 and 5̄ of SUð5Þ arise from the NS sector
generically. These representations yield the electroweak
Higgs doublets and color Higgs triplets. Through asym-
metric boundary condition assignments of the internal
fermions under an extra Pati-Salam type breaking vector
the doublets and triplets may be distinguished. However, in

our case we will get both regardless of the GGSO
configuration and boundary condition assignment from
A. Therefore, top mass couplings of the form TkTkUk can
arise in our models.
As is familiar from the symmetric orbifold classification,

couplings TkTlTm can also arise. In this case the Higgs
doublet arises from the twisted sectors (6.19). Therefore
both types of couplings can give rise to a realistic up-type
Yukawa coupling and both will be analyzed. Similar to the
case of the couplings to the untwisted Higgs doublets,
selection conditions of up-type versus down-type quark
Yukawa couplings can be formulated [67].

D. Partition function and cosmological constant
for asymmetric orbifolds

The analysis of the partition function for asymmetric
orbifolds constructed in the free fermionic formulation as
described in Secs. II and IV is largely similar to the
symmetric case presented in [19,20]. However, there are
some key differences and subtleties which are important to
explicitly discuss. These arise for two main reasons,
namely, the asymmetric parings introduced by the basis
vector γ and the appearance of half boundary conditions in
the basis set (4.20).
From the point of view of the partition function, the

asymmetric pairings introduce imaginary GGSO phases,
meaning that the fermionic partition function

Z ¼
X
α;β

C

�
α

β

�Y
f

Z

�
αðfÞ
βðfÞ

�
ð6:30Þ

will have imaginary terms which have to cancel. This
cancellation is, however, ensured by modular invariance. In

the case of symmetric orbifolds, since Z
h a
b

i
¼

ffiffiffiffiffiffiffiffiffiffi
ϑ½ a
b
�

r
, the

fermionic part of the partition function can be expressed
using the four standard Jacobi theta functions

ϑ
h a
b

i
¼

X
n∈Z

qðnþa=2Þ2=2e2πiðnþa=2Þb=2; ð6:31Þ

with a; b ∈ f0; 1g. In the presence of half boundary
conditions there will be sixteen such theta functions
with a and b now taking values in the set a; b ∈
f−1=2; 0; 1=2; 1g.
To express the partition function of the models under

consideration in the classification setup, it is beneficial to
use the notation utilized in [59–61]. This makes many
properties immediately readable from the form of the
partition function and allows us to economically express
all models used in this paper in one compact form. Since
the classification of asymmetric shifts depends on the exact
form of the vector γ it is instructive to first write down the
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partition function of the subset f1; ei; S; b1; b2; b3; z1; xgwithout γ. In this case all ei are compatible and so we have 13 basis
vectors giving

Z ¼ 1

η10η̄22
1

24

X
a;k;r;ρ
b;l;s;σ

1

26

X
Hi
Gi

1

23

X
h1 ;h2 ;H
g1 ;g2 ;G

ð−1Þ
Φ
h
a
b
k
l
ρ
s
r
σ
Hi
Gi

h1
g1

h2
g2

H
G

i

× ϑ

�
a

b

�
ϑ

�
aþ h1
bþ g1

�
ϑ

�
aþ h2
bþ g2

�
ϑ

�
a − h1 − h2
b − g1 − g2

�

× Γð6;6Þ

�
r Hi h1 h2
s Gi g1 g2

�

× ϑ̄

�
k

l

�
5

ϑ̄

�
kþ h1
lþ g1

�
ϑ̄

�
kþ h2
lþ g2

�
ϑ̄

�
k − h1 − h2
l − g1 − g2

�
ϑ̄

�
ρ

σ

�
4

ϑ̄

�
ρþH

σ þ G

�
4

; ð6:32Þ

where all indices are summed over the set f0; 1g. The phase Φ, which is a polynomial in the summation indices, is chosen
such that the entire partition function is modular invariant. The choice of this phase translates to a choice of GGSOmatrix in
the classification setup. Indices k, l and ρ, σ represent the sixteen complex right-moving fermions giving the fermionic
representation of the E8 × E8 lattice of the underlying 10D heterotic theory. The nonfreely acting Z2 × Z2 orbifold is
represented by the parameters hi and gi, where the hi give the various twists, while the gi implement the orbifold
projections. The Hi and Gi correspond to the basis vectors ei and hence are responsible for orbifold shifts along the six
internal dimensions of the T6. Finally, H and G break one of the E8 factors in the hidden sector by a Z2 twist.
The internal lattice Γð6;6Þ, which corresponds to the T6 is given by

Γð6;6Þ

�
r Hi h1 h2
s Gi g1 g2

�
¼
				ϑyȳ1

�
rþ h1 þH1

sþ g1 þG1

�
ϑyȳ2

�
rþ h1 þH2

sþ g1 þ G2

�
ϑyȳ3

�
rþ h2 þH3

sþ g2 þ G3

�

× ϑyȳ4

�
rþ h2 þH4

sþ g2 þG4

�
ϑyȳ5

�
rþ h2 þH5

sþ g2 þ G5

�
ϑyȳ6

�
rþ h2 þH6

sþ g2 þ G6

�

× ϑww̄1

�
r − h1 − h2 þH1

s − g1 − g2 þG1

�
ϑww̄2

�
r − h1 − h2 þH2

s − g1 − g2 þ G2

�
ϑww̄3

�
r − h1 − h2 þH3

s − g1 − g2 þ G3

�

× ϑww̄4

�
r − h1 − h2 þH4

s − g1 − g2 þG4

�
ϑww̄5

�
rþ h1 þH5

sþ g1 þ G5

�
ϑww̄6

�
rþ h1 þH6

sþ g1 þG6

�				; ð6:33Þ

where
			ϑh ab

i			 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ
h a
b

i
ϑ̄
h a
b

ir
. The subscripts on the ϑ’s denote which world sheet fermions the terms correspond to. We

see that with this basis the internal lattice is left-right symmetric, meaning that all left moving y’s and w’s are paired with a
right moving ȳ or w̄. This is why the internal lattice can be written as a magnitude.
The introduction of asymmetric parings via the vector γ introduces further complexity to the above partition function.

Recall the notation introduced in Sec. IV, where the most general consistent form of γ is written as in (4.10),

γ ¼ Aþ
�
ψ̄1;…;5 ¼ η̄1;2;3 ¼ ϕ̄1;2;6;7 ¼ 1

2

�
þ B; ð6:34Þ

where

B ¼ fBðϕ̄3Þ; Bðϕ̄4Þ; Bðϕ̄5Þ; Bðϕ̄8Þg;

A ¼
(
fAðy1Þ;…; Aðw6ÞjAðȳ1Þ;…; Aðw̄6Þg if γ bosonic;

fψμ; χ12; Aðy1Þ;…; Aðw6ÞjAðȳ1Þ;…; Aðw̄6Þg if γ fermionic:
ð6:35Þ

Also recall the vector E ¼ ðE1; E2; E3; E4; E5; E6Þ of (5.1), which qualifies which of the ei are compatible with a specific
choice of γ and hence appear in the basis set. That is, if Ei ¼ 0 then ei ∉ B and vice versa.
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In terms of the above quantities we can now examine the effect of γ on the partition function (6.32) within the frame of the
general classification setup. For simplicity, we consider the case where γ is bosonic and hence has no action on ψμ and χ1−6.
The antiholomorphic hidden world sheet fermions are affected by the choice of B, while the specific choice of A will only
change how the internal lattice is structured. Thus the partition function takes the form

Z ¼ 1

η10η̄22
1

24

X
a;k;r;ρ
b;l;s;σ

1

2
P

i
Ei

X
Hi
Gi

1

23

X
h1 ;h2 ;H
g1 ;g2 ;G

1

4

X
H0
G0

ð−1Þ
Φ
h
a
b
k
l
ρ
s
r
σ
Hi
Gi

h1
g1

h2
g2

H
G

H0
G0

i

× ϑ

�
a

b

�
ϑ

�
aþ h1
bþ g1

�
ϑ

�
aþ h2
bþ g2

�
ϑ

�
a − h1 − h2
b − g1 − g2

�

× Γγ
ð6;6Þ

�
r Hi h1 h2 H0

s Gi g1 g2 G0

�

× ϑ̄

�
kþH0

lþ G0

�
5

ϑ̄

�
kþ h1 þH0

lþ g1 þ G0

�
ϑ̄

�
kþ h2 þH0

lþ g2 þ G0

�
ϑ̄

�
k − h1 − h2 þH0

l − g1 − g2 þG0

�

× ϑ̄

�
ρþH0

σ þG0

�
2

ϑ̄

�
ρþH þH0

σ þ GþG0

�
2

ϑ̄

�
ρþ 2Bðϕ̄3ÞH0

σ þ 2Bðϕ̄3ÞG0

�
ϑ̄

�
ρþ 2Bðϕ̄4ÞH0

σ þ 2Bðϕ̄4ÞG0

�

× ϑ̄

�
ρþH þ 2Bðϕ̄5ÞH0

σ þ Gþ 2Bðϕ̄5ÞG0

�
ϑ̄

�
ρþH þ 2Bðϕ̄8ÞH0

σ þ Gþ 2Bðϕ̄8ÞG0

�
; ð6:36Þ

where the sum in the new indices H0 and G0 run over f−1=2; 0; 1=2; 1g as opposed to the other indices which still take
values in f0; 1g. This is because the half boundary conditions in γ introduce a newZ4 orbifold to the picture. The factor of 2
in front of some indices is a result of having both half and integer boundary conditions within the same basis vector, and
hence this factor ensures that integer boundary conditions are correctly accounted for.
The form of the internal lattice Γγ

ð6;6Þ depends on the choice of asymmetric shifts in the internal degrees of freedom, i.e.,
A. Consequently, this determines which of the symmetric Z2 shifts ei are compatible with this choice, which fixes E. The
asymmetric shifts introduced by γ break the left-right symmetry of the lattice (6.33). To examine this further, we have to
look at what happens to a set of internal fermions corresponding to one of the orbifold planes. If we take the first plane, i.e.,
the fermions fy3;4;5;6jȳ3;4;5;6g, the corresponding part of the lattice is

Γ1 ¼ ϑy3

�
rþ h2 þH3

sþ g2 þG3

�
1=2

ϑy4

�
rþ h2 þH4

sþ g2 þG4

�
1=2

ϑy5

�
rþ h2 þH5

sþ g2 þ G5

�
1=2

ϑy6

�
rþ h2 þH6

sþ g2 þ G6

�
1=2

× ϑȳ3

�
rþ h2 þH3

sþ g2 þ G3

�
1=2

ϑ̄ȳ4

�
rþ h2 þH4

sþ g2 þG4

�
1=2

ϑ̄ȳ5

�
rþ h2 þH5

sþ g2 þG5

�
1=2

ϑ̄ȳ6

�
rþ h2 þH6

sþ g2 þ G6

�
1=2

: ð6:37Þ

Since the asymmetric shifts cannot mix the orbifold planes, we either have 0, 1, or 2 such shifts affecting these fermions. As
an example, we consider what happens when A contains one such pairing, say y5y6. First, this imposes that
E ¼ ð1; 1; 1; 1; 0; 0Þ, i.e., e5;6 are no longer in the basis, so that H5;6 and G5;6 are not present. Second, it breaks the
left-right symmetry of the ðy5ȳ5Þ and ðy6ȳ6Þ pairings which become ðy5ȳ5Þðy6ȳ6Þ → ðy5y6Þðȳ5ȳ6Þ. Given the above factors,
the internal lattice of the first orbifold plane becomes

Γγ
1 ¼ ϑy3

�
rþ h2 þH3

sþ g2 þ G3

�
1=2

ϑy4

�
rþ h2 þH4

sþ g2 þ G4

�
1=2

ϑy5;6

�
rþ h2 þ 2H0

sþ g2 þ 2G0

�

× ϑȳ3

�
rþ h2 þH3

sþ g2 þ G3

�
1=2

ϑ̄ȳ4

�
rþ h2 þH4

sþ g2 þ G4

�
1=2

ϑ̄ȳ5;6

�
rþ h2
sþ g2

�
: ð6:38Þ

If there are two such asymmetric holomorphic pairings in the first plane then, regardless of the specific pairing, the lattice
simply becomes
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Γγ
1 ¼ ϑy3;4;5;6

�
rþ h2 þ 2H0

sþ g2 þ 2G0

�
2

ϑ̄ȳ3;4;5;6

�
rþ h2
sþ g2

�
2

: ð6:39Þ

The construction of the partition function for the remaining
two planes is equivalent and can be straightforwardly done
once a specific basis is taken.
Once a model is chosen and the partition function is

fixed according to the above considerations, the cosmo-
logical constant can be calculated according to methods
used in [19,20,68]. This entails performing a q expansion
of the theta functions according to (6.31), which will result
in the partition function taking the form

Z ¼
X
n;m

amnqmq̄n; ð6:40Þ

where the η functions have also been q expanded. Written
in this form, the amn correspond to the Bose-Fermi
degeneracy at a given mass level. That is, amn ¼ nb − nf
at the mass level with conformal weights of ðm; nÞ for the
holomorphic and antiholomorphic sector respectively. The
one-loop cosmological constant Λ is then given by the
integral of this partition function over the fundamental
domain of the modular group

Λ ¼
Z
F

d2τ
τ22

ZBZF ¼
Z
F

d2τ
τ32

X
n:m

amnqmq̄n; ð6:41Þ

where ZB is the contribution from the bosonic degrees of
freedom given by

ZB ¼ 1

τ2

1

η2η̄2
; ð6:42Þ

and ZF is the contribution from the world sheet fermions as
given in (6.36). Since the models under consideration are
void of physical tachyons, the series expansion contains
only finite terms and converges exponentially fast. It is
important to note that the above expression (6.41) gives the
world sheet vacuum energy ΛWS which is unitless. The
spacetime cosmological constant is obtained by introducing
the string-scale via

ΛST ¼ −
1

2
M4ΛWS: ð6:43Þ

It is also interesting to note that all of the above models
considered in the classification exhibit a form of misaligned
supersymmetry discovered in [69,70]. This is not unex-
pected as this phenomenon is a direct consequence of
modular invariance [69–71], or a smaller subgroup of the
modular group in some cases [72,73], and so heterotic
asymmetric orbifolds should also respect this mechanism.

VII. ASYMMETRIC ORBIFOLD CLASS A

The first class of models we will choose is a pairing
choice where all untwisted moduli are retained, i.e.,
M ¼ ð4; 4; 4Þ. The pairing we choose is inspired by
that used in the model of [5] and is given by
A ¼ fy3y6; y1w6; w1w3g. The basis for this class of models
is then

1 ¼ fψμ; χ1;…;6; y1;…;6; w1;…;6jȳ1;…;6; w̄1;…;6; ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8g;
S ¼ fψμ; χ1;…;6g;
e2 ¼ fy2; w2jȳ2; w̄2g;
e4 ¼ fy4; w4jȳ4; w̄4g;
e5 ¼ fy5; w5jȳ5; w̄5g;
b1 ¼ fψμ; χ12; y34; y56jȳ34; ȳ56; η̄1; ψ̄1;…;5g;
b2 ¼ fψμ; χ34; y12; w56jȳ12; w̄56; η̄2; ψ̄1;…;5g;
b3 ¼ fψμ; χ56; w1234jw̄1234; η̄3; ψ̄1;…;5g;
z1 ¼ fϕ̄1;…;4g;
x ¼ fψ̄1;…;5; η̄1;2;3g;

γ ¼
�
y3y6; y1w6; w1w3jψ̄1;2;3;4;5 ¼ η̄1;2;3 ¼ 1

2
; ϕ̄1;2;6;7 ¼ 1

2

�
: ð7:1Þ
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We can immediately note the following for this class

E ¼ ð0; 1; 0; 1; 1; 0Þ;
Δ ¼ ð1; 1; 1Þ;
D ¼ ð1; 1; 1Þ; ð7:2Þ

which will help us easily determine the key characteristics
of the models in this class.
The vector bosons from the untwisted sector of these

models generate the gauge symmetry group

Observable∶ SUð5Þ ×Uð1Þ ×Uð1Þk¼1;2;3 ×Uð1Þl¼4;5;6;

ð7:3Þ

Hidden∶ SUð2Þ × Uð1ÞH1
× SOð4Þ2 × SUð2Þ ×Uð1ÞH2

;

ð7:4Þ

where we note that Uð1Þk¼1;2;3 are generated by the
antiholomorphic currents η̄kη̄k� and the Uð1Þl¼4;5;6 are
horizontal symmetries arising from the asymmetric pair-
ings: ȳ3ȳ6; ȳ1w̄6 and w̄1w̄3. Another important note is that
for this class of models we can apply Eq. (4.7) and see that
all the untwisted moduli are, indeed, retained.
From the discussion in Sec. VI A we note that the space

ofN ¼ 1 vacua is 245 ∼ 3.52 × 1013. It is important to note

at this point that there are two imaginary phases C
h 1
γ

i
¼

�i and C
h z1
γ

i
¼ �i, consistent with modular invariance,

and all other phases are real. Furthermore, we note that the

latter of these, C
h z1
γ

i
, and the following four phases do not

play a role in the phenomenological constraints

C

�
1

b1

�
; C

�
1

b2

�
; C

�
1

b3

�
; C

�
1

z1

�
: ð7:5Þ

This leaves a space of 240 ∼ 1.1 × 1012 N ¼ 1 GGSO
phase configurations.

A. Class A phenomenological features

1. Observable spinorial representations

From Eq. (6.9) we can write the sectors producing
fermion generations

F1
qr ¼ b1 þ qe4 þ re5;

F2
qr ¼ b2 þ qe2 þ re5;

F3
qs ¼ b3 þ qe2 þ se4; ð7:6Þ

and D ¼ ð1; 1; 1Þ means that any of these sectors will
produce one copy of all states in the 16 or 16 when present
in the massless spectrum. Therefore the number of gen-
erations (6.14) simplifies to

ng ¼ N16 − N
16
: ð7:7Þ

Encoding the condition for 3 generations (6.15) for this
class of models into Z3 returns sat to confirm 3 generation
models are present for this class. In order to see the spread
of generation number, ng, we can generate a bar graph of
generations for a random scan of class A models. This
graph is shown in Fig. 1 for a sample of 107 vacua with
N16 ≥ N

16
so that models with ng ≥ 0 are plotted. From

this sample we find 3 generation models with probability of
approximately 6 × 10−3.

2. Heavy Higgs

From Eq. (6.17) we can write the heavy Higgs producing
sectors for the class A models as

B1
qr ¼ Sþ b1 þ qe4 þ re5;

B2
qr ¼ Sþ b2 þ qe2 þ re5;

B3
qs ¼ Sþ b3 þ qe2 þ se4; ð7:8Þ

and note that each sector Bk
pqrs, k ¼ 1, 2, 3, generates a

16þ 16, which correspond to the would-be superpartners of
the fermionic states in the 16=16 and their CPT conjugates.
Therefore, any sector Bk

pq that survives generates one heavy
Higgs ð10;þ 1

2
Þ þ ð10;− 1

2
Þ, along with a further vectorlike

pair ð5̄;þ 3
2
Þ þ ð1; 5

2
Þ þ ð5;− 3

2
Þ þ ð1;− 5

2
Þ. We can thus

100

102

104

106

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

# of generations

# 
of

 m
od

el
s

FIG. 1. Frequency plot for number of generations from a
sample of 107 class A vacua.
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write the number of heavy Higgs for a specific model as
equal to the number of surviving sectors Bk

pqrs

n10H ¼
X

k¼1;2;3
q;r;s¼0;1

PBk
qrs
: ð7:9Þ

3. Top quark mass couplings

We note that we have possible TQMC from untwisted
type couplings of the general form

F1F1h̄1; F2F2h̄2; F3F3h̄3; ð7:10Þ

where h̄k, k ¼ 1, 2, 3, are the Higgs representations from
the Neveu-Schwarz sector. In addition, there is also the
possibility of twisted type couplings of the general form

F1F2V3
fψ̄ag; F1V2

fψ̄agF
3; V1

fψ̄agF
2F3: ð7:11Þ

In classifying vacua from class A we will account for all 6
possibilities to check for any potentially viable TQMCs for
a model.
In particular, the presence of twisted light Higgs is not a

necessary condition for viable phenomenology in the FSU5
asymmetric models since with untwisted Higgs doublets
generating a TQMC of untwisted type (7.10) they are not
necessary. However, the presence of such a coupling is not
automatic a priori and so for the analysis of whether a
model contains a viable TQMC we will also have to check
for TQMC from twisted-type coupling (7.11).
Applying Eq. (6.19) we can write the sectors generating

the light Higgs representations as

V1
qr ¼ Sþ b1 þ xþ qe4 þ re5;

V2
qr ¼ Sþ b2 þ xþ qe2 þ re5;

V3
qs ¼ Sþ b3 þ xþ qe2 þ se4; ð7:12Þ

when accompanied by an antiholomorphic oscillator fψ̄ag, a ∈ f1; 2; 3; 4; 5g.
The projectors can be written as follows for these sectors:

Pfψ̄agV1
qr
¼ 1

24

�
1þ C

� e2

Vð1Þ
qr

���
1þ C

� 2γ þ x

Vð1Þ
qr

�� Y
a¼1;2

�
1þ C

� za

Vð1Þ
qr

��
;

Pfψ̄agV2
qr
¼ 1

24

�
1þ C

� e4

Vð2Þ
qr

���
1þ C

� 2γ þ x

Vð2Þ
qr

�� Y
a¼1;2

�
1þ C

� za

Vð2Þ
qr

��
;

Pfψ̄agV3
qs
¼ 1

24

�
1þ C

� e5

Vð3Þ
qs

���
1þ C

� 2γ þ x

Vð3Þ
qs

�� Y
a¼1;2

�
1þ C

� za

Vð3Þ
qs

��
: ð7:13Þ

Using these we can write the number of light Higgs states for a specific model as equal to the number of fψ̄agjVk
qrsi in the

massless spectrum

n5h ¼
X

k¼1;2;3
q;r;s¼0;1

PVk
qrs
: ð7:14Þ

4. Tachyonic sector analysis

When classifying the N ¼ 0 models we must ensure the projection of all on-shell tachyonic sectors. In addition to the
model-independent tachyonic sectors (6.23), we have the following on-shell tachyonic sectors for class A models that
require an antiholomorphic oscillator

T1 ¼

8>>>>>>>>><
>>>>>>>>>:

fλ̄g1
2
∶ je2i je4i je5i

fλ̄g1
2
∶ je2 þ e4i je2 þ e5i je4 þ e5i

fλ̄g1
2
∶ je2 þ e4 þ e5i jGþ e2 þ e4 þ e5i

fλ̄g1
2
∶ jð3Þγi jxþ ð3Þγi

fλ̄g1
4
∶ jz1 þ ð3Þγi jz2 þ ð3Þγi jz1 þ xþ ð3Þγi jz2 þ xþ ð3Þγi

9>>>>>>>>>=
>>>>>>>>>;
: ð7:15Þ

As well as the following on-shell tachyonic sectors which arise with no oscillator

TOWARDS CLASSIFICATION OF N ¼ 1 AND … PHYS. REV. D 106, 026011 (2022)

026011-19



T2 ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

jz1i jz2i
jei þ z1i jei þ z2i

jei þ ej þ z1i jei þ ej þ z2i
jei þ ej þ ek þ z1i jei þ ej þ ek þ z2i

jGþ e2 þ e4 þ e5 þ z1i jGþ e2 þ e4 þ e5 þ z2i
jxþ 2γi jz1 þ xþ 2γi

jei þ xþ 2γi jei þ z1 þ xþ 2γi
jei þ ej þ xþ 2γi jei þ ej þ z1 þ xþ 2γi

je2 þ e4 þ e5 þ xþ 2γi je2 þ e4 þ e5 þ z1 þ xþ 2γi
jGþ e2 þ e4 þ e5 þ xþ 2γi jGþ e2 þ e4 þ e5 þ z1 þ xþ 2γi

jz2 þ xþ 2γi jz1 þ z2 þ xþ 2γi
jei þ z2 þ xþ 2γi jei þ z1 þ z2 þ xþ 2γi

jei þ ej þ z2 þ xþ 2γi jei þ ej þ z1 þ z2 þ xþ 2γi
je2 þ e4 þ e5 þ z2 þ xþ 2γi je2 þ e4 þ e5 þ z1 þ z2 þ xþ 2γi

jGþ e2 þ e4 þ e5 þ z2 þ xþ 2γi jGþ e2 þ e4 þ e5 þ z1 þ z2 þ xþ 2γi
jz1 þ z2 þ ð3Þγi jz1 þ z2 þ xþ ð3Þγi

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð7:16Þ

where i ≠ j ∈ f2; 4; 5g.
All of these sectors, t ∈ T1 and t ∈ T2, must be projected

from the spectrum through appropriate definitions of their
generalized projectors Pt ¼ 0. Since there are so many
sectors this is generally the most computationally expen-
sive aspect of the classification methodology and is a key
reason for introducing SMT methods into the program.
For reasons of efficiency in projecting the tachyonic

sectors we can split the projection into two steps. First,
since the SUSY generating vector S acts as a projector on
all tachyonic sectors, we can implement this projection on
all tachyonic sectors and see which sectors remain. Then
we can construct and perform the other projections for the
remaining sectors.

5. Enhancements

In classifying the class A models we should ensure the
absence of enhancements to the observable gauge factors
coming from the class-independent sectors given in
Eq. (6.25) using the generalized projectors discussed in
Sec. VI. We have further sectors giving possible observable
enhancements through combinations with γ. At the level
ðαL · αL;αR · αRÞ ¼ ð0; 6Þ we have the following sectors:

ψμfλ̄g1
4

� je136 þ ð3Þγi≕O1

je136 þ xþ ð3Þγi≕O2;
ð7:17Þ

and at level (0,8) there are the sectors

ψμ

8>>>><
>>>>:

je136 þ z1 þ ð3Þγi≕O3

je136 þ z1 þ xþ ð3Þγi≕O4

je136 þ z2 þ ð3Þγi≕O5

je136 þ z2 þ xþ ð3Þγi≕O6;

ð7:18Þ

which should be projected to ensure the absence of
observable enhancements. In order to construct the pro-
jectors we note that

ϒðO1;2Þ ¼ fS; e2; e4; e5; z1 þ z2 þ xþ 2γg;
ϒðO3;4Þ ¼ fS; e2; e4; e5; z2 þ xþ 2γg;
ϒðO5;6Þ ¼ fS; e2; e4; e5; z1 þ xþ 2γg; ð7:19Þ

and the projectors have the form

PO1;2
¼

Y
ξ∈ϒðO1;2Þ

1

2

�
1þ δO1;2

δψ
μ

ξ δλ̄ξC
�
O1;2

ξ

��
; ð7:20Þ

PO3;4;5;6
¼

Y
ξ∈ϒðO3;4;5;6Þ

1

2

�
1þδO3;4;5;6

δψ
μ

ξ C

�
O3;4;5;6

ξ

��
; ð7:21Þ

which gives three unique projectors from (7.19), on which
we impose

∀ λ̄; ∀ i ∈ ½1; 6�∶POi
¼ 0: ð7:22Þ
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6. Exotic sectors

Another important consideration for ensuring reasonable
phenomenology is the absence of chiral exotics.
Along with the sectors (6.28) there are 124 sectors at the

level (4,6) that can produce exotic massless states with a
right moving oscillator such that νf ¼ 1

2
or νf� ¼ − 1

2
. These

all arise in pairs with þγ and þ3γ which contribute equal
and opposite gauge charges and therefore do not contribute
to any chiral anomaly. Similarly for the 212 exotic sectors

at level (4,8). Therefore we conveniently do not need to
implement a condition on chiral exotics in the classification
for this class of models.

B. Class A results

Having defined the key phenomenological character-
istics for models in class Awe now seek to classify a large
space of both N ¼ 0 and N ¼ 1 vacua with reference to
the following key classification criteria:

1No on-shell tachyons as discussed in Secs:6.2 and 7.1

2No observable enhancements as given by Eqs:ð6.26Þ and ð7.22Þ
3Complete generations∶ng ≠ 0 and n10 − n10 ¼ n5̄ − n5

4Three generations∶ng ¼ 3∶

5Presence of heavy Higgs∶ n10H ≥ 1

6Presence of viable TQMC as discussed in Secs:6.3 and 7.11

7Super no-scale condition∶ a00 ¼ N0
b − N0

f ¼ 0 ð7:23Þ

We note that determining whether a viable TQMC is
present requires checking for either an untwisted or twisted
type coupling.
The results of a classification of 109 class A models

created through random generation is presented in Table III.
As mentioned in Sec. III we can employ our Z3 SMT

solver to efficiently find models satisfying the phenom-
enological criteria as well as to inform us of when criteria
are in contradiction and no solutions can be found. As a test
of efficiency we ran the SMT for 1 h to see how many
models it finds satisfying the criteria 1–7 in Table III and
compared it with the random generation method over the
same time. The result of this comparison is displayed in
Fig. 2. We find that the SMT is approximately 322 times
faster than the random scan after 3 min but after 1 h it levels
out at approximately 93 times faster. This demonstrates that

the Z3 SMT tool is especially effective as a fishing
algorithm in finding pools of solutions very quickly,
whereas its efficiency in complete enumeration of solutions
reduces. If we are interested in more complete enumeration
it may be instrumental to employ another SAT/SMT solver
such as PicoSAT [74], which is optimized for such
complete enumeration.
We can also perform a statistical analysis at the level of

the partition function. This includes the calculation of the q
expanded partition function and the evaluation of the one
loop cosmological constant. In Fig. 3, we present the
distribution of the cosmological constant for a sample of
class A models evaluated at the free fermionic point. This
shows that there is a tendency towards negative values,
even though positive values are not excluded. It is impor-
tant to note that this is not guaranteed to be a stable point in

TABLE III. Phenomenological statistics from sample of 108 class A models. Note that the number of a00 ¼ 0 models is an estimate
based on extrapolating from a sample of 2 × 103 of the 129233 N ¼ 0 models satisfying 1–7.

Total models in sample: 109

SUSY or non-SUSY: N ¼ 1 Probability N ¼ 0 Probability

Total 15624051 1.56 × 10−2 984375949 0.984

1 þ Tachyon-free 30779240 3.08 × 10−2

2 þ No observable enhancements 15135704 1.51 × 10−2 28581301 2.86 × 10−2

3 þ Complete generations 15135704 1.51 × 10−2 28581301 2.86 × 10−2

4 þ Three generations 89930 8.99 × 10−5 195716 1.96 × 10−4

5 þ Heavy Higgs 89820 8.98 × 10−5 129233 1.29 × 10−4

7 þ TQMC 89820 8.98 × 10−5 129233 1.29 × 10−4

8 þ a00 ¼ N0
b − N0

f ¼ 0 388 3.88 × 10−7
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moduli space as there may be flat directions; however, the
analysis of the potential is outside the scope of this paper
and is left for future work. It is also interesting to compare
the effectiveness of the SMTand random scan algorithms in
finding unique models from the point of view of the
partition function. From Fig. 4 we see that the SMT
algorithm has a tendency to find more degenerate solutions
as compared to a random scan. However, this does not
conclude that random scans are more efficient. Indeed,
comparing this to Fig. 2, we see that SMT algorithms still

vastly outperform random scans by more than 2 orders of
magnitude.

C. Example model class A

Having classified a random sample of class A vacua, we
can provide an example model satisfying criteria 1–7 of
(7.23). Consider a model defined by the basis set (7.1) and
choice of GGSO phases given by

C

�
vi
vj

�
¼

1

S

e2
e4
e5

b1
b2
b3
z1
x

γ

1 S e2 e4 e5 b1 b2 b3 z1 x γ

0
BBBBBBBBBBBBBBBBBBBBBB@

1 1 −1 −1 −1 1 −1 1 1 1 i

1 1 −1 1 1 1 1 1 1 −1 1

−1 −1 1 1 −1 −1 −1 −1 1 −1 −1
−1 1 1 1 −1 1 −1 1 −1 −1 −1
−1 1 −1 −1 1 −1 −1 −1 −1 −1 1

1 −1 −1 1 −1 1 −1 −1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 1 −1
1 −1 −1 1 −1 −1 −1 1 1 −1 −1
1 1 1 −1 −1 1 −1 1 1 −1 i

1 −1 −1 −1 −1 −1 −1 1 −1 −1 −1
1 1 −1 −1 1 −1 1 1 −1 −1 −1

1
CCCCCCCCCCCCCCCCCCCCCCA

: ð7:24Þ

This model has 3 fermion generations arising from b1 þ e4, b2 þ e2 and b3 þ e2 þ e4. As for all models in this class, there
are untwisted Higgs states from all 3 orbifold planes. The top quark mass coupling arises on each plane from a coupling of
the type UkFkFk discussed in Sec. VI C. The heavy Higgs is provided by the sector Sþ b2 þ e5 to ensure that the
SUð5Þ × Uð1Þ can be broken to the SM.
The partition function for class A models can be found using the methods discussed in Sec. VI D. Specifically, the

internal lattice can be constructed by noting that the form of A introduces exactly one asymmetric pairing in each of the
three orbifold planes. Thus the internal lattice takes the form

FIG. 3. The distribution of the cosmological constant ΛST for a
sample of 103 class A models satisfying conditions 1–7 of
Table III. To gain the physical value, a factor of M4 must be
reinstated. These values are evaluated at the free fermionic point
using methods discussed in Sec. VI D.

FIG. 2. Rate at which the Z3 SMT finds solutions satisfying
constraints 1–7 compared with a random generation approach
over a 1 h period.
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Γγ
ð6;6Þ ¼ Γγ

1 × Γγ
2 × Γγ

3

¼ ϑy4

�
rþ h2 þH4

sþ g2 þ G4

�
1=2

ϑy5

�
rþ h2 þH5

sþ g2 þ G5

�
1=2

ϑy3;6

�
rþ h2 þ 2H0

sþ g2 þ 2G0

�

× ϑȳ4

�
rþ h2 þH4

sþ g2 þ G4

�
1=2

ϑ̄ȳ5

�
rþ h2 þH5

sþ g2 þ G5

�
1=2

ϑ̄ȳ3;6

�
rþ h2
sþ g2

�

× ϑy2

�
rþ h2 þH2

sþ g2 þ G2

�
1=2

ϑw5

�
rþ h2 þH5

sþ g2 þ G5

�
1=2

ϑy1w6

�
rþ h2 þ 2H0

sþ g2 þ 2G0

�

× ϑȳ2

�
rþ h1 þH2

sþ g1 þ G2

�
1=2

ϑ̄w̄5

�
rþ h1 þH5

sþ g1 þ G5

�
1=2

ϑ̄ȳ1w̄6

�
rþ h1
sþ g1

�

× ϑw2

�
r − h1 − h2 þH2

s − g1 − g2 þ G2

�
1=2

ϑw4

�
r − h1 − h2 þH4

s − g1 − g2 þG4

�
1=2

ϑw1;3

�
r − h1 − h2 þ 2H0

s − g1 − g2 þ 2G0

�

× ϑw̄2

�
r − h1 − h2 þH2

s − g1 − g2 þ G2

�
1=2

ϑ̄w̄4

�
r − h1 − h2 þH4

s − g1 − g2 þG4

�
1=2

ϑ̄w̄1;3

�
r − h1 − h2
s − g1 − g2

�
; ð7:25Þ

where Γγ
i denotes the part corresponding to the ith orbifold plane. We can then use this expression together with (6.36) and

(6.40) to gain the q-expanded partition function of this model which is

Z ¼ 2q0q̄−1 − 8q1=4q̄−3=4 − 16q1=2q̄−1=2 þ 8q−1=2q̄1=2

þ 176q1=8q̄1=8 þ 976q1=4q̄1=4 þ 2048q3=8q̄3=8 þ 2560q1=2q̄1=2; ð7:26Þ

including all terms up to at most Oðq1=2Þ and Oðq̄1=2Þ. The
top line gives the off-shell tachyonic states required by
modular invariance, while the bottom line gives all on-shell
states. Note the presence of the off-shell model-independent
term 2q0q̄−1 obtained from the so-called “proto-graviton”
resulting from the state ψμj0iL ⊗ j0iR. This provides a neat
check to confirm correct normalization of the partition
function. We also see that this model is indeed of the super
no-scale type, i.e., has a00 ¼ n0b − n0f ¼ 0. Integrating this
expansion over the fundamental domain of the modular
group via (6.41) yields the spacetime cosmological constant

ΛST ¼ 13.34 ×M4; ð7:27Þ

which was calculated to 4th order q and q̄. It is important to
note that this value is not calculated at a minimum in the
moduli space, but rather at a maximally symmetric self-dual
point where the orbifold theory admits a free fermionic
description.
Whether the cosmological constant can indeed be

suppressed requires more in-depth analysis and in these
class A models all untwisted moduli being retained
complicates this analysis, which motivates the study of
a different class of models where some moduli are
projected that we turn to in the next section. Through
a translation to a Zn

2 orbifold in the bosonic picture the
dependence on some of these geometric moduli can be
reinstated and a systematic investigation of the one-loop
potential can be attempted as done in [59,60] for
symmetric orbifolds; however, its implementation for
asymmetric models is left for future work.

VIII. ASYMMETRIC ORBIFOLD CLASS B

The second class of models we study is an example
where all untwisted moduli on the second and third tori are
projected and only h11, h12, h21, and h22 are retained. From
Tables I and II we can see there are 12 possible pairings in
both the bosonic and fermionic cases that give rise to just
h11, h12, h21, and h22, while allowing for odd number
generations. These all have E ¼ ð1; 1; 0; 0; 0; 0Þ. The pos-
sible pairings can be grouped into 3 types according to their
Δ ¼ ðΔ1;Δ2;Δ3Þ and degeneracies D ¼ ðD1; D2; D3Þ,
which for the bosonic case are

FIG. 4. The degeneracy of models in a random versus a SMT
scan for class A as seen from the partition function.
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A ¼

8>>>>>>>>><
>>>>>>>>>:

fw̄3456g; fy34; w34; ȳ34; w̄56g; Δ ¼ ð0; 1; 1Þ; D ¼ ð8; 1; 1Þ
fy3456; w3456; ȳ3456g; fy56; w56; ȳ56; w̄34g
fȳ56; w̄34g; fy56; w56; w̄3456g; Δ ¼ ð1; 0; 1Þ; D ¼ ð4; 2; 1Þ
fy34; w34; ȳ3456g; fy3456; w3456; ȳ34; ȳ56g
fȳ34; w̄56g; fy34; w34; ȳ34w̄56g; Δ ¼ ð1; 1; 0Þ; D ¼ ð4; 1; 2Þ
fy3456; w3456; ȳ3456g; fy56; w56; ȳ56; w̄34g

: ð8:1Þ

As mentioned in Sec. VI, the condition for odd number generations (5.12) is a necessary but not sufficient condition for the
possibility of having 3 generation models within a class. We can check which of the 3 pairing possibilities in (8.1) can give
rise to 3 generations by checking whether Eq. (6.15) is satisfiable with our SMT solver for each A. Doing this tells us that
none of the pairings can give rise to 3 generation models. Despite this we will choose the pairing A ¼ fw̄34; w̄56g with
D ¼ ð4; 2; 1Þ to classify systematically and in Sec. VIII Awewill demonstrate the origin of the absence of three generations.
The basis for this class of models will then be

1 ¼ fψμ; χ1;…;6; y1;…;6; w1;…;6jȳ1;…;6; w̄1;…;6; ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8g;
S ¼ fψμ; χ1;…;6g;
e1 ¼ fy1; w1jȳ1; w̄1g;
e2 ¼ fy2; w2jȳ2; w̄2g;
b1 ¼ fψμ; χ12; y34; y56jȳ34; ȳ56; η̄1; ψ̄1;…;5g;
b2 ¼ fψμ; χ34; y12; w56jȳ12; w̄56; η̄2; ψ̄1;…;5g;
b3 ¼ fψμ; χ56; w1234jw̄1234; η̄3; ψ̄1;…;5g;
z1 ¼ fϕ̄1;…;4g;
x ¼ fψ̄1;…;5; η̄1;2;3g;

γ ¼
�
ȳ56; w̄34; ψ̄1;…;5 ¼ η̄1;2;3 ¼ ϕ̄1;2;6;7 ¼ 1

2
; ϕ̄8

�
; ð8:2Þ

where we have the same z2 combination as Eq. (4.21) and the untwisted gauge group is

Observable∶ SUð5Þ × Uð1Þ ×Uð1Þi¼1;2;3 ×Uð1Þj¼4;5; ð8:3Þ

Hidden∶ SUð2Þ ×Uð1ÞH1
× SOð4Þ ×Uð1ÞH2

× SUð2Þ ×Uð1ÞH3
× Uð1ÞH4

: ð8:4Þ

There are two horizontal symmetries associated to the antiholomorphic currents from the pairings ȳ5;6 and w̄3w̄4. Since there
are 10 basis vectors we naively have 245 independent GGSO configurations but the following 10 phases do not affect the
projection criteria for the phenomenological criteria we investigate

C

�
1

b1

�
; C

�
1

b2

�
; C

�
1

b3

�
; C

�
1

z1

�
; C

�
1

γ

�
; C

�
S

γ

�
; C

�
b1
γ

�
; C

�
b3
γ

�
; C

�
z1
γ

�
; C

�
x

γ

�
: ð8:5Þ

This leaves just 35 free GGSO phases generating a space of 235 ∼ 3.4 × 1010 independent configurations to classify. The
supersymmetric subspace of which is subject to conditions (6.3) and (6.4).

A. Class B phenomenological features

Observable spinorial representations and absence of three generation.—
The following sectors give rise to the fermion generations:

F1
t ¼ b1 þ te3456; ð8:6Þ
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F2
pq ¼ b2 þ pe1 þ qe2; ð8:7Þ

F3
pq ¼ b3 þ pe1 þ qe2; ð8:8Þ

and the degeneracies D tell us that F1
0 generate 4 copies of

the 16 or 16, F1
1 generate 2 copies of the 16 and 2 copies of

the 16, while F2
pq generate 2 copies of either ð10;þ 1

2
Þ,

ð5̄;− 3
2
Þ þ ð1; 5

2
Þ, ð10;− 1

2
Þ, or ð5;þ 3

2
Þ þ ð1;− 5

2
Þ. Lastly,

F3
pqrs generates 1 copy of the 16 or 16.
As mentioned above, three generation models do not

arise in this class, and to see why it will be useful to write
the projection equations for these spinorial sectors. We can
first construct the projectors for these sectors by utilizing
Eq. (6.10):

PF1
t
¼ 1

25

Y
i¼1;2

�
1 − C

�
Fð1Þ
t

ei

���
1 − C

�
Fð1Þ
t

2γ þ x

��

×
Y
a¼1;2

�
1 − C

�
Fð1Þ
t

za

��
; ð8:9Þ

PF2
pq
¼ 1

23

�
1 − C

�
F2
pq

2γ þ x

�� Y
a¼1;2

�
1 − C

�
F2
pq

za

��
;ð8:10Þ

PF3
pq
¼ 1

23

�
1 − C

�
F3
pq

2γ þ x

�� Y
a¼1;2

�
1 − C

�
F3
pq

za

��
:ð8:11Þ

Next we can apply Eq. (6.11) to get the chirality phases

X1
t¼0 ¼ −C

�
F1
0

b2

��
;

X2
pq ¼ −C

�
F2
pq

b1

��
;

X3
pq ¼ −C

�
F3
pq

b1

��
;

where we have chosen chðψμÞ ¼ þ1 for the spacetime
fermion chirality and note the F1

1 does not have a chirality
operator as it gives rise to 2 copies of the 16 and the 16. By
applying Eq. (6.13) we can write the quantum numbers of
the SUð5Þ × Uð1Þ representations as

n10 ¼
X
t¼0;1

2PF1
t

1

2
ð1þ tþ ð1 − tÞX1

t Þ þ
X

p;q¼0;1

2PF2
pq

1

4
ð1þ X2

pqÞ
�
1þ C

�
F2
pq

γ

��

þ
X

p;q¼0;1

PF3
pq

1

2
ð1þ X3

pqÞ;

n5̄ ¼
X
t¼0;1

2PF1
t

1

2
ð1þ tþ ð1 − tÞX1

t Þ þ
X

p;q¼0;1

2PF2
pq

1

4
ð1þ X2

pqÞ
�
1 − C

�
F2
pq

γ

��

þ
X

p;q¼0;1

PF3
pq

1

2
ð1þ X3

pqÞ;

n10 ¼
X
t¼0;1

2PF1
t

1

2
ð1þ t − ð1 − tÞX1

t Þ þ
X

p;q¼0;1

2PF2
pq

1

4
ð1 − X2

pqÞ
�
1þ C

�
F2
pq

γ

��

þ
X

p;q¼0;1

PF3
pq

1

2
ð1 − X3

pqÞ;

n5 ¼
X
t¼0;1

2PF1
t

1

2
ð1þ t − ð1 − tÞX1

t Þ þ
X

p;q¼0;1

2PF2
pq

1

4
ð1 − X2

pqÞ
�
1 − C

�
F2
pq

γ

��

þ
X

p;q¼0;1

PF3
pq

1

2
ð1 − X3

pqÞ; ð8:12Þ

where we note the singlets have the same projection as 5 and 5̄. Imposing the condition for complete generations n10 −
n10 ¼ n5̄ − n5 results in the condition

X
p;q

PF2
pq
C

�
F2
pq

γ

�
X2
pq ¼ 0 ð8:13Þ

and n10 − n10 ¼ 3 for three generations tells us
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3 ¼
X
t

2PF1
t
X1
t þ

X
p;q

2PF2
pq

1

2

�
1þ C

�
F2
pq

γ

��
X2
pq þ

X
p;q

PF3
pq
X3
pq; ð8:14Þ

which is only possible if X
p;q

PF3
pq
X3
pq ∈ f1; 3g; ð8:15Þ

but
P

p;q PF3
pq
X3
pq ¼ 3 we can show is impossible by inspecting (8.11): which only depends on nine phases,

C

�
b3
z1

�
; C

�
b3
z2

�
; C

�
b3
x

�
; C

�
e1
z1

�
; C

�
e1
z2

�
; C

�
e1
x

�
; C

�
e2
z1

�
; C

�
e2
z2

�
; C

�
e2
x

�
; ð8:16Þ

and if 3 of the 4 sectors F3
pq have PF3

pq
¼ 1 then all 9 phases

are fixed and ensures the fourth also has PF3
pq
¼ 1.

Therefore, the only way to satisfy (8.14) is ifP
p;q PF3

pq
X3
pq ¼ 1. This further implies

P
p;q PF2

pq
C½F2

pqγ �
X2
pq ∈ f2; 4g from (8.13). If we assume

P
p;q PF2

pq
C½F2

pqγ �
X2
pq ¼ 2 then the constraints this imposes on the phases in

PF2
pq

necessitates

X
p;q

PF3
pq
X3
pq ∈ f0; 2g; ð8:17Þ

making 3 generations impossible. Similarly, if
P

p;q PF2
pq

C½F2
pqγ �X2

pq ¼ 4, this imposes

X
p;q

PF3
pq
X3
pq ∈ f0; 4g; ð8:18Þ

which again makes 3 generations impossible.
Not only does the Z3 SMT solver confirm the unsat-

isfiability of 3 generation configurations, it also generates a
proof written in computer language.2 There are also addi-
tional tools available in Z3 to explore unsatisfiability such
as identifying a minimal “unsatisfiable core” [75], isolating
the contradiction by giving a (locally) minimal subset of
constraints, where dropping either of them results in a
satisfiable constraint system. In Fig. 5 the distribution of ng
is plotted for a random sample of 107 class B models
showing empirically the absence of ng ¼ 3 models.
The origin of this contradiction can be traced to the

projection of moduli in the 2nd and 3rd tori which means
there is no ei vectors to project F2

pq and F3
pq. This results in

constraining and correlating their presence in the massless
spectrum.

1. Heavy Higgs

As in class Awe will demand the presence of at least one
heavy Higgs to break the FSU5 gauge symmetry in our
classification. The number of Heavy Higgs # ½ð10; 1

2
Þþ

ð10;− 1
2
Þ� can again be calculated through the projections of

sectors Sþ Fk
pq.

2. Top quark mass couplings

As in class A, in classifying vacua from class B we will
account for all the three untwisted type TQMC and all 3
twisted type when checking whether a potentially viable
TQMC arises from a model.
To check the presence of a viable TQMC we, again,

account for the twisted light Higgs sectors, which can be
checked through analogous projection conditions for class
B as in class A. It is simply the number of ½ð5;−1Þ þ
ð5̄;þ1Þ� from the sectors Vk

pq in the massless spectrum.
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FIG. 5. Frequency plot for number of generations from a
sample of 107 class B vacua.

2Available at https://github.com/BenjaminPercival/Asymmet
ricOrbifolds.git.
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3. Tachyonic sector analysis

Class A models have significantly fewer tachyonic
sectors than class B. Specifically, there are 27 sectors
producing on-shell tachyons for class B, compared with the
78 of class A.
The following 3 sectors will produce on-shell tachyons

with a right-moving oscillator should they be present in the
spectrum of a model

T1 ¼
( fλ̄g1

2
∶ je1i je2i

fλ̄g1
2
∶je1 þ e2i

)
: ð8:19Þ

Further to this, the following on-shell tachyonic sectors
arise with no oscillator

T2 ¼

2
6666666664

jz1i jz2i jxþ 2γi
jei þ z1i jei þ z2i jei þ xþ 2γi

je1 þ e2 þ z1i je1 þ e2 þ z2i je1 þ e2 þ xþ 2γi
jz1 þ xþ 2γi jz2 þ xþ 2γi jz1 þ z2 þ xþ 2γi

jei þ z1 þ xþ 2γi jei þ z2 þ xþ 2γi jei þ z1 þ z2 þ xþ 2γi
je1 þ e2 þ z1 þ xþ 2γi je1 þ e2 þ z2 þ xþ 2γi je1 þ e2 þ z1 þ z2 þ xþ 2γi

3
7777777775
; ð8:20Þ

where i ∈ f1; 2g.
The condition for the absence of such tachyonic sectors

can be compactly written

∀ t ∈ T1 ∪ T2∶ Pt ¼ 0: ð8:21Þ
4. Enhancements

As in class A we will ensure the absence of enhance-
ments to the observable gauge factors given from sectors
listed in Eq. (6.25) as well as the model-dependent sectors

ψμfλ̄g1
4

8>>>><
>>>>:

jz1 þ ð3Þγi≕O1

jz1 þ xþ ð3Þγi≕O2

jz1 þ z2 þ ð3Þγi≕O3

jz1 þ z2 þ xþ ð3Þγi≕O4;

ð8:22Þ

and as in class A we ensure the generalized projectors of
these sectors are zero, which can be written

∀ i ∈ ½1; 4�∶ POi
¼ 0: ð8:23Þ

5. Exotics

Along with the ðαL · αL;αR · αRÞ ¼ ð4; 4Þ exotic sectors
(6.28), there are 112 sectors at the level (4,6) that can
produce exotic massless states with a right moving oscil-
lator with νf ¼ 1

2
or νf� ¼ − 1

2
. As in model A these all arise

in pairs with þγ and þ3γ with equal and opposite gauge
charges and therefore do not contribute to any chiral
anomaly. Similarly for 176 sectors at level (4,8).
Therefore we conveniently do not need to implement a
condition on chiral exotics in the classification.

B. Class B results

We wish to implement the constraints listed in (7.23) for
the case of class B. However, the absence of 3 generation
models in this class means all models break at constraint
(4). For completeness, we still present the reduced results in
Table IV. In order to do a complete scan, we choose to
impose condition (6.5) such that for N ¼ 0 models SUSY
is broken by phases beyond the NAHE-set. This condition
reduces the parameter space to 231 ∼ 2.15 × 109. We then

TABLE IV. Phenomenological statistics from a complete scan of 231 class B models. Note that the number of a00 ¼ 0 models is an
estimate based on extrapolating from a sample of 2.5 × 103 of the 1245265024 N ¼ 0 models satisfying 1–3.

Total models in sample: 231 ¼ 2147483648

SUSY or Non-SUSY: N ¼ 1 Probability N ¼ 0 Probability

Total 134217728 6.25 × 10−2 2013265920 9.38 × 10−1

1 þ Tachyon-free 518921216 2.42 × 10−1

2 þ No obs. enhancements 121896960 5.68 × 10−2 478915840 2.23 × 10−1

3 þ complete generations 74317824 3.46 × 10−2 271702016 1.27 × 10−1

8 þ a00 ¼ N0
b − N0

f ¼ 0 326042 1.51 × 10−4
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enumerate all possible configurations of these 31 phases
that give both N ¼ 1 and N ¼ 0 models.
In order to compare the efficiency of the SMT solver to

that of a random scan we can search for four generation
models rather than three that satisfy criteria 1–3 and 5–7
from (7.23). The results of this comparison are shown in
Fig. 6. We see that the efficiency gained from the SMT is
lower for class B than the class A case with efficiency
approximately 5.5 times higher compared to the random
approach after 3 min, reducing to approximately 1.5 times
after 1 h. This reduced efficiency for lass B seems to result
from the fewer constraints imposed from the absence of
tachyons evidence by the probability 2.42 × 10−1 for
Table IV compared to 3.08 × 10−2 for Table III, as well
as the smaller space of models and higher degeneracy
meaning the SMT algorithm’s search saturates more quickly
than in class A.
As in the case of class A models, it is also interesting to

perform a statistical analysis at the level of the partition
function. Figure 7 shows the distribution of the cosmological

constant for batch of 1.5 × 103 class B models satisfying
conditions 1–3 of Table IV. We again note the slight
tendency to negative values even though positive values
are not excluded. In Fig. 8 we see that the SMT algorithm
finds relatively more degenerate models as compared to the
class A case. This is mostly due to the reduced number of
constraints on the GGSO phases and the increased frequency
of solutions as discussed above.

C. Class B example model with 4 generations

Having discussed the absence of three generation models
in this class, we give an example four generation model and
discuss its key characteristics. We emphasize that, although
this class of models is not phenomenological, they are of
particular interest due to the fact that the untwisted moduli
of the 2nd and 3rd tori are fixed. The chosen model is
defined by the basis (8.2) and the GGSO phases

C

�
vi
vj

�
¼

1

S

e1
e2
b1
b2
b3
z1
x

γ

1 S e1 e2 b1 b2 b3 z1 x γ0
BBBBBBBBBBBBBBBBBBBB@

1 −1 1 1 −1 −1 −1 −1 1 −i
−1 −1 1 1 −1 −1 −1 1 1 −1
1 1 −1 1 −1 1 −1 −1 1 1

1 1 1 −1 −1 1 1 1 1 1

−1 1 −1 −1 −1 −1 −1 −1 −1 −1
−1 1 1 1 −1 −1 1 1 −1 −i
−1 1 −1 1 −1 1 −1 −1 1 −1
−1 1 −1 1 −1 1 −1 −1 1 −i
1 1 1 1 1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 −1 1 −1 −i

1
CCCCCCCCCCCCCCCCCCCA

:

ð8:24Þ

The states from sector b1 generate four copies of fermion
generations in the 16. We obtain a heavy Higgs from the
sector Sþ b3 þ e1 þ e2. There is an untwisted-type TQMC

FIG. 7. The distribution of the cosmological constant ΛST for a
sample of 1.5 × 103 class B models satisfying conditions 1–3 of
Table IV. To gain the physical value, a factor of M4 must be
reinstated. These values are evaluated at the free fermionic point
using methods discussed in Sec. VI D.

FIG. 6. Rate at which the Z3 SMT finds 4 generation models
satisfying constraints 1–3 and 5–7 compared with a random
generation approach over a 1 h period.

FIG. 8. The degeneracy of models in a random versus a SMT
scan for class B.
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from the first orbifold plane and we note the existence of an additional hidden sector gauge boson from ψμfȳ1gjz1i which
enhances the hidden gauge group

SUð2Þ ×Uð1ÞH1
× SOð4Þ ×Uð1ÞH2

× SUð2Þ ×Uð1ÞH3
×Uð1ÞH4

→ Uð1ÞH1
× SOð5Þ × SUð2Þ ×Uð1ÞH2

× SUð2Þ ×Uð1ÞH3
×Uð1ÞH4

: ð8:25Þ

The partition function for this model can be calculated similarly to the class A model presented in Sec. VII C. The main
difference in this case is that the asymmetric shifts introduced by A only explicitly include the antiholomorphic part of the
internal lattice in the first and third orbifold plane. That is, the lattice becomes

Γγ
ð6;6Þ ¼ Γγ

1 × Γγ
2 × Γγ

3

¼ ϑy3;4

�
rþ h2
sþ g2

�
ϑy5;6

�
rþ h2
sþ g2

�

× ϑȳ3;4

�
rþ h2
sþ g2

�
ϑ̄ȳ5;6

�
rþ h2 þ 2H0

sþ g2 þ 2G0

�

× ϑy1

�
rþ h1 þH1

sþ g1 þ G1

�
1=2

ϑy2

�
rþ h1 þH2

sþ g1 þ G2

�
1=2

ϑw5;6

�
rþ h1
sþ g1

�

× ϑ̄ȳ1

�
rþ h1 þH1

sþ g1 þ G1

�
1=2

ϑ̄ȳ2

�
rþ h1 þH2

sþ g1 þ G2

�
1=2

ϑ̄w̄5;6

�
rþ h1
sþ g1

�

× ϑw1

�
r − h1 − h2 þH1

s − g1 − g2 þ G1

�
1=2

ϑw2

�
r − h1 − h2 þH2

s − g1 − g2 þ G2

�
1=2

ϑw3;4

�
r − h1 − h2
s − g1 − g2

�

× ϑw̄1

�
r − h1 − h2 þH1

s − g1 − g2 þ G1

�
1=2

ϑ̄w̄2

�
r − h1 − h2 þH2

s − g1 − g2 þ G2

�
1=2

ϑ̄w̄3;4

�
r − h1 − h2 þ 2H0

s − g1 − g2 þ 2G0

�
; ð8:26Þ

where Γγ
i again denotes the terms corresponding to the ith

orbifold plane. We see that indeed Γγ
2 remains left-right

symmetric and that the lack of e3;4;5;6 simplifies the lattice.
Based on this lattice, we can gain the q expansion of the
model, which is now given by

Z¼ 2q0q̄−1þ 56q1=2q̄−1=2þ 208q−1=2q̄1=2þ 8q0q̄0

− 192q1=8q̄1=8þ 1280q1=4q̄1=4− 5632q1=2q̄1=2; ð8:27Þ

including all terms up to at most Oðq1=2Þ and Oðq̄1=2Þ. We
note again the presence of the proto-graviton term with the
correct factor and the presence of a constant term q0q̄0.
There was no model found with Nb ¼ Nf in a sample of
2.5 × 103 4 generation models. Integrating this expansion
over the fundamental domain of the modular group via
(6.41) gives the spacetime cosmological constant

ΛST ¼ 31.86 ×M4; ð8:28Þ

which was calculated to Oðq4q̄4Þ. As in the class A case,
this value is evaluated at the free fermionic self dual point in
moduli space. While some moduli are projected by the

asymmetric shifts, some of the geometric moduli remain
unfixed and require further analysis.

IX. CONCLUSION

In this paper we initiated the extension of the fermionic
Z2 × Z2 orbifold classification method to string vacua with
asymmetric boundary conditions. There are notable phe-
nomenological advantages for string models with asym-
metric boundary conditions, among them the stringy Higgs
doublet-triplet splitting mechanism [55] and the top-bottom
quark mass hierarchy [56]. Perhaps most notable is the fact
that asymmetric boundary conditions fix many of the
untwisted moduli by projecting out the moduli fields from
the massless spectrum [53]. In this respect we note that there
exist cases in which all the untwisted moduli are projected
out [53], as well as cases in which it has been argued the
string vacuum is entirely fixed, i.e., cases in which the
twisted, as well as the supersymmetric moduli are fixed
[76]. We note that from the point of view of the free
fermionic classification methodology, these cases are futile
because it entails that they are not compatible with any of
the ei vectors discussed in Sec. V. Our purpose here was
therefore to analyze configurations in which some, but not
all, of the moduli are fixed. This approach is particularly
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suited in the search for string vacua with positive cosmo-
logical constant, á la Refs. [59,60]. In these cases the
potential of some of the remaining unfixed moduli is
analyzed away from the self-dual point with the aim of
finding a vacuum state with a positive vacuum energy at a
stable minimum. Thus, whereas in the case of [59,60] the
other moduli are unfixed, in the case of vacua with
asymmetric boundary conditions the possibility exists of
finding such vacua in which the other moduli are fixed.
We would like to remark that the issue of dilaton

stabilization cannot be addressed in the perturbative heter-
otic-string limit that we have been analyzing in this paper.
Indeed, it is well known that in this limit the dilaton
potential exhibits a run away behavior [77]. Stabilization
of the dilaton potential at finite value therefore requires
utilization of nonperturbative effects. It is also known that in
the 11 dimensional supergravity limit ofM theory, the finite
value of the dilaton may be interpreted as the radius of an
extra dimension. For our purpose here, we note that the
dilaton may be stabilized at finite value by using the so-
called racetrack mechanism [78], in which gaugino con-
densation of two competing hidden sector gauge groups are
balanced against each other. We note from Eqs. (7.3) and
(8.3) that the hidden sectors in the models explored here do
indeed contain non-Abelian group factors with similar order
beta functions that are, in principle, suitable for implemen-
tation of the racetrack mechanism. Detailed analysis of
dilaton stabilization is beyond the scope of this paper, but
we note the more detailed implementation of the racetrack
mechanism in the context of string inspired phenomeno-
logical models [79].
We comment further here on the issue of physical

tachyonic states in the string spectrum. The models scanned
by the free fermionic classification method are analyzed at
the free fermionic point in the moduli space. At that point
the models presented are free of physical tachyons, which
are projected out by the GGSO projections. However, in
principle, it is not guaranteed that moving away from that in
the moduli scape will regenerate physical tachyonic states.
Two comments are in order. The first is that naively we
expect the free fermionic point to have the maximal number
of physical tachyons. The reason being that this is the most
symmetric point in the moduli space and the maximal
number of physical massless states are generated at this
point in the moduli space. Moving away from the free
fermionic point entails that some radii are increased from
their minimal value at the self-dual free fermionic point and
hence their contribution to the masses of the physical states
is increased. This argument is in fact in accordance with the
results presented in Refs. [59,60] which presented free
fermionic heterotic-string models that are tachyonic at the
free fermionic point but are tachyon-free when the moduli
are moved from that point.
In the classification of vacua with asymmetric boundary

conditions, there exist a variation in the pairings of the

holomorphic world sheet fermions. We presented a com-
plete classification of all the possible pairings, consistent
with modular invariance and world sheet supersymmetry,
and picked two of these choices for detailed classification.
We showed the existence of three generation quasi-realistic
models in the first case, whereas the second case did not
produce any three generation models. In both cases, the
incorporation of asymmetric boundary conditions was done
in a single basis vector, whereas the remaining basic set,
aside from the set of the ei basis vectors that are compatible
with the given pairings, were identical in the two cases. We
note that in principle this can be relaxed, e.g., by not
including the vector z1 in the basis, and that the three
generation model might be obtainable with this variation,
we leave such variations for future work. We note, however,
that the program initiated herein opens the door to the
systematic investigation of quasirealistic vacua that are
intrinsically nongeometric. We furthermore demonstrated
effective applications of SMT algorithms to the space of
free fermionic models under investigation. Not only do
they provide significant efficiency increases, as demon-
strated in Figs. 2 and 6, but they also allowed for immediate
evaluation of unsatisfiable constraints, such as proving the
absence of three generation models in class B.
Other than the systematic study of the one-loop potential

for asymmetric models mentioned as a key motivation for
this work, future work classifying standard-like models
(SLMs) with asymmetric boundary conditions is a natural
extension of this work. In that context the role of asym-
metric pairings in the (untwisted) doublet-triplet splitting
mechanism [55] will be evident, in a way it is not for the
FSU5 models studied here. The space of asymmetric SLMs
will be larger and phenomenologically viable models more
sparsely distributed, thus the application of SMT algo-
rithms could prove instrumental in effective searches of this
landscape. The analysis of Sec. V can be extended so that
the SMT can explicitly interpret phenomenological con-
straints as a function of all asymmetric pairings and provide
generic results, including no-go theorems, over a varied
space of models. It will furthermore be interesting to
explore different possibilities for how to implement the
asymmetric boundary conditions other than solely through
the SOð10Þ breaking vector as studied in this work.
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