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Motivated by Sen’s spacetime prescription for the construction of theories with self-dual field strengths,
we present a rigid superspace Lagrangian describing noninteracting tensor multiplets living on a stack of
MS5-branes and containing all the physical constraints on the fields, yielding the on-shell matching of the
degrees of freedom. The geometric superspace approach adopted here offers a natural realization of
superdiffeomorphisms and is particularly well suited for the coupling to supergravity. However, within this
formulation the (anti-)self-duality property of the 3-form field strengths is lost when the superspace
Lagrangian is trivially restricted to spacetime. We propose two main paths to address this issue: a first-order
superspace extension of Sen’s spacetime results, which, once trivially restricted to spacetime, yields all the
dynamical equations including the (anti-)self-duality constraint on the 3-form field strengths, and a possible
way to obtain a full superspace description of the theory, based on integral forms.
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I. INTRODUCTION

A long-standing problem in QFT and supergravity is the
construction of theories with self-dual field strengths.
Those theories are ubiquitous and, although several studies
have been carried out, a completely satisfactory formu-
lation is still missing.

The main problem can be summarized by the following
question: How does one define a consistent variational
principle such that the corresponding equations reproduce
the Euler-Lagrange equations of motion comprehensive of
the self-duality constraints?

This problem already appears in theories involving only
bosonic degrees of freedom (d.o.f.): in any (4n + 2)-
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dimensional model, one can consider (27)-form potentials
A" whose associated field strengths F(2"*1) are self-dual
or anti-self-dual (2n + 1)-forms F®+1) = £ F2r+1) with
respect to a given Hodge dual operator » defined on the
(4n + 2)-dimensional (pseudo-)Riemannian manifold. This
issue becomes particularly relevant for chiral supersym-
metric theories in (4n + 2) spacetime dimensions, where
the (anti-)self-dual field strengths are real, and the self-
duality constraint is required for the matching of the on-
shell degrees of freedom implied by supersymmetry (susy).

In all of these theories, however, a Lagrangian formu-
lation is problematic, since the kinetic term of self-dual
field strengths in D = (4n + 2) dimensions vanishes. An
example of such an issue is given by the tensor multiplet in
the chiral N = (4,0) (16 supercharges) theory in six
dimensions, which describes the world volume theory of
a single M5-brane. The multiplet contains a spinor A,
which—on-shell—propagates only 8 real degrees of free-
dom (the Dirac equation halving the spinorial degrees of
freedom). The odd degrees of freedom are paired with a
bosonic field content given by five real scalars ¢l48b and a
2-form B, whose field strength H®) is (anti-)self-dual,
thus carrying 3 real d.o.f. and allowing the matching of the
fermionic ones [1-5].

A Lagrangian description of these theories using uncon-
strained off-shell fields and implementing the self-duality
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constraint on-shell among the Euler-Lagrange constraints
would be desired.

However, the off-shell matching of degrees of freedom
in supersymmetric theories is in general problematic
for theories with eight supercharges or more, that is
for extended supergravities in four dimensions and for
higher-dimensional models (as in the case MS5-brane in
D =6 and higher).1 This makes the construction of an
action principle for path integral computations (for example
in localization methods) a very difficult task.

In the past, there have been several attempts to circum-
vent these problems (see for example the pioneering works
[6-8]), using different techniques such as non-Lorentz-
covariant formulation, infinite number of auxiliary fields,
and nonpolynomial actions (see for example [9-22]), each
of which has its own advantages and drawbacks. Among
them, it is worth mentioning the geometric superspace
approach developed in [23], where the self-duality con-
straint can be obtained on-shell from a superspace
Lagrangian. This was applied in particular in [24,25].
However, in this approach the self-duality constraint
emerges when analyzing the Euler-Lagrange equations in
the whole superspace, while the restriction to spacetime of
the superspace Lagrangian fails to be invariant and to yield,
among the field equations on spacetime, the self-duality
constraint. Nonetheless, a completely satisfactory formu-
lation was not available, until the recent works by Sen
[26,27], based on string field theory, rejuvenating the field
and prompting new developments [28—40]. A preliminary
remark is in order: although Sen’s formulation avoids all
problematic features of previous approaches, it has to deal
with a nonconventional realization of superdiffeomor-
phisms. This is justified by the string field theory approach,
but the analysis has been pursued only in the component
formalism. In addition, we have to recall that the derivation
discussed in [26,27] has only been carried out in weak
gravity approximation on a flat background and that a
complete supergravity analysis is still missing.

In the present work, we provide a superspace Lagrangian
whose Euler-Lagrange equations in superspace include the
self-duality constraint on the 3-form field strength and
whose restriction to spacetime, setting 6 = 0 = d6, is
globally invariant under supersymmetry, describing at
lowest order the world-volume theory of the MS5-brane.
On the other hand, the obtained theory can be considered
as a testing ground, where to advance proposals for
superspace prescriptions, implementing the self-duality

'Notice that sometimes the two problems, absence of auxiliary
fields and self-duality constraints, are the two faces of the same
medal. For example in the case of D =4 N =4 super-Yang-
Mills theory, the equations of motion are implemented by
requiring a self-dual condition in the R-symmetry indices of
the scalar superfields. The difficulties to implement this con-
straint as a variational principle are equivalent to the self-dual
field strengths.

constraint directly on spacetime, which will then be tested
in future works in cases of local supersymmetry.

Historically, there have been two ways to describe super-
symmetric theories or supergravities using a superspace
approach: a first Lagrangian method based on superfields
and superderivatives (see [41]) and a second method based
on the geometry of supermanifolds (see [23]). The latter is a
powerful framework for the formulation of supergravity and
rigid supersymmetric theories, often referred to as the
geometric, or rheonomic, approach. It has proven to be a
valuable asset in the construction of supersymmetric theo-
ries in various dimensions and degrees of supersymmetry,
providing a consistent formulation also in certain cases
where a spacetime action description was not available. In
this formalism, the full local symmetry structure of the
theory, including its supersymmetric properties, is encoded
in the formal definition of the superfield strengths and
their constrained parametrizations, which consist in
their expansion on a basis of the cotangent bundle of
superspace, generated by the vielbein V* and the gravitino
w* 1-superforms. The consistency between these paramet-
rizations and the Bianchi identities satisfied by the set of
field strengths, yields a number of constraints on the
superfields of the theory. These data encode, in an intrinsi-
cally geometric fashion, the supersymmetry transformation
rules and their closure on the fields of the model, modulo
local symmetry transformations. They also yield dynamical
equations and all other constraints, including the (anti-)self-
duality property of the chiral forms, allowing for the on-shell
matching of degrees of freedom.

The geometric approach has a further outcome, which is
the construction of a D-superform Lagrangian,2 on the
MPIN) superspace, whose Euler-Lagrange equations repro-
duce the aforementioned constraints on the fields, independ-
ently derived from the closure of the Bianchi identities. More
precisely, the same equations, restricted to spacetime, yield
the dynamical field equations, while their components along
the other directions of superspace encode further information
on the theory, related to the closure of supersymmetry
transformations on the local symmetries of the model.

As we shall see in the in the present work, and as shown in
earlier analyses, in the chiral models under consideration in
D = 4n + 2, the (anti-)self-duality condition on the field
strengths of the 2n-forms potentials, is enforced by compo-
nents of the Euler-Lagrange superspace constraints along
odd directions. As a consequence of this, the same con-
ditions, which represent the field equations for the 2n-forms,
do not follow from a spacetime action principle, provided
the spacetime Lagrangian is defined through the trivial
restriction of the superspace to spacetime, effected by setting
6 = 0 and d@ = 0. One of the aims of the present analysis is

*This Lagrangian is a bosonic D-superform, which can be
integrated over a bosonic D-dimensional hypersurface in super-
space, defining spacetime.
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to discuss this seeming drawback of the geometric formu-
lation, in the specific rigid toy model under consideration,
and to suggest possible equivalent definitions of the super-
Lagrangian, which yield, once restricted to spacetime, Sen’s
construction. This would provide a simple superspace
extension of the latter, paving the way for the interacting
and supergravity cases.

The two superspace approaches can be successfully
reformulated into a single framework of the integral forms
approach [42—47]. Given the rheonomic D-form Lagrangian
E(D)(CD, d®, V,y) written in terms of the fields @, of their
differentials d® and of the supervielbein (V¢, y*), one can
build an action by integrating it on the entire supermanifold
MPIV) to be indentified in this case with the world volume
of the M5-brane. This requires the integrand to be an
integrable form [42,48,49], which can be achieved by
representing the embedding of a bosonic D-dimensional
submanifold into the supermanifold MPIN) using the
Poincaré dual form Y(V) (where the second superscript
denotes the picture number [43,48], which must match
the fermionic dimension of the supermanifold). The inte-
grable form to be integrated is now L) (®,d®, V,y) A
YN and gives rise to a proper action, suitable for the
variational derivation of the equations of motion. By
changing the embedding, Y°¥) changes by exact terms
YOIN)  d¥ which are harmless if the Lagrangian is closed
dUD)(d), d®,V,y) = 0. In that case, the Euler-Lagrange
equations derived without considering Y(°V) coincide with
the equations arising from the variation of the action for any
choice of the embedding described. This means that any
choice of YOV) gives rise to the same equations of motion,
but with different manifest symmetries.

This is, however, not possible in the presently considered
case of six-dimensional tensor multiplets, and in theories
without auxiliary fields for off-shell supersymmetry, where
the rheonomic Lagrangian £<D)((I>,dd), V,y) fails to be
closed. This means that the Poincaré dual form cannot be
ignored and will project out some of the equations, as it
happens in the & = 0 = df case. More general embeddings
have been considered in [50], where two of the authors of
the present work proposed a method for writing an action,
starting from the geometric Lagrangian for the supersym-
metric chiral boson. We will discuss, inspired from that
result, the possible generalization of such procedure to the
case considered here, which will possibly make use of the
superspace Hodge dual operator defined in [46,50,51]. This
will be the object of a forthcoming publication.

As a concluding remark, let us add that the extension
of Sen’s approach in the presence of gravity, though
valuable, requires a rather involved derivation that appears
somewhat more contrived than in the rigid case. One of the
motivations of the present analysis is a superspace gener-
alization of Sen’s mechanism in presence of gravity, which
will be left to future endeavors.

The paper is organized as follows: In Sec. II we review
the fundamental concepts of the geometric approach, which
will be used in Sec. IIl, where we will introduce the
dynamical fields and perform the preliminary analysis of
the Bianchi identities, identifying the constraints that the
chosen fields have to satisfy on-shell and their supersym-
metry transformations. In the same section, we will also
present the £(°19) Lagrangian and discuss its features and its
trivial projection on spacetime. In Sec. IV we will introduce
a first prescription for modifying the geometric Lagrangian,
which yields Sen’s prescription, when trivially restricted to
spacetime. In Sec. V we will instead focus on alternative
ways of dealing with this problem, by considering non-
factorized integral form Lagrangians and nontrivial pro-
jections on spacetime.

II. LAGRANGIAN, ACTION,
AND SUPERSYMMETRY

In this short section, we review relevant aspects of the
geometric approach to supegravity.

A. Rheonomy in a nutshell

Usually there is a twofold way to obtain a geometric
formulation of the theory without using coordinates in
superspace but using only p-forms:

(i) an action principle formulated in a nonstandard way,
since the Lagrangian is not integrated on the full
supermanifold M(PV) but only on a D-dimensional
hypersurface embedded in superspace;

(i) a purely algebraic method based on the Bianchi
identities of the super-field strength 2-forms (to be
referred also to as supercurvature 2-forms) as de-
rived from the Maurer-Cartan equations of a Lie
superalgebra (or p-forms supercurvatures derived
from a free differential algebra).

In the latter case, one writes down expressions of the
curvature p-forms expanded along the p-dimensional basis
of supercotangent bundle (given by exterior products of the
bosonic and fermionic vielbein), which have to be compat-
ible with all the symmetries of the theory (Lorentz invariance,
scaling behavior, etc.). One then assumes the following
requirement: all the components of the curvatures along a
basis featuring at least one fermionic vielbein w* should be
expressed in terms of the supercurvature components along
the bosonic vielbein V4 A V%2 A ... A VP, These latter
components only have antisymmetric rigid bosonic indices
and, once expressed in terms of the spacetime differentials
(holonomic dual basis) are actually the so-called super-
covariant field strengths in the Noether approach.

Such a requirement is called rhenomy principle and
allows one to not introduce extra degrees of freedom in the
theory besides the physical ones. By requiring the closure
of the Bianchi identities of the parametrized curvatures, one
fixes the constant coefficients left undetermined. However,
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in all the theories where the number of bosonic and
fermionic degrees of freedom only matches on-shell, the
closure of the Bianchi identities also requires differential
constraints on the supercovariant field strengths, which are
nothing else than the equations of motion. Besides, one
often finds further constraints which cannot be seen in a
purely spacetime approach. Moreover, since the susy
transformations are Lie derivatives in superspace, which,
using the anholonomic parameter €%, can be written in
terms of the gauge transformations plus contraction of the
curvature terms, it is clear that the knowledge of the given
parametrization of the curvatures also determines the susy
transformations of the fields.

In the former case, the Lagrangian depends generically on
the superfields with the obvious constraint of respecting all
the symmetries of the theories and, most importantly, it is a
D-form, D being the dimension of the bosonic hypersurface
MP) of integration (representing spacetime), immersed in
superspace. This implies that the Euler-Lagrange equations
obtained by the variation of the D-form Lagrangian, which
generically are k-form equations, with k < D, can be
extended to the full superspace and can be analyzed along
all the basis elements of the D-dimensional cotangent space
spanned by different combinations of bosonic and fermionic
vielbein V¥, V&=ly, ... w*. In order for the Lagrangian
D-form to be independent of the embedding of M) in
superspace, it must be constructed only in terms of differ-
ential forms, exterior derivatives, and wedge products,
without using the spacetime Hodge operator. As a conse-
quence, the bosonic kinetic terms should be written in a first-
order formalism, by introducing suitable O-form auxiliary
fields.

It turns out that the analysis of the equations of motion
along V* gives dynamical equations for the supercovariant
field strengths, which must and do coincide with those
obtained from the Bianchi identities. By projecting these
equations along the dx*! A dx*2 A ... A dx#t k-forms, one
recovers the spacetime equations.

The analysis of the equations of motion obtained along
any basis featuring at least one w® gives instead linear
relations expressing the supercurvatures with one or more
“legs” along y in terms of the supercovariant field strengths
along V*. These are precisely the rheonomic conditions
required in the Bianchi identities approach. Therefore they
are not to be imposed, but come out as a consequence of the
Euler-Lagrange equations. Moreover one can also often
obtain further algebraic constraints on the supercovariant
curvatures that are not visible in a purely spacetime
approach. Actually, the best way to construct this geomet-
rical approach is to make use of the parametrization of the
curvatures in order to simplify the analysis of the equations
of motion of the Lagrangian.

Finally we observe that the invariance of the Lagrangian
under supersymmetry is already built in using the geomet-
rical approach: indeed if one performs the Lie derivative

1.d 4 di, along a supersymmetry tangent vector V= e*V,,
discarding the total derivative di L, one obtains that the
contraction on the y fields gives €, while the contraction of
the curvatures gives constraints on them which coincide
exactly with the rheonomic constraints as obtained from the
Lagrangian. This makes 1.dL = O identically, so that the
Lagrangian is invariant in all superspace (that is even if
evaluated on other hypersurface) and in particular on
spacetime.

B. Extension to the full superspace

To formulate a well-defined action principle in super-
space, it is desirable to extend the bosonic D-form
Lagrangian discussed above to a (D|N)-form to be inte-
grated over the full supermanifold M(PIV) where N is the
fermionic dimension. This requires using the integral-form
formalism introduced by some of the authors in [43,44] and
whose main ingredients are summarized in Appendix B. To
this end, we rename by E(D‘O)(q),dtb, V,y) the D-form
Lagrangian in superspace constructed along the lines
discussed above, and previously referred to as £(°). It is
a (D|0)-form depending on the dynamical fields of the
theory @, their differentials d®, and on the supervielbein
(Ve,w?), whose dynamics will not be addressed in this
paper. To perform the embedding of the bosonic submani-
fold M®) into MPIV) we first introduce the super-
Poincaré dual YO™: it is a nontrivial cocycle in
MPIN) and any variation of the embedding corresponds
to a trivial deformation, belonging to the same cohomology
class:

dYON) =0, YOIN) £ds(=1IN) - syOIN) —gr(=1IN), (2.1)

Notice that sometimes one can choose Y(N)

to respect
some symmetries manifestly: 5Y©¥) = 0. The details of
the structure of Y(W) are discussed in Sec. V and in
Appendix B. Further details can be found in the litera-
ture [52].

The forms X(~'™W) and T(-!") are (—1|N) forms which
can be written in terms of derivatives of Dirac deltas §(d@).
Requiring the vanishing of a generic variation of the
Lagrangian, §£°19)(®, d®, V,y) = 0, implies the Euler-
Lagrange equations of motion. In addition, we note that,
since L£(P19(d, d®, V, ) is not a top form in superspace,
its differential is in general not zero. On the contrary, the
requirement that d£(P10) (®,dD,V,) =0 is a strong
condition, which is known to be achieved in the presence
of auxiliary fields.

To build an action, we have to integrate E(D‘())(d),
d®,V,y) on the supermanifold and therefore we need
to convert it into an integral form £(P!N) (for more details
see Sec. V) as follows:

026010-4



M5-BRANE IN THE SUPERSPACE APPROACH

PHYS. REV. D 106, 026010 (2022)

LPO) (D, dD, V,y) — LPIN)

= LPO)(D,dd, V,y) A YOV, (2:2)

which is finally integrated on M (PIN)

S[®,d®,V,y]= / LPO)(D,dD,V,y) AYON) - (2.3)

M)

The variational equations obtained from S[®,d®,V,y]
have the generic form

68 = / oD
MO

Note that, in deriving (2.4), partial integration is allowed
since dY(®™W) = 0 and we get the equations

(D|0)
SLOM om).

(2.4)

S0

o0

(2.5)

on the supermanifold. If Y(°IV) has no kernel, we can remove

it and obtain the equations of motion on the full super-
manifold. In general, Y©") has a kernel and this implies that
there are further solutions to (2.5) besides the expected ones.

The most relevant aspect of the integral (2.3) is the
reparametrization invariance under all superdiffeomor-
phisms since it is a top integral form. This translates the
powerful technique used in general relativity: using differ-
ential forms and integration on top form, one has diffeo-
morphism invariant quantities. In particular, if we consider
those superdiffeomorphisms generated by an odd vector Q
we can represent the variation as a Lie derivative £, and
we get

0= 6,5 = / | LoD YO L0 5 £y
M(DIN)
= [ 1oL A YO 1 LODG YN, (26)
M)

Now, three things can happen:

(1) d£PI9 = 0. In this case the first term vanishes
leE(D‘O) =0, but also the second term is zero,
by integration by parts. It is a common lore, that this
can only happen if there are auxiliary fields and
using the rheonomic parametrizations satisfying the
Bianchi indentities. The latter, however, should not
impose the equations of motion, otherwise the action
is trivially invariant.

(2) LoYON = 0.1t means that the Poincaré dual Y(IV)
is manifestly invariant under supersymmetry and
this also implies

1pdLPI0 A YON) = gD (2.7)

which means that the action is manifestly invariant
under supersymmetry, up to a total derivative, in any
submanifold described by the Poincaré dual Y(©IV),
This is the powerful construction of superspace
actions as in [41]. Since YV) is manifestly invari-
ant, the action is manifestly invariant.

(3) 1pdLPI) A YON) = dR(é)_”m even in the case that
LY £ 0. This means that, even though YO is
not invariant under the supersymmetry, the Lagran-
gians can be invariant under supersymmetry on the
bosonic submanifold described by YN, By
Eq. (2.6) also the last term [ £P19d, YO should
vanish.

4) If YON) projects onto the spacetime (see Sec. V),
then Eq. (2.7) implies the supersymmetry on the
spacetime.

Note that Egs. (2.7) do not imply the equations of
motion, but only that the components of the curvatures
along the fermionic directions are expressed in terms of the
ones along the bosonic directions, following the principle
of rheonomy. This is the way in which the invariance of the
superspace Lagrangian is realized off-shell. On the other
hand, in general (and in the absence of auxiliary fields), the
closure of the Bianchi identities, that is the closure of
supersymmetry on the fields, also implies the equations of
motion, meaning that supersymmetry closes only on-shell.
Notice that the same happens on spacetime: the Lagrangian
is invariant off-shell, while the supersymmetry algebra
closes only on-shell on the fields.

III. THE GEOMETRIC SUPERSPACE
FORMULATION OF THE TENSOR
MULTIPLET IN RIGID (4,0) THEORY

The aim of this section is to analyze the main features of
a six-dimensional rigid tensor multiplet model on a flat
superspace background, in the chiral theory with USp(4)
R-symmetry. As stated in the Introduction, our construction
will be based on the geometric superspace approach [23],
where all the fields are promoted to form superfields in
superspace.

Before introducing the dynamical field content of our
theory, let us start by describing the flat six-dimensional
chiral superspace background, which can be found in the low
energy limit from a consistent truncation of 11-dimensional
supergravity. It is expressed in terms of the following fields:

(Va,l//A,B[AB]O,a)ab), (31)
where V¢ (a =0,1,...,5) is the vielbein 1-form, whose
bosonic component describes the flat coordinate frame of the
M5-brane, w4 = —I';y* is an antichiral gravitino 1-form
satisfying the pseudo-Majorana condition y* = CABCyt,
with A = 1,...,4 € USp(4), B“Eb are five 2-form connec-
tions [we denote by [AB], the irreducible traceless
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antisymmetric representation of USp(4)] and w®’ is the
SO(1, 5) Lorentz spin connection. They satisfy the following
equations defining the background:

R = dp* + wacwcb =0,

T¢ = pye — %szray/‘ —0,

1
ph=Dyt =dyt + o0yt =0,

HWBl = dBWBl —iq,CWy T yfhve =0,  (3.2)

with D denoting the Lorentz-covariant derivative. An explicit
expression of the supervielbein 1-forms in terms of the
coordinates (x, ) parametrizing rigid superspace, as is well
known, is given by

Ve = dx + %éAF“dQA,

yh = dot. (3.3)

Notice that the fermionic part of the gravitino supervielbein
can be chosen so that it only has components along the
fermionic directions, i.e., 1//,/2 =0, implying that when
spacetime is trivially embedded in superspace, ! = 0 and
do* = 0, the pullback of the gravitino vanishes. However,
there may be more general embeddings in which this does not
happen.

The spacetime field content of the six-dimensional tensor
supermultiplet is given by

(B 2a- Piam,)’ (3.4)

where B! =JBl,dx* Adx” (I=1,...,n) are n 2-form
connections whose field strengths must satisfy an on-shell

anti-self-duality condition on spacetime, q’)‘[’ A8), =¢h,

(with I =1,...,n) are 5n scalars, and A, = +T;2} are n
chiral spin-1/2 fields, satisfying the pseudo-Majorana
condition 24 =—C,zC(2'?)". Furthermore, ,v =0,...,5
denote curved spacetime indices. For the complete set of
our definitions and conventions see Appendix A.

A. Bianchi identities in superspace and
supersymmetry variations of the fields

The theory under consideration is based on a free
differential algebra [23], where the supercurvatures of
the dynamical fields are defined in superspace as follows:

H!' = dB! + ia,¢% CA% T B Ve, (3.5)
1

Dﬂg = d/11]4 + Za)ahyablll s (36)

Ply=ddhy. (3.7)

Imposing the cohomological condition d> =0 on the
formal definitions (3.5), (3.6), (3.7), one obtains the
following Bianchi identities:

0 = dH' — ia,dg, s CACH Ty Ve
+ 2iay ppCr G AT pP Ve —iay P CH TP T

= dH! —ia,d¢p}, ;CAp T P Ve, (3.8)

1
0= D, - ZRahrab,v, (3.9)
0= DPL, = d¢l,. (3.10)

where, in deriving Eq. (3.8), we have used the Fierz identity
(A20) and the expressions (3.2) for the background fields.
The Bianchi identities (3.8)—(3.10) are consistency state-
ments on the formal definitions of the dynamical field
strengths. However, they become nontrivial relations among
the dynamical degrees of freedom of the theory if we require
them to hold in superspace according to the principle of
rheonomy, that is if we endow the field strengths
H'!, D2}, ¢!, with an explicit expansion on a basis of the
cotangent bundle of superspace. The latter consists on
requiring the various components along basis elements
including odd directions to be algebraic functions (in
particular, linear tensor combinations) of the ones along
entirely bosonic directions. This is what was named rheo-
nomic parametrization in [23]. Besides, the closure of the
Bianchi identities (3.8)—(3.10) also implies the same equa-
tions of motion that will be derived from the Lagrangian in
Sec. III B. The rheonomic parametrization reads

H' = H!, vevbve + b CABy, T, AL veve,  (3.11)
DM = D, ve + b,P!, B’aF“z;/B
+ by H, Ty Cyp, (3.12)
Php =Py V' + Wy, . (3.13)
where
1 . i
bl =—da, b2 = —21, b'; (314)

4 37 2a,
The value of a; is fixed by the choice of normalization of the
2-form B! and we will choose it to be a; = % The fields
H!, . P}y, are usually referred to as the supercovariant
field strengths.

Besides implying the equations of motion, the consis-
tency of the rheonomic parametrizations (3.12) with the
Bianchi identities (3.8)—(3.10) also requires the anti-self-
duality constraint

HI

1
abe = —6€abcdefH”d€f-

(3.15)

This condition is necessary for the correct on-shell match-
ing of bosonic and fermionic degrees of freedom and in this
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framework it is not to be imposed by hand, as it follows
from the closure of the Bianchi identities in superspace. In
particular, it emerges from the sector with two fermionic
directions of (3.8). This sector yields equations which are
equivalent to imposing the closure of supersymmetry
transformations on the fields. It is important to emphasize
that this condition does not follow from the spacetime
components of the Bianchi identitites alone, once the
parametrization of the supercurvatures is chosen.

From (3.6) and (3.12), one can derive the supersymmetry
transformations of the fields, as Lie derivatives along the
fermionic directions of superspace

5€B[ = bICABéAFabﬂgVaVb - Zial¢gCCAC€‘AFal/]8V‘Z,
Io) /12 = bQP.ilB aF“SB + b3H2hCFabC€BCAB,
5Pl = €l . (3.16)

which, on spacetime, after defining
|

L£600) — a (me

50{1
2

- 1/7[,4/12]0);’ 4epVPler € o fCACCBP —

1
Hip VVIVe) =5 6ﬂBf,/,dx”dx”dx/’ = —H,’w/,dx”dx”dx/’
P i\Bﬂva‘s.t. = aﬂ¢AB

being there /i = 0, reduce to

8B, = 2b,C*Be,T,, 2%,

e uy
b
Sk = by, sTeB + 33 9,B!,T#7eBCp,

Setbhs = Ell. - (3.17)

B. The superspace Lagrangian and its
spacetime projection
The geometric approach allows one to derive the
following (6/0)-form Lagrangian in superspace, to be
integrated on a suitably chosen bosonic submanifold, as
previously mentioned. The Lagrangian reads

12P1143 ZPICDVadeefeabcdefCACCBD

_ 1 _
+ —PAB <’1114rab1//3 VcdefeathEf + g ¢ICDCDAWBrabc1//CVabC>

1 - O
+ 4001 (HI _ g l/_/AFlm)/A Vlm) H;zbc Vdefeabcdef _ alH{mnHémn Vadeefeabcdef

— 30(11

10(1

50{1

where V@%@ -4 =Va A V2 A oA V% The fields
P4, 5, H!, . are auxiliary and will ultimately be identified,
through their equations of motion, with the corresponding
supercovariant field strengths P9, ,, H!, = appearing in the
superspace parametrizations (3.12) of the supercurvatures.
They provide a first-order description of the kinetic terms of
the corresponding bosonic superfields. This is needed in the
present framework, being our Lagrangian a bosonic 6-form
immersed in the cotangent space of M (©1%) superspace, in
order to avoid the use of the Hodge operator, which is not
well defined in this case. Note, however, that, using the
approach of integral forms, one can define, in a consistent
way, the notion of a Hodge-duality operator in superspace.

Moreover, the parameter «; represents an overall normali-
zation of the Lagrangian: we fix it as a; = — ﬁ in order to
have a canonically normalized kinetic term for the scalar
fields, when the Lagrangian is projected on spacetime.

The spacetime Lagrangian is considerably simpler and
reads

3
/1 FabcllBl//CFdWD Vabcd <CABCCD 5 CAD CBC) ,

H (2T pp* VO + dighyapp T o2 V)

S5i,
2 — AT <D/1A VPedel ey ger + = 5 ATy By, bcd>

(3.18)
[
s.t 1 IAB 3 1732374
L = Zaﬂ¢ aqul,AB +Za[/lBl//I]a B
i-
+ gﬂ’AF”D”A,A> d6x
— 1 0 IABau 1 HI HIMV/)
=\z N drap+ 1 tuwe
i-
+ gl’AF"DM,A) dSx. (3.19)

The spacetime Lagrangian is a free Lagrangian for the
noninteracting fields of the supermultiplet and it is invariant
under the supersymmetry transformation in (3.17) up to a
total derivative:

8.L5% = 9,K*dCx, (3.20)

with
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17 1-
K+ = Z <MAFVF”€Bau¢IAB _Z/%FMTI—WGAapB]M) ) (3.21)

Off-shell invariance of the spacetime Lagrangian under
supersymmetry implies the presence of a conserved
Noether current, which reads

1 1
T4 =— irﬂrm’BaﬂrﬁAm + grf"’fr%ame,. (3.22)

One can see that it is indeed conserved d,J% = 0, upon
the use of the equations of motion. Notice that this
invariance property does not require the anti-self-duality
condition on the tensor field strengths, which is, however,
necessary for closure of supersymmetry on the fields
and thus on the Lagrangian. Indeed, the spacetime
Lagrangian (3.19) depends on both the self-dual and the
anti-self-dual parts of a[ﬂBi ol but the self-dual component

only enters the supersymmetry variation of (3.19) in the
total derivative term (3.20). However, the equations of
motion involve both the self-dual and the anti-self-dual
parts of ‘)[;43,50]’ thus leading to unmatched propagating

degrees of freedom.

We emphasize that in the geometric approach pursued in
the present paper, the anti-self-duality condition is not
imposed by hand, but follows from the closure of the
Bianchi identities, and also, independently, from the Euler-
Lagrange equations in superspace derived from the super-
space Lagrangian 6-form (3.18), along the fermionic
directions of superspace. This is an instance of the general
property that the Euler-Lagrange equations in superspace
encode far more information than their restriction to
spacetime.

Let us conclude this section by listing the Euler-
Lagrange equations coming from the Lagrangian (3.18),
which are tensorial form equations in superspace, with a
short account of their implications in both even and odd
directions.

The components along the bosonic vielbein V¢ give the
standard field equations of the dynamical fields on space-
time, whereas the components along directions including at
least one odd vielbein 1//A are constraints, some of which are
Fierz identities among the spinorial fields, that are iden-
tically satisfied, while the rest are constraints on the field
strengths of the dynamical fields that have to be satisfied
on-shell, among which the anti-self-duality condition
(3.15) on the supercovariant field strength of the 2-form
potential. The constraints resulting from the Bianchi
identities are in agreement with the Euler-Lagrange equa-
tions in superspace.

1. The equations of motion of the auxiliary fields

The equations of motion for A!, and P}, , imply the
following identifications:

gl gl
Habc - Habc’

Pﬁ&B,a = P,IAB,a' (3-23)

2. Equations of motion of B!

The equations of motion for the field B! are

— 40dH VI € 41y = 60iH >y Ty AV € e r

+ 30(DAyaT apyrp) VP CAE (3.24)

= 30i(Aalapr) (W Ty €) VPCHE
+ 120idep 45 (P T op® )V
— 606145 (" T op®) (prc Ty €) = 0.

(i) The sector V* gives
g

o“H!

le=0=0'H!, =0. (3.25)
The above equation, which matches what one would
obtain from the Bianchi identities, describes the
dynamics of B'.

(ii) The sector y/V? relates the spinorial derivative of the
supercovariant field strength with the spacetime

derivative of the spinor field

- 1
VBHibE - —gr[ach]ﬂg, (326)

where the spinorial derivative V, is defined as
d = V49, + y"V,,. This result once again coincides
with the one coming from the Bianchi identities once
we impose the anti-self-duality condition (3.15).

(iii) The sector y?V? gives a relation between terms
containing H’,  which is satisfied only if the anti-
self-duality condition on H’

abc

H(I/lbL‘ = _geabcdefH]‘dEf (327)

holds.

(iv) The sector >V is automatically satisfied due to
Fierz identities among the spinors.

(v) The sector y* leads to

brap(F Tay®) (@ cTyC) =0, (3.28)

which vanishes thanks to the Fierz identity (A20).
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3. Equations of motion of Ay,
. s i .
—ypPlp, Vbede] €abcdefCACCBD + 5CABL .y g H ?h‘ yimdef €abedes — 30H Ly Ver — 51“01),1;‘ Vbedef €abcdef

5 _ 5
+ 3 T (g ey E) Vel € e — 3 CEAT " PripV caepe®cde!

_ 5 15 15
+ FabcllB (WCFdl//D) Vabcd _ 5 CAB@CD + ? CACCBD _ ? CAD@BC

5
+ ZFa/IBI(l/_/CFbch/D)VadeCACCBD =0. (3.29)

(i) The sector V leads to the equations of motion for the spin-1/2 field A} as expected
it =0. (3.30)

(ii) The sector V> again leads to an identity that can only be satisfied if H’,, is anti-self-dual.
(iii) The sector y?V* is identically satisfied with the given coefficients, due to Fierz identities.

4. Equations of motion of ¢,

5i

- dp ‘(Z?D1Vb6dgf eabcdefCACCBD - 5 P aCDI(l/_/EFb’//E)VCdef €abcdefCACCBD

+ 201 Ty o) HPP VIl € pegop + 15 (@AT o) (A Capyr ) V' CEF
—+ 60i(l/_/[AF[V/B]O)¢IEF(U_/EFQWF) Vla _ 120iHI (U—/[AFaWB]O ) L

5 ]
_ E (’D,{EAFawa]o ) Vcdefeabcdef + Si(ABAFabV/B]O) (l/_/EFcV/E) Vdefeadeef

+ 40iP;pc(FAT e ) VL CEOP 1 30¢h 1 (WPT gpetpr'®) (T 4y 1) VECICil = .

(i) The sector V% leads to the Klein-Gordon equation
for the scalar field
gl = 0. (3.32)
(ii) The sector V> yields the following relation be-
tween the spinorial derivative of PL,, and the
spacetime derivative of A}

VPl = =5

D (3.33)

lo”

(iii) The sector w?V*, as it happened for the other
equations of motion, can only be satisfied if
(3.15) holds.

(iv) The sectors y>V? and w*V? are satisfied thanks to
Fierz identities.

IV. RETRIEVING SEN’S LAGRANGIAN
AND ITS SUPERSPACE EXTENSION

The main goal of the present investigation is the
construction of an M5-brane, noninteracting Lagrangian
in superspace which would yield, when restricted to

(3.31)

spacetime, the description given by Sen of the same
physical system (see also [30]). In fact this theory is
chosen as a simplified model in order to devise a more
general prescription for achieving an extension of Sen’s
description of chiral forms to superspace. The aim of this
section is therefore to modify the superspace Lagrangian
6-form (3.18) so that:

(1) Once restricted to spacetime, it yields Sen’s descrip-
tion of the same system (or an equivalent version
of it).

(2) Its Euler-Lagrange equations in superspace give the
superspace constraints (rheonomic) for the physical
fields, besides yielding the supercovariant equations
of motion in spacetime.

To attain points 1 and 2 above, it is useful to rewrite the
Lagrangian 6-form in (3.18) in the following, more
compact, way:

U 8
L£O0) = (dB' + 7"y A *H, — EH’ A H,

+dB! A Z, + £8(@), (4.1)
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where we have generically denoted by ® the scalar and

spin-1/2 fields, so that £1(6|0) (@) does not depend either on
the 2-form or on H,,;,.. Moreover we have defined:

A =H, Ve AV AVE,
7l = 71(®)
1- i _
= gﬂgraby/AV“ AVP 4+ Eqﬁﬁ,BwAFawBV“. (4.2)
From Egs. (3.5) and (3.11), we find (when the Bianchi
identities in superspace are satisfied):
dB, +Z;, = H; = H,;,;,,V* A VP A VE, (4.3)
and the Bianchi identities in superspace imply the anti-self-
duality (3.15) of H', . Itis straightforward to verify that the

abc
Euler-Lagrange equations for 4, and for B read

H]:dB[+ZIZH1, (44)

0=d(*H + Z). (4.5)
The last equation is satisfied using the first one, Eq. (4.3),
and the anti-self-duality of H’. The variation of £©l% with
respect to the other fields @ yields:

8oL = —547, A [2H! — Z1] + 5,£%7,  (4.6)
where 0¢Z; = %6@. Our theory is noninteracting since
Z;, having only components along ywV and yy, vanishes
when restricted to spacetime (0 = 0 = d).

Before setting out to extend Sen’s prescription to super-
space in order to formulate a Lagrangian 6-superform
satisfying the above points 1 and 2, we wish to first review
the construction by Sen in a specific class of bosonic
theories describing chiral forms on spacetime, and suggest
an equivalent first-order formulation which will be instru-
mental for our purposes. The reason for this, which we
anticipate here, is that Sen’s prescription requires the
introduction of new fields P/ which appear in the
Lagrangian in terms of the form dP’ A *dP;. A straight
superspace extension of these terms requires a consistent
definition of the Hodge operator * in superspace, which
was achieved within the framework of integral forms
[43,44,53]. This formulation of the problem will be
discussed in the last section. In the present section we
wish to follow a different route. The definition of a Hodge
duality operator, which seems to be necessary in order to
write the kinetic term of the bosonic fields P!, can be
eluded by introducing a O-form tensor field as is usual in the
first-order approach to the kinetic terms. This is indeed
what we did in writing the kinetic terms of the 2-form B;
and of the scalar fields ¢ng] in the Lagrangian of the

(noninteracting) M5-brane in Sec. III. It follows that a
possible way of extending Sen’s construction to superspace
is to change the corresponding Lagrangian into a com-
pletely equivalent one, albeit the duality operator is
replaced by a first-order formulation.

A. Review of Sen’s construction
and its first-order formulation

Let us review Sen’s prescription for a particular bosonic
theory in a (4n 4+ 2)-dimensional spacetime, describing
chiral (2n)-forms B; whose field strengths

H] = dB] + Y], (47)

are required to be anti-self-dual,
H I = —*H I

An example of a model of this kind is that of Type IIB
theory in which the metric is frozen to be flat and the
fermionic fields are set to zero, which is discussed in the
first part of [26]. In that case, n = 2 and there is just one
chiral 4-form B and ¥ = B A FO). As opposed to the
type IIB example discussed in [26], here we require the
corresponding field strengths to be anti-self-dual instead of
self-dual.

Let us now consider the following class of (4n + 2)-form
spacetime Lagrangians:

- 1~ -
,C:(dBI+Y[)/\*HI—EHI/\*HI—f—dBl/\Y[

+ L;(®), (4.8)

which includes our bosonic model for » = 1. Furthermore,
note the formal analogy between the above Lagrangian and
the one in (4.1). The difference, however, is that the
Lagrangian in (4.1) is a 6-form in superspace and Z; are
superspace-3-forms with vanishing spacetime restriction.
Nevertheless this formal analogy will guide us in the next
section in formulating a superspace Lagrangian for our
supersymmetric model meeting the requirements 1 and
2 above.

Applied to a Lagrangian of the form (4.8), Sen’s
prescription would yield

L=- %dP’ AP+ (dPT+ Y)Y A Q) —%Y’ A*Y,
+ L3Y(D), (4.9)

where
QL=0Q' , VEAVE AVE=—0L  (4.10)

is an auxiliary anti-self-dual (2n + 1)-form, and P’ new
2n-forms. Let us mention that, in this subsection, since we
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consider a purely bosonic theory in flat spacetime, we work
with the bosonic vielbein V¢ = dx“. Note that the kinetic
terms for the P! fields have the wrong sign.” The field
equations read [26]

5L
@zo@m(dpwyl) =0, (4.11)
5L

=0 d(*dP' + QL) =0, (4.12)

oP
where we denote by P the projectors to the self- and anti-
self-dual components of a (2n + 1)-form, respectively.
Equations (4.12) are solved by equating *dP’ + Q to an
exact form. It is useful to choose the latter in the following
two equivalent ways:

—dP! 4 *dP! + QL = 2d=!, (4.13)

dP! +*dP" + Q! = 2dEL. (4.14)

where we have introduced two sets of forms Ef, Z! related
as follows: Zf = &1 — P!. From Eq. (4.13) it follows that
P, (dZ]) = 0= d&l = —dE] = d'dE! =0,
namely the forms Z! are free and decouple from all the
other fields. The forms Eé on the other hand, are

interacting and can be identified with the physical forms
B'. Indeed from Egs. (4.14) and (4.11) we find

P.(d5}) = P, (dP') = P, (¥') = P, (dZ} + V) =0,
(4.15)

and

I
pazi+ ) =L P (). (@1
Upon identifying B/ = Z1 and the corresponding field
strength H' as

H' =dB' +Y!, (4.17)
and using (4.15), we find
2H! =2P_(H!) = QL 4+ 2P_(Y"), (4.18)

which corresponds to Eq. (3.16) of [26]. Then, computing

the variation of £ with respect to the other fields ®, one
finds

FRecall that we are using the “mostly minus” convention and
%w@) N w3 :%ﬂa)ubcw”b”d%, where 0®) =Lw,, . VEAVEAVE

=3
and d®x = — LV A V%,

6! 6"

SoL = =60, A [QL — Y] + 8oL

= —6oY; A 2H! = Y] + 6oL, (4.19)
which coincides with the corresponding variation of the
Lagrangian £ in (4.8), once one passes to second order for
H', expressing it in terms of H’' [see the analogous
Eq. (4.4)] which, as shown in (4.18), is anti-self-dual.

As discussed above, here we wish to rewrite the kinetic
terms for the P; fields in (4.9) in an equivalent first-order
form which will be instrumental to the application, in the
next subsection, of an appropriate extension of Sen’s
construction to the superspace Lagrangian (4.1). To this
end, we introduce the following auxiliary fields:

H' =H! Vi AVEAVE,

abc

HL =0, V' AVE AVE=—H  (4.20)

and write the following Lagrangian (4n + 2)-form in
spacetime which, as we are going to show in the following,
is the first-order formulation of Sen’s Lagrangian (4.9):

L'=—(dP;+Y,) NH + H' A Hi_+ Y, A HL
+ L) (4.21)

We wish to prove that £’ is equivalent to Z. To this end we
compute the field equations from £, which read

5—Z’—O©dP1+Y’—I:II (4.22)
SH' T '
oL "
ST 0o P (H)=-P. (Y, (4.23)
oL "
spr =0 d(A") =0. (4.24)
Equation (4.22) clearly implies that
P.(dP'+Y))=0, P_(dP'+Y))=H.. (4.25)

Equation (4.24) is, as usual, solved by equating A’ to exact

forms, namely by introducing a new set of forms =/ and

setting

H =d=' & P_(H)=-P (A") +d& =P (Y") +d&/,
(4.26)

where we have used (4.23). From the above relations
we find

P_(d&") = P_(H"), P.(dE' +Y")=0. (4.27)

We now define the following sets of fields:
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pl—=!
2 k)

BIE s P:

(4.28)

where B! are the physical forms. From the second of
Eqgs. (4.27) and the first of Egs. (4.25) it follows that
H'=dB' + Y = P_(H"), P.(dP") =0. (4.29)
From this we conclude that the 2n-forms P’ are free. They
indeed coincide with the fields -2/ = P! — B introduced
earlier in Eq. (4.13). Equation (4.22), the second of
Egs. (4.25), and the first of Egs. (4.27), on the other hand,
allow us to write
2H' = H. + P_(H' +Y"). (4.30)
Comparing the above equation with (4.18) we derive the
following relation between the auxiliary fields of the
original second-order Lagrangian description and the ones
in the present first-order formulation:
oL =H. +P_(A' -Y"). (4.31)

Finally let us compute the variation of the Lagrangian with
respect to @:

Sl = —64Y; A [HL + H'| 4 6oL,

= _5(I)Y[ A [2HI —_ YI] + (3<D£l‘S[, (432)
where we have used (4.30) and (4.23). We see that 5¢Z’ =
5¢Z once the auxiliary fields are expressed in terms of the
dynamical ones.

Let us now comment on the off-shell equivalence
between £ and L. The first-order formulation of L is
effected by introducing two new sets of auxiliary fields A~
and P (A'). The equation of the former is (4.23), while the
equation of the latter is

P_(dP' +Y') = AL (4.33)
Eliminating these extra auxiliary fields using their equa-
tions of motion (4.23) and (4.33), and relating P_(H’) to
QL through (4.31),
QL =H. +P_(AH' =Y =P_(H' +dP"), (4.34)
the reader can derive £ from £'.* We therefore conclude
that the Lagrangians L and L' are equivalent.

“Note that the relation between Sen’s auxiliary field Q” and
the one coming from our first-order formulation, H', is coho-
mologically nontrivial, since their difference is not exact.

B. Extending Sen’s construction to superspace

In this section, we shall use the general first-order
expression of (4.21) as inspiration in order to devise a
Lagrangian 6-superform L, equivalent to the superspace
Lagrangian (3.18), describing the noninteracting M5-brane
and satisfying points 1 and 2 outlined earlier.

Let us first give some definitions. Writing a generic
3-form in superspace as

Q=00 4 Q1 4 Q12) 4 Q03),

where the four terms on the right-hand side are the
components of Q along VVV,VVy, Vyy, wyy, respec-
tively, let us define the action of operators [P’”ibc on a
3-superform Q in superspace as the projections of the only
(3,0) component of Q into its self- and anti-self-dual
components, respectively, leaving all other superspace
components of € unaltered. The equation

P4be(Q) =0
1
& (va AVEAVEF gedef“’%‘(vd AV, A Vf)> AQ=0

(4.35)

therefore implies that the self- or anti-self-dual part of

QB0 respectively, vanish, while the other superspace
components of the same form must vanish separately:

Pabe(Q) =0
Py (Q(S'O)) = % (Qabc j:%eabcefggefg) VIAVEAVE = 0,
Q12) — 1) — 03) _q.
(4.36)

We now introduce the following set of auxiliary fields in
superspace:

A = A + AR, a ., = _gea,,cdefﬁ’_d"f . (437)

Let us define, for notational convenience, H' =
H',, VEAVPAVE, so that HL=—H! ie., P, (H.)=0,
P, being defined on (3,0) components of 3-forms as
in (4.36).

Differently from the previously described spacetime
description, H' is now a superfield with (3,0) components
A’ and (1,2), (2,1), and (0,3) components encoded in AH".

Let us write the Lagrangian 6-form in superspace of the
same general expression (4.21), namely as follows:
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L=—(dP;+Z)AH +H, AL +Z, AHL) + L(D),
(4.38)

where Z; = Z;(®) are given by (4.2).
Let us now compute the field equations in superspace:

L .
=0edPl+ 27 = A",

ST (4.39)
S 3
ST 0 e PYeH!'+ 7)) =0, (4.40)
—abc
5L -
ﬁ:0©dH1:0. (4.41)

Equation (4.39) implies that dP! + Z/, being equal to A”,
is a (3,0)-form. It therefore makes sense to compute on
them the projectors P, defined in (4.36), so that we have
P (dP'+Z")=0, P_(dP'+Z")=P_(H"). (4.42)
We solve equation (4.41) by equating H’ to exact forms in
superspace:

A =d=/ e P_(A") = -P (H") - AH' +d=!. (4.43)
Equation (4.40) implies
P, (A =0, AR =-7, (4.44)

since Z! have vanishing (3,0) components. From this and
applying P to both sides of Eq. (4.43), we find

Pebe(dz! — H') = 0. (4.45)
The above condition trivially follows from d=/ — H’ being
everywhere zero. In particular the (2,1), (1,2), (0,3)
components of d=/ — H' vanish and thus we can define
on them the action of P_:

P,(dE' 4+ Z") =0. (4.46)

In general we can write, using (4.43) and (4.44), the
following relations:

d=! + 7! = P_(H"). (4.47)
Using (4.39) and (4.47) we find
P.(dB'+Z") =0, P.(dP') =0, (4.48)

where, as usual, we have defined B/ = (PI + &/ )/2,
P! = (P! — E!)/2. In the above equations the action of P,
is well defined being both dB! + Z! and dP’ (3,0)-forms.

The last of the above equations implies that P! is a free
field. Finally, from (4.41) and (4.39) we find an expression
for the supercovariant field strengths of B’:

1, . .
H' =dB'+ 7' =P_(H") = E(H’_ +P_(H"). (4.49)
Let us now consider the equations for the other fields ®:

Sl = —80Z; A [HL + H'| + 6oL;.  (4.50)

Using Eqgs. (4.49) and (4.44) we can rewrite the above
variation in the form:

Sol = =607, A 2H' = Z'| + 80 L;. (4.51)

which coincides with (4.6). Equations (4.49) and (4.51)

imply that the Euler Lagrange equations derived from £ are
equivalent, as far as the physical sector of the theory
(consisting of By, ¢!z, 4,) is concerned, with those
obtained from L, so that condition 1 is satisfied. Once
restricted to spacetime, L reduces to L' (though with
Y! = 0°) which is equivalent to Sen’s spacetime description
of the same model. This implies that also condition 2 is
fulfilled.

Let us comment on the nonphysical sector which
decouples from the other fields and which consists of
the free fields P’. From Egs. (4.43) and (4.44) we find

. 1.
dP = H" = 5(H’_ - P_(AY).

(4.52)

The above equations imply that P’ are singlets with respect
to supersymmetry transformations on spacetime:

5513]|9:0:d9 =1 H! = 0.

This is consistent with the analysis of [30] where it was
found that the free 2-form is a singlet under supersymmetry.

Supersymmetry of the Lagrangian on spacetime is easily
verified by restricting L to spacetime and then using the
relations (4.34) to reduce it to the Lagrangian L in Eq. (4.9)
(with Y/ =0). The latter is equivalent to the free
Lagrangian discussed in [30]. The supersymmetry trans-
formation of Q' can be deduced from Egs. (4.34) and
(4.49):

SWe emphasize here that the general construction discussed in
the present subsection can, in principle, be applied also to rigid
supersymmetric, interacting theories in different dimensions in
which the forms Z; have a spacetime component Y.
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5.0L = 6,0 +P_(6.H") =2P_(5.H")
1 1
= g CAB (éAFabdcﬂg — geabcdeféAFdeaf/1§> \%

AVEAVE, (4.53)

where

_ 1 _
5€H{1hc = €AvAH£hC = gCABeAF[abac]/I%'

As for the P! fields we have, using §,P' =0 and
Egs. (3.17), that

. 1 ~
S.Pl, = 6B, + 6P, = 6.Bl, =—C*%,I, 5.

1 (4.54)

The supersymmetry variations of A4 and ¢, are given
in (3.17).

The fact that P’ do not participate in the supersymmetric
picture (being supersymmetry singlets) was to be expected
since, in the presence of these fields, the on-shell matching
of bosonic and fermionic degrees of freedom does not hold.
Related to this is the failure of an ordinary rheonomic
description for P/. One could try to derive a consistent
supersymmetric description of these fields by resorting to a
form of nonlinear supersymmetry. Such a construction
would however apply to an unphysical sector which
decouples from the physical one and therefore we shall
refrain from further dwelling on this issue in the present
work, leaving this analysis to a future investigation.

As a final remark, let us notice that this first-order
superspace description cannot be turned into a second-
order one as for bosonic theories, because this would
require the notion of the Hodge dual in superspace, which
is only defined in the integral forms framework.

We have thus put forward a consistent proposal for a
superspace extension of Sen’s prescription.

V. TOWARD A FULL DESCRIPTION
WITH INTEGRAL FORMS

In (3.18) we introduced the rheonomic Lagrangian as a
(6]0)-superform L£10) € Q0)(A(6110)) The spacetime
manifold M(©) = Msi‘dlﬁ) coincides with the reduced
manifold (or base manifold) and we denote with i the
embedding map

iv MO - A6I16), (5.1)
Vice versa, we can dualize (5.1) to study the pullback of
functions from the supermanifold to the reduced one, or, in
general, of forms from the supermanifold to its base as

i1 QO (MOI16)) S QO (A106), (5.2)

so that we obtain a fop form on the base manifold which can
be consistently integrated to define an action:

g_ / i £(610)
MO s p(6116)

Now, we can then lift the Lagrangian to be a top form
on the supermanifold by means of what is known in
supergeometry as a picture changing operator (PCO)
Y©l0); the latter maps superforms into top forms, which
are knowns as integral forms. The PCO is the Poincaré
dual of the embedding (5.1) and it can be realized as a
multiplicative operator which localizes on the reduced
manifold. For example, we can write the trivial embedding

(5.3)

it MO - Aq(6]16)

(.Xo,...,xS)l—) (Xo,...,XS,O,...,O), (54)
which corresponds to a PCO that projects on the locus
0 =0=d6", Ya=0,...,16. Namely, we have

YOI — g1 0165(d0") A ... A 5(d6'6),  (5.5)

where the subscript “s.t.” indicates that (5.5) projects on the
spacetime. The action corresponding to the trivial embed-
ding (5.4) is then written as

S = £610) A yOl1e) — £t (5.6)
M(6116) M)

where £5% was introduced in (3.19) and we are left with the
integration on the base (bosonic) manifold. vﬁﬂ‘_m), as a
Poincaré dual, is a cohomology representative (with respect
to the de Rham differential) living in H©/'®)(A([16) q),
Changing the representative corresponds to the choice of
different embeddings of the reduced manifold and, dually,
it corresponds to adding d-exact terms to the PCO:

Y'Y s yione) — 10y gs-ie) (5.7

where we consider negative-degree integral forms because
of the unboudedness of the integral form complex (see, e.g.,
Appendix B).

In general, the action will be independent of the choice of
representative if £ is closed: given two PCOs Y(/1®) and
Y/ O116) g ¢ y(Ol16) _ y7(016) — g5:(=1116) ' e have

S’:/ £(60) A y/(0116)
M6l16)
_ / L0600 p (y(0116) 4 g3 (-1116))
M (6]16)
_ / £(60) 5 y/(0116) _ / AL A s116) 4 p .
M1 M)

—S—/ dL®l0) A X110 4 g (5.8)
A (6116)

026010-14



M5-BRANE IN THE SUPERSPACE APPROACH

PHYS. REV. D 106, 026010 (2022)

where with “b.t.” we denote boundary terms. If we neglect
them, we immediately see that S = §’ if the Lagrangian is
d-closed. In particular, this would mean that the action is
independent of the embedding of the spacetime in the
superspace. However, the closure of the Lagrangian is
guaranteed only in few known cases, in particular, when it
is possible to add auxiliary fields that guarantee off-shell
invariance of the Lagrangian. In the case of (3.18), it is
possible to show that the Lagrangian is not closed, hence
different choices of embedding give rise to different actions
and, in particular, to a different number of degrees of freedom.

Alongside, the analysis of the free differential algebra
associated to this model seems to suggest that it is not
possible to add fields to the theory s.t. we can match (oft-
shell) degrees of freedom, so it seems impossible to derive a
consistent closed Lagrangian. However this is not the topic
of this article and will be discussed elsewhere.

The previous argument shows that the Euler-Lagrange
derived from the Lagrangian (3.18) do not coincide with the
equations of motion coming from a variational principle of
an action, as they do not keep track of the embedding.
In other words, given an action formally written as

5= / LO0 () A VON), (5.9)
M(DIN)

where we generically denote by ¢ the fields (eventually,
forms) contained in the Lagrangian, the variational prin-
ciple gives rise to constrained equations of motion:

84S =0 = 5,LL0(p) AYOM =0.  (5.10)

The fact that different choices of PCO reflect different
degrees of freedom of the theory (when the Lagrangian is
not closed) is a consequence of the kernel of the PCO
(which reflects with the kernel of the pull-back i*) on
QPO (MPIN)) which is always nonempty.

In order to derive the self-duality condition from a
superspace action, we will then need to implement Sen’s
principle on an action integrated on a supermanifold.
In [50] the authors have shown in the easier context of
the chiral boson that this corresponds to coupling the theory
to an external self-dual form (actually, a pseudoform); in
particular, this self-dual form needs to be coupled to the
3-form H! and make it inherit on-shell self-duality. We will
have the new action written as

S :/ [ﬁ(élo) () A YOI 1 g A FOB) A Q§3\8)]’
M (6116)

(5.11)

318) (318)

where Q; = *xQ; " is the self-dual external pseudoform
and Y(°®) is a half-PCO at picture equal to eight which is
half of the maximal picture number, needed to lift the
(6]8)-form H! A Q§3|8> to an integral form and “x” is the
Hodge operator on supermanifolds defined in Appendix B.

A. Changing the PCO

In order to prepare the stage for a subsequent analysis,
we sketch here two alternative PCOs and show how the
computation can be performed using the rheonomic
Lagrangian (3.18). This will be crucial to show that
different embeddings pick up different terms from the
Lagrangian which should contain all needed information,
but with a different degree of manifest supersymmetry (in
Appendix B some details are given). In particular, the
amount of explicit supersymmetry is related to the number
of explicit 8’s in the PCO (B19).

We now discuss the following two examples of PCO’s:
the first one, which has 11 naked 0’s, can be written as

Y= (eell)a]A]..,aSAS(V“'Fa,l)a'A'~~(Vu5r‘u51)"5A5516(1//)’
(5.12)

where 1,,y”? = 8,5 and e denotes a collection of invari-
ant tensors of SO(1,5) and Cup to reproduce the Levi-
Civita tensor € in the 16-dimensional spinorial space.

If we multiply the rheonomic Lagrangian £ by VY,
we select only one term

LODAY = % (H'¢1app" T pPVe)
A (eell)alA] ...a54s5 (Valral l)a]Al cee
X (V5T 1)545515 ()
_ 05,¢[AB (CAIA(:AZB(:A3BI . .CA5B3)

X (5911T13H1)A1...ASB, ...Bs Ves'o(y), (5.13)

where « is a suitable coefficient and

(€ON TP H ), g, = T )

@A, ...asAs
X H;il.../33B]BzB3
T -05.P1-. 3 — gaay...as (Fa)/)’4/35 (Fal)alﬂl
(D)
H{y spc = taalpplycH'. (5.14)

The integration on the supermanifold leads to

S, = /£<6o> AV,
—_ a/(CA‘ACAzBCA3BI _”CASBz)
X/6¢IAB(€€11TZ3HI)A].,,ASBI.,.B3
— (Z/(CA‘ACAZBCA3B' _“CASBs)

X /(D5(¢IABT13H])|9O)Al...A5Bl...B3’ (5.15)
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where D7 is the product of five superderivatives and there is
only a single invariant spinorial contraction among the
tensors D, T and *H!. The resulting integral over the
bosonic coordinates produces a component action, as
the five-order derivative D’ acting on a bilinear term yields
six terms of the form DP ¢,z D3P (*H') with p = 0, ..., 5.
It will be a matter of subsequent work to explore the
complete component expansion of the action (5.15).

The second PCO to be discussed is the following:

Y4 = (5914)a1A1a2A2(V‘”Fa1l)a‘A‘(Vazrazl)%Azfslé(W)-
(5.16)

Inserting it into the action, it will fish for terms with at most
four explicit V’s and two y’s. This PCO would again lead
to an action but pick some different terms as compared to
(5.15). In particular, it will extract the terms with V4y?
from (3.18), which are directly related to the self-duality
constraint, as seen from the rheonomic equations in full
superspace. In addition, the number of naked s implies
that the calculation of the Berezin integral involves only
two superderivatives. Note that, compared to (5.12) this
new PCO selects different terms in the rheonomic
Lagrangian. Actions written using different PCOs differ
in the amount of manifest supersymmetry. The complete
expression will be presented in future work.

VI. CONCLUSIONS AND OUTLOOK

In this work, we set the basis for the complete con-
struction of an action for noninteracting tensor multiplets
living on a stack of M5-branes in superspace. As explained
in the text, the construction amounts to deriving a rheo-
nomic Lagrangian reproducing superspace parametriza-
tions, the equations of motion and ready to be integrated
on the full supermanifold.

In the first four sections we obtain an important
preliminary result in this sense, by first constructing a
rheonomic 6-superform Lagrangian yielding, in super-
space, all the dynamical equations, including the anti-
self-duality constraint on the 3-form field strengths. We
further propose a first-order formulation of Sen’s
Lagrangian on spacetime and its superspace extension,
which yields, on the one hand, all the rheonomic con-
straints on the physical fields in superspace and, on the
other hand, upon restriction to spacetime, all the dynamical
equations, which include the anti-self-duality constraint on
the 3-form field strengths.

In the last section, we discuss the relevant steps for the
construction of an action principle in superspace through
the use of integral forms and we illustrate two examples.

Let us conclude with some remarks. It is shown that the
Lagrangian presented in Eq. (3.18) encodes the information
about the tensor multiplet in a very compact and effective
way. It is the starting point for a complete analysis in

superspace language and for the coupling to supergravity.
In addition, it would be interesting to make contact with the
constructions of [12,54-59], involving harmonic and pure
spinor superspaces [60], which is left to future publications.
Finally, the complete Sen’s mechanism for any choice of
PCO will be studied deeply.
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APPENDIX A: USEFUL FORMULAS
AND CONVENTIONS

We work with a mostly minus spacetime signature
N = diag(4, =, -- -, —). Moreover, we adopt the follow-
ing conventions:

(i) €. 5 =—€"" =1,

M- HiP1---Po-k — _k!éﬁ]l"'p()—k

(11) 6/41 <MV Vo e Vo-k?

(i) oj-7 = 1,

@iv) dx*t A ... Adxte = —hiHedx® A LA dXO,
* _ 1 \/g D
(V) g = m (Feﬂl---ﬂkﬂlmﬂs—kwﬂl ”k>dx" VANRRIVAN
(*w)/’]"-/’G—k
dx/’(»—k,

(Vl) oy — (_1)k(6—k)+la)’
(vil) o A =1 Ao,
(viii) (w.7) = [ A7,

(ix) (w,n) = (n.0),

®) ('w,n) =—(o.n),
and we use

9(6) = _ l yabedef ¢

6! abcdef — d6x' (Al)

For traceless antisymmetrizations in USp(n) have
2 ED
ViaWsge, = ViaWae) — mC[ABWC]EVDC . (A2)

where W ,p is antisymmetric traceless. From this, setting
n =4, we find

1
ViaWgjc = — 5 VeWag +CeaWy eVpCHP. (A3)

1. Conventions on gamma matrices and spinors

Our convention for the spinorial derivative is

VL) (A4)
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The gravitino 1-form is antichiral,

YA = T, P4, (AS)
while the spinors A} are chiral,
M=+ (A6)
Besides, we have
YA = CABCyry, M = —C,gC(ABY. (A7)

The 6-dimensional gamma matrices are constructed as
follows:

r¢ = {0 ® 11,16, ® 61,10, @ 065,10, @ 03},

a=0,1,23, (A8)

IM={y2Qo0c, 144 ®io3, 144 Qioy}, a=0,...,5, (A9)
T, — [T 23T,

()2 =1, (Al0)

The charge conjugation matrix is given by C = I'T°I™ and
satisfies

c=c, (Al1)
C? = Tgs, (A12)
(I',)! = —C-'T',C. (A13)

The C-symmetry of gamma matrices is listed below:
(i) symmetric: {C, CT“*T;, CT%¢};
(ii) antisymmetric: {CT;, CT', CT%*, CT“T;}.
The convention for raising and lowering the USp(4) indices
is the following:
VA — CABVB,

VA — VBCBA, (A14)

where

C _CAB_ ( @ZXZ ﬂ2x2
AB — -

>, CACCop=—54. (A15)
_ﬂ2x2 ®2><2

The pseudo-Majorana condition for the gravitino can be
written as

pt = CABC(irp)" = CECTOy; = CTO(yt)"  (Al6)
and can be inverted
W= W) CpsC = (wa)'C. (A17)

For 4 the result differs for a minus sign. Let us also give the
following useful Fierz Identities:

_ 1 =BT a ! Vad i
y At =7 | TP (0 Ty ) =S Tane (T ") | (A18)

N

1 1 L
M= =3Pyl + TP Tk, (A19)
CACG LTy Blog Ty = 0, (A20)
APTaby Ay CCpp — 4APy Ao Ty CCue =0, (A21)
Loy sy ® =y g y® — 4y Pip gl yt
= 4Cpey By CCT b, (A22)
where P, = H{ﬁ Other useful relations are
‘/_’[A’lfe]o = ZICWDCD[ACB]OC’ (A23)
AT ARCHE = AT B Cyp. (A24)

APPENDIX B: INTEGRAL FORMS

In this appendix we collect some basic definitions and
facts about integration on supermanifolds and integral
forms. For exhaustive introductions to integral forms we
refer the reader to [42,52,61], while for their use in physics
we refer to [43,44,50,62,63].

Given a (smooth) supermanifold M "") the cotangent
space 7 5 M(PIV) at a given point P € MPV) has both an
even and an odd part, generated, in a given system of
local coordinates (x',0%),i = 1,...,D,a=1,...,N, by the
(1/0)-forms {dx’,d6*}, called superforms, which are
respectively odd and even. They have the following
(super)commuting properties:

dxi A dx/ = —dx/ A di,
de® A d6f = dé’ A do*,

dx’ A dO* = —do* A dx'. (B1)
A generic (p|0)-form is an object of the (graded) sym-
metric power of 75 MPN) and it locally reads as
0P = w1 (X 0)dxT A LA dx
A dO* A LA dO%s,

p=r+s, (B2)
where the coefficients @y, ;j(a,..q,)(*,0) are a set of
superfields and the indices a;...qa,, a;...a, are antisymme-
trized and symmetrized, respectively, as to satisfy (B1). We
then immediately see that there is no notion of top form
among superforms, hence there is not the notion of a
superform which could be integrated on M®PN) The
notion analogous to the determinant bundle can be found
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in a different form complex, the complex of integral forms.
One can introduce the Berezinian bundle Ber(MPIN),
i.e., the space of objects which transform as the Berezinian
(i.e., the superdeterminant) under coordinate transforma-
tions. Integral forms are then constructed on open sets
starting from this space and tensoring with (graded)
symmetric powers of the parity-changed tangent space
(see, e.g., [52] or the recent [61] for a rigorous introduction
to the subject). A practical and computationally powerful
realization of the Berezinian and of integral forms is given
in term of (formal) Dirac distributions on the cotangent
space (see [64] for these definitions and [42] for a complete
review of the formalism); a generic (p|N)-integral form can
be locally described as

PN = ™) (¢ G)dxit A ... A diir A 1.1, 5(d6")

[ll"'ir]
A oo AS(dOV), p=r-—s, (B3)

and the second number of the ( p|n)-form keeps track of the
number of Dirac deltas and is called picture number (see,
e.g., [65] for its introduction in string theory). The formal
Dirac deltas satisfy the following properties:

/ 5(do) =1,
de
5(d67) A 5(d6F) = —5(d6P) A 5(d6),

do A 8(do) =0,

dx A 8(d6) = +5(d0) A dx,  5(AdO) = ia(de),

0 A P5(d0) = —piP~15(d6). (B4)

The first property defines how §(d6)’s have to be used in
order to perform form integration along the commuting
directions d@’s; the second property reflects the usual
property of the support of the Dirac distribution; the third
and fourth properties imply that |5(d9)| = 1 mod 2, i.e.,
5(d@)’s are odd objects and together with the fifth property
they indicate that actually these are not really distributions,
but rather de Rham currents, i.e., they define an oriented
integration; the last property amounts for the usual inte-
gration by parts of the Dirac delta.
A “top form” then reads as

(DIN)

D|N
(PIN) — 4y(PIN)

=w(x,0)e;, ; dx'" Ao Adx?

A €qp. ay0(dO™) A Lo A S(dO™),  (BS)
where w(x, 6) is a superfield. Any integral form of any form
degree p can be obtained by acting with D — p contractions
on (B5). By changing the coordinate system, the (1]0)-
forms dx“,df* change as

dxi — E9 = E%dx’ 4+ E4do",

d9* —» E* = Efdx’ + ELd6°, (B6)
where E is the Jacobian (super)matrix of the transforma-
tion. A top form /") transforms as

wPN) - Ber(E)w(x, 0)e;, ; dx' A ... A dxiP

A €qy.ay0(dO™) A LA S(dOW), (B7)
where Ber(E) is the superdeterminant of the (super)
matrix E.

One can also consider other classes of forms, with
nonmaximal and nonzero number of deltas: pseudoforms.
A general pseudoform with ¢ deltas is locally given by

0P = @, alara)ipy.p,) (6 O) XD A L
Adx® A dOU A LA A% A S (dOP) A L
A 8l (deP), (B8)

where we used the compact notation 6()(d6) = (1)'5(d@).
The form number is obtained as

q
p:r+s—2ti,
i=1

since the contractions carry negative form number. The two
numbers p and ¢ in Eq. (B8) correspond to the form
number and the picture number, respectively, and they
range as —oo < p < +oo and 0 < g < N, so the picture
number counts the number of delta’s. If ¢ =0 we have
superforms, if ¢ = N we have integral forms, if 0 < ¢ < N
we have pseudoforms. These kinds of forms are to be used
for example in (5.11) in order to construct objects which
implement naturally the self-duality condition on super-
manifolds. This is a consequence of the fact that the Hodge
operator on supermanifolds changes not only the form
number, but also the picture number:

(B9)

*: QI (MPIN)Y 5 QD=PIN=a) (M(PIN))  (B10)
We refer the reader to [43,44] for the introduction of the
Hodge operator on supermanifolds. The action of the de
Rham operator d on pseudoforms is defined by the usual
Leibniz rule and by the action on Dirac deltas as
ds(E*) = (dE")6W (EM). (B11)

A notable example of integral form is the picture
changing operator described in Sec. II: it is a (O|N)-form,

in the cohomology of the operator d. It is used to “lift” a
superform to an integral form by multiplication:
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YOIN): QIO APV 5 QPN (AL(DIN)

wPl0) s PIN) — (PI0) A Y(OIN) (B12)
As we discussed in Sec. II, its geometrical meaning is to
keep track of the embedding of the reduced manifold in the
supermanifold.

1. Other PCOs

Here we show how to construct PCOs corresponding to
nontrivial embeddings. In particular, we show how to
costruct PCOs which are manifestly invariant with respect
to the Killing spinors. Infinitesimal transformations of the
PCQO’s are described by Lie derivatives: given a vector field
v € TpMPWV) they read

8,YON) = £ YON) = (d1, + (=1)I*1z,d) YOIN) = dy, YOIV,
(B13)

where the sign depends on the parity of ». Then we see
that YOV is invariant by transformations induced by v if
and only if di, YON) = 0. In the present case, we will
construct the vector » in terms of the supercharge vector
Q.. In particular, fixed a basis of TpM®PWV) {3, D}, a =
l,...D,a=1,...N where D,= d, — 0/(CT"") 40, and the
dual basis of TpMPIN) [V ya}  where V¢ =
dx?® + 9"(CF“)aﬁd6’/’, w* = d#”*, the supercharge vector
field reads

Oy = 0 + 0°(CT*) 430, = Dy + 207 (CT*) 10,

Q =e"Q,, (B14)
where ¢” is a (Grassmann odd) spinor. Requiring that the
PCO is invariant with respect to transformations generated
by any Q then means

dipYOM) =0, Ve, (B15)
while requiring the same conditions for some choices of €*
would correspond to asking only for partial invariance. An
example of maximally invariant PCO can be obtained from
the spacetime one by performing the formal substitution
6* > 6% + 1dx*(I",C) ™1,

VA = €y (07 + 1 (T, ) Pri)...
% (emv + [dxav (FaNC)aN/}NlﬂN)é(yjl)"'5(1//N)’
(B16)

and then determine a value of [ s.t. 5QY§8¥;’) = 0. The

supersymmetry invariance of (B16) can be verified by
using

o0" =€, odx?=+€"(CT") ", Soy*=0, (B17)

so that we have

SV = Neg, _ay (€% + 1e5(CT) P (T, €)1y ) ... (0% + Idx™ (T, €)1y )8 ()
= Ney, o (€—(=1)*1e*(CTT, C)g')...(6% + ldx* (I, C)*Pyiy SV (y)

= Neg, oy (€1 =(=1)*""(=1)’DIe™)...(0™ + Idx¥ (FaNC)"NﬂNlﬁN)5N(y/) =0,

(B18)

where 6" (w) = 8(w') A ... AS(y") and where we have used the properties yi5(y) = —5(y) and ", = D1. The
coefficient s takes into account the C-symmetry of gamma matrices whereas ¢ keeps track of the square of the charge

conjugation matrix C. We then see that if / =

v

is invariant.

In the specific case of this paper, we have D = 6, N = 16 and the spinor indices a have to be split considering the

R-symmetry. Then, the PCO in (B16) reads

0[16 wd 4 Ly wpy A " 1 a a
Ygu‘lsy ) = Ca]uzCAzA3"'C{1|5(1|6G:A|6A] <0 14 + gdx I(ch) b1 l?l > <9 1616 + gdx 0 (Fulsc) mﬁ]ﬁl;:)5(w1)"'5(l//16)’

(B19)

where the factor [ = % comes from the transformation of dx 5,dx“ = %EA I"yA. Notice that each term of (B16) or (B19) is

closed and nonexact, ‘namely a PCO itself. In particular, we can tune the PCO by choosing some terms from (B19) in order
to maintain or cancel some terms of the rheonomic Lagrangian when restricting on the base manifold, as shown in Sec. VA.
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