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We explore the relationship between the effective dynamics in standard loop quantum cosmology (LQC)
based on holonomies and triads obtained from gauge-fixing fluxes, and a modification of LQC based on
holonomies and gauge-covariant fluxes (referred to as GLQC). Both the models yield singularity resolution
via a bounce because of nonperturbative quantum geometric effects resulting in a maximum for energy
density. In LQC, the bounce is extremely well captured by a ρ2 term in energy density with a negative sign
which emerges as a nonperturbative modification to the classical Friedmann and Raychaudhuri equations.
But details of such modifications in GLQC have remained hidden due to an arduous nature of gauge-
covariant flux modifications which do not allow writing above equations in a closed form. To extract these
modifications we explore the large volume, weak curvature limit for matter with a fixed equation of state
and obtain higher order corrections to the classical theory. We find that in the weak curvature limit of
GLQC, in the postbounce branch, the first order correction beyond classical theory fully recovers the form
of modified Friedmann and Raychaudhuri equations of LQC. In contrast, due to an asymmetric bounce in
GLQC, the weak curvature limit of the prebounce branch exhibits a novel structure with a ρ3=2 term as a
first order correction beyond classical theory while the ρ2 term appears as a second order correction. Our
work shows that GLQC has a far richer structure which includes the form of dynamical equations with
nonperturbative modifications in LQC in its weak curvature limit. This indicates that more general loop
quantizations of cosmological sectors can reveal LQC at some truncation, and possibly there exists a tower
of potentially interesting higher order modifications from quantum geometry which are hidden in the
setting of LQC.
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I. INTRODUCTION

An important issue in understanding quantum geometric
effects originating from loop quantum gravity (LQG) in the
very early universe is the robustness of physical implica-
tions derived from the quantization of cosmological models
which implement its techniques in one way or another.
Loop quantum cosmology (LQC) [1] is a rigorous quan-
tization of symmetry-reduced cosmological models based
on LQG, which has been used to explore in detail
consequences for resolution of singularities [2,3] and
various phenomenological consequences [4]. A key pre-
diction of the model is big bounce which occurs when
energy density of the universe reaches a Planckian value
[5–8]. It turns out that underlying quantum dynamics in
LQC can be captured extremely well by using an effective
spacetime description [9–11] which results in a modified
set of Friedmann and Raychaudhuri equations encoding

quantum geometry effects through a ρ2 modification
in energy density. In the derivation of the effective
Hamiltonian from quantum theory, this ρ2 modification,
with a negative sign, captures the entire nonperturbative
modification for sharply peaked states and thus explains
entire dynamics including Planck regime. Even for highly
quantum states, where quantum fluctuations start playing a
significant role and lower the bounce density the ρ2

modification describes the kinetic dominated bounce
extremely well [12–14]. In this sense, at an effective level,
the physics of Planck regime extracted from LQC, to some
extent is the physics of a ρ2 modified quantum cosmo-
logical model.
In spite of the success of LQC in the last two decades,

open questions remain on whether it reliably captures the
cosmological sector of LQG [15,16]. There are various
quantization ambiguities in the construction of the theory
and recovering its cosmological sector, and it is important
to understand the physical consequences of the regulari-
zation prescriptions and refinements. Attempts to address
this issue come from both top-down as well as bottom-up
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approaches. The top-down approaches attempt to identify a
suitable cosmological sector from LQG, such as using
quantum-reduced loop gravity [17], coherent states [18]
or the path integral approach [19]. On the other hand, the
bottom-up approaches aim to generalize LQC with imple-
menting different regularizations of the Hamiltonian con-
straint [20–22] and implementing novel refinements used in
LQG (see e.g., [23–25]). In addition to these, attempts have
been made to extract modified Friedmann equation of LQC
using spinfoam cosmology [26] and group field theory
techniques [27]. From a phenomenological viewpoint, the
above issue can be expressed as whether these generaliza-
tions or refinements result in a modified Friedmann dynam-
ics as in LQC and how similar is the physics of the Planck
regime. Recently, this issue has been investigated in some
detail for modified versions of LQC using Thiemann
regularization of the Hamiltonian constraint and detailed
phenomenological investigations for inflationary models
and cosmic microwave background have been made [28–
33]. The modified Friedmann and Raychaudhuri equations
in these models are distinct from LQC since they contain
higher order terms than ρ2 in energy density, but the
qualitative results for the postbounce branch turn out to
be similar for inflationary models. As a result, in these
modified versions of LQC, scale-invariant primordial scalar
and tensor power spectrum can be obtained as well for the
short wavelength modes [31,32]. The potentially observable
signals which can be used to differentiate these models from
LQC are expected to come from the long wavelength modes
which are outside the Hubble horizon. On the other hand,
for models with negative potentials such as in ekpyrotic/
cyclic cosmologies, it turns out that an important variant of
LQC does not lead to a cyclic universe [34].
However, uncovering quantum geometry effects in loop

cosmology, especially via a modified Friedmann dynamics
can be sometimes arduous. This has been made evident
recently in a variant of LQC where instead of using
holonomies of Ashtekar-Barbero connection and gauge-
fixed triads, one uses holonomies of connection and
“gauge-covariant” fluxes [23,25]. The motivation for using
these fluxes arises from LQG where one does not quantize
connection and triad variables directly, but the holonomies of
connection along an edge and the fluxes of the triad using a
two-dimensional surface. It turns out that requiring a closure
of Poisson bracket of fluxes violates the Jacobi identity and
passage to quantum theory becomes difficult. A way out of
this problem is to use a Lie algebra of holonomies and vector
fields based on fluxes and then quantize [35]. However,
applying this strategy for recovering a cosmological sector
fromLQGusing suitable coherent states is quite problematic.
Instead, it is useful to consider another solution to above
problem which is to use “gauge-covariant” fluxes using
triads and connections [36]. In the symmetry reduced setting
using gauge-covariant fluxes implies replacing symmetry-
reduced triads p to p → psin c2ðcϵ=2Þ [24,25] where the

edge length ϵ is fixed by the quantum geometry. This version
of LQC where one uses gauge-covariant fluxes will be
referred to as “GLQC” to differentiate from LQC. It is
distinct from other modified versions of LQC [21] in
the sense that it starts with the same regularization of the
Hamiltonian constraint. And unlike these variants, the
convoluted nature of gauge-covariant fluxes do not allow
writing the modified Friedmann equation in a closed form.
Although the physical implications of the theory can still be
extracted from the Hamilton’s equations by numerical
methods, the modified Friedmann and Raychaudhuri equa-
tions can give a more transparent picture on how some
observables (such as the Hubble rate) evolve with other
observables (such as the energy density and the pressure),
and yield important insights on the nature of quantum
gravitational modifications. Due to absence of these equa-
tions and intricate nature of quantum geometry effects,
physics of GLQC has so far not been explored in detail. It
is however known to yield a nonsingular bounce with a
maximum energy density. The bounce is asymmetric in
nature and in the asymptotic large volume limit, classical
Friedmann and Raychaudhuri equations are recovered [24].
As we will demonstrate in this manuscript, obtaining

modified Friedmann and Raychaudhuri equations in pres-
ence of gauge-covariant fluxes is quite difficult because one
cannot analytically solve for the momentum b (which is
conjugate to volume and proportional to the Hubble rate in
classical regime) in terms of the energy density from the
Hamiltonian constraint. The exception to this only happens
when the matter content consists of a positive cosmological
constant which results in a constant momentum b and results
in the Friedmann and Raychaudhuri equations exactly in the
same form of the classical theory albeit with a rescaled
cosmological constant.1 To understand quantum gravity
modifications resulting from gauge-covariant fluxes to
Friedmann dynamics for various types of matter content,
we examine in detail the weak curvature limit of GLQC and
extract higher order modifications to the classical theory
coming from quantumgeometry. The goal of this manuscript
is to understand these particular corrections working in the
regime of large volume for matter with a fixed equation of
state satisfyingweak energy conditionwhichmeans the limit
of weak spacetime curvature where the energy density is
much below the Planck scale. It turns out that in GLQC, the
energy conservation law holds in terms of the gauge
covariant energy density and pressure which are defined
in terms of the gauge covariant volume, then it is natural to
investigate the asymptotic behavior of the modified
Friedmann and Raychaudhuri equations in terms of the
gauge covariant counterparts of the conventional quantities.
In practice, we find the asymptotic expansion of the
momentum b in terms of the inverse powers of the gauge

1The situation in LQC for the positive cosmological constant
case is similar [2].
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covariant volume which is required to be consistent with the
Hamiltonian constraint and then plug the asymptotic expan-
sion into the Hamilton’s equation of the gauge covariant
volume. This leads to a final expression of the modified
Friedmann and Raychaudhuri equations expressed as a sum
of powers in the gauge covariant energy density. Our
investigations reveal some surprising results. We find that
for the postbounce branch, in the asymptotic regime of large
volume, the first order correction beyond general relativity
(GR) in GLQC results in the same form of Friedmann and
Raychaudhuri equations for gauge-covariant quantities as in
standard LQC which in the latter govern the entire evolution
(including bounce). That is, in terms of gauge-covariant
variables we recover the ρ2 term with the same maximum
energy density of LQC. This is equivalent to say that an
observer living in a universe governed by GLQC will regard
LQC as the first order quantum correction to GR. In this
sense, “LQC Friedmann dynamics” is recovered as a first
order correction to GR in GLQC! On the other hand, when
the energy density tends to the Planck energy density, the
dynamics of GLQC cannot be completely captured by the
first order correction as the higher-order terms also become
important.Therefore, taking into account the contributions of
the higher-order terms, the maximum energy density at the
bounce in GLQC turns out to be larger than the one in LQC.
Finally, in the prebounce branch, given the asymmetry of
bounce, the ρ2 term is obtained but at the second order
beyond GR while an additional ρ3=2 term shows up as the
next-to-leading-order correction beyond GR.
This manuscript is organized as follows. In Sec. II,

we briefly review the effective dynamics of GLQC and
observe that unlike LQC, the modified Friedmann and
Raychaudhuri equations can not be expressed in closed
forms in GLQC. We also present a special case of positive
cosmological constant which allows a closed form of
modified Friedmann equation in presence of gauge-covar-
iant fluxes. In Sec. III, we study the asymptotic behavior of
the modified Friedmann and Raychaudhuri equations in the
expanding and the contracting phases of GLQC when the
Universe is filled with a perfect fluid with a fixed equation
of state. Although no closed forms of these equations are
available, one can still use the large volume expansion of
the momentum b to express these equations by a sum of
powers of the energy density. The asymptotic forms of the
modified Friedmann and Raychaudhuri equations in terms
of the gauge covariant quantities as well as the conventional
quantities are presented and discussed. In Sec. IV, we
summarize our main results. In the following, we use the
Planck units ℏ ¼ c ¼ 1 and keep Newton’s constant G
implicit in the constant κ with κ ¼ 16πG.

II. THE EFFECTIVE DYNAMICS OF GLQC:
PRELIMINARIES

We start by discussing some important features of the
effective dynamics of GLQC in a spatially flat FLRW

spacetime. As always assumed in LQC, we assume that the
effective Hamiltonian of GLQC can be derived from the
underlying quantum theory with a suitable choice of
semiclassical states. Given the homogeneity and isotropy
of the background spacetime, the classical phase space
consists of the symmetry reduced connections and triads c
and p—the same variables before quantization in LQC. But
in contrast to the latter, at the level of the quantum and the
effective dynamics, quantum geometry effects in GLQC are
not only encoded through holonomy of connections but
also gauge-covariant fluxes. These effects can be under-
stood via a “polymerization” of the connection and triads.
Since the connection is polymerized in the same way as in
LQC, one can obtain the effective Hamiltonian in GLQC
using in addition p → psin c2ðcϵ=2Þ [24,25]. Here ϵ is the
edge length determined following the improved dynamics
(or the μ̄ scheme) in LQC [7], and is given by the physical
area of the loop. In particular, ϵ ¼ ffiffiffiffiffiffiffiffiffi

Δ=p
p

where Δ denotes
the minimal eigenvalue of the area operator in LQG.
Since ϵ directly depends on the triad variable p, as in

LQC, it is more convenient to employ an equivalent set of
canonical variables which are defined via v ¼ jpj3=2 and
b ¼ cjpj−1=2 [8], with their fundamental Poisson bracket
given by fb; vg ¼ 4πGβ. Here β is the Barbero-Immirzi
parameter whose value can be fixed using black hole
thermodynamics in LQG. For numerical purposes, we
choose β ¼ 0.2375, as in the previous works in LQC.
For the matter sector, we consider a perfect fluid with
a fixed equation of state w, and energy density ρ ¼
ρ0ðv=v0Þ−ð1þwÞ with ρ0 and v0 as constants fixed by initial
conditions. In the following we take v0 ¼ 1.
The effective Hamiltonian constraint takes the form

[23,24]

Hg:c: ¼ −
6v

κβ2λ2
sin2ðλbÞsinc

�
λb
2

�
þHg:c:

m ; ð2:1Þ

where λ ¼ ffiffiffiffi
Δ

p
and the matter part of the Hamiltonian

constraint is given by

Hg:c:
m ¼ ρ0v−wsinc−3w

�
λb
2

�
; ð2:2Þ

which describes a perfect fluid with a fixed equation of
state w. This is obtained noting that at the classical level the
matter part of the Hamiltonian constraint is Hm ¼ ρv, and
using v → vsinc3ðλb=2Þ. Above, the index “g.c.” denotes
gauge-covariant quantities which, as compared with their
counterparts in LQC, acquire additional contributions
characterized by the sinc terms arising from the gauge-
covariant fluxes. An important variable of interest is the
gauge-covariant volume which is related with the conven-
tional volume via vg:c: ¼ vsinc3ðλb=2Þ. Correspondingly,
all the physical quantities that are functions of the volume

LOOP QUANTUM COSMOLOGY AND ITS GAUGE-COVARIANT … PHYS. REV. D 106, 026009 (2022)

026009-3



or its time derivatives have gauge-covariant analogs. For
instance, we can define the gauge-covariant Hubble rate as

Hg:c: ¼
_vg:c:
3vg:c:

; ð2:3Þ

which is related with the conventional Hubble rate via

Hg:c: ¼ H þ dsincðλb=2Þ=dt
sincðλb=2Þ : ð2:4Þ

Similarly, the gauge-covariant energy density and pressure
are given by

ρg:c: ≡Hg:c:
m

vg:c:
¼ ρ0

v1þw
g:c:

; ð2:5Þ

Pg:c: ≡ −
∂Hg:c:

m

∂vg:c:
¼ wρg:c:; ð2:6Þ

which are not equal to the expressions of energy density
and the pressure defined using ordinary volume in LQC. It
is straightforward to check that the gauge-covariant energy
density and pressure satisfy the conservation law

_ρg:c: þ 3Hg:c:ðρg:c: þ Pg:c:Þ ¼ 0: ð2:7Þ

On the contrary, if the energy density and the pressure
are defined with respect to the conventional volume via

ρ̃≡Hg:c:
m

v
¼ ρ0v−w−1sinc−3w

�
λb
2

�
;

P̃≡ −
∂Hg:c:

m

∂v
¼ wρ̃; ð2:8Þ

then it can be shown that, due to the additional sinc terms,
ρ̃ and P̃ do not satisfy the energy conservation law as

_̃ρþ 3Hðρ̃þ P̃Þ ≠ 0; ð2:9Þ

withH ¼ _v
3v denoting the conventional Hubble rate. Hence,

from the perspective of the energy conservation law, it is
natural to employ the gauge covariant quantities in GLQC.
In terms of the gauge covariant volume, the effective

Hamiltonian constraint (2.10) takes the form

Hg:c: ¼ −
6vg:c:
κβ2λ2

sin2ðλbÞsinc−2
�
λb
2

�
þ ρ0v−wg:c:: ð2:10Þ

Note that even though the Hamiltonian constraint is
expressed in terms of vg:c:, the phase space is still labeled
by b and v. The Hamilton’s equations for phase space
variables are

_v¼ 3vsinc2ðλb
2
Þ

4bβ

�
b2 cos

�
λb
2

��
1þ5cosðλbÞ− 2

bλ
sinðbλÞ

�

þ κβ2Pg:c:

�
cos

�
λb
2

�
−

2

bλ
sin

�
λb
2

���
;

_b¼−4πGβsinc3
�
λb
2

�
ðρg:c:þPg:c:Þ: ð2:11Þ

These equations turns out to be far more complicated than
those in LQC (see e.g., [2,4]). It turns out that due to sinc
term in the matter sector of the Hamiltonian constraint
(2.10), the quantum geometry modified Friedmann and
Raychaudhuri equations, in conventional volume, in GLQC
do not in general have closed forms. Moreover, even using
the gauge covariant volume vg:c:, it is still difficult to find a
closed form of the Friedmann equation in terms of vg:c:. The
reason is that the Hamiltonian constraint is still a tran-
scendental equation which contains both b and the trigo-
nometric functions of b. The closed form is also difficult to
obtain if one works with a phase space with gauge-
covariant volume vg:c:. and its conjugate variable bg:c:,

bg:c: ¼
Z

db
sinc3ðλb=2Þ ; ð2:12Þ

with fbg:c:; vg:c:g ¼ 4πGβ. From the Hamilton’s equations
for b and v we find that the gauge-covariant volume and
its conjugate variable satisfies the following dynamical
equations

_vg:c: ¼
3vg:c:
2λβ

cos

�
λb
2

�
sinc2

�
λb
2

�
× ½2 sin ðλbÞ þ λb cos ðλbÞ − λb�; ð2:13Þ

_bg:c: ¼ −4πGβðρg:c: þ Pg:c:Þ: ð2:14Þ

The intricate nature of these equations, and the fact that we
cannot replace b with bg:c:. to make the Hamiltonian
constraint nontranscendental, implies that going to
ðbg:c:; vg:c:Þ phase space offers no help to find the closed
forms of quantum geometry modified Friedmann and
Raychaudhuri equations. For this reason, it is important
to investigate the asymptotic behavior of the Friedmann
and Raychaudhuri equations in the classical regime and
obtain the higher order corrections to the classical theory.
In earlier works, it has been shown that GR is recovered in
the large volume regime where spacetime curvature is
extremely small [23,24]; however correction terms to the
classical dynamics originating from quantum geometric
effects were not understood.
There is however, one exceptional case where one can

find the modified Friedmann equation in a closed form in
GLQC. This special case deals with a positive cosmological
constant which is discussed next.
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A. The modified Friedmann equation in GLQC
with a positive Λ

As discussed above, a closed form of the modified
Friedmann and Raychaudhuri equations is difficult to
obtain in GLQC due to the additional sinc term in the
Hamiltonian constraint arising from the gauge covariant
fluxes. However, if the matter content consists only of a
positive cosmological constant (Λ), then one finds that a
closed form of the Friedmann and Raychaudhuri equations
becomes available.
For a positive Λ, the equation of state w ¼ −1 and the

energy density in the Hamiltonian constraint (2.10) is a
constant which is given by

ρ0 ¼
2Λ
κ
: ð2:15Þ

Then the vanishing of the Hamiltonian constraint leads to

x2 cos2ðxÞ ¼ Λβ2λ2

12
; ð2:16Þ

with x ≔ λb=2. Since the asymptotic regions for the
classical limits correspond to those near x ¼ 0 in the
expanding phase and x ¼ π=2 in the contracting phase,
one can restrict x to the interval x ∈ ð0; π=2Þ and solve
(2.16) for any positive Λ. Denote the root of the constraint
equation by x0. Note that the momentum b is a constant of
motion as can be seen from (2.11) for w ¼ −1. As a result,
(2.16) can be directly solved, leading to

cos x0 ¼
βλ

x0

ffiffiffiffiffi
Λ
12

r
; sin x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λβ2λ2

12x20

s
: ð2:17Þ

Substituting these equations into (2.13), we get

H2
g:c: ¼

Λ̃
3
; ð2:18Þ

which has the same form as the classical Friedmann
equation with an effective cosmological constant Λ̃.
Note that, when b is a constant, the conventional Hubble
rate is equal to the gauge covariant Hubble rate. The
rescaled Λ̃ is explicitly given by

Λ̃ ¼ 12

β2λ2x40
sin4ðx0Þcos2ðx0Þ½x0 − sin ð2x0Þ�2: ð2:19Þ

The classical limit can be recovered when the cosmologi-
cal constant Λ is far below the Planck scale. Under this con-
dition, x0→λβ

ffiffiffiffiffiffiffiffiffiffiffi
Λ=12

p
and thus Λ̃→Λ. The Raychaudhuri

equation in the current case is simply given by

ä=a ¼ H2
g:c: ¼

Λ̃
3
: ð2:20Þ

In contrast, when the momentum b is time dependent, the
vanishing of the Hamiltonian constraint (2.10) leads to a
transcendental equation which cannot be solved analytically.
As a result, a closed form of the Friedmann and
Raychaudhuri equations cannot be obtained. In this situation,
one can analytically analyze the asymptotic behavior of the
Friedmann and Raychaudhuri equations in the classical
limits in both prebounce (contracting) and postbounce
(expanding) branches as discussed in detail in the next
section.

III. THE WEAK CURVATURE LIMIT OF THE
MODIFIED FRIEDMANN AND RAYCHAUDHURI

EQUATIONS IN GLQC

In this section, we consider the asymptotic forms of the
Friedmann and Raychaudhuri equations in the contracting
(prebounce) and expanding (postbounce) phases of GLQC
in the large volume, weak curvature limit. It turns out that
the quantum geometric corrections to classical Friedmann
and Raychaudhuri equations in the expanding and con-
tracting phases do not coincide since two branches are
asymmetric with respect to the bounce in GLQC. We first
discuss the large volume expansion of the momentum b
based on the requirement for a vanishing Hamiltonian
constraint and then apply this expansion to the dynamical
equations to derive the asymptotic forms of the Friedmann
and Raychaudhuri equations in terms of the powers of the
gauge-covariant energy density. Finally, in addition to the
gauge-covariant Hubble rate, we also give the asymptotic
form of the Friedmann equation in terms of the conven-
tional Hubble rate and the energy density.

A. The asymptotic Friedmann and Raychaudhuri
equations in the expanding phase

In GLQC, the gauge covariant energy density is related
with the geometric degrees of freedom via

ρg:c: ¼
6sin2ðλbÞ

κβ2λ2sinc2ðλb=2Þ ; ð3:1Þ

which implies that the classical regime can only be reached
near b ¼ 0. Although sin ðλbÞ is a periodic function with
infinite zeroes, the presence of sin c term in the denom-
inator in general rescales κ at these turning points. The only
regime in which ρg:c: → 0 without a rescaled κ is b → 0. As
a result, b → 0 corresponds to the classical limit in the
expanding branch where κ takes its observed value.
Moreover, from (2.11), we know b is a monotonically
decreasing function in the forward evolution of time in a
small regime b > 0 close to b ¼ 0. As a result, the bounce
would happen when ρg:c: attains its maximum energy
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density at b ≈ 0.756798, giving ρmax
g:c: ≈ 0.515531. The

minimal positive b for a vanishing ρg:c: happens at b ¼
π=λ which corresponds to the classical limit in the
contracting branch before the bounce. When b → π=λ,
sinc2ðλb=2Þ → 4

π2
, so we expect a rescaled κ (or equiv-

alently a rescaled Newton’s constant) in the distant past of
the contracting branch. As a result, in the following, we
restrict b to the interval b ∈ ð0; π=λÞ and discuss the
asymptotic behavior of the Friedmann and Raychaudhuri
equations at b ¼ 0þ and b ¼ ðπ=λÞ−.
In the classical regimes when ρg:c: → 0, the volume vg:c:

is expected to be much larger than unity. As a result, one
can expand the momentum b in the powers of the inverse
volume. The large volume expansion of b in terms of
1=vg:c:. is supposed to satisfy the Hamiltonian constraint at
each consecutive order. More specifically, the vanishing of
the Hamiltonian constraint (2.10) leads to the following
expansion near b ¼ 0,

−
6b2

κβ2
þ 3λ2b4

2κβ2
−
λ4b6

8κβ2
þ ρ0v−1−wg:c: þOðb8Þ ¼ 0: ð3:2Þ

Noting that the lowest order in the above expansion is b2

and there are only even powers of b, thus we assume an
ansatz for the large volume expansion of b in the expanding
phase near b ¼ 0,

b ¼ v
−1
2
−w

2
g:c: ða0 þ a1v

−α1
g:c: þ a2v

−α2
g:c: þ a3v

−α3
g:c: þ…Þ; ð3:3Þ

where a0, ai and αi with i ¼ 1; 2; 3…. are parameters to be
determined by the Taylor series (3.2). We also require αi to
be positive and that their magnitudes increase with i so that
b in (3.3) is expanded in the ascending powers of the
inverse volume. Now, plugging (3.3) into (3.2) and requir-
ing that the constraint holds at each order of the expansion,
we find that the first three powers of the inverse volume in
the expansion turn out to be

α1 ¼ 1þ w; α2 ¼ 2þ 2w; α3 ¼ 3þ 3w: ð3:4Þ

Meanwhile, the expansion coefficients are

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
κρ0β

2

6

r
; a1 ¼

λ2

8
a30; a2 ¼

17λ4

384
a50: ð3:5Þ

The expression for a3 is not shown explicitly since it is not
required for computing ρ3g:c: terms in the Friedmann and
Raychaudhuri equations. Next we only need to expand the
dynamical equation (2.13) near b ≈ 0 and then use (3.3) to
obtain

_vg:c:
3vg:c:

����
b≈0

¼
ffiffiffiffiffiffiffiffiffiffi
κρg:c:
6

r �
1 −

κλ2β2ρg:c:
12

−
7κ2β4λ4ρ2g:c:

4320

�

þOðρ7=2g:c:Þ: ð3:6Þ

Here we have used ρg:c: ¼ ρ0=v1þw
g:c: . Correspondingly, the

asymptotic form of the square of the gauge covariant
Hubble rate near b ≈ 0 in the expanding phase reads

H2
g:c:jb≈0 ¼

κρg:c:
6

−
κ2β2λ2ρ2g:c:

36
þ κ3β4λ4ρ3g:c:

1620
þOðρ4g:c:Þ;

¼ κρg:c:
6

�
1 −

ρg:c:

ρLQCmax

�
þOðρ3g:c:Þ; ð3:7Þ

where ρLQCmax ¼ 3
8πGλ2β2 is the maximum energy density in

LQC. Hence, in GLQC, up to the second order in the gauge
covariant energy density, the asymptotic form of the
Friedmann equation in terms of the gauge covariant
quantities takes exactly the same form as the modified
Friedmann equation in LQC with the same maximum
energy density. As a result, since only the gauge-covariant
quantities satisfy the conservation law and thus are
regarded as the observables in GLQC, an observer living
in such a universe will regard LQC as the first order
correction beyond GR.
It is important to note that in GLQC, the higher order

corrections Oðρ3g:c:Þ do not vanish identically. In contrast,
one can also use the same techniques to compute the
asymptotic expansion of the Friedmann equation in LQC in
the large volume limit. Since the well-known Friedmann
equation in LQC only contains higher-order terms up to ρ2,
one is bound to find that the resulting series expansion
terminates at the next-to-leading order correction to GR,
namely terms higher than ρ2 all vanish identically. Finally,
the nonvanishing of Oðρ3g:c:Þ can also be inferred by noting

that ρLQCmax ≈ 0.409374 is less than the maximum covariant
energy density ρmax

g:c: ≈ 0.515531 in GLQC. This implies
that the higher order terms Oðρ3g:c:Þ in (3.7) also contribute
to the maximum energy density in GLQC. Therefore,
recovering LQC dynamical equations in the low curvature
limit of GLQC by no means implies that the bounce would
take place at low curvature since higher-order terms will
become important in the high curvature regime in which the
first few terms in our series expansion cannot capture the
whole evolutionary dynamics.
In addition, it is also straightforward to compute the

asymptotic form of the Friedmann equation in terms of the
conventional Hubble rate and the energy density in GLQC
by using (2.4) and the relation

ρg:c: ¼
ρ

sin c3wþ3ðλb=2Þ : ð3:8Þ

The result turns out to be
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H2jb≈0 ¼
κρ

6
−
9þw
288

κ2β2λ2ρ2þ1240−7w−30w2

414720
κ3β4λ4ρ3

þOðρ4Þ: ð3:9Þ

Note in terms of the conventional energy density, the higher
order terms in (3.9) explicitly depends on the equation of
state of the perfect fluid which is a consequence of the
“nonminimal” coupling between gravity and the matter
sector in GLQC.
Apart from the Friedmann equation, one can also

compute the asymptotic form of the Raychaudhuri equation
in the expanding phase. Two different approaches are
available. First, one can use the equation of motion and

note that äg:c: ¼ f _ag:c:;Hg:c:g ¼ f _vg:c:
3v2=3g:c:

;Hg:c:g. Since we

already know _vg:c: in (2.13), one can further compute
äg:c: and then expand the resulting equation in the Taylor
series near b ≈ 0. Finally using (3.3), one can truncate the
Raychaudhuri equation at any desired order of ρg:c:.
Alternatively, since the conservation law (2.7) holds for
all orders (nonperturbatively) one can use the Friedmann
equation and the energy conservation law to derive the
Raychaudhuri equation up to any perturbative order.
Combining the Friedmann equation (3.7) in terms of the
gauge covariant Hubble rate and the gauge covariant energy
conservation law (2.7), we can find the asymptotic form of
the Raychaudhuri equation in terms of the gauge covariant
variables which turns out to be

äg:c:
ag:c:

����
b≈0

¼ −
4πG
3

ρg:c:

�
1 − 4

ρg:c:

ρLQCmax

�

− 4πGPg:c:

�
1 − 2

ρg:c:

ρLQCmax

�
þOðρ3g:c:Þ; ð3:10Þ

with ag:c: ¼ asincðλb=2Þ. As in the case of the Friedmann
equation with quantum gravity corrections up to ρ2g:c:, (3.10)
coincides with the form of the modified Raychaudhuri
equation in terms of ρ and P in LQC. The higher order
terms Oðρ3g:c:Þ in (3.10) do not vanish while in LQC terms
with powers higher than ρ2 vanish identically.

B. The asymptotic Friedmann and Raychaudhuri
equations in the contracting phase

The derivation of the asymptotic forms of the Friedmann
and Raychaudhuri equations in the prebounce (contracting
phase) proceeds in the same way as in the expanding phase.
The main difference is that, in the contracting phase, we
need to compute the Taylor expansion around b ≈ π=λ or
equivalently b� ≈ 0, with b ¼ π

λ − b�. The Hamiltonian
constraint (2.10) can thus be expanded in terms of powers
of b� as

3

κβ2

�
1

2
π2b2� − πλb3� þ

1

2
λ2b4� −

1

24
π2λ2b4�

�

−
ρ0

v1þw þOðb5�Þ ¼ 0; ð3:11Þ

which in contrast to (3.2) contains both even and odd
powers of b�. As a result, the large volume expansion
of b� is

b� ¼ v
−1
2
−w

2
g:c:

�
c0þc1v

−1
2
−w

2
g:c: þc2v−1−wg:c: þOðv−3

2
−3w

2
g:c: Þ

�
: ð3:12Þ

Plugging the above expansion into (3.11), the coefficients
in (3.12) turn out to be

c0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κρ0β

2

3π2

s
; c1¼

λ

π
c20; c2¼

�
1

24
−
1

π2

�
λ2c30: ð3:13Þ

Then, expanding the dynamical equation (2.13) at b� ¼ 0
and plugging in (3.12) and (3.13), we find

_vg:c:
3vg:c:

����
b�≈0

¼ −
ffiffiffiffiffiffiffiffiffiffi
κ̃ρg:c:
6

r
−
κ̃βλρg:c:

12
þ ð4þ π2Þðκ̃ρg:c:Þ3=2β2λ2

48
ffiffiffi
6

p

þOðρ2g:c:Þ; ð3:14Þ

here κ̃ ¼ κð2πÞ4 which implies a rescaled Newton’s constant
in the classical regime of the contracting phase in GLQC.
The leading-order term in the above expansion is negative,
which is consistent with the fact that the expansion is
performed in the contracting phase where _vg:c: < 0. From
(3.14), it is straightforward to find the asymptotic form of
the square of the gauge covariant Hubble rate in the
classical regime, which reads

H2
g:c:jb�≈0 ¼

κ̃

6
ρg:c: þ

λβκ̃3=2

6
ffiffiffi
6

p ρ3=2g:c: −
3þ π2

144
λ2β2κ̃2ρ2g:c:

þOðρ5=2g:c:Þ: ð3:15Þ

Note that in terms of the gauge covariant Hubble rate and
the gauge covariant energy density, the Newton’s constant
in the Friedmann equation (3.15) is rescaled by a constant
16=π4, which is independent of the equation of state of the
perfect fluid. Besides, in (3.15), in addition to the integer
powers of the gauge covariant energy density, there are also
half integer powers which are missing in the asymptotic
forms of the Friedmann equation in the expanding phase.
With the help of the energy conservation law (2.7), one can
obtain the Raychaudhuri equation up to the ρ2g:c: order
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äg:c:
ag:c:

����
b�≈0

¼−
κ̃

12
ρg:c:

�
1þ 5λβ

2
ffiffiffi
6

p κ̃1=2ρ1=2g:c:−
3þπ2

6
λ2β2κ̃ρg:c:

�

−
κ̃

4
Pg:c:

�
1þ 3λβ

2
ffiffiffi
6

p κ̃1=2ρ1=2g:c:−
3þπ2

12
λ2β2κ̃ρg:c:

�

þOðρ5=2g:c:Þ: ð3:16Þ

Similarly the modified Raychaudhuri equation in the
contracting phase of GLQC includes an additional ρ3=2g:c:

term as compared with its counterpart in the expanding
phase. The asymptotic form of the Friedmann and the
Raychaudhuri equations in two branches clearly shows an
asymmetric bounce in GLQC. Besides, the rescaled
Newton’s constant does not depend on the equation of
state of the matter if the Friedmann and the Raychaudhuri
equations are expressed in terms of the gauge covariant
variables.
Finally, similar to the expanding phase, one can also

obtain the asymptotic form of the Friedmann equation in
terms of the conventional Hubble rate and the energy
density in the contracting phase by using the relations (2.4)
and (3.8), the result is

H2jb�≈0 ¼
κ̄

6
ρþ λβκ̄3=2

6
ffiffiffi
6

p ρ3=2 −
κ̄2β2λ2f1ðwÞ

1152
ρ2

þOðρ5=2Þ; ð3:17Þ

where κ̄ ¼ κðπ
2
Þ3w−1 and

f1ðwÞ ¼ 54w2 þ 72w − 6þ 11π2 þ 3wπ2: ð3:18Þ

Note the ρ2 term in (3.17) is negative definite since f1 is
positive definite and attains its minimum value fmin

1 ≈
54.77 at w ≈ −0.94. The rescaled κ → κ̄ implies a rescaled
Newton’s constant Ḡ ¼ ðπ

2
Þ3w−1G at each perturbative

order. The rescaling factor explicitly depends on the
equation of state due to the nonminimal coupling between
the matter and gravity in GLQC. Our result is consistent
with the result for a massless scalar field in [24] where
w ¼ 1 and thus Ḡ ¼ π2G

4
. It should also be noted that

although there is a rescaled Newton’s constant in the
contracting phase, one can still reach the classical regime
when ρ → 0. This is in contrast with another variant of
LQC [21] (so-called MLQC-I) where not only a rescaled
Newton’s constant emerges in the contracting phase but
also an effective Planck-scale cosmological constant shows
up as ρ → 0 in the contracting phase.

IV. CONCLUSIONS

A detailed study of the variants of standard LQC in loop
cosmology, and their relationship, helps understand the
robustness of the quantum geometry effects in the very
early Universe. Recently, some modified versions of LQC

have been proposed and studied in detail for a better
understanding of the robust features of the cosmological
sector from full LQG [33]. In this manuscript, we have
studied a large volume, weak curvature limit of the
dynamical equations in one of the variants of LQC, referred
to as GLQC, and explored its relationship with LQC. Loop
quantization in GLQC is based on the holonomies and the
gauge covariant fluxes which are motivated by dealing with
nonclosure of Poisson bracket between triads in the full
theory. This is in contrast to LQC based on holonomies and
gauge-fixed triads. We have showed in this paper that due
to a nontrivial form of modifications from gauge-covariant
fluxes, the closed-form expressions of the modified
Friedmann and Raychaudhuri equations are generally not
available in GLQC. The only exception is for the matter
content which only consists of a positive cosmological
constant. In this particular case, the resulting Friedmann
equation takes its classical form with an effective cosmo-
logical constant which tends to its classical value in the
weak curvature limit. In a general case, since the
Hamiltonian constraint in GLQC amounts to a transcen-
dental equation for the momentum b, one cannot analyti-
cally solve it in terms of energy density, and as a result one
cannot obtain closed forms of the modified Friedmann and
Raychaudhuri equations. Note that unavailability of these
equations does not mean that there is an obstacle to extract
dynamics, such as numerically using Hamilton’s equations,
but their availability certainly makes a comparison with
LQC more transparent.
In spite of the nonavailability of the closed forms of the

dynamical equations in GLQC, one can still analyze the
quantum geometry corrections to GR in the low curvature
regime where the volume of the universe becomes much
larger than the Planck scale. Besides, since the energy
conservation law only holds for the gauge covariant energy
density and pressure, gauge covariant quantities turn out to
be the only legitimate variables in GLQC. Therefore, we
consider the weak curvature limit of the dynamical equa-
tions in GLQC in terms of the gauge covariant quantities
when the matter sector is described by a perfect fluid with a
constant equation of state (and satisfies weak energy
condition). In the postbounce branch of GLQC, the
classical limit corresponds to b → 0. We first derive
the large volume expansion of b near b ¼ 0 from the
Hamiltonian constraint and then substitute it into the
Hamilton’s equation of the gauge covariant volume. In
this way, we find an asymptotic expansion of the
Friedmann equation in terms of the gauge covariant
Hubble rate as a sum of integer powers of the gauge
covariant energy density (ρg:c:). The leading order term
recovers the classical limit in GR while the next-to-leading
order term is the ρ2g:c: term. Truncating at ρ2g:c: order, we
immediately obtain the same form of the modified
Friedmann equation as in LQC with the same maximum
energy density. In other words, LQC is recovered in GLQC
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as the first order correction beyond GR. Correspondingly,
due to the energy conservation law, the asymptotic expan-
sion of the Raychaudhuri equation at the ρ2g:c: order also
takes the same form as the one in LQC. Moreover, it is
important to note that recovering LQC dynamical equations
in the weak curvature limit does not imply the bounce
would take place at low curvature in GLQC since the
higher-order terms in the series expansion will become
equally important when the energy density approaches the
Planck scale.
Similarly, one can follow the same procedures to compute

the asymptotic forms of the Friedmann and Raychaudhuri
equations in the contracting phase by noting that the
classical limit is reached in the neighborhood of b ¼ π=λ.
Correspondingly, one can obtain the large volume expansion
of b from theHamiltonian constraint and then plug it into the
Hamilton’s equation of the gauge covariant volume. The
resulting Friedmann equation contains both integer and half-
integer powers of the gauge covariant energy density, in
particular, when truncated to the ρ2g:c: order, there is an

additional ρ3=2g:c: termwhich signifies an asymmetric evolution
with respect to the bounce inGLQC. Besides, there appears a
rescaled Newton’s constant in the classical regime of the
contracting phase, which is a constant when the Friedmann
and Raychaudhuri equations are expressed in terms of the
gauge covariant energy density. This rescaled Newton’s
constant becomes explicitly dependent on the equation of
statewhen the dynamical equations are expressed in terms of
the conventional volume and the energy density.

Compared with the complicated structure of the
Friedmann and Raychaudhuri equations in GLQC (and
also modified loop cosmologies, MLQC-I and MLQC-II
[21,29]), our studies show that LQC turns out to be one of
the simplest loop quantizations of the cosmological space-
time as its dynamical equations only include ρ2 terms.
Incorporating more features from LQG by using different
quantization prescriptions or gauge covariant fluxes takes
us beyond LQC by effectively adding corrections higher
than ρ2 terms. While modified Friedmann dynamics of
LQC can be recovered as the first order correction beyond
GR in GLQC for the postbounce branch, a similar study to
understand the relationship between LQC and modified
loop cosmologies (MLQC-I and MLQC-II), which are
again based on holonomies and triads, does not reveal
any such link. It is possible that the relationship we find
between LQC and GLQC may be a more general feature
emerging from various studies on recovering cosmological
sector of LQG using gauge-covariant fluxes which tells us
that though LQC may be recovered at lower orders of
truncation, it is important to study higher orders to have a
more complete understanding of the underlying quantum
geometry.
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