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From the recently known A/ = 2 supersymmetric linear W& X[1] algebra where K is the dimension of the
fundamental (or antifundamental) representation of the bifundamental fy and bc ghost system, we
determine its N = 4 supersymmetric enhancement at K = 2. We construct the N = 4 stress energy tensor,
the first N' =4 multiplet, and their operator product expansions (OPEs) in terms of the above
bifundamentals. We show that the OPEs between the first ' = 4 multiplet and itself are the same as

Sls/g;';)z ) model under the large (N, k) ’t Hooft-like limit with

the corresponding ones in the N = 4 coset

fixed Zco = gihnisy

We also provide other OPEs by considering the second, the third, and the fourth N' = 4 multiplets in the

up to two central terms. The two parameters are related to each other, 1 = %lco.

N = 4 supersymmetric linear W [4] algebra.

DOI: 10.1103/PhysRevD.106.026008

I. INTRODUCTION

The free field construction in two-dimensional con-
formal field theory is useful to study the extension of
the conformal symmetries in string theory. Because their
operator product expansions (OPEs) take the simple form
in the sense that the right-hand sides of OPEs do not
contain the fields, contrary to the affine Kac-Moody
algebra, it is straightforward to determine the conserved
currents of any (conformal) weights in terms of the
quadratic free fields with multiple derivatives. To describe
the supersymmetric theory, the fermionic free field is
necessary to describe the symmetries as well as the bosonic
free field. Depending on the weights of the bosonic and
fermionic fields, the weights of the currents we can make
by using them are determined naturally from a simple
counting of weights. The central charge of the Virasoro
algebra consisting of the stress energy tensor of weight-2 is
fixed by the number of (bosonic and fermionic) free fields.
Usually, the bosonic field has the weight-1 (or zero) while
the fermionic field has the weight-1.

More generally, the above weights of the bosonic and
fermionic fields can be deformed by a parameter A [1].
Although the weights of each bosonic and fermionic field
depend on this A parameter explicitly, due to the plus and
minus signs in the coefficients in front of 1 of the weights,
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the weights of particular composite combinations of these
free fields do not contain the parameter 4. Then we can
construct the currents of integer (or half integer) weights in
terms of free fields as mentioned before by considering that
the weights of each term should not depend on the 4. Of
course, the 1 dependence in the coefficients in front of free
fields in the expression of the currents occurs in a very
nontrivial way [2,3]. This is a new feature because the
structure constants of the resulting algebra contain the 4
dependence explicitly, compared to the ones in the previous
paragraph.

So far, we have two bosonic and two fermionic free
fields. There exist two fundamental OPEs between them.
We can introduce the multiple bosonic and fermionic fields
which transform as bifundamentals. Because they are
independent fields and the multiple defining OPEs satisfy
independently, all the previous analysis can be generalized
to describe the symmetries easily. For example, the central
charge of the Virasoro algebra is simply a sum over each
contribution from bosonic and fermionic free fields. For
each current of weight-A, there exist multicomponent
generators. The corresponding W, algebras (without any
deformation parameter A) are obtained in [4-6]. By con-
struction, because there are many fermionic currents, there
is more room for the supersymmetric theory we would like
to obtain.

Then it is natural to consider the multiple bosonic and
fermionic free fields together with the deformation of A.
Recently, in [7], the N = 2 supersymmetric linear W% 1]
algebra is obtained by analyzing the currents from the
multiple bosonic and fermionic free fields with derivatives.
Here K is the dimension of fundamental representation of
the above bifundamentals. The number of bosonic currents
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of each weight (h =1,2,...) is given by 2K> which is
equal to the number of fermionic currents of each weight
(h=3.3,...). The factor of 2 appears because we are
considering the complex free fields. Among 2K>-fermionic
currents, two of them play the role of N' = 2 supersym-
metry generators. There are also K>-fermionic currents of
weight—l, and this fact will affect the structure of the N/ = 4
superconformal algebra.'

In this paper, we would like to construct the N =4
supersymmetric linear W7 [A] algebra by focusing on the
K = 2 case, which is very special in the sense that only this
K =2 will provide the supersymmetric theory we want to
obtain. Then among eight fermionic currents of weight—%,
half of them play the role of N =4 supersymmetry
generators. The remaining half of them belong to the first
N = 4 multiplet. Moreover, the lowest fermionic currents
of weight—% can join the generators of the N' = 4 super-
conformal algebra. For the weight-1 currents, the seven of
them play the role of the bosonic generators of the N' = 4
superconformal algebra and the remaining one will appear
in the lowest operator in the first N = 4 multiplet. For the
weight-2, one of them is given by the stress energy tensor,
six of them will appear in the generators of the first A" = 4
multiple, and the remaining one will arise in the lowest
operator in the second N = 4 multiplet. For the weights
greater than 2, we can analyze similarly, and they can be
placed into the corresponding A/ = 4 multiplets appropri-
ately, according to SO(4) indices of A/ = 4 superspace.

We would like to determine the explicit algebra for how
the above analysis on the weight contents fits in the N' = 4
supersymmetric linear W ,[4] algebra.’

In this paper, we determine the AN =4 stress energy
tensor, the first, the second, the third, and the fourth N = 4
multiplets in the ' = 4 supersymmetric W [4] algebra by
using the By and bc ghost systems. We calculate the various
OPEs between them, where the sum of two (super) weights
appearing on the left-hand side is less than or equal to 4
(hy + hy £4),in N = 4 superspace. As in the abstract, the
case of h; =1 = h, reproduces the corresponding one
[10,11] in the N/ =4 coset model under the large (N, k)
’t Hooft-like limit.

In Sec. II, we review the fy and bc ghost systems, and
the bosonic and fermionic currents can be written in terms
of these fields.

In Sec. ITI, we determine the N = 4 stress energy tensor,
the first A/ = 4 multiplet, and their OPEs explicitly.

In Sec. IV, we summarize what we have obtained in this
paper, and future directions are described.

In the appendixes, some of the details in Sec. III are
presented explicitly.

'"There are also similar constructions in [8,9].
*The terminology of W, [4] algebra is used here instead of

using the previous terminology of W22 [4] algebra for simplicity.

We are heavily using the Thielemans package [12] with
the help of Mathematica [13].

II. REVIEW
A. The fundamental OPEs

The bosonic py and fermionic bc ghost systems satisfy
the following OPEs [7,8]:

yz,a(z)ﬂ],b(w) — mmmb 4+

ia j.b _ 1 ijsab | ...

()b (w) = (Z—W)(s R (2.1)
The fundamental indices a, b run over a, b =1, 2 and
the antifundamental indices a,b run over a,b =1, 2.
The fundamental indices i, j of SU(N) run over i,j =
1,2,...,N, and the antifundamental indices i, j of SU(N)
run over i, j = 1,2, ..., N.

B. The quadratic bosonic and fermionic operators

We can construct the bosonic and fermionic operators (or
currents) by taking the quadratic expressions of above fy
and bc ghost systems in the presence of various holomor-
phic derivatives as follows [7,8]:

VI =" di(s, )01 (07 5r')

i=0
s—1 1 -
i 71 - as—l—i aiblh Sr la ,
# 3w+ 5)om (@)
5)— (S_1+2/1)s_1 i s—1—i (( Ai gl a
Ve, = ECEDRS a'(s, )~ ((o'B)6r')
(s—20) <L I\ i _
i o i atblb S la
o2 v (A rg)r (@ o),
s—1
00 =" dl(s. )0 = ((0)85¢'7)
i=0
s—2 ~
=Y Bl(s. )T (0")8").
i=0
s—1
0\, =3 (s, )0 ((01)35¢)
i=0
s—2

3 F (s DO (@ B)5r).
i=0

(2.2)

The first two operators of weight s are bosonic and the last
two operators of weight (s — 1) are fermionic. Each term on
the right-hand sides has the summation over the indices /
and [ of SU(N). Each operator has four components,
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11,12,21, and 22 in the indices a and b. Each coefficient on
the right-hand sides depends on the weight s [or (s —3)]
and the A. They can be summarized by [2,3]

o (SN (2225 42), o
don= (") TR 0sisen,
; (s (225 +2) i< (s
“(”)_( i ) Gri-D,,, S0
i _ §=2\ (=2A=s542),,_; . _
ﬂ(”)‘( i ) CHhan R
(2.3)

The parentheses in (2.3) stand for the binomial coefficients,
and the (a), symbols stand for the rising Pochhammer
symbol (a),=a(a+1)---(a+n—1). There are non-
trivial relations between these coefficients [2,3].

C. The A-dependent currents

We can split the above bosonic operators into the one
written in terms of bosonic fields and the other written in
terms of fermionic fields by simple linear combinations.
For the fermionic operators, we also split them in terms of
the one having only one kind of fermion fields and the other
having only the other kind of fermion fields. Then we
obtain the following operators with the explicit bifunda-
mental indices [7]:

* ny (—l)h (h—1+22) (h)+ (h)—
W/l,ab _ F.h vy yw=
F.h qh -2 h =) al(h ) (Zh _ ]) Aab + A,ab

a Ny, (—l)h (/’l 2/1) (h)+ (h)-
W/l,ab _ B.h V -V
B.h qh 2 h (l’l 0) <2h— ) Aab Aab
) 1w, . (_ )h+1h
dab _ 1 "on} (h+1)= _ A(h+1)+
Qth% - 2 qh—l Zfl:—(; l(h 4 1’ O) {Qi ab Q/l ab ]’
_ 1 ny el (_l)hﬂ
Aba _ Lo (h+1)- (h+1)+
Qh+‘ 2 qh—l Z?:o ai(h +1,0) [Q/I a T Qab J-
(2.4)

The first two operators of weight 4 are bosonic and the last
two operators of weight (h + %) are fermionic.” The overall

*The normalizations are given by [14]

213 (h = 1)! 2 2h=3 hd
MWy, = Wq ) Ny, , = mq )
2h=p
"0 T 2h- l)nql f=ng, - (2.5)

Then the g dependence in (2.4) disappears.

coefficients do not depend on the 1. We list the explicit
expressions for low weights by substituting (2.3) and (2.5)
into (2.4) as follows [7]:

v 2,

a | 3
Wit = —a(-vii 43620V ).
a 4 1 4
Wi = 16<—v§ oy = (4= 2z)v§,;,f),
a 1 2)— 2
T )
gab “2V2(Q1; - 0.
1 = 8V2(051, — 0
an = —32\/_(Qz ab Q%Z)
7 4.ba L A= a0+
Q;b = —2—\/5<Q1,2b + ng‘zb)’
~.ba | R 2)— ~(2)+
ng = ﬁ (QELZzb + Qm)b )
04" = —2v2(0f), + 000,

=8V2(0L, + 0.
= -32v2(0%), + 000+

S
ISy

QD

1
2R

kool

Q

(2.6)

We can easily see that the normalization for the overall
factor is increased by —4 when we increase the weight.
Note that the lowest weight for the bosonic operators is
given by 1 and the one for the fermionic operators is given
by 1 > The Q’l @ s identically zero.

Then we have eight bosonic currents for the weight
h=1,2,... and eight fermionic currents for the weight
h+1 5 %,2, ... In (2.4). In next section, we will construct
the N = 4 multiplets as well as the N = 4 stress energy
tensor by using (2.4).
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III. THE N =4 SUPERSYMMETRIC LINEAR

W [A] ALGEBRA

A. The construction of the A/ =4 stress energy tensor

1. The A-dependent quasiprimary stress energy tensor

The stress energy tensor of weight-2 from (2.6) is given
by [2,3]

= OV W e W
which is equal to Vﬁ;éba. The central charge, which is the

same as the fourth order pole of the OPE L(z)L(w) times
two, 1S

Wi, G

¢ =6N(1-42). (3.2)
At A = 0, the central charge becomes 6/N. We will observe
that the remaining seven weight-2 operators appear in the
first and the second N = 4 multiplets.

. The A-dependent wetght- primary
supersymmetry currents

It is natural to consider that the weight—% operators, which
depend on the A, can be obtained from the corresponding
ones at A = 0. Our starting point is the following ansatz for
the weight—% operators:

Gl: 1( ,111+ \/EQ112+2 \/EQ}JI 122

2
_ ZQQ'“ — 220 — iV Q;,zz)’
2 __ ﬁll 4,21 422 _/1.11
G 2( 202007 - 2037 - 201
~20ED 4 0,
2
G3 2( ﬂll+ \/EQ/{IZ_ZQg,QZ Qill
l\/_QlZI 122)

2

We can check that the third order pole of G'(z)G/(w) is
given by 3¢5 with (3.2). We have seen half of the weight-3
operators in (3.3), and the remaining ones will be given in
the next subsection for the first ' = 4 multiplet.

From now on, we construct the remaining operators in
the NV = 4 superconformal algebra based on the explicit
expressions of (3.3).

3. The A-independent weight-1 primary operators

From the defining equations of the second order
pole in the OPE G'(z)G/(w), which are given by
=2i(T7 +1(1 = 42)eVX'T*)(w), we can determine the

following six weight-1 operators which do not depend on

the 2*:

T'2 = —i2iwg! = V2Wg'? = 2iwgT + 2iwp !
~2VIWEP - 2iWi),

T8 = —i(=2iWg +4V2WEY +2iwy 7 — 2w
+2V2WEY + 2iWED).

T = —i W + ivV2Wwg ! + 4ivVawgy — 2w
—2Wi = 2iV2WEY = 2iVaWET + 2WED),

T = —i(—2Wg!' = ivV2WEY — 4ivVawgy +2wi?
— oW\ = 2iV2WE Y = 2iv2WE + 2WED).

T = —i(=2iWgY + 4V2WET + 2iWi T + 2iwg !
—2V2WE - 2iwT),

T3 = —i(=2iWgY + V2Wg? + 2iwgT + 2iw)!
—2V2WEE = 2iWED). (3.4)

Note that the right-hand sides of (3.4) are proportional to
the expressions of <I>§1>’ij at 1 =0 when we replace the
weight-2 in the W&’, and W [10] with the weight-1 by
generalizing to the 4 dependént ones. We can check that
the first order pole of the OPE G'(z)G/(w) provides the
correct quasiprimary operator L(w) and the corresponding
descendants of (3.4).

4. The A-independent wetght- primary operators
Again, the defining equation of the second order
pole of the OPE G'(z)T/*(w), — (/T + (1 — 42) (6T —
8T*))(w) allows us to determine the following weight-}
operators:

[ = 1 (200" - 230} ~ V30 + 0f2),
FQZ—%( 2Q“] 21\/_Q, 12+Q“2)

o :_%(_ il _ \/’in +Q”2)
o+ 59

Note that the right-hand sides of (3.5) can be obtained from
(3.3) by replacing the weight-% with the weight-% with an

“We can easily see that the parameter a = 2“,;;’,;)) with
kt =k-+1and ki~ = N + 1 in the N = 4 coset model becomes
a=1(1-22,)=4%(1-42) under the large (N, k) limit with

fixed 4., = (]fiv;iz [10,11,15]. See also [16].
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overall factor i. Further analysis for the first order pole of
the OPE G'(z)T/*(w) provides the correct descendants of
(3.5) and the primary operators of weight—% in (3.3). These
are not dependent on the A because the lowest fermionic

operators _f'“l_’ do not contain the A from (2.2) and (2.4).

¥

5. The A-independent weight-1 quasiprimary operator

For the final weight-1 operator, we can use the defining
equation for the first order pole of the OPE G'(z)IV(w)
which is equal to (—e/XTH 4 i§VU)(w). It turns out that

U=2[(Wg)' + W)+ Wz} + WgT)l. (3.6)

which does not contain the A. Therefore, the eight inde-
pendent weight-1 operators from W4", and W%”, are given
by (3.4) and (3.6). The remaining one will be given in the
next subsection for the first N = 4 multiplet.

In the next subsection, we will describe whether the
above five kinds of operators will produce the known
N = 4 superconformal algebra or not.

B. The OPEs between the A =4 stress
energy tensor and itself

We calculate the OPEs between the five operators in the
N = 4 stress energy tensor and the weight-1 operator in
that multiplet.

1. The OPE between the weight—l,%,l operators

and the weight-1 operator
From the explicit expressions (3.6)—(3.4), (2.6), and
(2.1), we can check the following OPEs:

(3.7)

The last two are the standard results [11,15] while the first
one is a rather trivial result. This is due to the fact that the
expression for the U in (3.6) has the same relative
coefficients. The standard result for the first one leads to
the nontrivial second order pole, which is given by a central
term. We expect that the OPE between L(z)U(w) contains
the third order pole because the OPE oU(z)U(w) has no
singular term.

2. The OPE between the weight—% operators
and the weight-1 operator

Similarly, by using (3.3), (3.6), and previous defining
equations, we obtain the following OPE:

1
(z—w)?

G'(9)U(w) = - (i) (w) = [ior ] (w) + -

(z—w)
(3.8)

The weight-1 operator U plays the role of keeping the
structure of the weight—% operator on the left-hand side with
the weight reduced to % The relative coefficient for the
descendant can be seen from the standard conformal field
theory analysis.5

3. The OPE between the weight-2 operator
and the weight-1 operator

Let us consider the final nontrivial OPE with (3.1) and
(3.6). It turns out that there exists

(3.10)

Compared to the standard result [11,15], the above OPE
contains the central term, as mentioned before. This is due
to the fact that the expression of (3.6) has particular relative
coefficients.’

4. The N =4 supersymmetric OPE
in the N =4 superspace

We can put the operators of N =4 superconformal
algebra found in the previous section into a superfield in the
N =4 superspace.7 Then we have the N = 4 stress energy
tensor [11,15]

SThere is

(G —i(1 =420 (z)U(w)

1 . 1
=—-———F[il"|(w) - —
(Z—W)z[ 1w (z—w)
due to one of the relations in (3.7). This will be used in the " = 4
superspace description.
®We have

il (w) + -+, (3.9)

<L—%(1 —41)011) () U(w) = - N+ U(w)

(W) + -

which will be used later.

"The coordinates of A =4 superspace can be described
as (Z,Z) where Z = (z,0"), Z = (z,0'), and the SO(4)-vector
index i runs over i = 1, ..., 4. The left covariant spinor derivative
is given by D'=¢'Z 4% with nontrivial anticommutators
{D',D/} =257 2. The simplified notation 6*~° stands for
0'6?0°9*. The complement 4 — i is defined such that §'9*6°¢* =
*-9' [11,15].
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J = —A + 0TV — i*=IkTik — ¢4=1(GI — i(1 — 44)TY)

1
+ 640 <2L —5 (1~ 4/1)02A)

= (—A, il —iT, —(G' = i(1 — 42)T"),

2(L —%(1 - 4,1)02A>>,

where the lowest component has the following relation:
—0A = U. We will use the operator U rather than the
operator A. The precise relations between the components
and its superfields in (3.12) at vanishing fermionic coor-
dinates can be summarized by [11,15]

(3.12)

U<odl, I —iDJ, Tieo —%s"j’deD’J,
. ' .
G < — e MDIDDY — (1 - 41)0D'),
1 1
L < 7elﬂleDkaDlJ -5 (1—42)0%). (3.13)

Because of the extra terms in the fourth and fifth elements
of the N = 4 stress energy tensor, there are extra terms in
the corresponding expressions of (3.13).

Then we can write down the previous equations (3.7),
(3.8) [or (3.9)], and (3.10) [or (3.11)] including other OPEs
in the component approach in terms of the following single
OPE in the N = 4 superspace:

() (94 -0
N+ 12 DlJ(Zz)+ 12
le <12 <12

J(Z)I(Zy) =~ 20)J(Z,) +

(3.14)

Compared to the standard expression [11,15], there is no
log(z,) term.®

In Appendix A, all the component OPEs are summarized
explicitly.9 It is straightforward to obtain these OPEs from
(3.14) by using the various superderivatives with the
relations (3.13).

*We have the corresponding OPE

0 — 4—0
—‘94—221\7+942 DJ(Z,) + 912 —2.20J(2,)
212 Z12 Z12

J(2,)0)(2,) =

a5t a45°
+120D'J(Z,) + 12-20°J(Z,) +
<12 212

. (3.15)

From (3.15), which is more relevant to the previous three
component results [(3.7), (3.9), and (3.11)], we obtain (3.14)
after the integrations.

Compared to the construction in [10], the presence of WA ab

and Q’1 i in (3.4), (3.5), and (3.6) is new, and these will change
the structure of the algebra.

C. The construction of the first A/ =4 multiplet

1. The A-dependent weight-1 primary operator

Let us start with the final weight-1 primary operator of
the N/ = 2 superconformal algebra [7,17]

) = 4[(1 = 22) (Wil + WED) = 2405} + W)
(3.16)

The field contents of (3.16) are the same as that in (3.6). At
A =0, only the first two terms in (3.16) contribute to the
final expression and reproduce the one in [10]. Compared
to the previous construction on the weight-1 operator, the
A-dependent coefficients appear in the above.

. The A-dependent wezght- primary operators
From the defining equation [11,15,18] of

we can determine the following primary [under the stress
energy tensor (3.1)] operators of weight—%

q)él),l 2( 411+ \/§Q3 12+2z\/§Q“1—2Q§’22
+2Q§’“ +21\/_Q§’12 + z\/EQg'zl _ -g,zz)’
q)él)l_ 2( “1+2\/§Q“1 ,122+2Q;111
+21\/’Q’“2 g,zz)’
2
q)%(l)ﬁ: 2( /111Jr \ﬁQ3 a2 “2+2Q'“]
_H\/'szl 122)
1 1.
q)il),zt:_i g,u_ “2+Q“1+§Q§’22. (3.18)

The field contents of (3.18) are the same as the ones in
(3.3). The only difference appears in the minus signs of

Qé"_‘b. Then we have the complete weight—% operators in
2

(3.3) and (3.18). Compared to the 4 = 0 case in [10], the
generalization of the fermionic operators to the nonzero 4
case in (2.4) provides the exact relative coefficients in
(3.18). In other words, for the expressions in [10] at A = 0,
a simple generalization of (2.4) leads to the above result in
(3.18). This is also true for other remaining operators of

weights- 2,2 3 3.
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3. The A-dependent weight-2 primary operators
By using the following defining equation [11]:

. 1 ..
— |:5zjaq)(()1) _ 581]k1¢(11)*kl (W),

(3.19)

we obtain the weight-2 primary operators, by taking two
different indices, as follows:

q)gl),IZ _ 2l-W/];,.121 \/_W/l 12 _ 2i WA 22 4 2i Wfslzl
— 2V2WEY = 2iWET,
q)gl) __2ZW}{3121+4\/'W/121+2 Wﬂ22_2 Wﬁll
+ VWS + 2iWET,
q)(ll) _ 2W/111 + \/_W/]; 44 \/_W/IZI _2W/122
—2WEY = 2iV2WER - 2ivVaWEE + 2w,
\/_W/HZ — 4 \/_W/121 +2W/122
—2WEY = 2iV2WER — 2iV2WEE + WY
—2iWgh 4+ 4V2WES + 2iWEE + 2iWgy
—2V2WES - 2iWEy
o = 2iwg ) + VoW + 2iwgE + 2iwgY
—2V2WER - 2iWES.

(1).23 .11
(O} = —ZWB’2 —

(D(ll).24 _

(3.20)

We observe, as described before, that by taking the
corresponding expressions for the weight-1 operators at
A = 0 and replacing them with the ones in (2.4), the above
results can be obtained. So far, we have obtained the seven
weight-2 operators consisting of (3.1) and (3.20), and the
remaining one will appear in the lowest component of the
second A/ = 4 multiplet.

4. The A-dependent wetght- quasiprimary operators
From the defining equation [11] of

G/ (2)0{"(w)|
(=)

_ _|:(5ijq)él)-k _5ikq)F ).J )+ E.zjklaq)( ). i|< >’ (321)

1
2

we can determine the following weight—% quasiprimary
operators:

1
D1 U 42)opV!

S
Pl —~
=

=

=

=0

SN

1
_ 2( 111+ \/§Q512+2\/§Q“1

/111 2\/_Q112 l\/_Q}Jl 122)’

4,22
— 2Q%

Eq>§” L 2 apeen?
3 3 2

2( 111+2\/—sz1
- 21\/§Q%’12 + Qg’zz),

1
D3 _ (1 -42)00!")?
3 3

2Q122 ‘/111

IS

S
I —~
=

W

=

(SN2

i —_
_2( /111+ \/EQS 12 _ Q222 2Q§’11
l\/_QAZI 122),

[N
—
—

1
—5 (- 42)0@( "

(lel+2Q222+2Qﬂll+Q122>. (322)

N =

Note that by starting with (3.18) with minus signs in Qé'ab
2

and increasing the weights by one, we reproduce the above
results (3.22). For the case of A =0 in [10], the weight—%
operators are primary but at nonzero A, and the above
operators (3.22) are quasiprimary under the stress energy
tensor (3.1), although we are using the same notation.'® We
expect that the half of other weight-% operators will appear
in the second A/ = 4 multiplet.

5. The A-dependent weight-3 quasiprimary operator
Finally, by using the following defining equation [11]:

G20y (w)| = {oal" + 5l )(w)

(z=w)

(3.23)

we obtain the weight-3 quasiprimary operator, by taking
two equal indices,

1

) = @) — 2 (1 - dn)Pay

2(WEH + WEE + WES + Wi, (3.24)
We observe that by increasing the weight by one from the
stress energy tensor (3.1), the above expression can be seen
with the overall factor. Compared to the A = 0 case in [10]
where the corresponding operator is primary, the above
operator is quasiprimary.  The remaining seven other

""The operators <I>(1) *, which are the components of N =4
superﬁelds later, are n(l)t qua§1pnmary See also Appendix B.

"The operator ®,’ is not quasiprimary, and see also
Appendix B.
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weight-3 operators will appear in the next A/ = 4 multip-
lets. Six of them appear in the second N/ = 4 multiplet, and
one of them appears in the third ' = 4 multiplet.

D. The OPEs between the N =4 stress energy tensor
and the first A =4 multiplet
We calculate the OPEs between the five kinds of

operators in the A/ = 4 stress energy tensor and the lowest
weight-1 operator in the first N' = 4 multiplet.

1. The OPE between the weight-1 operator
and the weight-1 operator

From the explicit expressions in (3.6) and (3.16), the
following OPE can be obtained:

(3.25)

Compared to the standard result [11] which is trivial, the
above OPE has a singular term on the right-hand side.
This is due to the fact that this weight-1 operator has the
particular coefficients.

2. The OPE between the weight—% operators
and the weight-1 operator

Similarly, we obtain the following OPE from (3.5) and
the previous weight-1 operator;

W)+ . (3.26)

This implies that the weight-1 operator preserves the
structure of the weight—% operator on the left-hand side,
and this is new, compared to the standard result [11].

3. The OPE between the weight-1 operators
and the weight-1 operator

For the weight-1 operator (3.4), we obtain the following
trivial result:

Ti(2)® (W) = +---. (3.27)

4. The OPE between the weight—% operators
and the weight-1 operator

By using (3.3) and (3.16), the following OPE is satisfied:

G'()@f (w) = -

o) - (3.28)

(z=w)

Under the action of the weight-1 operator, the numerical
coefficients appearing in the weight—% operators are shifted

to the ones in the weight—% operators appearing on the right-
hand side."

5. The OPE between the weight-2 operator
and the weight-1 operator

Finally, the last fundamental OPE from the stress energy
tensor (3.1) can be summarized by

1

(Z_W)a(b(()l)(w)—i—--~.

(3.30)

This implies that the weight-1 operator is pn'malry.13

6. The N =4 supersymmetric OPE
in the N =4 superspace
As before, we write down each component operator of

the first N' =4 multiplet in the A’ =4 superspace as
follows [11,15,18]:

(I,(l):q)gl)+9i¢l(1)~,i+94-ijq)(11)~,ij+94—i(p§1),i+94-0q)§1)
2 2
=( g”,q)i”’i,q)(l‘)”‘f,q)é‘)’i,@5‘)), ij=1,...4.

(3.32)

The precise relations between the components and its
superfields in (3.32) can be described by [11,15], similar
to (3.13),

o) o @, o' pid),

Pol——

1).i

®§1)~ije_%gijleleq)(l)’ ¢’§ ,e%eijlejDleq)(l)’
. 2 .

|
o < e D'D/D D', (3.33)
">We have the OPE
. 4 1 ‘
(G =i(1 =41 ()00 (w) == szi(1 =40 ()
L pmi
- oM (w) 4+, (3.29)

(z=w) 2

which will be used in the A" = 4 superspace description.
YSimilarly, the following OPE can be obtained:

<L +%(1 —4&)00) ()@ (w)
b miana— L ey,
— (Z_W)SN(l 4/1)+(Z_W)2<DO (w)+

+...’

1
(z=w)

of!) (w)

(3.31)

which will be used in the N = 4 superspace description.
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In other words, by taking the fermionic coordinates on the
right-hand sides to zero, we obtain the corresponding
operators on the left-hand sides.

Therefore, the previous Egs. (3.25)—(3.28) [or (3.29)],
and (3.30) [or (3.31)], including other various OPEs, can be
rewritten as

94—0
J(Z)®WV(Z,) = |-2-2N(1-42)
5p)

9451 : 0, . 1
+-22(1-44)D'J(Z,) - 2D J-—N
Z]z 212 212

0350 g
+-22200(Z,) + 12 D' (Z,)

12 212

01;° 1
+1220(1)(Z,) + - . (3.34)
212

This implies that the first N~ = 4 multiplet is not a primary
operator under the ' = 4 supersymmetry because there are
the first four terms in (3.34).

In Appendix B, we present all the component OPEs
explicitly. As before, these can be checked by using the
superderivatives in [11].

E. The OPEs between the first A" =4
multiplet and itself

We calculate the OPEs between the five kinds of
operators in the first ' =4 multiplet and the lowest
weight-1 operator in that multiplet.

1. The OPE between the weight-1 operator and itself

By using Egs. (3.16), (2.6), (2.2), and (2.1), we obtain
the following OPE:

1
o)) (2)@) (w) =

TP RN(1=4A)] +---.

(3.35)

Note the presence of the factor (1 —44) in the above.

2. The OPE between the weight—% operators
and the weight-1 operator

With the explicit expressions (3.18) and the previous
defining relations, we obtain the following OPEs

d)i')'i(z)d)(()l)(W) - _ [GT](w) 4 ---. (3.36)

(z—w)

This implies that the role of the weight-1 operator d>él) (w)
in this OPE changes the signs of Q;ﬁb. This leads to the
2

first order pole on the right-hand side of the above OPE.

3. The OPE between the weight-2 operators
and the weight-1 operator

With the help of (3.20), we determine the following
OPEs:

(w) = (z—w)? [2i(1 = 40)TY + ie"M T (w)

+

= [2i(1 — 42)aT'i

+ e T ] (w)ym + - - - (3.37)
In this case, the role of (D(()l) (w) in this OPE decreases the
weight of the weight-2 operator on the left-hand side by
one, and it turns out that the second order pole of above
OPE is a linear combination of (3.4). We have mentioned
that there are some similarities in the weight-2 operator
CDEI)’” and the weight-1 operator 7. Furthermore, the
relative coefficients 1 and 1 between the second and first
order poles on the right-hand side can be understood from
the property of the standard conformal field theory analysis
based on the weights of C[)(ll)'” , d)(()w, and T% which are
primary under the stress energy tensor.

4. The OPE between the weight-% operators
and the weight-1 operator

From the expressions of (3.22), we determine the
following OPEs:

o/ () (w)

_ ! [16iA(1 = 22)T] (w)

(z—w)?
+ (z— W)z [32iA(1 - 2/1)0Fi +3(1 - 4/1)Gi](w)
+ Z=w) |:24i/1(1 —24)0°T"

+§(1 —42)0G' +%d>f)’l} (w) +--- (3.38)
Note that the weight—% operator on the left-hand side is not a
quasiprimary operator, as mentioned before. Therefore, the
coefficients of the descendants in the above OPE are not
known in general. It turns out that according to the
realization of the fy and bc ghost system, we obtain the
above result. If we use the quasiprimary weight—% operator

égl)’i, then the coefficient of the G’ in the second order pole

is given by %(1 —42) and others remain the same. The

contributions from the extra terms in the <~I>§ b

" can be used
2
from (3.36). The first order pole in the above does not

change when we use the weight-g operator <I>§1>’i or &Dgw.
2 2
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After subtracting the descendants in the first order pole, we are left with a new quasiprimary operator which cannot be
written in terms of the previously known operators. It turns out that there are

<I>%<2)’1=—2X 2( lll—l—z\/EQﬁ 12+2i\/§Q§‘21—2Q§’22+2Q§11+2i\/§Q§‘12+ \/‘szl 522) ’
(I)éz),z:_zxz 2( ’”l+21\/§Q“l ’122+2Q“1+21\fQ’“2 é122)]

(Dliz)s:_zx : 2( ,111+ \/5 212 122+2Q411+i\/§-§,21_—§,22>]’

<I)§2)’4:—2x : ; 2111 ,122+Q111Jr Q/122 (3.39)

We realize that this looks similar to the ones in (3.18) in the sense that we obtain the above expressions by increasing the
weight of the right-hand sides of (3.18) by one and multiplying the overall factor —2. At this moment, it is not clear how the

(2).i

numerical factor % in the coefficient % of @, in the first order pole appears.

5. The OPE between the weight-3 operator and the weight-1 operator

By using the expression in (3.24), we obtain

(z—w)?

1
(z=w)

Similarly, for the quasiprimary weight-3 operator &)él) (2),
the corresponding OPE has the fourth order term as
—16NA(1 —24) where the relation (3.35) is used and the
remaining singular terms remain the same as above. Again,
after subtracting the descendant in the second order
pole, there exists a new quasiprimary operator of
weight-2 which cannot be written in terms of previously
known operators.

It turns out that we obtain the lowest operator in
the second A/ = 4 multiplet shifted by the stress energy
tensor

8
o) - S =4 = =2 [4((1 =20 (W' + W)

—20(WgY + w53 (3.41)

The structure of the right-hand side looks similar to the one
in (3.16), and we obtain the above expression by increasing
the weight of the right-hand side of (3.16) by one and
multiplying the overall factor of —2. Also it is not clear how

CAN(1 = 122+ 242%)) +

{321(1 —22)3*U + 2(&@5"‘) - g (1- 4A)aL>} (W) +---

< [324(1 = 22) U] (w)

—w

[48/1(1 —24)0U +2 (@ﬁf) - 2 (1- 4/1)L>} (W)

(3.40)

the numerical factor of 2 in front of the second terms in the
second order pole appears.'*

6. The N =4 supersymmetric OPE
in the N =4 superspace

Now we would like to construct the single N =4
supersymmetric OPE in the A/ = 4 superspace based on
the previous component results. The precise relations
between the components and its superfields can be sum-
marized by (3.13) and (3.33).

Then we eventually determine the following N = 4
super OPE, after putting the above five fundamental OPEs
(3.35)—(3.40) into the corresponding singular terms in the
N = 4 superspace

"We can write down the weight-2 operator from (3.41) as
(1= D(Wgs' + W)

+ o (L+20)(WEY + WE3). (3.42)

026008-10



N =4 SUPERSYMMETRIC LINEAR ...

PHYS. REV. D 106, 026008 (2022)

g4=0 i _ 4—0 1
@ (Z,)®W(Z,) = 2-4N(1 — 124 + 244%) + L2 [164(1 — 24)D'J|(Z,) + 5 [324(1 = 24)0J](Z,) + —2N(1 — 44)
212 212 22 2

4—ij

le
4 i

Z12
94 -0
12
+—
12
14
‘912
212
4—ij

[48/1(1 —24)0*) +2 (q>( ) —

+

212
4 i

Z12
4 0

Z12
+ -

The 4 dependence appears as (1 —44) or (1 — 21) except
the first central term of (3.43). We have checked that the
above OPE, except the two central terms appearing in the
first two lines of (3.43), is the same as the one [10] under
the large (N, k) limit.

In Appendix C, we write down all the component OPEs
explicitly for convenience. Equivalently, all the OPEs in
(C1) can be obtained from (3.43) by acting on the various
superderivatives on both sides and putting the fermionic
coordinates to zero. In Appendix D, the five fundamental
OPEs in the N/ = 4 coset model under the large (N, k) limit
are given explicitly in (D1). We observe that the previous
OPEs (3.35)—(3.38) and (3.40) are identical to the ones in
(D1) together with A =14, in footnote 4. Furthermore,
other OPEs appearing in (C1) are identified with the ones in
[10] we do not present in this paper.

F. The OPEs between the other A/ =4 multiplets
From the defining equation [11,15,18] of

=~V (w),

1
2

i 2
G'(2)f (w)
@)

(3.44)

which is obtained from the relation (3.17) by changing the

weight properly, we can determine the quasiprimary

operators of Weight-g appearing in (3.39) by using (3.44).
By using the following defining equation [11]:

i 2).j
G'@e[M ]|

ii 1 ..
— _ |:6ljaq)(()2) _ 5‘(/.l.]lclq)?),kl (W),

(3.45)

8
3

_’_9_|: (1_4/1) tjleleJ+%8ijklgklmanDnJ:| (ZZ)
{32/1(1 —22)oD'J = 3(1 —42) ( 31 eMpIDEDIY — (1 - 41)0D"J>} (Z,)
1-42) ( M DIDIDEDLY — ~ (1 - 4/1)62J) ﬂ (Z,)
[3! eMDIDEDIY + (1 - 4,1)51)1,]] (Z,)
0}, 4 [
4z |: (1 _ 4/1) ljklaDleJ + Eé‘l/klé‘klm”aDmDnJ] (ZZ>
{241(1 —2)0*D'J + = 3 D’CI)( ) — i (1-42) < 31 e oDIDED!Y — (1 — 4/1)62DiJ>] (Z,)

[32/1(1—2/1)03J+2<6<I> ——(1—41)( 1' ’J"laDDJD"DlJ——(l—4/1)63J>>]( 2)

(3.43)

|
coming from (3.19), we obtain the weight-3 quasiprimary
operators, by taking two different indices in (3.45), as
follows:

O = 2 x RiWEL — VaWE2 — 2iWER 4 2iw !
_ 2\/’W’“2 Yy W/122]

= =2 x [-2iWEY +4V2WEY 4+ 2iwgY — 2iwg
+2V2WE +2iw3,

o = 2 x RWEY + iV2WEY + 4iv2WRY - 2wiY
~OWEY - 2VAWER ~ 2V AW + W)

=2 x [2WEY — iV2WEY — 4ivVawEy
WY — 2WEY - 2iV2WEY
—2iV2WES 4+ 2w,

q)(lz),13

cI)(lz),23

O = 2 x [<2iWEY + 4V2WEY + 2iw
+2iWEY = 2V2WE - 2iWEY.
O = 2 x [2iWEY + V2WET + 2iWER + 2iWE!

— 2V2WEE = 2iWER). (3.46)
From the defining equation [11] of
G2 ()|, = -[(eI" - 5ral)
m 2 2
+ ek 9P (w), (3.47)
2
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which can be obtained from (3.21), we can determine the
following welght- quasiprimary operators by taking the
appropriate indices in (3.47):

! = —5(1 42)00!

3 3 1
2 2 2

1
— % [_E( “]—l—l\/_Q7 12 9; \/_Q“]—ZQQ‘ZZ
2
o1 2 \/EQA 12—1’\/5@2‘21—#@2’22) ’

I Eq>§2> 5(1 42)00 >
2

1
2

= 2x |:2( lll+2 \/_Q/121_2Qg,22_2Q§,11
21\/§le2 /122>:|’
& =) %(1 42)00, 7"
__ [2( AL \/_Q7 12 2Q’122—2Q§’“
2Q/121+Q/122):|

~ 1
B4 =0 L1 _az0
2 2 5 :

1 - ~
=—2x [2( “1+2Q“2—|—2Q§’“+Q§'22) . (3.48)
2 2
Finally, by using the following defining equation [11]:

Gi(2)o{ ()] | (3.49)
: (E=)

which is obtained from (3.23), we obtain the weight-4

quasiprimary operator, by taking two equal indices in (3.49),

[0+ 5105 (w),

- 1
Y = @ — < (1 - 42) g

= 2 [AWEY 4 WA WY Wi (3:50)

Therefore, the second N' = 4 multiplet by considering
the super weight-2 in (3.32) is given by (3.42), (3.39),
(3.46), (3.48), and (3.50).

We can further analyze the OPEs between the next
N = 4 multiplets. By using the previous relations (3.16),
(3.18), (3.20), (3.22), and (3.24) and the relation (3.42), the
OPEs between the N =4 stress energy tensor and the
second N = 4 multiplet are given in Appendix Ein N = 4
superspace explicitly. The OPEs between the first and the
second N = 4 multiplets can be obtained and are given in
Appendix F in A/ = 4 superspace explicitly. Moreover, the
OPEs between the second N' = 4 multiplet and itself can
be determined, and they are given in Appendix G. Then we
can determine the third AV = 4 multiplet in (F2) and the
fourth V' = 4 multiplet in (G2). In Appendixes H-J, the
OPEs between the N/ = 4 stress energy tensor and the third

N =4 multiplet, the OPEs between the A =4 stress
energy tensor and the fourth A" =4 multiplet, and the
OPEs between the first A/ =4 multiplet and the third
N = 4 multiplet are presented, respectively.

IV. CONCLUSIONS AND OUTLOOK

By using the iy and bc ghost systems explicitly, we have
constructed the generators in the A" = 4 supersymmetric
linear W, [4] algebra: the N = 4 stress energy tensor, the
first NV = 4 multiplet, and the second N' = 4 multiplet (and
the third and fourth A” = 4 multiplets). Moreover, their
algebras between these generators are determined, and in
particular, the OPEs between the first AV = 4 mutiplet and
itself are equivalent to the corresponding ones in the A = 4
coset model under the large (N, k) limit. Contrary to the
findings in [19], the modes of the currents in the present
results are not restricted to the wedges but can have any
integers or half integers because our construction is based
on the OPEs between the currents.

So far, we have considered the OPEs between the N = 4
stress energy tensor and the first AV = 4 multiplet (and other
OPEs in Appendixes E-J). Then it is natural to ask what are
the OPEs between the /;th A/ = 4 multiplet and the A,th
N = 4 multiplet for any weights /; and h,. In the analysis of
(G2), we can figure out the explicit form for the five kinds of
currents for general weight-A. The lowest component can be
obtained easily up to the overall normalization. The remain-
ing components can also be determined with the weight
dependent overall factors. Then the question is how we can
write down the OPEs between the currents appearing in (2.4)
for each component in terms of the A dependent structure
constants introduced in [19]. It would be interesting to rewrite
all the structure constants obtained in this paper in terms of
previously known ones presented in [7]. This will give us
some hints to figure out their behaviors for generic weights. 15

SFor example, the structure constant appearing in wha 7 6;,“( )
of the OPE between WF‘Z Spa(z) and W’}M Spa(w) is given by
2088 (2 — 1)(2+ 1)(24 = 3)(24 + 3) around Eq. (3.18) in [7]. This
A dependent function is related to p‘;’i(m, n,A) appearing in that
paper. By realizing that we can extract W’}i{’ Opz from the present
context and we have W3%8,, =& (3 + ZA)Qg) 3 d)é '+

5 (3 +22) (=1 +4/1)()2<D<2>, we can check that the sixth or-
der pole in the OPE between these three terms and itself
reproduces the above structure constant Furthermore, by us-
ing the weight-4 current W’1 ”béba =42 —/1)43(2) + 357 (I><4)

—25(=2+ ) (-1 +4/l)d2 0 and the weight-3  current
W% 8pa=15(-3+22) @4 Lol +1(-3+22) (- 1+42) >0,
we obtain the sixth order pole in the OPE between them, which is
equal to 512(4 —1)A(24 —3)(24+ 1). This structure constant
appears in Eq. (B.2) of [7] and is related to p};’i(m, n, ). In these
examples, the bifundamental indices are contracted with each

other. However, we should also obtain the OPEs between the
currents with free bifundamental indices for generic weights.
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Because the second A/ = 4 multiplet from the free field
approach is not directly related to the corresponding N = 4
multiplet from the coset fields in [10] (for example, the OPE

between the (Dé]) and (Déz) in the former does not vanish while
that in the latter does vanish), it would be interesting to obtain
the correct second N = 4 multiplet in the coset model at
finite (N, k) as a first step. Note that according to the free field
approach in this paper, the currents (3.42), (3.39), (3.46),
(3.48), and (3.50) are the quasiprimary operators under the
stress energy tensor. We need to find out the correct basis
where the corresponding currents in the A = 4 coset model
should reflect this quasiprimary condition at least by calcu-
lating all the nonlinear terms. After that, we also expect that
under the large (N, k) limit, for example, the OPEs between
the first A" = 4 multiplet and the second N = 4 multiplet in
the coset model will produce the ones in Appendix F.

In the context of celestial holography [20], we have seen
that the wedge subalgebra of w , , algebra [21] provides the
symmetries on the celestial sphere [22]. See also [23].
Moreover, the analysis for the N =1 supersymmetric
W1, algebrais obtained in [24,25]. In the present context, the
above wy,,, algebra is related to the OPEs between the
currents W’;i,b 8y with the structure constants pﬁ"’hhz (m,n,2)
described in footnote 15. In the context of N = 4 super-
symmetric linear W, [4] algebra, the currents of weight-4 are
made of (1) the lowest current in the Ath N' = 4 multiplet,
(2) the middle current in the (h — 1)th A" = 4 multiplet, and
(3) the highest current (and the lowest current with two
derivatives) in the (h —2)th A/ = 4 multiplet. It would be
interesting to observe whether the corresponding supersym-
metric Einstein-Yang-Mills theory at nonzero deformation
parameters 4 (or ¢g) reveals the OPEs we have obtained in this
paper or not.

In [2,3], the explicit representation of the corresponding
algebra is given by the differential operators in terms of
commuting parameters A*(z) and anticommuting param-
eters ®*(z).'° Under the symmetry generated by the
currents in this paper, the transformation of any fields
(or operators) is given by the following contour integrals
over z with the OPEs between the currents and the fields
(along the lines of [26])

Spz f(w) =
[ § aenaavy ,,<>f<w>]
) = 74 (0L (2)f(w)

5o f
[ fdze) QA,(),f(W)},

'®We thank the referee for pointing out the questions raised in
the remaining paragraphs.

(4.1)

where the contour C,, surrounds the point z and there are no
summations over the indices a and b on the right-hand sides
of (4.1). We can describe the corresponding (anti)commu-
tator relations between the “charges” and the fields.

By using the result of the following OPE:

L QB (w) =i Zi (o 25 )
toe (4.2)
and substituting this (4.2) into (4.1), we obtain
st = (o wza 5 (1) (s = 1= )1
x <af-1-fAé‘;*<w>>af)ﬂ"‘w<w>. 43)

This implies that we realize that there exist the correspond-
ing linear differential operators appearing inside the bracket
in (4.3). Therefore, the nontrivial differential operators
occur only when the first element @ of the currents Vﬁ?lz,r (z)
and the second element ¢ of the operators ¢ (w) are equal
to each other.

Similarly, we use the above currents on the b7 (w). From
the result of

= o1
VO ()b (w) = 8.4 ;a’<s A+ ><a;—1—l(z_w
X 0" (w) + -+ -, (4.4)
we determine the following transformation with (4.4):
s—1
S bic(w) = < v a’(s A+ > (=) (s =1 =i)!
i=0

x (as—l—ngS,ﬁ(w))af) bic(w). (4.5)
We observe that there exist the corresponding linear
differential operators appearing inside the brackets in (4.5).

Because of the multiple derivatives of $/*(w) in the
currents V%Z (z), the next OPE is rather complicated and it
turns out that

V() s () (w 6bLZa (s,4)( Z(Hr] ) goioi
=0
SN I T (4.6)
S w )
tH(z—w)*! Y

Note that there is a summation over ¢ and its maximum
number is given by (i + 1). There is also a summation
over i.
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Then we obtain the following result by using the relation (4.6):

s—1

1 _

Bps 7 (w (5bczal 5. 2)(=1)* Z(l-l—l—t)s iy (0717 AT (w ))0’>yfc(w). 4.7)
i=0 =0

There exist the corresponding linear differential operators with the double summations appearing inside the brackets

in (4.7).

Again, because of the multiple derivatives of bﬁ’(w) in the currents V%Z(z), the next OPE is complicated and it turns
out that

s—1 i+1
S -~ . 1 _ _ 11 -~
VO () e (w) =6,y d <s,/1+§> (=15t (i+1 —t)s_l_i—'ﬁatc”(w) T (4.8)

i=0 =0 tH(z=w)’

The corresponding transformation, with the help of (4.8), can be written as

Bp: ¢ (w) = <6b5§ai<s,ﬂ+;) ni(lﬁ-m o ,(as = AT ))af)w( ). (4.9)

i=0

The corresponding linear differential operators with the double summations appearing inside the bracket in (4.9) occur.
Now we can consider the symmetry generated by fermionic currents, and they can be described as follows:

=2
Sor: 7 (w :—(505Zﬁ%s,z)(—l)f-z-f(s—z—i>!<af-2-f@é‘2*<w>>af)bﬁ“(w»
Bo: b (w) = (%Za’ 5. 2)(=1)5" l—i(s—1—i)!(as—l—i(ags,}*(w))d’)ﬁﬁ(w),

1 i+1
c 1 s—1—1 () t jc
Be:, ¥ (w <5cha (s (=151 i+ 1=1) (071705 (w)d | (w),

=0
-2 i+1

G 0 = (B4 P18 S(0+1 =10,y @200 ()0 () (4.10)
i=0 t=0

Therefore, we have the transformations of the fy and bc ghost systems under the bosonic and fermionic currents,
summarized by (4.3), (4.5), (4.7), (4.9), and (4.10).

Furthermore, for the remaining bosonic and fermionic currents, we can calculate the corresponding OPEs with the fy and
bc ghost systems, and we summarize the following results:

Bac () = = (6 4(S<;sl_+ j” S al(sA) (1) (s - 1 - i>!<af-1-fAéS2‘<w>>ai)ﬂm<w>,

o 0°00) = (a5 (5245 ) 2170 = 1= DAL )0 )67 ()
i=0
_ s—1 i+1
) = (8 S Y A (1= 0 (0700 ()
0

0
_ s—1 i+1
o ) = =00 C DY (s o P (4= A G D)),

i=0
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s—1

Gy 10) = (B3 3 a5, 2)(=1)1~ s = 1= @100 ()t ) (),

i=0
B s—1 ' i+1 1 ] B
B, 77 (W) = (5 (s (=D (i +1=0) - <as-1-f®£;‘2‘<w>>af) e (w).
i=0 t=0 :

G () = = (30 DS 4 10,0 (@700 ). (@)
i=0 :

=0

It is straightforward to obtain the corresponding transformations of the fy and bc ghost systems for the N' = 4 currents
studied in this paper, by taking the linear combinations between the above results summarized in (4.3), (4.5), (4.7), and
(4.9)-(4.11).
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APPENDIX A: THE OPES BETWEEN THE N =4 STRESS ENERGY TENSOR AND ITSELF
IN THE COMPONENT APPROACH

For the previous result (3.14), the component results can be summarized by

L@LO) = (s 56| + o PO + 2 s Ll -
L@G W) = o [36/| 00+ (25 06000+
LQT(w) = o (1710 + 2 7).
L@ = oz [31] 09+ 00+
LEU() = = s M+ T 0100 + s U) -
Gi(2)GI (w) = ﬁ E asff] + (z—liw)z (=207 — i(1 = 42) M TH) (1)
+ (Z _1 7 {2&‘& — TV — i% (1- 4,1)e"fk’aT’<l] (W) +---,
GI(2) () = = T (1 = 42) (4T =T ()
- ﬁ [eUKoT! + (1 — 42) (8%l — §Ul*) + is™*GI — i5YG¥|(w) + - - -,
()T (w) = —ﬁ 8089 + {—%gw‘klrkl + i&"f'U] (W) + -+,
GI(U() = = P](0) = s 0P () + -
T(z)TH (w) = E [eVKIN] — = i[5 T — §'TIk — kT 4 ST (W) + - - -,
T () (w) = — ﬁ i[6*T — §FT (W) + -+ - (A1)

026008-15



CHANGHYUN AHN PHYS. REV. D 106, 026008 (2022)

Compared to the large N = 4 superconformal algebra [11,15], there are two additional central terms in the fifth and eighth
of (A1)."” Moreover, there are trivial OPEs I''(z)["(w) and U(z)U(w). Finally, the central term of the OPE T% (z)T* (w)
which is proportional to (6%&/! — §6/F) does not appear.

APPENDIX B: THE OPES BETWEEN THE N =4 STRESS ENERGY TENSOR
AND THE FIRST N =4 MULTIPLET IN THE COMPONENT APPROACH

We present the complete OPEs corresponding to (3.34) as follows:

L(2)® (w) = — e _lW)S 96NA(L ~ 2A)] + s 1-6(1 - 4ol — 964(1 - 2)U](w)
! _ 114y ! (1 ! w
L(z)dDél)’(w):—(Z _1W) [241A(1 - 20T ](w) + -5 (1 - 41)® o, ](w)+(z _lw)2 gcpé”*’} (w)
e 0O
L0 0) = s 20 ) + L 00 + -
Wiy 1 3 i w 1 (0110
L()®| <W)_(Z_W)2[2q>% }( )+ gy 900
L8] (0) = s 0 100) + o 004 J0) 4
Gi()ol( ):(Z_lw)4 [48il(1—2/1)1“1](w)—i—ﬁ[—%iﬂ(l—%)dl‘i—6(1—4/1) @{]()
U CsoMiy (- (g L D1 30) ...
o 50 (1= 42000 0) = = 00 () -
G ()@} (w) = G _1w)4 [48NA(1 — 22)67]
+(Z _lw) [48A(1 — 22)549U — 81A(1 — 24)et IR 4 4(1 — 42)57 D] (w)
-7 _lw)2 4@5”'"’%( — 40 1 (1 - 42)5700)) | (w)
— 2 00+ )
G ()0 (w) = _lw)3 [1614(1 — 24) (897 — 5579)] (w)
7 _1 E [—(1—42) (5i-fcp%“>*" - 5ikq>é“’f )+ 3gi-ik’c1>%“>~l](w)
g 0 = (1) 4 00( M) 4
G0 0) =~ D00 — s o) e )+
G2 () = = 0] 0w -

"They are denoted by the typewriter fonts.

026008-16



N =4 SUPERSYMMETRIC LINEAR ... PHYS. REV. D 106, 026008 (2022)

Tii ()@} (w) = = [4(1 — 42)TH — 261 (w)

1
(z —w)
1 L N
o 21— 49T + Do + i) () + -+
THQO ) = =5 (226 = 5) + 2(1 = 4t o)

+ [(3 = 84+ 162%)(5"0r — 7%ar") - 3(1 - 42)e*3<ar?

1
(z—w)?
_ 3l.guk1q)il),l+i<l _ 4/1)(51ij _ 5jkGl) _ igljlel](W) _ m [iﬁzk(Dél)J _ léjkq)él)l}(W) 4ol
Ti ()@ (w) = ONi6Hk§IL — 2NistoI% — 2Ni (1 — 44)eidN]

I
(z—w)
1 . s _—
oy —21i(1 —4)etFly — 21 (569 - k81U
—w
— (1 — 42)(s**krIt — stipik — sikpil 4 §ilpik)

+§(51k£jlmn _61183kmn _ 5jk€11mn + 5]1£1kmn)Tmn + 2i€l]qu)g)l) (W)

_ [l'étk(b(ll)n/l _ i5llq)(ll>"]k _ l'5jkq)(ll)ﬁ l + l'5/lq)(ll). k](W) -

(z=w)

[—is* @\ 4 sk (w) + - -,

_ ikpd _ sikpi) _ pijklgel
1—42) (6™ — &%) —¢ r](w)+(z_w) | |

1
R

[6N(1 — 42)] + [—40!)+8(1 — 42)0](w)

- 1 1
(z —w) (z—w)?

7 _IW)Z 0@ ~4(1 — 44)0u — 8L (W) + - - -,
U@ () = ﬁ 241 = 414](0) + o 1341 = 4 + 04361 (w) + -+,
U ) = s A1) + -
UM () =~ L) + -
U0 ) = 2
P04 () = =5 201 = 47](0) + = [=6(1 = 4d)ar - 3161~ 356¢](w)
G _1 - 40T + i0®" 4 1961 (w) + -,
P () = = 5 2951 - 40)6°)

1 . - . 1 N
+ m [2T13 4 2i5qu)(()1)—3i(l _ 4/1)513-0 _5(1 _ 4/1)€13lek1} (W)

—01H — igiad\! +i (1 — 44)5tI0u — Eie’/leI)gl)'kl + 2i513L] (W) + -,
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1 o N
= m [—(l - 4/1)(51kf3 - 513Fk) + eljklfl](w)
[(1 — 44)(5%0r3 — §439r%) — et3kiort — isiigpN*

1
2

+

(z—=w)

+ iéikq)(l)»j+i(6iij — §HE) (W) + -,

i
2

. . 1 ..
Ni&tI] + —1890 = 2T () -

[EE

1 .
el (IR (B1)

(z —w)

Compared to the N = 4 primary condition [11] of the first /' = 4 multiplet, there are additional terms in (B1): either
central terms or the field contents of the N = 4 stress energy tensor.'® In other words, the first N = 4 multiplet is not
N = 4 primary.

APPENDIX C: THE OPES BETWEEN THE FIRST A =4 MULTIPLET
AND ITSELF IN THE COMPONENT APPROACH

As before, we list all the component results corresponding to (3.43) as follows, the details are given in the Ref. [27]:

(@2 () = _1W>2 RN(1 = 42)] + -
0} ()0{" (w) = 5 [ + -
of (2)of" (w) = oW [2i(1 — 40T + igMTH) () + - - -,
CD(()U(z)CDéU’i(W) -G _lw)3 [16iA(1 = 2)T] (w) + G _lw)z [3(1 = 42)G' + 16iA(1 — 22)aI"](w)

ol SELPCR] PSS
+m[§(1—4z)0G 5@ :|()+ ,

1
2

o' ()@ (w) = E _1W>4 [AN(1 = 124 + 2422)] - (z—17w)3 324(1 = 2)U](w)
ﬁ [2 <q>ff> —2(1 - 4/1)L> +16A(1 — 2&)@0} W)+ -+,
O ()0 (w) = - [4N(1 - 42)517] + S 20T+ i(1 — 42) M TH) (w)
2 2 (Z - W) Z— W)
+ E _1 7 [—25% +ioT" + % i(1- 4,1)eifklaT’<l} (W) +---,
o) (z)@ 7 (w) = P lisi -2 (8T — §KTY)] (w) + e 42)(8UG* — 5*GY) + 3M G (w)
G _1 m [51’1’ G @im - % (1- 4,1)aG’<) — 5k G (Déz)’j - % (1- 44)@(;-/‘) + e"jklaG’} (W) + -,

"They have the typewriter fonts.
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i . 1 y
oV ()@ (w) = — C4N(1 = 122+ 2422) 6]
: : (z—w)
SR e [1657A(1 = 2)U — 4i(1 — )T — 2i(1 + 44 — 872K TH] ()
—w
+— Ll —anari + Lig - 42)2eikgTH — 251 — 2 —aL (W)
(z—w)? 2 ° 3
+ L —aneeri 4 Lig - anyzeimgra
(z—w) 3 6

2 . 1. 1 .
-3 (1 —42)8oL — 5511()@(()2) + Zguqu)?)qkl] (W) +---,

@i]),i(z)d)(zl)(w) = ; _1W>4 [48iA(1 — Zl)ri](w) +ﬁ [-6(1 — 4/1)Gi — 48iA(1 — 2/1)61—‘[} (w)
1 2 5 i 1 1 5 1 2.
+m[—§(l—4ﬂ)% +§¢i) }(W)er{—g(l—ﬁ)a G +§aq>§) ](WH---,

EEm [—12N(1 — 42) (8% — §'16/%) + AN (1 — 122 + 2422) ek
—w

+ ——— [-4i(1 4+ 44 — 842) x (=&*TJ' + §TI* + §*T! — §ITH) - 2i(1 — 42)

(z=w)

X (_6ik8jlmn + 5il€jkmn + 5jk€ilmn _ 5j18ikmn)Tmn](W) + ( )2 |:_21(1 +4) - 8],2)

—w

x (=8*oT/! 4 §!'0T/* 4 §/koT! — 5/0T™*) — i(1 — 42)

X (_5ik8jlmn + 6il€jkmn + 5jk8ilmn _ 5jlgikmn)aTmn _ 8(5ik5ﬂ _ 5i15jk)L + 28ijqu)(()2)
8 . 1 2
—(1—42)eML ——— |=Zi(l + 42 -84

#3040 )+ s =50 41 8)

X (=6*PTI + 10> Tk + % PT! — 51T — i3 (1-42)

(_5ik€jlmn + 5il€jkmn + 5jk€ilmn _ 5jl€ikmn>aZTmn _ 4(5ik5jl _ 5il§jk)aL + 8ijklaq)(()2)
4
3

’

X
» L i@l | cila(2).k ke (2l il x (2).ik
3 (1= 4)e0L + = (~5¥ 0P 4+ 10 4 sk - 51D ) () + -

: 1 y 1 o
@\ ()@ (w) = = ——— [48iA(1 = 22) T (w) + ——— [2(5 + 84 — 1612)(5*G/ — 57G')
3 (z—w) (z=w)
+2(1 — 4D G! = 16iA(1 — 22)(1 — 42) (5% — 87%ar")] (w)
1

. ) ) . 5 .
s [(3 ~44)(1+42)(5*9GT ~ 57*9G") + 3 (1~ 42)e"9G!
—w

, . . . 5 ..
— 8iA(1 = 22)(1 — 42)(§*PTV — s3I — 5swklcpf”'l (w)

12 o
b |2(1 + 44— 822)(5* PG — PG +
3¢ X )

8 o U o o
=S iA1= 2)(1 = 42) (6" = 59T ~ kg2 — 3 (5% P — 5k | (w) + - -

1 3 3
2 2 2

2
2 ijkl 32 1
(1= 42)eMPG

9’
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CI)(II) l](z)(l)gl)( ) — ( )4 [_]21'(1 + 81— 16/12)Tij _ 6i(1 —4/1)8ijlekl](W)
—=w
+ ( 7 [4i(1 — 42)%0TY + 2i(1 — 42)e7F T ] (w)
—=w
1 y -~ y
o P~ AP PTY 4 i(1 - 4N HPTH + 30 (w)
=W
1 2. 2 3370 1. ijkl 33Tkl (2).ij
+(Z—W) 51(1_4/1)6T +§l(1—4/1)8 o°T —1—6(1)1 (w)_|_...’
o (1)@ () = < [48N (1 = 42)67) + ——— [<12i(1 + 82 — 16A%) T — 6i(1 — 42)e7MTH) (w)
: 2 (z—w) (z=w)
1 y y 3
+ e [—6i(1 + 84 — 1642)aT" — 3i(1 — 42)eVK T + 4(9 + 84 — 164%)5"/L
=W

+ 16A(1 = 22)(1 — 42)87oU)(w) + [—i(l + 24 — 482%)0* T

b
(z=w)?
1 ; ) y
— 5 i(1 = 40)eMPTH +2(9 + 84— 162)0L + 84(1 = 22) (1 = 42)50°U + 30| (w)
b S8ia(1 = 20T + (2= 22)(1 + 20)0L
(z—w) 3

8 ) 3 o 1
+3 (1= 20)(1 - 44)870°U + Eacpﬁz)’ 4 Eaucpg”] W) + -,

cpé‘)’i(z)cbg‘)(w) = [—6(7 + 244 — 4872)G' + 144iA(1 — 22)(1 — 44)aI"] (w)

(z—w)?
1 . 4
+ oy [—4(3 + 164 — 3222)0G’ + 64iA(1 — 22)(1 — 44)0*T"](w)
1 5 .80 Y
b | =2 (14 161 = 3222)G' + = iA(1 = 20)(1 = 42)PT + - d | (w)
(z=w)*| 3 3 2 3

1 ) .3 i
A {—8/1(1 —2)PG + 8iA(1 = 22)(1 — 42)0*T" + Eacbf)* ] (W) + -,
—w 2

~[240N(1 - 42)] + 2[192(1 + 22— 422) L 4 1922(1 = 22)(1 — 42)0U) (w)

(z=w)

+ [96(1 + 24 — 442)0L + 964(1 — 22)(1 — 42)0*U] (w)

(z=w)?

1 ]16 112
m {3 (5 + 144 —282%)0°L +T/1(1 —20)(1 =44)°U +4¢g2)] (w)

1 L6 - : ¥ 2 - - <2)
+(z—w) {3 (14+41-82%)0°L + 3 (1 =22)(1 = 42)0*U + 20®; }(w)+ . (C1)

Note that on the right-hand sides of (C1), the field contents of the N' = 4 stress energy tensor and the second N = 4
multiplet appear which is manifest in (3.43).
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APPENDIX D: THE N =4 COSET MODEL RESULTS UNDER THE LARGE (N, k) LIMIT

We rewrite the previous results under the large (N, k) limit in [10] as

o) ()0l (w) = ﬁzN(l )t
cbéw ()0 (w) = — - _1 5 Gi(w) +---,
()2 (w) = @ - oy (20 = 200) T+ i MTHYw) - s 261 = 2A00)OTY - ieMOT () + -
o/ (2)p (w) = - _1 L BiAo(1 - Joo)TT] (W) + o 1671 - 20y)T +3(1 = 22,,)G'] (w)
T _1 ) [12%(1 = Aeo) T + 2 (1=22.,)0G" + %(Df)"'] (W) + -,
" (2) @ (w) = G _lw)4 4N (1= 2e0)(1 = 2200)] + - _lw)3 (16200 (1 = 40, ) U] (W)
+ (Z%W)z {24/100(1 —2,,)OU + 2(@(()2) ~ % (- 2/100)L>] )
oW [mmm — 1)U + 2<aq>§)2) _2(1 - 2/100)6L)] (W) 4. o)

It is straightforward to express the OPE as in (3.43) in N = 4 superspace.

APPENDIX E: THE OPES BETWEEN THE N =4 STRESS ENERGY TENSOR
AND THE SECOND N =4 MULTIPLET

We present the super OPE between the N = 4 stress energy tensor and the second A/ = 4 multiplet as follows:

5 0‘1‘50 5 14 9‘1‘5" 16 2\ i 9328 .
J(Zl)(I)( )(Zz) = —TSN(I — 42+ 82%) —TfN(l —42) + 3 — (1 =24+427)D'J(Z,) —Tf(l —40)D'J(Z,)

212 1 3 Zp 3 3
oh° y 106 2 1 n_8

+ 2 |8(1 = 4@ + — (1 —42)%0) | (Z,) + — (4D -~ (1 —42)d) | (Z,)
12 3 212 3
oL 4 1 1

+ lg |:__(1 _ 4/1)_gljleleJ _ 2gljkl_sklmanDnJ:| (ZZ)
4 3 2! 2
o[ 8 o - | :

+— —5(1 —42)%0D'J + 2(1 —4/1)DZ(I>( ) +2(1—42) —aelf D'D*D'J — (1 —42)oD'Y | | (Z,)
le .
0, [8 , () | .

+— 5(1 —40)oD'J + 2D'®V) 4 2 —ge’l D/D*D'J — (1 —42)oD'Y | | (Z,)
212 !
64_0 94—1‘ ) 94—0

+ 2400 (2,) + 12 D'®?)(Z,) + 12200 (Z,) + - - - (E1)
Z12 212 212

Compared to the A/ = 4 primary condition [11] for the second N' = 4 multiplet, there are additional terms except the last

line of (E1). The N = 4 stress energy tensor and the first /' = 4 multiplet including their descendants appear in these
extra terms.
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APPENDIX F: THE OPES BETWEEN THE FIRST A =4 MULTIPLET
AND THE SECOND N =4 MULTIPLET

We describe the super OPE between the first N' = 4 multiplet and the second N = 4 multiplet as follows:

04 0 §4=0
W(Z)®P)(Z,) = ——-[128NA(1 —22) (1 = 42)] + 7 [-32(—1 - 44+ 822) @) — 642(1 - 22)(1 —41)d]]
Z12 Z12
4 i 64
[32/1(1—2/1)(1—41)DIJ](Z2) —(1=2)(1422)D Di® | (Z,)
212 Z12 3
9’12 ‘9?20 1
[-324(1 =20)D'J](Z,) + —( A)(1424)0d (Zz) —[=32NA(1 = 24)]
le le 3 le
1 16 |
+—= —?(1—4,1)4)( ) —32)(1=224)d) | (Z,)
212
61,7 8 1 1
+ 122 |:__(1_4/’{)_811lele¢(1)_4€l]kl klmanDn(I) :|(Z2)
1 3 2 2
o' [ 2 2 10 T e
+ 12| =2(=23 =82+ 164%)0D' @) ——— (1 —42) — £/ DID*D'® | (Z,)
2 L 3 3 3!
01" [ 8 2\ 32 8 U ik ni nknlds(l 3
+2= _B( —41 = 32)+ 6422)0* D) — 5(1—4/1)58’/ D'D/D*D'®) + ®O) | (Z,)
Z12 .
0 [ 2 (1 T ——
+121-2(1-42)0D'®) 42— X Dip*D'dM) | (Z,)
Z1p| 3 3!
0,7 4 .
+ 12 [ §(1—4l) Et/klaDleq)() 2811kl§€klmnaDmDn¢(1):| (ZZ>
212

058 : 8 | R 1
412 [—(—11 —2)+422)0*D'd) —5(1 —4,1)§guklanDkD1q><1> +6qu><3>] (Z,)

zpp [15

01" [ 16 N Bl 10 U iikiamini nknidd) 1 2 Ad (3
+—== —B(—7—4/1+8/1 )o c1><>—?(1—4,1)5w oD'D'D D(I>(>+§6(I>(> (Zy)+---. (F1)
212 :

On the right-hand sides of (F1), there are the N = 4 stress energy tensor, the first AV = 4 multiplet, the third ' = 4
multiplet, as well as their descendants.
The third N' = 4 multiplet can be summarized by

48 96
®)) =~ (=3 + 2)(Wih' + WiF) =2 (1 )Wk + W),

( ill+ \/§Q7 12+21\/§Q;121 2Q%,22+2Q§,11+2i\/§Q§,12 H/—Q/121 /122) ,
2 2 2

1T 1
| =

2( /111+2 \/_Q121_2Q£1,22+2Q£1,11+2 \/EQﬁIZ 222):|’
2 2 2

2( A11 4 \/§Q7 12 2Q%,22+2Q£{,11 +i\/§Q%’2l _Q§,22):|’
2 2 2

Nl

3).4 1 - 1-
O = (<)) x |20t - 02 4 0 4 L2,

2 L 2 2 2 2
O = (=6)(=2) x 2iWE = VIWEZ — 2iWER 4 2iWl — 2V2WER — 2iw,
O = (=6)(=2) x [<2iWE + 4V2WEY + 2iWE2 — 2iWE ! + 2v2WEE 4 2iwp,

O = (-6)(-2) x WS+ VAWSS + VW ~2WiE —2WEl! — 2iAWER — 20 AWEE + Wi
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®3B _ (=6)(=2) x [—2W’]§141 \/—Wﬂ 12y \[Wé%;l + 2W’1 22 2W’1 1 _ 5 \fWﬂ 12 _5; \fWﬂ 21 4 owh 22]
6)(=2) x [=2iWEY + 4V2WE + 2iWET + 2iWgY — 2v2WiES - 2iwi R,
6)(=2) x [-2iWgY + V2WE + 2iW5T + 2iWg) — 2V2WEY - 2iWgY],

S
—_
)
=
W
=
I
—~
|

1 _ o o i

= (-6)(-2) x _%(Q§’11+2i\/§Q§’21—2Q§'22 20" —2iﬂQ§~‘2+Qé-”)],

¥

_ (—6)(—2) % 5(Q§11 + l\/EQ%l,IZ _ 2Q§.22 _ 2Q§.11 — 2Q§.21 + Q§,22):| ,

. 1
=Vt —Z (1 - 42)00

;( 111+2Q222+2Q;,11+Q§1,22) )
2 2

< (3 3 1 3
®)) = @)Y 2 (1 - 4)0y”
= (=6)(=2) x [=2(W55 + W55 + Wgs' + W3], (F2)
All of these in (F2) are quasiprimary under the stress energy tensor (3.1).

APPENDIX G: THE OPES BETWEEN THE SECOND A =4 MULTIPLET AND ITSELF

We summarize the super OPE between the second N = 4 multiplet and itself as follows:

1 [128 050 512
(2@ (Z,) = o { N(1 =42)(1 +21 - 4/12)} ;2 [ TN(—l + 104 — 804% + 80/14)]
12 12
0457 2048 : 015° [4096
L {—1(1 —)(1=20)(1 + ZA)D’J} (Zy) + 2 [—,1(1 —)(1 =211+ 2/1)6J] (Z,)
G L3 Z12 3
05,7 [ 256 1 128 o1
e [— = (1=2)(1+22)(1 - 4,1) e/ DkDLY — 3 —— (1 =2)(1 + 22" Ee""””D'”D"J} (Z,)
le .
4[4 ‘
9142 {03—96,1(1 —2)(1=22)(1+22)aD'J
212

+128(1 = A)(1 +22)(1 — 42) <— %e"j’deD"DlJ —(1- 4/1)0DiJ>] (2,)
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94_0 > 512 1 Xl el
71 120482(1 = 2)(1 = 20)(1 + 20028 =25 (1= (1 +2)(1 = 42) (5 €4 D' DIDD
212 !

-5 (1 - 4/1)62J> —32(=7—41+ 8/12)<I>(2)} (Z,)

o, [ 128 | .
+ Z—3‘2 [—T(l -2)(1+22) (—;e’/“D/DleJ -(1- 4/1)6D’J>] (Z,)
12 :
01,7 [ 256 1
5 [ =5 (1—,1)(1+2,1)(1—4/1) eMoD*D'Y — (1— A)(1 +22)ek — o ellmnopmpry | (Z,)
212
0%y ‘
-k {10241(1—,1)(1—21)(1+21)021)’J
212
1024 | R :
+ OT (1=2)(1+22)(1 —44) (— ae’/k’aD/DleJ -(1- 4/1)02D’J>
1 014
36( 11— 21+ 422)D'®d? >]( )+6‘112 [0396 (1=2)(1=22)(1 +22)0°J
7

+¥(1 = 2)(1+22)(1 —42) (2 14 e/MoDIDIDED!Y —%( 4,1)a3J>

16 1] 16

— (=43 = 16+ 3222)00?) | (Z,) + - | — = (1 — 42) D
3 12 3
256 [ 1
#5001+ 20 (5 e DDA - 1 - Wz"ﬂ )

i 2 | R . .
% [— % (1=2)(1+22) (—;s’f“aDlD"DlJ -(1- 4/1)02D’J) - g (1- 4,1)qu><2>} (Z,)
12 :
01,7 1128 1
2 [ (1 =2)(1 +22)(1 —42) = €* 32Dk D!y
5 |3 2!
64 kl1 kl 2 1 ikl kNl a2
—?(1—,1)(1+2,1) gl 5; €MD" D" ~ 4(1—4,1) M Dk D'?)
1 051 [4096 A
— 6el/k — 5 gklmn pm pr (2 ](zz) = [Tg/l(l—/1)(1—2/1)(1—1—2&)63D1J
12
160 | .y
+T(1—,1)(1+24)(1—4x) —5;¢MPDID D'J — (1 -42)0°D'J
2 NP, V' U o
—g(—71—8/1+16/1 )aDl(I)()—?(l—M);s’f D/D*D'®?) | (Z,)
6450 [5120
+%[—z(1—1)(1—2ﬁ)(1+2ﬁ)aﬂ
27 9
512

—?(1 - )(1+22)(1 —41)( 14_ €M a2DIDID*D'Y —5(1 —4,1)a4J)

24 (=38 — 114+ 2222)0* D) g? (1—42) l‘eijleiDjDle(I)(z) + %cb“”} (Z,)

1 8 2 128 1 ikl k!l 3
+— —3(1—4z)a¢<)+7(1—,1)< +2,1) San €MD DID DJ——(1—4/1)0J (Z,)
212
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0, [ 32 | A
+-2 [— S (=21 +20) <— 216D/ — (1= 4/1)03D’J>
212 !
‘ 1o
—2(1-42)0D'®? +2 yglflekaquﬂ] (Z,)
0,7 [ 128 1
+12 [ - (1= 2)(1+22)(1 - 44) 53 e D*D'Y
212

4 1 .
_%(1_/1)( +2/1) zjklz klmnaBDmDnJ+ (1_4/1) zjklaDleq)(Z)

A1 =2)(1=22)(1 +22)0*D'J

o1 051 1280
+48111{1EgklmnaDmDn(D(Z):| (Zz)-i- 12 |:

212

256 1 : ,
FU —)(1+22)(1-42) <—§e’1k’a3D1DkD’J -(1- 4/1)64D’J)
_32 (=13 = 1+ 212)0*D'd?) — o4 (1-42) L giitgpiptpip® + 1 pig@ (Z,)

21 21 3! 24 :

0170 [512
+Z‘—2 221 =) (1 =20 (1 +24)°)

12

512 1 ikl 33 kl 1 S
=2 (1 =1 +22)(1 - 42) eMPDIDIDFDIY — (1 —42)0°)

15 2-41 2

67 N 16 L tanim ki@ o L @

—— (-17-41+ 87 )PDd2 - (1=42) ;oD DIDDI®R) 4 200 | (Z) + -+ (G1)

There exist the N/ = 4 stress energy tensor, the second N = 4 multiplet, the fourth ' = 4 multiplet, as well as their
descendants on the right-hand sides of (G1).
The fourth A/ = 4 multiplet can be summarized by

768

384
- (=2 + A)(Wf;}ﬂ +WEP) + 7(3 +22)(Wl + W),

'Nl»—
L]

~ (0" + 2030} - 201 + 2001+ 2030} - Qé’”)],
2 2 2 2

NS] |

LM VA0 - 200 120 1+ iV30} - 0} )],

191 >~

)" = (=8)(~6)(-2) x —Egé” 047 + 0" + 50

-2Wg-}; f W* 12 _ 4 \f W“1 + 2Wi 22 _ 2Wi _9i \f Wf;}sz - 2i\/§Wf;§1 + 2Wf:'§2],
—2iWgY +4V2RWEY + 2iWET + 2iWgl - 2V2WEE - 2iW,
—2iWEY + V2WEY + 2iWET + 2iWEY - 2V2WEY - 2iWEY,
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- 1
W = W — (1 - 42)00"!
2 2 9 2
[ 1 _
= (=8)(=6)(=2) x E(Q'}]” +z\/_Q’1 12, 5; \/EQ“I —2Q“2 ol 21\/_Q“2 Q/m + oM,
2
- 1
32 = 0lM? — (1 - 42)00"”
2 2 2
— (_8)(_6)(_2) X 5( /‘{11 +2l\/_Q/121 /122 Qu _21\/_Q/1 12 122):| ,
2
- 1
Y7 =0l — (1 - 42)00”
2 2 9 2
_ (—8)(—6)(—2) % 5( A, 11 + \/_Q1112 _ZQ/IZZ 1? lleZI 122):|’
- 1
Y = oM — 2 (1 - 42)00(V
3 2 9 2
o )
= (=8)(=6)(=2) x |5 (" +201” +204" + 0i)|.
- 1
3 = ol - 5= 42) 0P}
= (=8)(=6)(=2) x [-2(Wgg + Wg§ + Wie + Wrg)l. (G2)
|
All of these are quasiprimary under the stress energy tensor  the quantities inside the brackets after we replace with

(3.1). The 4 dependence in the weight-4 operator in (G2)

can be obtained from the factor (4 — 21) appearing in W’};Z”
A.aa

and the factor (3 + 24) appearing in W77, respectively.
This implies that for the hth N =4 multiplet, the 1
dependence in the weight-A operator can be obtained from
the factor (h—21) appearing in W7%* and the factor
(h — 1+ 22) appearing in W’;‘;{‘ , respectively. For the four
weight-(h + 1) operators, we simply take (—2h)---
(—8)(—6)(—2) multiplied by the quantities inside the brack-
ets after we replace 3 with (h + 1). For the six weight-(h + 1)
operators, we simply take (=2h) - (=8)(=6)(=2) multi-
plied by the quantities inside the brackets after we replace 5
with (h + 1). Similarly, for the four weight-( +3) oper-
ators, we simply take (—2#) - - - (—8)(—6)(—2) multiplied by
|

(h+ 2). For the weight-(h + 2) operator, we 51mp1y take
(=2h) - (—8)(—6)(—2) multiplied by the quantity inside
the bracket after we replace 6 with (7 + 2). The WA 7, and the
"D and f' Y.
Similarly, the Qﬁ ab and the O 4 can be written in terms of

h+}
l()' and d>§ ) .

2

W55? can be written in terms of dJé ), CDE

APPENDIX H: THE OPES BETWEEN THE
N =4 STRESS ENERGY TENSOR
AND THE THIRD N =4 MULTIPLET

The OPEs between the N = 4 stress energy tensor and
the third A/ = 4 multiplet can be described by

6350 1536 1 192
J(Z,)®¥)(Z,) = -2 [ N1 =22)(1 —4,1)} — {—iN(l 32+ 6/12)}

212 5 Z12 15
0157 [1536 . 0 192

+ 4 {—/1(1 =22)(1 = 4/1)D’J} (Z,) + ﬁ [—— (1-31+ 6/12)D’J] (Z,)
212 5 Z12 5
0157 1192 1 9 1

1 21 —4 AN ljlele -2 (1-4 ijkl — klmanDn

—z?z {—5 (1+22 /1)2!8 J 5( A)e X J]( ))
#5971152 1536

+-12 [ s (1+22- 42%)® <>—?,1(1—2,1)(1—4z)aJ}(zz)
212
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1 192
+— [96(1—4/1)<1> —i(l—sz+6az)aJ]( 5)
L3 5

5[ 1536 576 .
+2 {—5/1(1 —22)(1 - 4/1)0D’J+?(1 + 21— 422) D'l

Z12

+1924(1 = 22) <— %e’jk’DjDkD’J - (1- 4/1>OD"J)] (Z,)

o 4
+32 ﬁ(l—3x+6/12)aDlJ—%(1—4/1)chp
Z12 L 5
96 1 zkl k! i
—?(1—4,1) MpDIDED'Y — (1 —42)0D'] ) | (Z,)
1 [ 9 192
+— —9—(1—4/1)ac1><> ) — (1 =31+ 64%)0%)
212 L 5 5
64 1 ikl ki 1 2 2
+5 (=43 eMpIDID D'y -5 (1-42)0%) + 242 | (Z,)
i ‘ 4 1
+el§ |: 96( 1+24— 412) UklaDleJ—l-—S(l—4/1)8’jkl—8klmnaDmDnJ
3, 5 5 2!
48 ikl yk 1yl 1 “kl1 kl 1
—?(1—4,1) R DFDIP) — 2461 T mnpmprd() | (Z,)
o 12 .
+-12 {— %0 (1 =32+ 64%)0’D'J +— (1 — 42)oD'®)
212 5 5
32 | - L it i me () _—
+3 (-4 - 3 —eKoDID*D'J — (1 — 42)*D'J +12§ew D/D*D'®") — 6D'®?) | (Z,)
0 (94_i ) 94—0
- [6@V)(Z,) + - [D'®I)(2,) + 12 [2009))(Z,) + - - (HI)
le <12 <12

Except for the last three terms for the N = 4 primary condition [11], the additional terms consisting of the N = 4 stress
energy tensor, the first and the second N' = 4 multiplets (and their descendants) appear in (H1).

APPENDIX I: THE OPES BETWEEN THE N =4 STRESS ENERGY TENSOR
AND THE FOURTH N =4 MULTIPLET

The OPEs between the operators in (3.12) and the operators in (G2) can be summarized by

1 [ 3072 050 [ 147456
J(Z)®W(Z,) = — [——N(l —4)(3 - 2A+4,12)} -1z [— NA(1 =22)(1 —,1+242)]

212 35 12 7
057 [147456 , 0, [ 12288 .
2 [ A1 =22)(1 —/1+2/12)D’J} (Z,) +-22 [— (1 —4/1)(3—2/1+4/12)D’J} (Z,)
<12 7 212 35
0150 [49152 294912

+2= {—1(1 —22)(1 — 41D — A1 =201 =2+ 212)0J} (Z,)
212
4—ij

18432 I 21 1

9 |: 843 (1—/1)(1—|—2/1)(1—4/1)—8’Jk1DkD1J 9 6(1_14_2/12) ijkl klmanDﬂJ:|<Zz)
7, | 35 2! 7 2!
1 [6144 12288
—[ (1-2+22%)@W _?(1 -41)(3 - 2/1+4/12)6J} (Z,)
2

026008-27



CHANGHYUN AHN PHYS. REV. D 106, 026008 (2022)

o' [ 294912 24576
o [_ M1 =20)(1 =4+ 222)9D'Y + == 4(1 = 22)(1 — 41 D'l
36864 Lo -
o (1—4/1)(2—3/1+6/12)(—ys’JkIDJD"DZJ—(1—4/1)31)'-])}(22)
; 4
Oy {3686 (1 -42)(3 =24+ 42)0D0 - 222 (1 = 2+ 22) DiplY)
2| 35 7
9216

_7(1—/1+212)< L impipkply - (1—4/1)D"J>}(Zz)

040 [ 2457 1474
+%[ %61(1—2/1)(1—42)@<‘> 56/1(1—2,1)(1—,1+212)52J
212
21 2457
976( 4— 3/14—6/12)(1)()—%(1—4/1)(2 31+ 642)
| R 1
ijkl ryi kDT (1 — 2
x<2‘4!s/ D'D'D*D'J 2(1 42)0 J)](Zz
61,7 [ 18432 1 216 1
%{ —— (1 =2)(1+22)(1 —42) — ”klaDleJ+9 (1= A+ 222)glikl_— gklmngpm pn y
23, 35 2! 2!
15736( S 4H8/12)1 T 2304(1 ),-jk,%gklmanan,m}(zz)
1 21 18432
— [—Ha —A+22%)od) +ﬂ(1 —42)(3 =24+ 44T
z, 7 35
144 1 1152
+6T(1—,1+2,12)< S M DIDID*D'Y — = (1—4&)@2J>+TS(1—4,1) }(zz)
0457 [73728 4608 ‘
= [—/1(1—2/1)(1—/1+2/12)02D’J - —— (1 =24)(1 —42)oD'®V)
p)
122 | R .
3 588(1—4,1)(2 3/1+6/12)< 3 — €M oDID*D'J —(1—4/1)02D’J>
1o 2304
—15361(1—2/1)5811’{7an1)le<1><‘> = (-4-31+62%)D'®C ]( 5)
0, [ 18432 384
+%{——(1—4,1)(3 24+ 422)0*D'J +— (15— 81+ 164%)oD'®!)
1 35 7
144 | R : 1152 .
+6T(1_/1+2/12)< 3 eljklaDjDleJ_(l_4/1)62D1J>+TS(1_4/1)3 l]lejDle(D(l)
576 015" 3072 1
—Z—(1-42)D'®? ]( y) + 12— [ (1=2)(1422)(1 —42)— "2 Dk DY
7 3, | 35 2!
1 1 4 1
- _5736 (1= +222)e S5k D"D"J + g( 3-4)+82%) 5e’f“aDlech)

576 1 288 . o1
+ 5 ( 4/1) l]k12 klmnaDmDn(I)()_ 5 (1_4&)2 zjlele(I)(Z)_144guk158k1manan)(2) (Z2>
1 384 6144
+— |5 (39 =32+ 6442) D) — — (1 —42)(3 =24+ 442)0°]
212 35 35
3072 1 576
—7(1—“2,12)( S ek oD} D/D"D’J——( —4/1)03J> —7(1—4A)aq> ) +48@0)
1152
+¥( —4/1) /X D' DID* D' ](zz)
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6%, [2048 384 .
+-12 [35 (1-42)(3-21+42%*)0°D'J - 35 (9 — 24 +422)0* D'
12

1 . . . 1152 |

- @ (1-24+22) (—ye’/"’azD/D"D’J -(1- 4/1)63D’J) - % (1-42) ygu“anDleqﬂl)

48 i (2 (3 L ikt i mknids (2 a1 4
+7(1—4,1)aD'<1><)—8Dt¢<~)+48§ew DID*D'®? | (Z,) + L [80W](Z,)

: 12

UEXTTNIN EAg—

+- [D'®W](Z,) + ; 20DW](Z,) + - - -. 1)
12 12

Except for the last three terms for the AV = 4 primary condition [11], the additional terms consisting of the A = 4 stress
energy tensor, the first, the second, and the third N = 4 multiplets (and their descendants) appear in (I11). We expect that the
OPEs between the N/ = 4 stress energy tensor and the 4th A/ = 4 multiplet contain the first, the second, through the Ath
N = 4 multiplets.

APPENDIX J: THE OPES BETWEEN THE FIRST A =4 MULTIPLET
AND THE THIRD N =4 MULTIPLET

The OPEs between the operators in (3.32) and the operators in (F2) can be summarized by

1 [ 768 0450
o) (2))®0)(Z,) = {_?mu -2)(1 - 4&)} + 22 [3072NA(—1 + 41 — 842 4 82)]
20 212
051 [6144 A 0, [ 1536 .
L {/1(1 —20)(2-A+ zzZ)DlJ} (Zy) +-22 [— (1 =22)(1 - 4/1)D’J} (Z,)
ZIZ 5 Z12 5
64,0 6144
+2 [1536/1(1 —21)(1 —42)®W + ——A1=22)(1 - 4/1)26J] (Z,)
212
1 1
+5 {384@(1 —2)®) — ?1(1 —24)(1 - 4/1)0J} (Z,)
212
01,7 [ 384 1
+-12 {—— (1 —42)(3 + 24 —44%) — /M DKDIY
7 5 2!
576 1
— T (1 + 21— 4&2)€ljkli€klmanD"J:| (ZZ)
iy’ [ 1536 221 (1
A —?/1(1 —22)(1 = 42)%0D'J + 1924(1 — 22)(1 — 44) D@V
212
576 2 1 ijkl Ny Dk ! i
+ 5 (1= 40)(1 424 = 42) (=5, eDID'D'T = (1 = 44)0D') || (Z,)
0, 1 . .
— [?1(1 —22)(1 = 44)oD'J — 192A(1 — 22)D'd)
212
576 2 1 ijkl vy Dk ! i
040 1536
+-12 [—384/1(1 —22)(1 — 42)0@") + ?1(1 —22)(1 —42)%0%)
212
768 2 1 ijkl yi Dk Nl 1 2
+?(1 —4)(1 424 = 42%) 57 e/ D'DIDID'Y = 2 (1 - 42) )

288
+— (11 + 122 - 24,12)<1><2>} (Z,)
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1 7 144
o [ 192A(1 = 22)0®@") + gz(l —22)(1 = 42)0*J - = (1-42)®?
12
384 1 1
—(=1-21+44%) (ﬁ /M DIDID*D'J — 5 (1- 4,1)a2J>] (Z,)
6451 1288 )
+2 12— (14+2)(3-24)D'®? |(Z,)
i L5
o5 36 ) 1
13 |:_ - (1 _ 4/1) t]lele(I)(2) _ 18£t]kl o gkl’”"DmD"(I)(2>:| (ZZ)
2 5 2!
0
+ 9?32 [526 (1+2)(3- 2,1)ac1><2>] (Z,)
<12

—i 42 . .
+ 48 [2 (59 + 81— 16%)oD'®>) — < (1- 4,1) ’f"lDJD"D’Q(z)] (Z,)

Z12

0, [ 6 i (2 L ik i vk i (2
+ 12 |-~ (1 =42)0D'®?) 4 6 — /X DID*D'®?) | (Z,)

212 5 3!

045° [96 96 1 ..., ..
+5 [ (38 + 112 - 2242)°@) — = (1 - 47) ’-”"D’D-’DkD“D(z)+<I>(“>](Zz)
7, 135 35

05" [ 12 1
i 12 (1_4/1) t/klaDle(I) — Gelikl — klmnaDmDn(I)(2) (ZZ)

212 5 2!

01y’ [4 2\ 32 kl ki (4

(13 +1-2%)0*D'®? (1—4&)—@/ ODIDDIDR) + L D (2Z,)

212 35 3! 8

040 [48 48
+-12 [35(17+4,1 842) P! >-§(1-4A) €K oDi DI Dk D! ®?) +5 Lo }( D4 (1)
212

There are the NV = 4 stress energy tensor, the second and the fourth N' = 4 multiplets (and their descendants) in (J1).
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