
Current-induced inverse symmetry breaking and asymmetric
critical phenomena at current-driven tricritical point

Masataka Matsumoto 1 and Shin Nakamura 2

1Department of Mathematics, Shanghai University, Shanghai 200444, China
2Department of Physics, Chuo University, Tokyo 112-8551, Japan

(Received 22 January 2022; accepted 8 July 2022; published 20 July 2022)

We study critical phenomena associated with a spontaneous chiral symmetry breaking in current-driven
nonequilibrium steady states by using holography. We find that the critical exponents ðγ; νÞ at the tricritical
point are asymmetric between the chiral symmetry restored phase and the broken phase. Their values in the
broken phase are different from those of the mean-field theory, whereas other critical exponents are the
mean-field values. The phase diagram with respect to temperature and current density shows a reentrant
structure: the broken chiral symmetry is restored again at low temperatures in the presence of current
density.
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I. INTRODUCTION

Nonequilibrium steady state (NESS) with a constant
flow of current is a natural extension of equilibrium states
to out of equilibrium. Investigation of the role of the current
in phase transitions in NESS is an important challenge.1

We study current-driven critical phenomena of NESSs
whose microscopic theory is explicitly defined by quantum
gauge theory. We employ the gauge/gravity duality (holog-
raphy) [2–4]. Various applications of the gauge/gravity
duality to nonequilibrium physics have been reported (for
example, see reviews [5,6]). Recently, the authors have
found a phase transition associated with a spontaneous
chiral symmetry breaking in a current-driven system [7].
The phase diagram contains both the tricritical point (TCP)
and the critical line (CL) which appears in the presence of
the current. However, the whole phase structure and the
critical phenomena have not been investigated.
In this paper, we report an “inverse symmetry breaking”

and asymmetric critical phenomena at the TCP in the
current-driven system. The inverse symmetry breaking is
the spontaneous symmetry breaking at higher temperatures,
rather than at lower temperatures. An example of this
counterintuitive phenomenon is the inverse melting of
materials. The inverse symmetry breaking is also discussed
in the context of the early Universe. See reviews [8,9].

The asymmetric critical phenomena are the critical
phenomena whose critical exponents are different depend-
ing on whether we approach the critical value from the
lower values of the control parameter or the higher values.
We find that the critical phenomena in our system are
asymmetric only at the TCP. An example of asymmetric
critical behavior has been found in the Sachdev-Ye-Kitaev
model [10,11]. However, to the best knowledge of the
authors, asymmetric critical phenomena that appear only at
TCP have not been reported elsewhere. Interestingly, the
asymmetric critical exponents are not the mean-field
values2 in spite that we are taking the large-N limit.

II. SETUP

We consider a strongly coupled SUðNÞ N ¼ 4 super-
symmetric Yang-Mills (SYM) theory with N ¼ 2 hyper-
multiplet in the large-N limit. We set the mass of the
hypermultiplet to zero so that we have a chiral symmetry at
the level of the Lagrangian. The particles in the N ¼ 2
hypermultiplet carry a global Uð1Þ charge which we call
“electric charge” in this paper. When we apply an external
electric field, they form a NESS with finite current density.
TheN ¼ 4 SYM sector plays the role of a heat bath. We set
the charge density of the system to zero: we have an equal
number of positively charged particles and negatively
charged particles. We also apply an external magnetic field
perpendicular to the external electric field. In this paper, we
study phase transitions where the chiral symmetry is
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1For recent studies on phase transitions with heat current, see,
for example, [1] and the references therein.

2In this paper, we use the term “mean-field values” to mean the
values of critical exponents derived from the conventional
classical Landau theory.
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spontaneously broken at finite current density in the
presence of the electromagnetic field.
The holographic dual of our system is the D3-D7 model

[12] with an electric and magnetic field [13,14] in the probe
limit. The dual geometry is the five-dimensional AdS-
Schwarzschild black hole times S5:

ds2 ¼ L2

u2

�
−fðuÞdt2 þ du2

fðuÞ þ dx⃗2
�
þ L2dΩ2

5; ð1Þ

where fðuÞ ¼ 1 − u4=u4H. uð0 ≤ u ≤ uHÞ is the radial
direction, t and x⃗ ¼ ðx; y; zÞ are the coordinates for the
(3þ 1)-dimensional spacetime of the gauge theory. The
black hole horizon is located at u ¼ uH and the boundary is
located at u ¼ 0. The Hawking temperature is given by
T ¼ 1=ðπuHÞ, which corresponds to the temperature of the
heat bath. dΩ2

5 ¼ dθ2 þ sin2 θdψ2 þ cos2 θdΩ2
3, where

dΩ3 is the line element of the unit S3. The D7-brane
wraps the S3 part.
The dynamics of the D7-brane is governed by the Dirac-

Born-Infeld (DBI) action

SDBI ¼ −TD7

Z
d8ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgab þ ð2πl2s ÞFabÞ

q
; ð2Þ

where gab is the induced metric and Fab ¼ ∂aAb − ∂bAa is
the field strength of the Uð1Þ gauge field Aa on the D7-
brane. TD7 is the tension of the D7-brane given by
T−1
D7 ¼ ð2πÞ7l8sgs, where ls and gs are the string length

and the string coupling constant, respectively. We set L ¼ 1

and ð2πl2s Þ ¼ 1, for simplicity. This corresponds to setting
2λ ¼ ð2πÞ2 where λ ¼ g2YMN is the ’t Hooft coupling of the
gauge theory.
The configuration of the D7-brane is determined by

θðuÞð0 ≤ θ ≤ π=2Þ and ψ . In our study, we take ψ ¼ 0
without loss of generality. In addition, we apply an electric
field in the x direction and a magnetic field in the z direction.
We employ the following ansatz for the gauge fields:
Axðt; uÞ ¼ −Etþ hðuÞ, AyðxÞ ¼ Bx, where E and B corre-
spond to the electric field and magnetic field acting on the
charged particles, respectively. θðuÞ and hðuÞ are expanded
as the following asymptotic form near the boundary
θðuÞ ¼ mu þ θ2u3 þ � � � ; hðuÞ ¼ Ju2=2N þ � � �, where
m and J correspond to the mass of the charged particles
and the electric current density. Here, we define
N ¼ TD7ð2π2Þ. Note that the current is in the x direction
even in the presence of the magnetic field since the total
charge density is zero. The operator conjugate to m is the
chiral condensate given by hq̄qi ¼ N ð2θ2 −m3=6Þ [13]. In
the presence of the current density J, the effective horizon
emerges on the D7-brane outside of the black hole horizon.
The effective horizon is a causal boundary for the modes
governed by the open-string metric on the worldvolume of
the D7-brane [15–17]. The location of the effective horizon
u� is determined by B2gtt þ E2gxx þ gttg2xxju¼u� ¼ 0. Then,

J ¼ N
ffiffiffiffiffiffiffiffi−gtt

p
gxx cos3 θju¼u�

, assuming the action remains
real at any u. The details are discussed in [14]. Hereafter, we
set N ¼ 1 for simplicity.
In this paper, we consider the current density J as a

control parameter in the NESS system. Using the scale
invariance of the system, we have two dimensionless
parameters (T=B1=2, J=B3=2).

III. PHASE DIAGRAM

We solve the equation of motion for θðuÞ with the
following boundary conditions. At the boundary, we
impose the massless condition m ¼ u−1θðuÞju¼0 ¼ 0. At
the effective horizon, we impose the regularity of θðuÞ
there.3

We find two types of solutions, namely θ ¼ 0 and θ ≠ 0.
The former solution, which shows the chiral condensate
vanishes (hq̄qi ¼ 0) holds regardless of E and B. The latter
solution with nonvanishing chiral condensate is possible
only in the presence of B.4 These two types of solutions
correspond to the chiral symmetry restored (χSR) phase
and the chiral symmetry broken phase (χSB), respectively
[19]. The order parameter is the chiral condensate hq̄qi.
We show the phase diagram with respect to (T=B1=2,

J=B3=2) in Fig. 1. The phase boundary is separated into the
first-order phase transition line and the critical line (CL)
where the second-order phase transition occurs. The point
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FIG. 1. Phase diagram with respect to T=B1=2 and J=B3=2. The
gray shaded region corresponds to the chiral symmetry broken
(χSB) phase and the other region corresponds to the chiral
symmetry restored (χSR) phase. The blue dashed curve denotes
the first-order phase transition line and the red solid curve denotes
the critical line. The red dot corresponds to the tricritical point [7].

3When the D7-brane does not reach the effective horizon, we
impose the regularity at the point of the maximum of u. However,
the D7-brane reaches the effective horizon at finite J, which we
consider in this paper.

4A similar solution that reaches the black hole horizon was
obtained in the presence of B by switching on the charge density
instead of the electric current [18].
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between them is the TCP [7]. As can be seen from Fig. 1,
the CL and the TCP appear only at finite J. In the χSB
phase, we suppose the solutions of θ ≠ 0 are more stable
than those of θ ¼ 0 since the Hamiltonian density in the
gravity side is smaller [7]. In the phase diagram, we find a
reentrant structure at small T=B1=2. Compared to the phase
diagram with respect to the charge density instead of the
current density [18], the reentrant behavior is characteristic
of the current-driven system. We also numerically find that
the CL at small T=B1=2 and J=B3=2 is well described by

�
Tc

B1=2
c

�
κ

≈ 1.2

�
Jc
B3=2
c

�
; ð3Þ

where κ ≈ 3=2 which is independent of λ and N, whereas
the factor 1.2 depends on them.

IV. CRITICAL PHENOMENA

In this paper, we compute the critical exponents
ðγ; ν; η; zÞ and δ. We do not attempt to define the critical
exponent α, since the notion of heat capacity is not well-
defined in NESS. The obtained values of δ are 3 for the CL
and 5 for the TCP. We will give the details of the
computation of δ in Appendix B. The values of β have
been obtained to be 1=2 for the CL and 1=4 for the TCP
in [7].
For computation of ðγ; ν; η; zÞ, we consider a small

perturbation of θ that corresponds to a fluctuation of the
order parameter. We assume that the perturbation can be
written as δθðt; u; x⃗Þ ¼ ϑðuÞe−iωtþikz with the momentum
k⃗ ¼ ð0; 0; kÞ in the z direction, for simplicity. If we choose
the momentum in another direction, the equation of motion
for δθ becomes more complicated. In the χSR phase, where
θ ¼ 0, δθ does not couple to the other modes in the linear
order because the background solution is trivial. In the χSB
phase with θ ≠ 0, on the other hand, the perturbation
couples to the fluctuation of the x component of the gauge
field δAxðt; u; x⃗Þ that carries momentum in the z direction.
As a result, we obtain the equations of motion for the
perturbations in each phase as explicitly shown in
Appendix A. Near the boundary, the perturbation field
for θ can be written as the following asymptotic form
ϑðuÞ ¼ ϑð0Þuþ ϑð1Þu3 þ � � �, where ϑð0Þ and ϑð1Þ are the
non-normalizable mode and the normalizable mode,
respectively. Following the analysis of critical phenomena
in [20], we assume that each mode can be expanded as a

function of ðω; kÞ, ϑð0Þ ∼ ϑð0Þ0 þ ωϑð0Þð1;0Þ þ k2ϑð0Þð0;1Þ, ϑð1Þ∼

ϑð1Þ0 þ ωϑð1Þð1;0Þ þ k2ϑð1Þð0;1Þ. Using these expressions, the

retarded Green’s function GR
ϑϑðω; kÞ is proportional to

ϑð1Þ0 þ ωϑð1Þð1;0Þ þ k2ϑð1Þð0;1Þ
ϑð0Þ0 þ ωϑð0Þð1;0Þ þ k2ϑð0Þð0;1Þ

∼
ϑð1Þ0 =ϑð0Þð0;1Þ

−icωþ k2 þ 1=ξ2
; ð4Þ

where c≡ iϑð0Þð1;0Þ=ϑ
ð0Þ
ð0;1Þ, and ξ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑð0Þð0;1Þ=ϑ

ð0Þ
0

q
is the corre-

lation length. If we take ω → 0, GR
ϑϑðkÞ ∝ 1=ðk2 þ 1=ξ2Þ.

Then, if we find the poles of the retarded Green’s function
near the CL and the TCP, we can explore the behavior of
the correlation length.
We employ two definitions for ðγ; νÞ: ðγþ; νþÞ are those

when we approach the CL and the TCP from the χSR
phase, whereas ðγ−; ν−Þ are those when we approach them
from the χSB phase. We define the critical exponent ν� by
using J as

ξ ∝ jJ − Jcj−ν� ; ð5Þ

where Jc is the critical value of the current density. Note
that we study critical phenomena with T=B1=2 fixed. If we
take the limit of k → 0, the retarded Green’s function agrees

with the homogeneous susceptibility: χ ≡ ϑð1Þ0 =ϑð0Þ0 , which
is called the chiral susceptibility in terms of QCD. Thus, we
define another critical exponent γ� as

χ ∝ jJ − Jcj−γ� : ð6Þ

If we take ω → 0 in (4) at CL or TCP, we have
GR

ϑϑðkÞ ∝ kη−2, where η is anomalous dimension. In (4),
we have assumed η ¼ 0 as numerically confirmed later.

FIG. 2. Critical behaviors at a CP in the χSR phase at
T=B1=2 ≈ 0.096.
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Note that one can see that the scaling relation for the
Green’s function γ� ¼ ν�ð2 − ηÞ is satisfied for the above
three critical exponents. We can determine the dynamic
critical exponent z defined by τk¼0 ∝ ξz, where τk¼0 is the
relaxation time of a homogeneous perturbation. We can
determine the dynamic critical exponent from the critical
dispersion relation ω ∝ kz at the CL and the TCP. In (4), we
have assumed that z ¼ 2, which we will confirm numeri-
cally later.
Figure 2 shows the typical critical behaviors at a critical

point (CP) in the χSR phase. The tilde denotes the scaled
dimensionless quantities, such as χ̃ ¼ χ=B1=2, J̃ ¼ J=B3=2,
k̃ ¼ k=B1=2 and ω̃ ¼ ω=B1=2. k̃� and ω̃� represent the
location of the pole ðω̃; k̃Þ ¼ ð0; k̃�Þ or ðω̃; k̃Þ ¼ ðω̃�; 0Þ
of the retarded Green’s function given by (4) at given value
of J̃ − J̃c. Note that the imaginary part of ω̃� is inversely
proportional to τk¼0. These numerical results show that
ðγþ; νþ; η; zÞ ¼ ð1; 1=2; 0; 2Þ. They are the same as the
critical exponents of the mean-field theory for equilibrium
phase transitions. Note that z ¼ 2 − η is corresponding to a
model with nonconserved order parameter [21]. This is
consistent with the fact that the chiral condensate is not a
conserved quantity. We confirm that the critical behaviors

at the CL in the χSB phase also show the same values of the
critical exponents as explicitly shown in Appendix C.
At the TCP, we again obtain the mean-field values

ðγþ; νþ; η; zÞ ¼ ð1; 1=2; 0; 2Þ in the χSR phase. On the other
hand, we obtain different critical behaviors for ðγ−; ν−Þ in the
χSB phase. In Fig. 3, we show the critical behaviors of χ̃ and
k̃n� with n ≈ 0.29−1 as a function of J̃c − J̃. Our numerical
results imply that the critical exponents ðγ−; ν−Þ are approx-
imately given by (0.58,0.29) at the TCP in the χSB phase.
These values of the critical exponents are obviously different
from themean-field values.Note that thesevalues also satisfy
the scaling relation for the Green’s function γ− ¼ ν−ð2 − ηÞ
since we confirm that η ¼ 0 at the TCP. On the other hand,
these values do not satisfy γ ¼ βðδ − 1Þ that comes from the
scaling hypothesis for the free energy. Violation of this
scaling relation at TCP in the χSB phase is also a novel
feature of our results in this paper.
To corroborate the peculiar values of ðγ−; ν−Þ, we also

perform the dynamic scaling analysis. Here, we apply the
dynamic scaling hypothesis to our system (for example, see
[22]). Then, the retarded Green’s function can be written as
the following scaling form:

FIG. 3. The critical behaviors of χ̃ (top) and k̃� (bottom) at TCP
in the χSB phase. The inset of the top panel shows the log-log plot
from which we obtain γ− ≈ 0.58. In the bottom panel, n ≈ 0.29−1.

FIG. 4. The top panel shows the scaling function ĝ� as a
function of k̃ðJ̃c − J̃Þ−ν with ω ¼ 0. The dashed lines denote the
position of the poles. The bottom panel shows the scaling
function ĝ� as a function of ω̃Ik̃

−z with k̃ðJ̃c − J̃Þ−ν fixed, where
ω̃I is the imaginary part of ω̃. We choose the best fitting parameter
ν ≈ 0.29 and z ≈ 2.
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GR
ϑϑðt; k;ωÞ ¼ jkj−2þηĝ�ðkt−ν� ;ωk−zÞ; ð7Þ

where t represents the deviation from a critical point. In our
case, we define t ¼ jJ̃ − J̃cj. Here, ĝ� are some functions
whose� represents whether we are in the χSR phase (þ) or
in the χSB phase (−). Using the scaling form, jkj2−ηGR

ϑϑ can
be described as a function of kt−ν− when ω̃ ¼ 0. In Fig. 4,
we plot jkj2GR

ϑϑ in such a way that all the plots are on a
single curve at various combinations of the parameters.
From the top panel of Fig. 4, we obtain ν ≈ 0.29. In the
bottom panel of Fig. 4, we find that all the plots are on a
single curve if we choose z ¼ 2 and ν ¼ 0.29. Note that we
have substituted η ¼ 0.

V. DISCUSSION

In this paper, we have studied the critical phenomena of
the NESS system driven by the constant current flow. One
of the essential differences from the phase diagram in
equilibrium [18] is the reentrant structure. The reentrant
phase structure indicates that the current-induced symmetry
restoration is enhanced at small temperatures.5 It has been
known that the reentrant behavior emerges owing to the
presence of disorders in simple models [24,25]. It is
interesting to study whether the current plays a role of
disorder in our system.
We have shown that the critical exponents (γ�; ν�; η; z)

at the CL agree with those in the mean-field theory. At the
TCP, on the other hand, we have found that (γ�; ν�) are

asymmetric between the χSR phase and the χSB phase. Our
results imply that the critical phenomena of our phase
transitions at the CL can be formulated by the Landau
theory,6 whereas those at the TCP are quite different from
the conventional Landau theory. To the best of our knowl-
edge, an asymmetric critical behavior only at a TCP is
observed for the first time. It would be interesting to
investigate whether the asymmetry we have discovered is
characteristic of nonequilibrium systems or not.
One of the possibilities is the contribution of a danger-

ously irrelevant variable near the TCP [28,29]. The viola-
tion of γ ¼ βðδ − 1Þ at TCP in the χSB phase suggests that
the conventional scaling hypothesis does not work there.
We leave the investigation of these issues for future work.
We expect that the novel phenomena found in the present

work can be experimentally detectable in a system with
gapless chiral fermions such as the Dirac semimetals in the
presence of the electric field and the magnetic field.
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APPENDIX A: PERTURBATIONS

The equation of motion for δθ ¼ ϑðuÞe−iωtþikz on the trivial background θ ¼ 0 is given by

Fϑ00 þ
�
2iEωu4h0 þ u3fh02ðuf0 − 6fÞ

2
−
F þ 2f

u
−

f0

2f
F

�
ϑ0 þ

�
ð3þ ðω2 − k2Þu2Þu2h02 þ ð3 − k2u2Þ

u2f
F

þ ω2ðB2u4 þ 1Þ
f

−
iEωu3h0ðuf0 − 2fÞ

f

�
ϑ ¼ 0; ðA1Þ

where FðuÞ ¼ ðB2u4 þ 1ÞfðuÞ − E2u4. Here, the prime denotes the derivative with respect to u. h0 that appears in (A1) is
given by

h0ðuÞ2 ¼ −
J2u2F

ðJ2u6 − fÞf2 : ðA2Þ

The location of the effective horizon is determined by Fðu�Þ ¼ 0. Note that the current density J is given so that both the
numerator and the denominator of (A2) simultaneously become zero at u ¼ u�.
On the nontrivial background of θ ≠ 0, δθ couples to the fluctuation of the x component of the gauge field

δAx ¼ aðuÞe−iωtþikz. The equations of motion for these perturbations are given by

5It might be worthwhile to compare the field-theory analysis of inverse symmetry breaking of equilibrium systems given in [23]. The
authors of [23] state that the temperature of the inverse symmetry breaking grows in the presence of a magnetic field. If we fix the current
density, the magnetic field raises the critical temperature in our system, too.

6Our previous studies also imply that there could be a Landau-like theory even in the NESS regime [7,26,27].
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ϑ00 þ Aϑ0 þ Ba0 þ CϑþDa ¼ 0; ðA3Þ

a00 þ Ãϑ0 þ B̃a0 þ C̃ϑþ D̃a ¼ 0; ðA4Þ

where

A ¼ 1

2uF
½12ufFθ0 tan θ þ 3u2f2θ02ðuF0 − 8FÞ þ u4f2h02ðuf0 − 6fÞ þ Fðuf0 − 2fÞ þ fðuF0 − 4FÞ� þ 2iEωu4h0

F
; ðA5Þ

Ã ¼ ufh0θ0

F
ðuF0 − 8FÞ; ðA6Þ

B ¼ u2fh0

F
½uθ0ðuf0 − 6fÞ þ 6 tan θ�; ðA7Þ

B̃ ¼ 1

2Fuf
½u2f2θ02ðuF0 − 8FÞ þ 3u3f2h02ðuf0 − 6fÞ þ 3Fðuf0 − 2fÞ − fðuF0 − 4FÞ� þ 2iEωu4h0

F
; ðA8Þ

C ¼ −
k2

Ff
½u4f2h02 þ Fðu2fθ02 þ 1Þ� þ 3 sec2 θ

Fu2f
½u4f2h02 þ Fðu2fθ02 þ 1Þ�

þ ω2

Ff
½u4fh02 þ ðB2u4 þ 1Þðu2fθ02 þ 1Þ� − iEωu3h0

Ff
½uf0 þ 4u2f2θ02 − 2fð3uθ0 tan θ þ 1Þ�; ðA9Þ

C̃ ¼ −
iEωuθ0

Ff
ð4u4f2h02 þ uF0 − 4FÞ; ðA10Þ

D ¼ iEωu3

F2
½u2fθ03ðuf0 − 4fÞ þ u4fθ0h02ðuf0 − 6fÞ þ 6u3fh02 tan θ þ θ0ðuF0 − 4FÞ�; ðA11Þ

D̃ ¼ −
k2

Ff
½u4f2h02 þ Fðu2fθ02 þ 1Þ� þ 3 sec2θ

Fu2f
½u4f2h02 þ Fðu2fθ02 þ 1Þ�

þ iEωu3h0

F2
½u4fh02ðuf0 − 6fÞ þ ðu2fθ02 − 1ÞðuF0 − 4FÞ� þ ω2

fF
½u4fh02 þ ðB2u4 þ 1Þðu2fθ02 þ 1Þ�: ðA12Þ

To solve the above equations, we have to impose the
appropriate boundary conditions. At the boundary, we
impose the condition that the non-normalizable modes of
the fluctuations vanish. At the effective horizon, we impose
the ingoing-wave boundary condition. Here, we write the
perturbations near the effective horizon as

ϑðuÞ ¼ ðu − u�ÞλϑϑregðuÞ; aðuÞ ¼ ðu − u�ÞλaaregðuÞ;
ðA13Þ

where ϑreg and areg are the regular part of the perturbations
at the effective horizon. One finds that the ingoing-wave
boundary condition corresponds to λϑ ¼ λa ¼ 0 in our
setup. This can be confirmed by introducing the tortoise
coordinates for ðt; uÞ. The detailed discussion of the
ingoing-wave condition in NESS is presented in [30–33].
To perform the numerical calculations, we discretize the

equations of motion with the Chebyshev pseudospectral
method. In our study, we used 150 Chebyshev modes along
the u direction. For the determination of the Chebyshev
coefficients, we have employed the Newton-Raphson relax-
ation scheme within 10−7 of the root-mean-square error.
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APPENDIX B: CRITICAL EXPONENT δ

In the main text, we have studied the critical exponents
ðγ�; ν�; η; zÞ. In our system, other exponents ðβ; δÞ are
defined by

hq̄qi ∝ jJ − Jcjβ; ðB1Þ

hq̄qi ∝ m1=δ: ðB2Þ

Here, δ must be evaluated at the critical point. We do not
discuss α since the definition of the heat capacity of a NESS
is subtle. In the previous paper [7], we numerically
confirmed that β ¼ 1=2 at the CL and β ¼ 1=4 at the
TCP. Here, we calculate the value of δ at the CL and the
TCP. Figure 5 shows the behavior of the chiral condensate
as a function of m at the CL and the TCP. The numerical
results show that δ ¼ 3 at the CL and δ ¼ 5 at the TCP.
These values agree with those of the Landau theory.

APPENDIX C: CRITICAL BEHAVIORS IN
OTHER REGIONS

In Fig. 2, we have presented the critical behaviors in the
χSR phase at the CL. The critical behaviors in the χSB
phase at the CL are shown in Fig. 6. The critical behaviors
in the χSB phase are qualitatively the same as those in the
χSR phase. Thus, these results give the same values of the
critical exponents.
Now, we study the critical behaviors in the χSR phase at

the TCP. Figure 7 shows the critical behaviors in the χSR
phase at the TCP. We obtain the mean-field values for the
critical exponents including ðγþ; νþÞ. In the main text, we
obtain the value of the dynamic critical exponent z ¼ 2
from the dynamic scaling analysis. We also confirm this by
calculating the dispersion relation at the TCP, which is the
so-called critical dispersion relation. At a CL, the
dispersion relation is given by ω ∝ kz [22]. In Fig. 8, we
plot the dispersion relation of two different quasinormal
modes. The hydrodynamic mode represents the critical
dispersion relation. As can be seen from Fig. 8, we find that
the critical dispersion relation is that of a diffusive mode:

FIG. 5. The numerical plots of the chiral condensate hq̄qi with respect to m in logarithmic scale. The solid lines denote the results of
the linear fitting. The left and middle panels are evaluated at the CL: T=B1=2 ≈ 0.096 and T=B1=2 ≈ 0.098, respectively. The right panel
is evaluated at the TCP: T=B1=2 ≈ 0.100.

FIG. 6. The critical behaviors of 1=χ̃ (left), k̃2� (middle), and ω̃� (right) at T=B1=2 ≈ 0.096 in the χSB phase. Here, the tilde indicates the
scaled quantities, and k̃�, ω̃� are the locations of the pole as we have defined in the main text.
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ω ¼ −iDk2, where D is a constant. This indicates z ¼ 2.
These twomodes are pure imaginary at smallmomentum.As
the momentum increases, however, these pure-imaginary

modes get close to each other, and the real parts of them
become finite after these modes collide.
In summary, the critical exponents in our phase transition

are given in Table I. Here, þ and − represent the values
obtained in the χSR phase and the χSB phase, respectively.
At the CL, all values of the critical exponents agree with
those in the mean-field theory. At the TCP, on the other
hand, ðγ�; ν�Þ are asymmetric between the χSR phase and
the χSB phase. Note that these values satisfy the scaling
relation for the Green’s function: γ� ¼ ν�ð2 − ηÞ.

FIG. 7. The critical behaviors of 1=χ̃ (top, left), k̃2� (top, right), GR
ϑϑðω ¼ 0; kÞ (bottom, left), and ω̃� as a function of J̃ − J̃c (bottom,

right) at T=B1=2 ≈ 0.096 in the χSB phase. Here, the tilde indicates the scaled quantities and k̃�, ω̃� are the locations of the pole as we
have defined in the main text.

FIG. 8. The dispersion relation of two different quasinormal
modes at the TCP. The red filled circles and the blue open circles
denote numerical plots of the real part and the imaginary part of
the quasinormal frequency, respectively.

TABLE I. Critical exponents at the CL and the TCP.

CL TCP

β 0.5 0.25
δ 3 5
γ� 1ð�Þ 0.58ð−Þ; 1ðþÞ
ν� 0.5ð�Þ 0.29ð−Þ; 0.5ðþÞ
η 0 0
z 2 2
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