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In this paper we have considered the thermodynamics of a Born-Infeld AdS black hole using inputs from
the dual boundary field theory. Here, we have varied the cosmological constant Λ and Newton’s
gravitational constant G along with the Born-Infeld parameter b in the bulk. A novel universal critical
behavior of the central charge (occurring in the boundary conformal field theory) in extended black hole
thermodynamics for charged black holes has been recently observed [Cong et al.,Phys. Rev. Lett. 127,
091301 (2021).], and we have extended this study to Born-Infeld AdS black holes. The Born-Infeld
parameter has the dimension of inverse length, therefore, when considered in the first law of
thermodynamics of the bulk in the mixed form, which includes the central charge of the boundary
conformal field theory, it modifies the thermodynamic volume and the chemical potential (which are
conjugate to pressure and central charge, respectively). We observe that due to this inclusion of the Born-
Infeld nonlinearity in this analysis, the universal nature of the critical value of the central charge observed in
[Cong et al., Phys. Rev. Lett. 127, 091301 (2021)] breaks down. We also observe an interesting behavior of
the free energy of the black hole with Hawking temperature due to the variations in both the central charge
and the Born-Infeld parameter. It is also observed in our analysis that for a sufficiently small value of the
Born-Infeld parameter (a small value of this parameter has more prominent nonlinear effects), there exists a
critical value of the temperature below which no black hole can exist.
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I. INTRODUCTION

General theory of relativity and quantum mechanics are
the two most revolutionary theories of the previous century,
describing the two extreme length scales of our universe.
Further, the unification of gravity and quantum mechanics
has turned out to be a very complicated problem. In the
seminal works [1–3], Stephen Hawking showed that when
we consider quantum effects in curved spacetime, a black
hole emits radiation. The formulation of black hole
thermodynamics [1–5], Hawking radiation [1–3], particle
emission from black holes [6–8], and acceleration radiation
[9–20], generated a link between gravitation, geometry, and
thermodynamics. The thermodynamics of black holes has
become a field of extreme importance in recent times. The
understanding of asymptotically anti–de Sitter (AdS) black
holes, via the AdS=CFT correspondence [21], provides a
deep insight into the dual conformal field theory (CFT) at
finite temperature. When in thermal equilibrium with the
Hawking radiation, AdS black holes show interesting phase

transition behavior, namely, first order Hawking-Page
phase transition [22,23], first order phase transition in
charged Reissner-Nordström AdS black holes [24,25], and
small to large black hole phase transitions [26–30].
In recent times, there has been an upsurge in considering

the variation of the cosmological constant (Λ) in the first
law of black hole thermodynamics [27,31–38]. In standard
black hole thermodynamics, black hole parameters are
varied in a fixed AdS background with Λ being kept fixed.
Now considering variations in the fundamental constants,
like Newton’s gravitational constant, cosmological con-
stant, gauge coupling constants lead us to more funda-
mental theories [39,40]. It has been argued in [33] that the
first law of black hole thermodynamics becomes incon-
sistent when viewed at the level of the Smarr relation [41] in
the presence of a fixed cosmological constant. Therefore, to
counter this issue, Λ is included in the first law [33] as a
thermodynamic variable, with a negative cosmological
constant being identified with a positive thermodynamic
pressure. In the case of a Born-Infeld [42] black hole, the
Born-Infeld parameter b must be varied in the first law of
the black hole thermodynamics in order to make it con-
sistent with the Smarr relation [43–45]. This consideration
has opened up a new direction of investigation which is the
extended thermodynamic behavior of AdS black holes with
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novel phase transition structures in contrast to standard
black hole thermodynamics [46–51]. A detailed analysis on
extended phase space thermodynamics for charged and
rotating black holes was carried out in [48]. Interesting
insight about this extended black hole chemistry [52,53]
can be further made using the gauge or gravity duality. It
has been a bit tricky to find a holographic insight into black
hole chemistry [54–60]. A simple argument indicates that
the relation of the first law (of the bulk) to the thermody-
namics of the holographic field theory is not easy [61–63].
The reason is that varying the cosmological constant would
in turn mean varying the central charge and the CFT
volume of the boundary field theory [54]. This would in
turn imply that the CFT gets changed, and therefore the
identification of the volume conjugate to the thermody-
namic pressure in the bulk would become problematic.
The way out of this problem is to vary G along with the
cosmological constant Λ so that the central charge of
the dual CFT remains fixed. This leads to a mixed form of
the extended first law of thermodynamics which enables
one to identify the appropriate thermodynamic volume and
chemical potential. Following this approach we write down
the mixed form of the first law of thermodynamics in the
bulk for Born-Infeld AdS black hole.
A duality between holographic and bulk thermodynam-

ics begins from the relation between the central charge of
the CFT and the parameters on the gravity side, namely, the
AdS radius and Newton’s gravitational constant. A free
energy analysis of the bulk thermodynamics carried out in
[31] revealed that there is a critical central charge above
which the free energy has a swallowtail behavior for any P
which implies a universal behavior. Our aim is to look at
this universality in the case of Born-Infeld AdS black hole.
This would give us an idea about nonlinear effects in these
types of phase transitions.
The organization of this paper is given as follows. In the

next section, we have provided a brief introduction of the
Born-Infeld AdS black holes in four spacetime dimensions
and calculated the Hawking temperature for the same. In
Sec. III, we have calculated the mixed form of the extended
first law of black hole thermodynamics in the bulk and
obtained the modified thermodynamic variables using the
modified Smarr relation. Next we have calculated the
critical value of the central charge in order to inspect its
behavior and then we have plotted the different phase
transition structures based on the variation of the central
charge and the Born-Infeld parameter, respectively.

II. BORN-INFELD AdS BLACK HOLE AND
HAWKING TEMPERATURE

We start with a brief review of the Born-Infeld AdS black
hole. The solution with a cosmological constant was first
constructed in [64]. The action in (3þ 1) dimensional
spacetime reads

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ LðFÞ�; ð1Þ

where the Born-Infeld part of the Lagrangian is of the form

LðFÞ ¼ 4b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FμνFμν

2b2

r �
: ð2Þ

Λ is the cosmological constant and b is the Born-Infeld
parameter. The above action admits the following black
hole solution [64]:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð3Þ

where

fðrÞ ¼ 1 −
2GM
r

þ r2

l2
þ 2b2r2

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þGQ2

b2r4

s �

þ 4GQ2

3r2 2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4

�
: ð4Þ

In Eq. (4),M is the mass of the black hole,Q is the charge, l
is the AdS radius, and 2F1 is the Gauss hypergeometric
function. In the limit b → ∞, the above metric reduces to
the AdS Reissner-Nordstörm black hole. The cosmological
constant Λ in terms of the AdS radius l is Λ ¼ − 3

l2 in
(3þ 1) dimensions.
The event horizon of the black hole is obtained from the

relation fðrþÞ ¼ 0. This relates the mass M in terms of the
horizon radius (rþ) as

M ¼ rþ
2G

þ r3þ
2Gl2

þ b2r3þ
3G

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þ

s �

þ 2Q2

3rþ
2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4þ

�
: ð5Þ

We can obtain the Hawking temperature of the black hole
from Eq. (4) as follows

T ¼ 1

4π

∂f
∂r

����
r¼rþ

¼ 1

4π

�
1

rþ
þ 3rþ

l2
þ 2b2rþ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þ

s ��
: ð6Þ

Wewill use Eqs. (5), (6) to calculate the critical value of the
central charge of the Born-Infeld AdS black hole in Sec. IV.
In the next section, we will try to find the modified form of
the first law of the black hole thermodynamics in D
dimensions.
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III. THE MODIFIED FIRST LAW OF
THERMODYNAMICS

It has been realized recently that a negative cosmological
constant can induce a positive thermodynamic pressure
[31,47]. This led to the inclusion of the cosmological
constant in the extended thermodynamic phase space. Here,
we take another step forward by treating the Born-Infeld
parameter b as a thermodynamical variable as we would
like to see the effects of this parameter on the first law of
thermodynamics. The pressure of the black hole in terms of
the cosmological constant and the Newton’s gravitational
constant can be written in the following form [33]:

P ¼ −
Λ

8πG
: ð7Þ

From the above equation, we observe that with the variation
in the cosmological constant, the thermodynamic pressure
of the black hole also changes. Now, the cosmological
constant in general D dimensions in terms of AdS radius
can be written as

Λ ¼ −
ðD − 1ÞðD − 2Þ

2l2
: ð8Þ

It can be seen from Eqs. (7) and (8) that a negative
cosmological constant induces a positive thermodynamic
pressure.
In natural units, the Bekenstein-Hawking entropy takes

the form [1–5]

S ¼ A
4G

; ð9Þ

where A is the area of the black hole. In terms of the surface
gravity κ, the Hawking temperature of the black hole takes
the form

T ¼ κ

2π
: ð10Þ

The mass of the black hole in the extended thermodynamic
phase space [33] can be thought of as enthalpy rather than
internal energy. Therefore, the most general form of the first
law of thermodynamics for a black hole with surface
gravity κ, charge Q, angular momentum J, and area A
can be written as follows [33]:

δM ¼ TδSþ VδPþΦδQþΩδJ

¼ κ

2π
δSþ VδPþΦδQþΩδJ

¼ κ

8πG
δA −

V
8πG

δΛþΦδQþ ΩδJ; ð11Þ

where we have used Eqs. (7), (9), (10) to obtain the final
expression in Eq. (11).

Holographic interpretation of the above first law
of thermodynamics is shown to have some issues
[54–60,65]. The pressure-volume term (corresponding to
the variation of the cosmological constant) in the first law of
thermodynamics of the bulk is shown to have two terms in
the first law of thermodynamics at the boundary CFT. These
are the central charge of the boundary CFT (and its
corresponding conjugate variable) [54], and the thermody-
namic pressure (and its conjugate variable, volume) of the
boundary CFT (because change in the AdS radius will
correspond to change in the boundary radius [61]). The way
to deal with this problem is to invoke the form of the central
charge from the AdS=CFT dictionary. In this way we can
avoid the ambiguity by varying both the Newton’s gravita-
tional constant and the AdS radius (or varying the cosmo-
logical constant). The AdS=CFT dictionary relates the
central charge C to the AdS radius l as [61]

C ¼ k
lD−2

16πG
; ð12Þ

where the k factor depends on the details of the system at the
boundary. From the above expression of C, we see that in
order to keep C fixed, we need to vary G as well since l is
varying [31]. In the case of a Born-Infeld AdS black hole,
there is an additional parameter which is the Born-Infeld
parameter b. If we look at the setup carefully, we shall find
that all the parameters which are being varied are dimen-
sionful. The Born-Infeld parameter also has a dimension.
Hence, we treat it as a thermodynamic variable. We consider
the black hole mass M to be a function of area (A), charge
(Q), angular momentum (J), Newtonian gravitational con-
stant (G), cosmological constant (Λ), and the Born-Infeld
parameter (b). Hence, we write the black hole mass as

M ≡MðA;Q; J; G;Λ; bÞ: ð13Þ

The variation in the mass can be written as

δM¼∂M
∂A

δAþ∂M
∂Q

δQþ∂M
∂J

δJþ∂M
∂G

δGþ∂M
∂Λ

δΛþ∂M
∂b

δb:

ð14Þ

We shall define ∂M
∂b ¼ B and G ∂M

∂G ¼ −ξ. Note that the
conjugate variable B to the Born-Infeld parameter b has
been termed as Born-Infeld vacuum polarization in [48].
From Eq. (11), we find that the conjugate variables of A, Λ,
Q and J are κ

8πG, −
V

8πG, Φ, and Ω. With these definitions, we
can recast Eq. (14) as

δM ¼ κ

8πG
δAþΦδQþ ΩδJ

− ξ
δG
G

−
V

8πG
δΛþ Bδb: ð15Þ
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Our main aim now is to compute the coefficient ξ of δG in
the above expression. For that we now make use of a
modified mass term as suggested in [31]

GM ¼ MðA;
ffiffiffiffi
G

p
Q;Λ; GJ; bÞ: ð16Þ

Taking the differential of both sides of the above relation, we
get

δðGMÞ ¼ ∂M
∂A

δAþ ∂M

∂ð ffiffiffiffi
G

p
QÞ δð

ffiffiffiffi
G

p
QÞ þ ∂M

∂Λ
δΛ

þ ∂M
∂ðGJÞ δðGJÞ þ

δM
δb

δb

⇒ GδM ¼ −MδGþ ∂M
∂A

δAþ
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ δQ

þ Q

2
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ δGþ J

∂M
∂ðGJÞ δG

þG
∂M
∂ðGJÞ δJ þ

∂M
∂Λ

δΛþ ∂M
∂b

δb

⇒ δM ¼ 1

G
∂M
∂A

δAþ 1ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ δQþ ∂M

∂ðGJÞ δJ

þ 1

G

�
−M þ Q

2
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ þ J

∂M
∂ðGJÞ

�
δG

þ ∂M
∂Λ

δΛþ ∂M
∂b

δb: ð17Þ

Now comparing Eq. (17) with Eq. (15), we obtain the
following results

∂M
∂A

¼ κ

8π
;

1ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ ¼ Φ;

∂M
∂ðGJÞ ¼ Ω;

∂M
∂Λ

¼ −
V

8πG
;

∂M
∂b

¼ B; ð18Þ

and the conjugate variable to G is given as follows:

ξ ¼ M −
Q

2
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ − J

∂M
∂ðGJÞ : ð19Þ

Using the relations from Eq. (18) in Eq. (19), we obtain the
following form of ξ

ξ ¼ M −
QΦ
2

− ΩJ: ð20Þ

This is the form of the conjugate variable toG in terms of the
other black hole parameters.
Now taking the differential of Eq. (12) and dividing byC,

we get

δC
C

¼ −
δG
G

þ ðD − 2Þ δl
l
: ð21Þ

In Eq. (21), we replace δl
l by using the forms of P and Λ in

Eqs. (7) and (8) as follows:

δl
l
¼ −

δG
2G

−
δP
2P

: ð22Þ

Equation (22) enables us to recast Eq. (21) in the form

δG
G

¼ −
2

D
δC
C

−
ðD − 2Þ

D
δP
P

: ð23Þ

Using Eqs. (18)–(20), and (23) in Eq. (17), we get the form
of δM to be

δM ¼ κ

8πG
δAþΦδQþ ΩδJ −

V
8πG

δΛþ Bδb

þ 2ξ

DC
δCþ ðD − 2Þ

D
ξ
δP
P

: ð24Þ

Using Eqs. (7), (9), (10), and (23), we can now rewrite
Eq. (24) as follows:

δM ¼ TδSþ ϕδQþ ΩδJ þ
�
2ξ

DC
−
2ðTSþ PVÞ

DC

�
δC

þ
�
V þD − 2

DP
ξ −

D − 2

DP
ðTSþ PVÞ

�
δPþ Bδb

¼ TδSþ ϕδQþ ΩδJ þ Bδbþ VCδPþ μCδC; ð25Þ

where

VC ¼ V þD − 2

DP
ξ −

D − 2

DP
ðTSþ PVÞ; ð26Þ

μC ¼
2ξ

DC
−
2ðTSþ PVÞ

DC
: ð27Þ

Here VC and μC are the new effective thermodynamic
volume and chemical potential. Equation (25) is the desired
mixed form of the first law of thermodynamics for a Born-
Infeld AdS black hole. This is one of the main findings in
our paper. The important point to note in Eq. (25) is that δC
can be set to zero since both l and G are varying. This
means keeping the boundary CFT intact. This allows us to
study the thermodynamics of the bulk with a fixed central
charge in the boundary theory. The reason so as to why this
is called a mixed form of the first law is that it contains both
the bulk as well as boundary variables.

A. Extended black hole thermodynamics and the
Smarr relation

In this subsection, we want to calculate V in terms of the
massM, chargeQ, and Born-Infeld parameter b of the black
hole. For that, we write down the first law for Born-Infeld
AdS black holes as [48]
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δM ¼ TδSþ VδPþΦδQþ ΩδJ þ Bδb: ð28Þ

Here,Φ,Ω, and B are conjugate toQ, J, and b, respectively,
where

Φ ¼ δM
δQ

; Ω ¼ δM
δJ

; B ¼ δM
δb

: ð29Þ

B has been called the Born-Infeld vacuum polarization and
its inclusion in first law as well as in the Smarr relation has
been thoroughly discussed in [43–45,47]. Here, in our
consideration M ¼ MðS; P; b;Q; JÞ. In generalized D
dimensions,M; S; P; b;Q; J have the following dimensions
(in terms of L):

½M� ¼ LD−3; ½S� ¼ LD−2; ½P� ¼ L−2;

½b� ¼ L−1; ½Q� ¼ LD−3; ½J� ¼ LD−2: ð30Þ

Using Euler’s theorem of quasihomogeneous functions, we
get

ðD − 3ÞM ¼ ðD − 2ÞS δM
δS

− b
δM
δb

− 2P
δM
δP

þ ðD − 3ÞQ δM
δQ

þ ðD − 2ÞJ δM
δJ

: ð31Þ

Using Eq. (28), we can write ∂M
∂S ¼ T, ∂M

∂Q ¼ Φ, ∂M
∂P ¼ V,

δM
δJ ¼ Ω, and ∂M

∂b ¼ B. Substituting them back in Eq. (31), we
get the Smarr formula as follows:

ðD − 3ÞM ¼ ðD − 2ÞTS − Bb − 2PV

þ ðD − 3ÞΦQþ ðD − 2ÞΩJ: ð32Þ

From Eq. (32), we can obtain the form for the black hole
volume V to be

V¼D−2

2P
TS−

Bb
2P

þD−3

2P
ΦQ−

D−3

2P
MþD−2

2P
ΩJ

¼D−3

2P

�
D−2

D−3
ðTSþΩJÞþΦQ−M−

1

D−3
Bb

�
: ð33Þ

B. Forms of the modified thermodynamic variables

Replacing the form of V from Eq. (33) in Eq. (26), we get

VC ¼
2M − 2Bbþ ðD − 4ÞQΦ

2DP
: ð34Þ

Similarly, we can write the chemical potential in terms of V
and VC as

μC ¼
2P

CðD − 2Þ ðVC − VÞ: ð35Þ

In (3þ 1) dimensions, that is, D ¼ 4, Eqs. (34) and (35)
reduce to the following forms

VC ¼
M − Bb
DP

;

VC ¼
4πr3þ
3

þ 4πl2rþ
3

−
8πb2l2r3þ

9
þ 8πb2l2r3þ

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þ

s

þ 8πGQ2l2

9rþ
2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4þ

�
; ð36Þ

μC ¼
PðVC − VÞ

C

¼ 4πrþ
kl2

−
8b2πr3þ
3kl2

þ 8b2πr3þ
3kl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þ

s

þ 8πGQ2

3kl2rþ
2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4þ

�
; ð37Þ

where we have used Eq. (5),

P ¼ 3

8πl2G
; C ¼ kl2

16πG
;

Φ ¼ Q
rþ

2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4þ

�
; ð38Þ

and

B ¼ ∂M
∂b

¼ 2br3þ
3G

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þ

s �

þ Q2

3brþ
2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4þ

�
ð39Þ

to obtain the final forms of VC and μC. VC and μC are the
new thermodynamic variables for the Born-Infeld AdS
black hole. Interestingly, we find that the new volume VC
depends on the Born-Infeld parameter which enters through
the expression for V obtained from the Smarr formula. Our
next goal is to understand the effects of the Born-Infeld
term on the critical behavior of the black hole and the
possible phase transition structure.

IV. BREAKING OF UNIVERSAL NATURE OF THE
CENTRAL CHARGE

Now we shall calculate the critical value of the central
charge. In order to find this value, we will use the following
two equations [31]:

∂T
∂rþ

¼ 0; ð40Þ
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∂
2T
∂r2þ

¼ 0: ð41Þ

Using Eq. (6), we get the following equation from Eq. (41)

1 −
6GQ2

r2þðcÞð1þ GQ2

b2r4þðcÞ
Þ12
þ 4G2Q4

b2r4þðcÞð1þ GQ2

b2r4þðcÞ
Þ32
¼ 0: ð42Þ

Here, c in the subscript of rþðcÞ is denoting the critical
value. Equation (42) up to Oð1=b2Þ takes the form as

r6þðcÞ − 6GQ2r4þðcÞ þ
7G2Q4

b2
¼ 0: ð43Þ

Now we proceed to obtain the solution of Eq. (43) by
approximating it up to Oð1=b2Þ. We take a perturbative
approach to obtain the critical value of rþðcÞ. We propose a
solution of the form for rþðcÞ (the critical value of rþ) up to
Oð1=b2Þ as follows:

rþðcÞ ≅ rð0Þþ þ rð1Þþ
b2

: ð44Þ

Using Eq. (44) in Eq. (43), we obtain the forms of rð0Þþ and
rð1Þþ as follows:

rð0Þþ ¼
ffiffiffiffiffiffi
6G

p
Q; rð1Þþ ¼ −

7

72
ffiffiffiffiffiffi
6G

p
Q
: ð45Þ

Equation (45) gives the form of the critical value of rþðcÞ up
to Oð1=b2Þ as

rþðcÞ ≅
ffiffiffiffiffiffi
6G

p
Q −

7

72
ffiffiffiffiffiffi
6G

p
Qb2

: ð46Þ

Now, Eq. (40) can be recast in the following form:

−
1

r2þðcÞ
þ 3

l2
þ 2b2 − 2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þðcÞ

s

þ 4GQ2

r4þðcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þðcÞ

r ¼ 0: ð47Þ

Equation (47) up to Oð1=b2Þ can be recast in the following
form:

−
1

r2þðcÞ
þ 3

l2
−

7G2Q4

4b2r8þðcÞ
þ 3GQ2

r4þðcÞ
¼ 0: ð48Þ

Substituting Eq. (46) in Eq. (48), we obtain the critical
value of the AdS radius up to Oð1=b2Þ as

lc ≅ 6
ffiffiffiffi
G

p
Q
�
1 −

7

864GQ2b2

�
: ð49Þ

Putting the values of rþðcÞ and lc in Eq. (6), we obtain the
critical value of the temperature up to Oð1=b2Þ as

Tc ¼
1

3
ffiffiffiffiffiffi
6G

p
πQ

þ 1

432π
ffiffiffiffiffiffi
6G

p
GQ3b2

: ð50Þ

All the results reduce to the Reissner-Nordström case in the
limit (b → ∞) [31]. We can obtain the value of the critical
charge by using the form of lC from Eq. (49) in Eq. (12) up
to Oð1=b2Þ as follows:

Cc ¼ k
l2c

16πG

⇒ Cc ≅
9kQ2

4π
−

7k
16πGb2

: ð51Þ

Equation (51) gives the form of the critical charge in terms
of Q, G, and b. We will now proceed to calculate the form
of the critical charge in terms of Q, b, and the critical
pressure Pc. This form is needed to avoid using values of G
while calculating the critical values of the central charge Cc
for different values of the nonlinear parameter b (Table I).
In four spacetime dimensions and for l ¼ lc we can

recast Eqs. (7) and (8) as

Pc ¼
3

8πGl2c
: ð52Þ

Again, replacing l2c by
16πGCc

k from the first line of Eq. (51) in
the above equation, we obtain (after taking a square root),

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k
128π2CcPc

s
; ð53Þ

where Pc is the pressure corresponding to the critical value
of the central charge. Using the form of the gravitational
constant in Eq. (51), we can recast Eq. (51) in the following
form

Cc ¼
9kQ2

4π
−
7

ffiffiffiffiffiffiffiffi
kPc

p
ffiffiffi
6

p
b2

C
1
2
c: ð54Þ

Solving Eq. (54) upto Oð1=b2Þ, the form of the critical
charge in terms of Pc, the Born-Infeld parameter b, black
hole charge Q and k is given by

TABLE I. Dependence of Cc on b.

b 10 15 20 30 100 ∞

Cc 31.29 33.91 34.82 35.48 35.95 36
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Cc ≅
9kQ2

4π
−
7kQ
4b2

ffiffiffiffiffiffiffiffi
6Pc

π

r
: ð55Þ

In case of Reissner-Nordström black hole, the critical value
of the central charge was obtained as [31]

Cc ¼
9kQ2

4π
: ð56Þ

In the above equation, we see that the central charge Cc is
universal in nature. In case of a Born-Infeld AdS black hole,
we observe from Eq. (55) that the universal nature of the
central charge is nowbroken due to the presence of theBorn-
Infeld parameter and the critical-pressure term Pc in it.
Dependence of the critical value of the central charge on the
Born-Infeld parameter is given in Table I. To observe this
dependence, we usedQ ¼ 1, k ¼ 16π, andPc ¼ 15. For the
abovevalues of the parameters,Cc for aReissner-Nordström
AdS black hole has the value 36. From Table I, we observe
that Cc value for the Born-Infeld case approaches 36 as we
increase the parameter value b without changing the
pressure term (P). In the limit b → ∞, the critical value
of the central charge approaches the Reissner-Nordström
black hole result.

V. PHASE TRANSITION STRUCTURE

In this section, we will try to investigate the phase
transition structure for a Born-Infeld AdS black hole. The
free energy of the black hole can be computed using
Eqs. (5) and (6) along with the use of the Bekenstein-
Hawking entropy as follows

F ¼ M − TS

¼ rþ
4G

−
r3þ
4Gl2

b2r3þ
6G

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GQ2

b2r4þ

s �

þ 2Q2

3rþ
2F1

�
1

4
;
1

2
;
5

4
;−

GQ2

b2r4þ

�
: ð57Þ

Here, in principle, we can write F≡ FðT; P;Q;C; bÞ. The
behavior of the free energy of the black hole with its
temperature is plotted in Fig. 1 for different values of the
central charge. We observe that above a critical value of the
central charge there is a swallowtail behavior of the free
energy of the black hole with respect to the change in the
black hole temperature for fixed value of the pressure. Below
this critical value of the central charge (CC ¼ 35.4769 in
Fig. 1), we observe a smooth curve for the free energy
indicating no swallowtail behavior. Critical analysis of Born-
Infeld AdS black holes in extended thermodynamics have
been discussed in [48]. The importance of our work lies in
the fact that it deals with the case where the contribution of
the central charge from the CFT side plays an important role
which is why it is called a mixed thermodynamic behavior.

In Fig. 1, we will investigate the behavior of the free
energy with respect to change in the temperature for various
central charge values. As opposed to [31], the critical value
of the central charge has a direct dependence on the pressure
term as can be seen from Eq. (55). Now from Fig. 1, we
observe that for the value of the central charge, C ¼ 25
(which is less than the critical value,Cc ¼ 35.4769), the free
energy curve is smooth with respect to change in the
temperature. For curves with the value of the central charge,
C ≥ Cc (for fixed P and b values), the free energy curve no
longer remains smooth. Instead we observe a swallowtail
behavior indicating first order small to large black hole
phase transition. With increasing temperature, we now
observe a drop in the free energy below the F ¼ 0 line.
We also observe that for thevalue of the central charge below
and above the critical value, the curves meet the F ¼ 0 line
at, respectively, higher and lower values of the temperature.
Hence, we observe for a Born-Infeld AdS black hole, there
exists a critical value of the central charge for fixed values of
the pressure term and Born-Infeld parameter above which
there is a small to large black hole phase transition.
For the next part of our analysis, we concentrate on the

dependence of the critical value of the central charge on the
Born-Infeld parameter b. We have plotted free energy with
respect to the temperature for different values of the Born-
Infeld parameter b with fixed values of the central charge.
In Figs. 2 and 3, we observe that for a substantially low
value of the Born-Infeld parameter (b ¼ 2 for Fig. 2 and
b ¼ 3 for Fig. 3), the free energy curve does not exist below
a certain temperature, indicating the nonexistence of any

FIG. 1. Free energy vs temperature: Parameters Q ¼ 1;
k ¼ 16π;P ¼ 15; b ¼ 30 (a0 is a scaling parameter):
(a) C ¼ 25 (dashed line), (b) C ¼ Cc ¼ 35.4769 (dotted line),
(c) C ¼ 60 (solid line).
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black hole in that region. Above this temperature value
[Ta0 ∼ 0.36 (b ¼ 2) in Fig. 2 and Ta0 ∼ 0.32 (b ¼ 3) in
Fig. 3], we observe that there are two branches of black
hole solutions. However, the upper one is unstable (since
the free energy is higher in this branch) and the lower one
describes large black hole solutions which are physical.
This indicates that for sufficiently small b, there exists a
no black hole region and a branch of large black hole
solutions. These features are qualitatively the same with the
Reissner-Nordström AdS black hole [31] but Born-Infeld
parameter plays a crucial role in the phase transition
structure through its dependence on the critical value of
the central charge.

VI. CONCLUSION

In this work, we have studied the thermodynamics of a
Born-Infeld AdS black hole in (3þ 1) dimensions with
variable AdS radius, Newton’s gravitational constant and
the Born-Infeld parameter. Starting with the derivation of
thermodynamic quantities of the black hole, we expressed
the first law of thermodynamics in terms of the usual
thermodynamical variables along with the central charge
and the Born-Infeld parameter. The mixed form of the first
law is derived in general D-spacetime dimensions with all
thermodynamic variables. This modified first law for the
Born-Infeld AdS black hole system is called mixed because

it has contributions from both the bulk as well as the
boundary field theory variables. However, later we have
reduced the discussion to four spacetime dimensions.
Because of the existence of the Born-Infeld parameter in
the Smarr relation, the thermodynamic variables VC and μC
get modified by the same. Also, this modification leads to a
change in the critical value of the central charge which
again depends on the Born-Infeld parameter including a
pressure dependence as well. This breaks the universal
behavior of the central charge observed in an earlier study
[31]. This is one of the most important results in our paper.
From the free energy versus temperature plots, we observe
that the phase structure undergoes crucial change due to the
inclusion of the Born-Infeld parameter as a thermodynam-
ical variable. We also observe that if the Born-Infeld
parameter is decreased enough, there will be a certain
critical temperature below which black holes do not exist. It
implies that the inclusion of the electromagnetic non-
linearity results in some significant change in the overall
free energy behavior of the black hole with respect to the
change in the Hawking temperature.
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FIG. 2. Free energy vs temperature: Parameters Q ¼ 1;
k ¼ 16π;P ¼ 15; C ¼ 30 (a0 is a scaling parameter):
(a) b ¼ 5 (dashed line), (b) b ¼ 2 (solid line).

FIG. 3. Free energy vs temperature: Parameters Q ¼ 1;
k ¼ 16π;P ¼ 15; C ¼ 70 (a0 is a scaling parameter):
(a) b ¼ 30 (dashed line), (b) b ¼ 3 (solid line).
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