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We show that to cubic order double field theory is encoded in Yang-Mills theory. To this end we use
algebraic structures from string field theory as follows: The L∞-algebra of Yang-Mills theory is the tensor
product K ⊗ g of the Lie algebra g of the gauge group and a “kinematic algebra” K that is a C∞-algebra.
This structure induces a cubic truncation of an L∞-algebra on the subspace of level-matched states of the
tensor productK ⊗ K̄ of two copies of the kinematic algebra. This L∞-algebra encodes double field theory.
More precisely, this construction relies on a particular form of the Yang-Mills L∞-algebra following from
string field theory or from the quantization of a suitable worldline theory.

DOI: 10.1103/PhysRevD.106.026004

I. INTRODUCTION

In this paper, we show that, at least to cubic order, double
field theory can be derived from Yang-Mills theory through
an off-shell and gauge invariant “double copy” construc-
tion. Double copy is a powerful tool in constructing gravity
scattering amplitudes from Yang-Mills or more general
gauge theory amplitudes [1–3]. It is a central pillar of the
modern amplitude program that in turn deemphasizes
Lagrangians, off-shell states and gauge redundancies. As
such it is often considered to be beside the point to seek a
Lagrangian understanding of double copy. Nevertheless,
there have been numerous attempts to establish double copy
relations at the level of a Lagrangian, see, e.g., [4–12].
Recently, together with Plefka, two of us established in [13] a
close double copy relation to cubic order between the
Lagrangians of Yang-Mills theory and double field theory
(DFT) [14–18], which is a formulation of the string target
space theory for graviton, B-field and dilaton that is T-duality
invariant thanks to doubled coordinates. (See Refs. [19–24]
for reviews and earlier work and Refs. [25–27] for previous
work on double copy and DFT.) The construction of [13]
requires integrating out the DFT dilaton and picking Siegel
gauge at cubic order. Here we generalize these results by
showing that the full gauge invariant DFT to cubic order,
including all dilaton couplings, follows from Yang-Mills
theory.

The approach employed in this paper is algebraic, based
on strongly homotopy algebras such as L∞-algebras
[28–30], which in turn are closely related to the Batalin-
Vilkovisky (BV) formalism. L∞-algebras are generaliza-
tions of Lie algebras, defined on an integer graded vector
space X ¼ ⨁i∈ZXi that encodes the space of fields, the
space of gauge parameters, etc., and a potentially infinite
series of graded symmetric maps or brackets bn,
n ¼ 1; 2; 3;…, with n inputs obeying quadratic generalized
Jacobi identities. When equipped with a graded symmetric
inner product the action of the theory is encoded in the L∞
brackets via

S ¼ 1

2
hA; b1ðAÞi þ

1

3!
hA; b2ðA; AÞi

þ 1

4!
hA; b3ðA; A; AÞi þ � � � ; ð1:1Þ

where A stands for all fields and the ellipsis indicates higher
order terms. For the case of Yang-Mills theory in the
standard formulation (i.e., with at most quartic vertices)
there are no higher brackets than 3-brackets. Similarly,
gauge transformations, gauge algebra, Noether identities,
etc., are all encoded in the L∞ structure (see [31] for the
general dictionary between L∞-algebras and field theory).
It was shown by Zeitlin that theL∞-algebra of Yang-Mills

theory can be viewed as a tensor product of the Lie algebra g
of the gauge group and a so-called C∞-algebra K [32]:

L∞ðYang −MillsÞ ¼ K ⊗ g: ð1:2Þ

A C∞-algebra is a homotopy version of a differential graded
commutative and associative algebra. It must be emphasized
that (1.2) is in no way a symbolic relation but rather
a completely precise statement about the tensor product
of certain algebras. As the algebra K is obtained from the
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Yang-Mills L∞-algebra by “stripping off” color factors we
will refer to it as the kinematic algebra of Yang-Mills theory,
but we should point out that it does not immediately encode
the relations that in the amplitude community are referred
to as kinematic algebra (e.g., [33–35]). In any case, double
copy suggests that the tensor product K ⊗ K̄ encodes a
gravity theory.
In the following we will show, to cubic order in fields,

that this program can indeed be realized, with the gravity
theory being DFT. This requires working with a particular
formulation of Yang-Mills theory and a subspace ofK ⊗ K̄
corresponding to states satisfying the level-matching con-
straints of closed string theory. These features are directly
motivated from the string theory origin of the double copy
structure: the KLT relations between open string and closed
string scattering amplitudes. As such, it is natural to suspect
that string field theory (SFT) is the appropriate framework
to make double copy manifest. Concretely, we will use an
SFT inspired formulation of Yang-Mills theory with aux-
iliary fields so that all kinetic terms always come with a □,
and gauge fixing amounts to setting some auxiliary fields to
zero. In BV language this formulation is known as non-
minimal and can also be derived from the quantization of a
worldline theory. We will then show that the C∞-algebra
structure induces the (cubic truncation of the) L∞-algebra
of DFT:

L∞ðDFTÞ ¼ ½K ⊗ K̄�level-matched; ð1:3Þ

where the notation indicates the subspace of level-matched
states.1

As a vector space, (1.3) contains precisely the required
objects to encode DFT. In particular, the doubling of
coordinates of DFT is automatic and not imposed: given
an algebra K of functions of x and an independent algebra
K̄ of functions of x̄ the tensor product is a space of
functions of ðx; x̄Þ. This is a special case of the general
relation that the tensor product of vector spaces FunðMÞ of
functions on a manifold M and functions on a second
manifold M̄ yields, under certain topological assumptions,
the algebra of functions on M × M̄:

FunðM × M̄Þ ¼ FunðMÞ ⊗ FunðM̄Þ: ð1:4Þ

It should be noted that establishing a homotopy algebra
structure on a tensor product of such algebras in general is
quite subtle. While algebras with no higher than 2-products
or bracket, which are known as strict, behave nicely under
tensor products (so that, for instance, the tensor product
of two strict C∞-algebras canonically yields a strict

C∞-algebra), for general homotopy algebras it is more
difficult to display a homotopy algebra structure on a tensor
product. (See, e.g., [39] for the case of homotopy asso-
ciative or A∞-algebras.) For a cubic truncation the L∞
structure requires only a 2-bracket with the correct graded
symmetry properties obeying Leibniz relations with the
differential. For both of these properties the truncation to
the level-matched subspace in (1.3) is instrumental. We do
not yet know of a construction of the complete L∞-algebra
on this space, as would be required in order to realize
double copy to all orders.
In order to appreciate the kind of detailed relations

between Yang-Mills theory and DFT that are encoded
in (1.3) let us mention a particularly striking example: the
DFT gauge transformations that are linear in the field eμμ̄
(encoding metric and Kalb-Ramond fluctuations) are
directly obtained from the 3-vertex of Yang-Mills theory.
To see this note that according to (1.1) the cubic term of
Yang-Mills theory is encoded in the 2-bracket on g-valued
one-forms A ¼ Aa

μtadxμ:

b2ðA; AÞaμ ¼ fabcðAb • AcÞμ; ð1:5Þ

where fabc are the structure constants of the Lie algebra g
(the “color factors”) while • is a product on one-forms
defined by

ðv • wÞμ ¼ vν∂νwμ þ ð∂μvν − ∂
νvμÞwν

þ ð∂νvνÞwμ − ðv ↔ wÞ; ð1:6Þ

where the Minkowski metric is used to raise and lower
indices. (Of course, given this metric, we might as well
view this as a bracket of vectors rather than one-forms.)
While the cubic term in the Yang-Mills action may be
rewritten in various equivalent ways, say by integrations by
part,2 the correspondingL∞ 2-bracket (1.5) is unambiguous:
it takes, according to (1.6), the form of an (antisymmetrized)
generalized Lie derivative of DFT (with density weight one),
just with theMinkowskimetric instead of theOðd; dÞmetric.
However, in the perturbative formulation of DFT this is
precisely the gauge transformation of eμμ̄ with respect to the
gauge parameter λμ [15]:

δð1Þλ eμμ̄ ¼
1

4
ðλ • eμ̄Þμ þ ðauxiliary fieldsÞ; ð1:7Þ

up to terms involving auxiliary fields of the SFT like
formulation. In (1.7) the index μ̄ is viewed as inert, and
there is an analogous gauge transformation for a gauge
parameter λ̄μ̄,with all derivatives and indices in (1.6) replaced
by barred objects and now with the index μ being inert. Note
that the above relates a 2-bracket between fields on the1A homotopy algebra approach to double copy was also

developed in [36], but the outlined doubling procedure appears
to be quite different. See also Refs. [37,38] for closely related
applications.

2For instance, in [40] it was observed that the cubic term can be
written in terms of the conventional Lie bracket of vector fields.
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Yang-Mills side to a 2-bracket between field and gauge
parameter on theDFT side, andwewill see that this precisely
originates from the tensor product (1.3) as does the full cubic
truncation of the L∞-algebra of DFT. Thus, this gauge
invariant double copy is properly viewed as a map between
the complete gauge theories as encoded in the corresponding
L∞-algebras, as opposed to a simple redefinition between
classical fields or their action.
The rest of this paper is organized as follows. In Sec. II,

we write down the L∞-algebra encoding Yang-Mills theory
with a particular auxiliary field and identify the C∞
“kinematic algebra”K. While this formulation was inspired
by open string field theory and was in fact originally
constructed by a related worldline quantization, we present
our results without explicit reference to the SFT or world-
line formulation in order to keep this section self-contained.
In Sec. III, we consider the subspace of K ⊗ K̄ of level-
matched states and show that it inherits the cubic truncation
of an L∞-algebra that encodes DFT. We close with a brief
conclusion and outlook in Sec. IV. For completeness, and
since it is of interest in its own right, we discuss the
worldline approach in the Appendix.

II. THE KINEMATIC ALGEBRA OF YANG-MILLS

In this section, we present the L∞-algebra for Yang-Mills
theory encoding its gauge structure, classical field equa-
tions and Noether identities. We use a nonstandard for-
mulation that can be motivated by open string field theory
or a worldline quantization. We then explain how “stripping
off” the color part from the brackets one obtains a
C∞-algebra, i.e., a graded commutative algebra obeying
associativity up to homotopy. This kinematic algebra will
be used in the next section to derive double field theory to
cubic order.

A. L∞-algebra of Yang-Mills

Let us consider the following form of the Yang-Mills
action that includes an auxiliary scalar φ in the free
Lagrangian:

S ¼
Z

dxTr

�
1

2
Aμ

□Aμ −
1

2
φ2 þ φ∂μAμ − ∂μAν½Aμ; Aν�

−
1

4
½Aμ; Aν�½Aμ; Aν�

�
; ð2:1Þ

where all fields are Lie algebra valued, e.g.,Aμ ¼ Aa
μta, with

Lie bracket ½·; ·� and generators normalized as TrðtatbÞ ¼
δab. Upon integrating out φ one recovers the standard Yang-
Mills action. This ensures that the standard cubic and quartic
vertices in (2.1) are consistent with gauge invariance,
provided that Aμ has the usual transformation rule and that
φ transforms as its on-shell value φ ¼ ∂μAμ, i.e.,

δAμ ¼ ∂μλþ ½Aμ; λ�; δφ ¼ □λþ ∂μ½Aμ; λ�: ð2:2Þ

As we have mentioned, this nonstandard form of the free
action arises naturally from the BRST quantization of the
N ¼ 2 spinning particle (see the Appendix), or from string
field theory.
We now describe the L∞ structure of Yang-Mills in this

formulation. An L∞ algebra is a graded vector space
X ¼ ⨁iXi endowed with multilinear maps bn of intrinsic
degree −1, which obey quadratic Jacobi-like identities.
Since Yang-Mills theory has at most quartic vertices the
nonvanishing brackets are b1, b2 and b3. The L∞ relations
in this case are

(i) Nilpotency of the differential

b21 ¼ 0: ð2:3Þ

(ii) b1 acts as a derivation on b2 (Leibniz rule)

b1ðb2ðx;yÞÞþb2ðb1ðxÞ;yÞþð−1Þxb2ðx;b1ðyÞÞ¼ 0:

ð2:4Þ

(iii) Homotopy Jacobi identity

b2ðb2ðx; yÞ; zÞ þ ð−1Þyzb2ðb2ðx; zÞ; yÞ
þ ð−1Þxb2ðx; b2ðy; zÞÞ þ b1ðb3ðx; y; zÞÞ
þ b3ðb1ðxÞ; y; zÞ þ ð−1Þxb3ðx; b1ðyÞ; zÞ
þ ð−1Þxþyb3ðx; y; b1ðzÞÞ ¼ 0: ð2:5Þ

Here x, y, z in exponents denote the L∞ degree of the
corresponding element.

Notice that, even if higher brackets vanish, one has higher
relations involving b2b3 and b3b2 which we do not display
here. The sign conventions, referred to as the b-picture, are
somewhat unconventional but are more convenient for field
theory applications and also standard in string field theory
[28]. In the b-picture the brackets are graded symmetric:

b2ðx; yÞ ¼ ð−1Þxyb2ðy; xÞ;
b3ðx; y; zÞ ¼ ð−1Þxyb3ðy; x; zÞ; etc: ð2:6Þ

Given this general structure, we now focus on Yang-
Mills theory defined by the action (2.1). The corresponding
L∞ complex is the graded vector space

X ¼ ⨁
þ1

i¼−2
Xi; ð2:7Þ

with differential b1 of degree −1. The space of highest
degree X1 contains gauge parameters λ, while the spaces of
lower degrees are identified as the space of fields, equations
of motion and Bianchi/Noether identities, as shown in the
following diagram:
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X1 !b1 X0 !b1 X−1 !b1 X−2

λ A E N
: ð2:8Þ

The spaces of gauge parameters and Noether identities
consist of scalars λ and N , respectively, while the space of
fields A and the space of field equations E consist of
doublets: A ¼ ðAμ;φÞ and E ¼ ðEμ; EÞ.

1. Free theory and the differential b1
One can read off the differential b1 from the linearized

field equations and gauge transformations of (2.1):

b1ðAÞ ¼ 0; δA ¼ b1ðλÞ; ð2:9Þ

to give the action of the differential on X1 and X0:

b1ðλÞ ¼
�
∂
μλ

□λ

�
∈ X0; b1ðAÞ ¼

�
□Aμ − ∂

μφ

∂ ·A−φ

�
∈ X−1;

ð2:10Þ

where here and in the following we use the notation
∂ · A ¼ ∂μAμ. Nilpotency of b1 acting on λ encodes gauge
invariance of the free field equations, b21ðλÞ ¼ b1ðδAÞ ¼ 0.
We define the differential b1 acting on E as

b1ðEÞ ¼ □E − ∂μEμ; ð2:11Þ

in order to ensure that the free Noether identity is encoded
in b21ðAÞ ¼ b1ðEÞ ¼ 0. There is no further nontrivial
realization of b21 ¼ 0. As we will discuss below, the
differential b1 coincides with the first-quantized BRST
operator Q of the associated worldline theory.

2. Interacting theory and the brackets b2 and b3
The field equations of the full theory can be written

in L∞ form as

b1ðAÞ þ 1

2
b2ðA;AÞ þ 1

6
b3ðA;A;AÞ ¼ 0: ð2:12Þ

Since the auxiliary φ does not enter interactions the two and
three-brackets between fields take the form

b2ðA;AÞ¼
�
bμ2ðA;AÞ

0

�
; b3ðA;A;AÞ¼

�
bμ3ðA;A;AÞ

0

�
;

ð2:13Þ

for which one finds from the general dictionary between
L∞-algebras and field theory [31]:

bμ2ðA1; A2Þ ¼ 2∂ν½Aν
ð1; A

μ
2Þ� þ 2½fμνð1 ; A2Þν�;

bμ3ðA1; A2; A3Þ ¼ 6½Aνð1; ½Aν
2; A

μ
3Þ��; ð2:14Þ

with the Abelian field strength fμν ¼ ∂μAν − ∂νAμ. The
field equations (2.12) are covariant under the deformed
gauge transformation

δA ¼ b1ðλÞ þ b2ðλ;AÞ; ð2:15Þ

which, comparing with (2.2), fixes the two bracket between
a field and a gauge parameter to be

b2ðλ;AÞ ¼
� ½Aμ; λ�
∂ν½Aν; λ�

�
: ð2:16Þ

Demanding that the Leibniz property (2.4) holds for all the
allowed combinations of inputs, one finds the following list
of nonvanishing brackets:

b2ðλ1; λ2Þ ¼ −½λ1; λ2�; b2ðA; λÞ ¼
� ½Aμ; λ�
∂ν½Aν; λ�

�
;

b2ðA1;A2Þ ¼ 2

�
∂ν½Aν

ð1; A
μ
2Þ� þ ½fμνð1 ; A2Þν�

0

�
; b2ðλ; EÞ ¼ −

� ½λ; Eμ − ∂
μE�

0

�
;

b2ðA; EÞ ¼ −½Aμ; Eμ − ∂
μE�; b2ðλ;N Þ ¼ −½λ;N �: ð2:17Þ

The homotopy Jacobi identities (2.5) are satisfied with
the only nonvanishing three-bracket bμ3ðA1; A2; A3Þ given
in (2.14).

3. Inner product and action

We conclude the discussion of the L∞ algebra of Yang-
Mills by giving the inner product, which allows us to write

the action in the standard L∞ form [28,31]. Specifically, the
inner product of X is a degree þ1 pairing, including a map
between fields and field equations:

h; i∶X0 × X−1 → R: ð2:18Þ

Given a field A and a field equation E with components

BONEZZI, DÍAZ-JARAMILLO, and HOHM PHYS. REV. D 106, 026004 (2022)

026004-4



A ¼
�
Aμ

φ

�
∈ X0; E ¼

�
Eμ

E

�
∈ X−1; ð2:19Þ

we define their inner product by the spacetime integral

hA; Ei ¼
Z

dxTrfAμEμ þ φEg; ð2:20Þ

with a similar pairing between gauge parameters λ and
Noether identities N . Using the form (2.10) and (2.14) for
the brackets one may verify that the Yang-Mills action (2.1)
can be written in terms of the inner product as

S ¼ 1

2
hA; b1ðAÞi þ 1

3!
hA; b2ðA;AÞi

þ 1

4!
hA; b3ðA;A;AÞi: ð2:21Þ

The Euler-Lagrange equations of this action indeed take
the form (2.12).

B. The kinematic algebra

Having presented the L∞ algebra of Yang-Mills, our next
goal will be to disentangle the color degrees of freedom
from the elements of X and from the brackets. This defines
the vector space K of the kinematic algebra, whose
elements are spacetime fields with no color dependence.
Similarly, we will define purely kinematic products mn
acting on the kinematic vector space.
Let us start with the vector space itself. Since all

elements of the L∞ algebra X are Lie algebra-valued
fields, they can be written as x ¼ xata ∈ X in terms of
generators ta ∈ g, where g is the Lie algebra of the gauge
group. This shows that the L∞ complex X has the structure
of a tensor product space X ¼ K ⊗ g, where g is endowed
with the standard Lie bracket, and K is the vector space of
the kinematic algebra, such that ta ∈ g and xa ∈ K. If one
considers the Lie algebra g as a special case of an L∞-
algebra concentrated in degree þ1 (in the b-picture), the
generators ta have degree þ1, while the Lie bracket ½; � has
intrinsic degree −1. Next, we shall define the degrees of the
kinematic algebra by declaring that the degrees of elements
and maps of K and g are additive, so that

x ¼ u ⊗ t; u ∈ K;

t ∈ g → jxjX ¼ jujK þ jtjg ¼ jujK þ 1: ð2:22Þ

This implies that the kinematic algebra K is given by the
direct sum

K ¼ ⨁
0

i¼−3
Ki: ð2:23Þ

Although elements of K are spacetime fields with no color
degrees of freedom left, informally we still refer to K0 as

the space of gauge parameters λ, K−1 as the space of fields
A ¼ ðAμ;φÞ, etc., i.e., we keep the same symbols for
elements of K in order to avoid burdening the notation. We
shall now define the multilinear maps mn on K.

1. Differential m1

Since the Lie algebra g plays no role in defining the free
field equations, the differential m1 is the same as the L∞
differential b1 or, more precisely,

b1ðxÞ ¼ b1ðu ⊗ tÞ ¼ m1ðuÞ ⊗ t; jm1j ¼ −1; ð2:24Þ

where the degree of m1 can be inferred from the definition
(2.24) and jb1j ¼ −1. This yields the explicit realization

m1ðλÞ¼
�
∂
μλ

□λ

�
∈K−1; m1ðAÞ¼

�
□Aμ−∂

μφ

∂ ·A−φ

�
∈K−2;

m1ðEÞ¼□E−∂μEμ∈K−3; ð2:25Þ

and the proof of m2
1 ¼ 0 is identical to the proof of b21 ¼ 0.

2. Two-product m2

We shall now define a degree zero graded commutative
product m2 on K, which thus obeys

m2ðu1; u2Þ ¼ ð−1Þu1u2m2ðu2; u1Þ; jm2j ¼ 0: ð2:26Þ

Given two vectors x1; x2 ∈ X of the form xi ¼ ui ⊗ ti with
ui ∈ K and ti ∈ g, the L∞ bracket b2 can be written as

b2ðx1; x2Þ ¼ b2ðu1 ⊗ t1; u2 ⊗ t2Þ
¼ ð−1Þx1m2ðu1; u2Þ ⊗ ½t1; t2�; ð2:27Þ

which serves as an implicit definition of m2. The degree
jm2j ¼ 0 is compatible with (2.27) since jb2j ¼ −1 and
j½; �j ¼ −1. The sign factor ð−1Þx1 has been chosen so
that (2.27) is also compatible with the symmetry property
of b2. This can be checked by computing

b2ðx2; x1Þ ¼ ð−1Þx2m2ðu2; u1Þ ⊗ ½t2; t1�
¼ ð−1Þu2þ1m2ðu2; u1Þ ⊗ ½t2; t1�
¼ ð−1Þu1u2þu2m2ðu1; u2Þ ⊗ ½t1; t2�
¼ ð−1Þu1u2þu2þu1þ1b2ðx1; x2Þ
¼ ð−1Þx1x2b2ðx1; x2Þ: ð2:28Þ

Let us point out that the definition (2.27) does not imply the
graded symmetry of m2. Rather, it implies that any part of
m2 which is not graded symmetric is projected out from the
resulting b2. The symmetry property (2.26) has thus to be
seen as part of the definition of m2.
Let us now use the definition (2.27) to give the explicit

form of the Yang-Mills two-productsm2. It is convenient to
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use the decomposition along a basis ta of g, such that
x ¼ xa ⊗ ta. In this case (2.27) reduces to

b2ðx; yÞ ¼ ð−1Þxfabcm2ðxb; ycÞ ⊗ ta; ð2:29Þ

in terms of component fields with adjoint color indices.
Using (2.29) and the brackets (2.17) one finds that the
nonvanishing products are given by

m2ðλ1; λ2Þ ¼ λ1λ2 ∈ K0;

m2ðA; λÞ ¼
�

Aμλ

∂νðAνλÞ

�
∈ K−1;

m2ðA1;A2Þ ¼
� ðA1 • A2Þμ

0

�
∈ K−2;

m2ðλ; EÞ ¼
�
λðEμ − ∂

μEÞ
0

�
∈ K−2;

m2ðA; EÞ ¼ −AμðEμ − ∂
μEÞ ∈ K−3;

m2ðλ;N Þ ¼ λN ∈ K−3; ð2:30Þ

where the antisymmetric product • between vector fields,
already defined in the Introduction, is given by

ðV •WÞμ ¼ Vν
∂νWμ þ ð∂μVν − ∂νVμÞWν

þ ð∂νVνÞWμ − ðV ↔ WÞ: ð2:31Þ

The nondiagonal products with a different order of inputs,
e.g., m2ðλ;AÞ or m2ðE;AÞ, are defined by the symmetry
property (2.26).

3. Three-product m3

The only nonvanishing three-bracket of Yang-Mills
theory acts on three degree zero elements, which are the
vector components of three fields: bμ3ðA1; A2; A3Þ. For this
reason, the only nonvanishing kinematic three-product
m3ðu1; u2; u3Þ acts on three elements ui ∈ K−1 of degree
−1. We thus define a three-product m3∶K⊗3

−1 → K−2 of
degree jm3j ¼ þ1, acting as

m3ðA1;A2;A3Þ ¼
�
mμ

3ðA1; A2; A3Þ
0

�
;

mμ
3ðA1; A2; A3Þ ¼ A1 · A2A

μ
3 þ A3 · A2A

μ
1 − 2A1 · A3A

μ
2:

ð2:32Þ

Upon inspection one may verify that this obeys

m3ðA1;A2;A3Þ ¼ m3ðA3;A2;A1Þ;
m3ðAð1;A2;A3ÞÞ ¼ 0: ð2:33Þ

In the language of Young tableaux this means that m3 has
the symmetry property of a (2,1) “hook” Young tableau.
Consider now three degree zero elements x1; x2; x3 ∈ X0

in the L∞ algebra X . Taking them to be of the form
xi ¼ ui ⊗ ti, with ti ∈ g and ui ∈ K−1, the three-bracket
(2.14) can be written as

b3ðx1; x2; x3Þ ¼ b3ðu1 ⊗ t1; u2 ⊗ t2; u3 ⊗ t3Þ
¼ m3ðu1; u2; u3Þ ⊗ ½t1; ½t2; t3��
þm3ðu2; u1; u3Þ ⊗ ½t2; ½t1; t3��; ð2:34Þ

which guarantees total symmetry in the inputs x1, x2, and x3
thanks to (2.33) and the symmetry properties of the nested
Lie algebra bracket. In order to recognize the previous
expression (2.14), it is convenient to use the standard basis
decomposition x ¼ xa ⊗ ta, which yields

bμ3ðA1; A2; A3Þ ¼ 2fabefecdm
μ
3ðAb

ð1; A
c
2; A

d
3ÞÞ ⊗ ta: ð2:35Þ

One can use (2.32) in the expression above to immediately
recover (2.14).

4. C∞-algebra

In the last part of this section, we will prove that the
vector space K endowed with the products m1, m2, and m3

given by (2.25), (2.30), and (2.32) defines a C∞-algebra: a
graded vector space endowed with multilinear products mn
of degree jmnj ¼ n − 2 obeying certain symmetry proper-
ties and associativity up to homotopy, see, e.g., [41–43].
Specifically, C∞-algebras are A∞-algebras with products
that obey additional symmetry properties. In particular, the
two and three-products m2 and m3 obey

m2ðu1; u2Þ ¼ ð−1Þu1u2m2ðu2; u1Þ;
m3ðu1; u2; u3Þ ¼ ð−1Þu2u3m3ðu1; u3; u2Þ

− ð−1Þðu1þu2Þu3m3ðu3; u1; u2Þ; ð2:36Þ

which is the case for the Yang-Mills products (2.30)
and (2.32), recalling that m3 is nonvanishing only for
ju1j ¼ ju2j ¼ ju3j ¼ −1. The quadratic relations for themn
are as follows: First, the differential m1 is nilpotent:

m2
1ðuÞ ¼ 0; jm1j ¼ −1; ð2:37Þ

and acts as a derivation with respect to m2 (Leibniz rule):

m1ðm2ðu1;u2ÞÞ¼m2ðm1ðu1Þ;u2Þþð−1Þu1m2ðu1;m1ðu2ÞÞ;
jm2j ¼ 0: ð2:38Þ

Second, one has associativity of m2 up to homotopy, which
is expressed as
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m2ðm2ðu1; u2Þ; u3Þ −m2ðu1; m2ðu2; u3ÞÞ ¼ m1ðm3ðu1; u2; u3ÞÞ þm3ðm1ðu1Þ; u2; u3Þ þ ð−1Þu1m3ðu1; m1ðu2Þ; u3Þ
þ ð−1Þu1þu2m3ðu1; u2; m1ðu3ÞÞ; ð2:39Þ

where m3 has degree þ1. Even though there are no higher products, m2 and m3 have to satisfy [36]

m2ðm3ðu1; u2; u3Þ; u4Þ þ ð−1Þu1m2ðu1; m3ðu2; u3; u4ÞÞ ¼ m3ðm2ðu1; u2Þ; u3; u4Þ −m3ðu1; m2ðu2; u3Þ; u4Þ
þm3ðu1; u2; m2ðu3; u4ÞÞ; ð2:40Þ

in order to be consistent with the absence of m4. The last possible relation, involving m3m3, vanishes identically for degree
reasons. Wewill now show that the differential (2.25), two and three-products (2.30) and (2.32) obey the graded Leibniz and
homotopy associativity relations. Finally, we will establish (2.40), which concludes the proof of the quadratic relations.
Nilpotency of the differential m1 follows immediately as above. For the Leibniz property we shall proceed in order,

starting from the highest degree:

5. Degree − 1

The only Leibniz relation at degree −1 involves the product of two gauge parameters λ1 and λ2, and reads

m1ðm2ðλ1; λ2ÞÞ ¼
�
∂
μðλ1λ2Þ
□ðλ1λ2Þ

�
¼

�
∂
μλ1λ2 þ λ1∂

μλ2

□λ1λ2 þ λ1□λ2 þ 2∂νλ1∂νλ2

�

¼
� ð∂μλ1Þλ2
∂νð∂νλ1λ2Þ

�
þ
� ð∂μλ2Þλ1
∂νð∂νλ2λ1Þ

�

¼ m2ðm1ðλ1Þ; λ2Þ þm2ðλ1; m1ðλ2ÞÞ; ð2:41Þ

as can be seen from (2.25) and (2.30). In the L∞-algebra associated toK by tensoring with g, this relation encodes closure of
the gauge transformations of Yang-Mills.

6. Degree − 2

Also in degree −2 one has only one relation, between a gauge parameter λ and a field A:

m1ðm2ðA; λÞÞ ¼
�
□ðAμλÞ − ∂

μ
∂νðAνλÞ

∂νðAνλÞ − ∂νðAνλÞ

�
¼

� ð□Aμ − ∂
μ
∂ · AÞλ

0

�

þ
�
Aμ

□λ − Aν
∂ν∂

μλþ 2∂νAμ
∂νλ − ∂

μAν
∂νλ − ∂ · A∂μλ

0

�

¼ m2ðm1ðAÞ; λÞ −m2ðA; m1ðλÞÞ; ð2:42Þ

which corresponds to gauge invariance of the field equations in X .

7. Degree − 3

The relations in lowest degree can either take two fields A1 and A2, thus expressing the deformation of the Noether
identity N , or a gauge parameter λ and a field equation E, which corresponds to the consistency of N ¼ 0 with gauge
symmetries. The first one yields

m1ðm2ðA1;A2ÞÞ ¼ 2∂μð∂ · A½2Aμ
1� þ 2Aν

½2∂νA
μ
1� þ ∂

μAν
½2A1�νÞ

¼ 2ð∂μ∂ · A½2Aμ
1� þ 2Aν

½2∂ν∂ · A1� þ□Aν
½2A1�νÞ

¼ −2Aμ
½2ð□A1�μ − ∂μ∂ · A1�Þ ¼ 2m2ðm1ðA½1Þ;A2�Þ; ð2:43Þ

where we point out that, given a field equation E ¼ m1ðAÞ ¼ ð□Aμ − ∂
μφ; ∂ · A − φÞ, the combination Eμ − ∂

μE ¼
□Aμ − ∂

μ
∂ · A is the usual Maxwell equation not involving φ. The last Leibniz relation, with λ and E as inputs, gives
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m1ðm2ðλ; EÞÞ ¼ −∂μðλðEμ − ∂
μEÞÞ ¼ −ð∂μλÞðEμ − ∂

μEÞ þ λð□E − ∂μEμÞ
¼ m2ðm1ðλÞ; EÞ þm2ðλ; m1ðEÞÞ; ð2:44Þ

which concludes the proof of the Leibniz property (2.38).
We now turn to the proof of the homotopy associativity relations (2.39). Since the only nonzero m3 involves three vector

fields, most of them2 products obey strict associativity. As we have done for the Leibniz relations, we shall proceed in order
from the highest degree.

8. Degree 0

In degree zero one can only take three gauge parameters λ1, λ2, and λ3. In this case the relation is trivial to prove, due
to m2 being an associative pointwise product:

m2ðm2ðλ1; λ2Þ; λ3Þ ¼ ðλ1λ2Þλ3 ¼ λ1ðλ2λ3Þ ¼ m2ðλ1; m2ðλ2; λ3ÞÞ: ð2:45Þ

9. Degree − 1

In this case the only possibility is to act on two gauge parameters λ1, λ2, and a field A, yielding

m2ðm2ðA; λ1Þ; λ2Þ ¼
� ðAμλ1Þλ2
∂νððAνλ1Þλ2Þ

�
¼

�
Aμðλ1λ2Þ

∂νðAνðλ1λ2ÞÞ

�
¼ m2ðA; m2ðλ1; λ2ÞÞ; ð2:46Þ

which is also strictly associative.

10. Degree − 2

There are now two possibilities: one takes as inputs two parameters λ1, λ2 and an equation of motion E, and this is
associative as well:

m2ðm2ðλ1; λ2Þ; EÞ ¼
� ðλ1λ2ÞðEμ − ∂

μEÞ
0

�
¼

�
λ1ðλ2ðEμ − ∂

μEÞÞ
0

�
¼ m2ðλ1; m2ðλ2; EÞÞ: ð2:47Þ

The second possibility is to take one parameter λ and two fields A1, A2, which is the first case to require a three product:

m2ðm2ðλ;A1Þ;A2Þ −m2ðλ; m2ðA1;A2ÞÞ ¼
�
mμ

2ðλA1; A2Þ
0

�
−
�
λmμ

2ðA1; A2Þ
0

�

¼
�
A1 · ∂λA

μ
2 þ ∂

μλA1 · A2 − 2A2 · ∂λA
μ
1

0

�

¼ m3ðm1ðλÞ;A1;A2Þ; ð2:48Þ

where we used the definition (2.32). Since the only nonzerom3 has three degree −1 inputs, the single term appearing above
is the only one required to satisfy (2.39).

11. Degree − 3

One has three cases in lowest degree: the inputs can in fact be ðλ1; λ2;N Þ, ðλ;A; EÞ or ðA1;A2;A3Þ. The first two cases
are strictly associative:

m2ðm2ðλ1; λ2Þ;N Þ ¼ ðλ1λ2ÞN ¼ λ1ðλ2N Þ ¼ m2ðλ1; m2ðλ2;N ÞÞ;
m2ðm2ðλ;AÞ; EÞ ¼ −ðAμλÞðEμ − ∂μEÞ ¼ −λðAμðEμ − ∂μEÞÞ ¼ m2ðλ; m2ðA; EÞÞ: ð2:49Þ

The last relation, instead, involves the three-product and is obtained as

BONEZZI, DÍAZ-JARAMILLO, and HOHM PHYS. REV. D 106, 026004 (2022)

026004-8



m2ðm2ðA1;A2Þ;A3Þ −m2ðA1; m2ðA2;A3ÞÞ ¼ −Aμ3m
μ
2ðA1; A2Þ þ Aμ1m

μ
2ðA2; A3Þ

¼ −∂μðAμ
1A2 · A3 þ Aμ

3A2 · A1 − 2Aμ
2A1 · A3Þ

¼ m1ðm3ðA1;A2;A3ÞÞ; ð2:50Þ

in agreement with (2.39).
In order to complete the proof that K is a C∞-algebra without higher products, we are left to prove the consistency

condition (2.40). Sincem3 can only act on three vectors of degree −1, the only nontrivial relations are in degree −2 and −3.

12. Degree − 2

In this case one can have three fields Ai and one gauge parameter λ, giving rise to two possible relations:

m2ðm3ðA1;A2;A3Þ; λÞ ¼ m3ðA1;A2; m2ðA3; λÞÞ;
m3ðA1;A2; m2ðA3; λÞÞ ¼ m3ðA1; m2ðA2; λÞ;A3Þ: ð2:51Þ

The first one is easily established by computing

m2ðm3ðA1;A2;A3Þ; λÞ ¼ λ

�
A1 · A2A

μ
3 þ A3 · A2A

μ
1 − 2A1 · A3A

μ
2

0

�

¼
�
A1 · A2ðλAμ

3Þ þ ðλA3Þ · A2A
μ
1 − 2A1 · ðλA3ÞAμ

2

0

�
¼ m3ðA1;A2; m2ðA3; λÞÞ; ð2:52Þ

and the second one follows immediately from the line above.

13. Degree − 3

One can only act on four fields, yielding

m2ðm3ðA1;A2;A3Þ;A4Þ ¼ −A4μm
μ
3ðA1; A2; A3Þ

¼ −A1 · A2A3 · A4 − A3 · A2A1 · A4 þ 2A1 · A3A2 · A4

¼ −A1μm
μ
3ðA2; A3; A4Þ ¼ m2ðA1; m3ðA2;A3;A4ÞÞ; ð2:53Þ

which concludes the proof.

C. Z2 grading

In the last part of this section, we will show that both the
Yang-Mills L∞-algebra X and the C∞-algebra K admit a
further Z2 grading. This additional grading is crucial in
constructing double field theory from doubling. To this end
it is moreover convenient to write the kinematic algebra in
terms of graded basis vectors for K, which have a natural
interpretation as oscillators and ghosts of an underlying
N ¼ 2 particle or open string theory.
Let us start by recalling the component structure of the

kinematic algebra K (the same applies to the L∞-algebra X
upon tensoring K with the Lie algebra g and shifting the
degrees accordingly). Specifically, we recall that both fields
and field equations are split into doublets, and we group the
objects of the chain complex as follows

K0 !m1 K−1 !m1 K−2 !m1 K−3

λ Aμ E

φ Eμ N

: ð2:54Þ

This displays the decomposition of K with respect to a new
Z2 degree with values 0,1, which we name c-degree,3 along
the vertical direction above. Put differently, we assign
c-degree zero to ðλ; Aμ; EÞ and c-degree 1 to ðφ; Eμ;N Þ,
such that

K0 ¼ Kð0Þ
0 ; K−1 ¼ Kð0Þ

−1 ⊕ Kð1Þ
−1 ;

K−2 ¼ Kð0Þ
−2 ⊕ Kð1Þ

−2 ; K−3 ¼ Kð1Þ
−3 : ð2:55Þ

For the following discussions it will be useful to split the
full complex K according to the c-degree alone, writing

Kð0Þ ¼ ⨁
0

i¼−2
Kð0Þ

i ; Kð1Þ ¼ ⨁
−1

i¼−3
Kð1Þ

i : ð2:56Þ

3This degree is related to the first-quantized reparametrization
ghost, as it will be explained in the following.
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It is important to note that Kð0Þ and Kð1Þ are isomorphic as
vector spaces, while the C∞ degrees between the two are
shifted by −1. The vectors of Kð0Þ and Kð1Þ then have
components

0
B@

λ

Aμ

E

1
CA ∈ Kð0Þ;

0
B@

φ

Eμ

N

1
CA ∈ Kð1Þ; ð2:57Þ

thus making the isomorphism apparent. The full algebra K
can thus be split as K ¼ Kð0Þ ⊕ Kð1Þ, which will be the
most useful form to construct the DFT complex in the
next section.
In order to simplify the subsequent treatment, in par-

ticular the doubling procedure, we will reformulate the
above in a form which is more akin to the first-quantized
description of the field theory. To this end, we introduce a
basis for the triplet (2.57) in Kð0Þ consisting of graded
vectors

jθMi ¼ fjθþi; jθμi; jθ−ig; jjθMijK ¼ M − 1; ð2:58Þ

where M ¼ ðþ; μ;−Þ count as ðþ1; 0;−1Þ in determining
the C∞ degree. Given the isomorphism between the
components of Kð0Þ and Kð1Þ, we shall take into account
theZ2 split due to the c-degree by tensoring the above basis
with a two-dimensional Grassmann algebra generated by
an odd nilpotent element c, obeying

c2 ¼ 0; jcjK ¼ −1: ð2:59Þ

This element is nothing but the reparametrization ghost of
the first-quantized theory and allows one to introduce a
basis jcθMi for the second triplet (2.57) in Kð1Þ:

jcθMi ¼ cjθMi; cjcθMi ¼ 0; jjcθMijK ¼ M − 2:

ð2:60Þ

In this formulation, spacetime fields are components of
intrinsic vectors of K along the basis fjθMi; jcθMig. As
such, component fields are taken to have zero degree and
the C∞ degree is entirely carried by the basis elements jθMi
and jcθMi, according to (2.58) and (2.60). An arbitrary
vector u ∈ K can thus be expanded as

u ¼ jθMiuMðxÞ þ jcθMivMðxÞ ∈ K; ð2:61Þ

according to the decomposition K ¼ Kð0Þ ⊕ Kð1Þ.
Homogeneous vectors of the different spaces Ki, decom-
posed according to (2.55) and (2.57), can then be written as

Λ¼jθþiλðxÞ∈K0; A¼jθμiAμðxÞþjcθþiφðxÞ∈K−1;

E¼jθ−iEðxÞþjcθμiEμðxÞ∈K−2; N ¼jcθ−iN ðxÞ∈K−3;

ð2:62Þ

to which wewill sometimes refer as classical “string fields,”
gauge parameters and so on.
The same formalism can be applied at the level of the

L∞-algebra X , by tensoring the graded vectors fjθMi;
jcθMig with the Lie algebra generators ta, yielding

jθMtai ¼ jθMi ⊗ ta; jcθMtai ¼ jcθMi ⊗ ta;

jjθMtaijX ¼ M; jjcθMtaijX ¼ M − 1; ð2:63Þ

as basis elements for X ð0Þ and X ð1Þ. However, for the
remainder of this section we will focus on the kinematic
algebra K.
In order to reformulate the differential m1 and the

product m2 in this formalism, it is useful to introduce
basis vectors for the dual spaceK�. To do this, we shall first
introduce another odd nilpotent element b that is conjugate
to c and obeys

b2 ¼ 0; jbjK ¼ þ1; bcþ cb ¼ 1: ð2:64Þ

The action of c and b on the basis fjθMi; jcθMig realizes
the Z2 isomorphism between Kð0Þ and Kð1Þ as follows:

cjθMi ¼ jcθMi; cjcθMi ¼ 0;

bjθMi ¼ 0; bjcθMi ¼ jθMi: ð2:65Þ

We can now introduce a basis fhθM�j; hθM�bjg for the dual
spaces Kð0Þ� and Kð1Þ�, respectively. The natural pairing
with the basis of K is given by

hθM�jθNi ¼ δMN; hθM�jcθNi ¼ 0;

hθM�bjθNi ¼ 0; hθM�bjcθNi ¼ δMN; ð2:66Þ

which fixes the degree of the dual vectors to be jhθM�jjK ¼
1 −M and jhθM�bjjK ¼ 2 −M. The above pairing is
consistent with theZ2 action of c and b on the dual vectors:

hθM�jc ¼ 0; hθM�bjc ¼ hθM�j;
hθM�jb ¼ hθM�bj; hθM�bjb ¼ 0: ð2:67Þ

Moreover, this basis allows to write the resolution of the
identity in K as

1 ¼ jθMihθM�j þ jcθMihθM�bj: ð2:68Þ

We will now show how to reformulate the differential m1

and the product m2 in this formalism. We start from the
differential, which is defined as a degree−1mapm1∶K → K

BONEZZI, DÍAZ-JARAMILLO, and HOHM PHYS. REV. D 106, 026004 (2022)

026004-10



andwhich in the followingwewill sometimes also denote by
Q since it has the interpretation of the BRST operator of a
worldline theory. We decompose Q as

Q ¼ jcθMihθM�j□þ ðjθμihθþ�j − jcθμihθþ�bjÞ∂μ
þ ðjθ−ihθμ�j − jcθ−ihθμ�bjÞ∂μ − jθ−ihθþ�bj: ð2:69Þ

This notation should be understood as follows: on a general
vector (2.61) inK the bra vectors act in the standard fashion
on ket vectors, while the spacetime derivatives act on the
component spacetime fields, i.e., for (2.61) they act onuMðxÞ
and vMðxÞ. So defined,Q is a mapQ∶K → K, and one finds
that it indeed reproduces the differential m1 defined above.
For instance, taking u ¼ A ∈ K−1 to be a field one has

QðAÞ ¼ QðjθνiAν þ jcθþiφÞ
¼ jcθμið□Aμ − ∂

μφÞ þ jθ−ið∂ · A − φÞ ∈ K−2:

ð2:70Þ

Another important property, which can be checked by
using (2.65) and (2.67), is that

Qbþ bQ ¼ □1; ð2:71Þ

which will be crucial in proving consistency of the doubling
in the next section.

After discussing the realization of the differential Q (or
m1), we now turn to the two-products (2.30). To this end it is
convenient to realize the degree zero map m2∶K ×K → K
in terms of an element M ∈ K ⊗ K� ⊗ K�, so that

m2ðu1; u2Þ ¼ Mðu1 ⊗ u2Þ; jMjK ¼ 0: ð2:72Þ

The action of such an element M on u1 ⊗ u2 ∈ K ⊗ K
is defined, given a vector u ∈ K and two dual vectors
U1; U2 ∈ K�, by

ðu ⊗ U1 ⊗ U2Þðu1 ⊗ u2Þ
¼ ðð−1Þu1U2U1ðu1ÞU2ðu2ÞÞu ∈ K; ð2:73Þ

where in the exponent we denote u1 ≡ ju1jK and so on. This
is a well-defined formula for finite-dimensional vector
spaces, but in our context the components are spacetime
fields so that the algebras are infinite-dimensional and we
have to be more precise about this action. Specifically, we
define M by the expansion

M ¼
X

α;β;γ¼0;1

Mα
βγ; Mα

βγ∶ KðβÞ ⊗ KðγÞ → KðαÞ; ð2:74Þ

and we claim that the m2 above is recovered upon setting

M0
00 ¼ jθþihθþ�jhθþ�j þ jθμiðhθμ�jhθþ�j þ hθþ�jhθμ�jÞ;

M1
00 ¼ jcθþiðhθμ�jhθþ�j þ hθþ�jhθμ�jÞð∂1μ þ ∂2μÞ

þ jcθμiðhθμ�jhθν�jð∂2ν þ 2∂1νÞ − hθν�jhθμ�jð∂1ν þ 2∂2νÞ þ hθν�jhθ�νjð∂μ2 − ∂
μ
1ÞÞ

− jcθμiðhθþ�jhθ−�j∂μ2 þ hθ−�jhθþ�j∂μ1Þ þ jcθ−iðhθμ�jhθ−�j∂2μ þ hθ−�jhθμ�j∂1μÞ;
M1

10 ¼ jcθμihθμ�bjhθþ�j þ jcθ−ihθ−�bjhθþ�j − jcθ−ihθμ�bjhθ�μj;
M1

01 ¼ jcθμihθþ�jhθμ�bj þ jcθ−ihθþ�jhθ−�bj − jcθ−ihθ�μjhθμ�bj; ð2:75Þ

where we omitted the tensor product symbol between the basis elements. The action of the basis elements in here is given
by (2.73), while the spacetime derivatives act on the component fields, where by ∂1μ and ∂2μ we indicate that the spacetime
derivative acts on the left (respectively, right) factor of the tensor product u1 ⊗ u2.
As an example of how to use these formulas to compute the products (2.30), let us compute the two-product m2ðΛ;AÞ

between a gauge parameter and a field:

m2ðΛ;AÞ ¼ MðΛ ⊗ AÞ ¼ Mðjθþiλ ⊗ ðjθμiAμ þ jcθþiφÞÞ
¼ ðM0

00 þM1
00Þðjθþiλ ⊗ jθμiAμÞ þM1

01ðjθþiλ ⊗ jcθþiφÞ
¼ ðjθνi þ jcθþið∂1ν þ ∂2νÞÞhθþ�j ⊗ hθν�jðjθþiλ ⊗ jθμiAμÞ
¼ jθμiðλAμÞ þ jcθþi∂μðλAμÞ; ð2:76Þ

where we reinstated the ⊗ symbol to better visualize the pairing between K� ⊗ K� and K ⊗ K. We see that (2.76)
reproduces the corresponding product of (2.30). Finally, one may check that (2.74) with components (2.75) gives the correct
symmetry property of m2:
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Mðu1 ⊗ u2Þ ¼ ð−1Þu1u2Mðu2 ⊗ u1Þ: ð2:77Þ

We are now ready to reformulate the quadratic relations
of the C∞-algebra in terms of operator equations. As we
have anticipated, from now on we will only be concerned
with the cubic theory, whose consistency relies purely on
nilpotency of the differential and the Leibniz property
(2.38). Nilpotency of m1 or Q and the graded Leibniz rule
(2.38) can be expressed as the operator equations

Q2 ¼ 0; QM ¼ MðQ ⊗ 1þ 1 ⊗ QÞ; ð2:78Þ

where the right-hand side of the second equation defines
the action of Q on the tensor product K ⊗ K, namely

ðQ ⊗ 1þ 1 ⊗ QÞðu1 ⊗ u2Þ
¼ ðQu1Þ ⊗ u2 þ ð−1Þu1u1 ⊗ ðQu2Þ: ð2:79Þ

The Leibniz relations have been proved in Sec. II B in
component form, which guarantees that (2.78) holds,
but one can prove it directly in operator form. For instance,
one can focus on the part of (2.78) proportional to
jθμihθþ�jhθþ�j and compute

QMjþþ
μ ¼ ðjθμihθþ�j∂μÞjθþihθþ�jhθþ�j
¼ jθμihθþ�jhθþ�jð∂μ1 þ ∂

μ
2Þ; ð2:80Þ

where we wrote the total derivative in QM as ∂
μ
1 þ ∂

μ
2

acting on K ⊗ K. Similarly, the corresponding part of the
right-hand side of (2.78) yields

MðQ ⊗ 1þ 1 ⊗ QÞjþþ
μ ¼ jθμihθμ�j ⊗ hθþ�jðjθνihθþ�j∂ν1 ⊗ 1Þ þ jθμihθþ�j ⊗ hθμ�jð1 ⊗ jθνihθþ�j∂ν2Þ
¼ jθμihθþ�jhθþ�jð∂μ1 þ ∂

μ
2Þ: ð2:81Þ

This proves the jθμihθþ�jhθþ�j “component” of (2.78), and
all the other components can be proved in the same way.
In the next section we will use two copies of the vector
space K, each one endowed with its Q andM operators, to
construct double field theory at cubic order. Consistency of
the latter will be a direct consequence of the fundamental
relations (2.78).

III. CUBIC DOUBLE FIELD THEORY
FROM DOUBLING

We start this section by describing the L∞ complex V
for double field theory (DFT), as given in the original
formulation of Hull and Zwiebach [15], and show that V is
a subspace of the tensor product of two copies of the C∞
complex K of Yang-Mills theory. We then define the DFT
differential Q and two-bracket B2 in terms of two copies of
the Yang-Mills operators Q and M and prove that Q is
nilpotent and acts as a derivation of B2. This implies
consistency of DFT at cubic order. We apply these results
by giving the explicit expressions for the deformed gauge
transformations and the cubic action, which yields signifi-
cant simplifications of the results in [15].

A. The double field theory complex

Double field theory is defined on a doubled spacetime,
which we take to have coordinates ðxμ; x̄μ̄Þ. These corre-
spond to the left and right-moving parts of the closed string
center of mass, while the coordinates more often used in the
literature, ðXμ; X̃μÞ, correspond to the standard and dual
frames with respect to T − duality. In addition, all fields
and parameters in DFT are subject to the weak constraint,

corresponding to the level matching constraint in string
theory. In the coordinate system ðxμ; x̄μ̄Þ this is expressed
as [15]

Δ ¼ 1

2
ð□ − □̄Þ ¼ 0; ð3:1Þ

where □ ¼ ημν∂μ∂ν and □̄ ¼ ημ̄ ν̄∂̄μ̄∂̄ν̄ are defined in
terms of two copies of the Minkowski metric η and the
derivatives4

∂μ ¼
∂

∂xμ
; ∂̄μ̄ ¼

∂

∂x̄μ̄
: ð3:2Þ

The standard supergravity solution of the weak constraint is
to identify the two sets of coordinates, declaring ∂μ ¼ ∂̄μ̄ on
all fields and parameters, which eliminates the dependence
on the dual coordinates X̃μ.
We will now proceed to describe the field content of

double field theory. In the formulation of [15], which arises
from closed string field theory, the fields consist of a tensor
eμν̄ with no symmetry between the indices, a couple of
scalar fields e and ē, and a couple of vectors fμ and f̄μ̄. The
tensor eμν̄ contains the graviton and the B − field as its
symmetric and antisymmetric parts, respectively. The two
scalars account for the dilaton d ¼ 1

2
ðe − ēÞ and a pure

gauge scalar ρ ¼ 1
2
ðeþ ēÞ, while the vectors fμ and f̄μ̄ are

auxiliary fields, similar to the scalar φ of Yang-Mills.

4The metric signature plays no role in this construction, and so
we can take η to be Lorentzian even though in [15] the metric is
the flat Euclidean metric on a torus.
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Associated to the tensor eμν̄ one has two independent vector
gauge symmetries, with parameters λμ and λ̄μ̄, which are
related to metric diffeomorphisms and B-field gauge trans-
formations. Due to the presence of auxiliaries and of the
pure gauge scalar ρ, we also have a scalar Stückelberg
symmetry with parameter η. Finally, the presence of a two-
form inside eμν̄ implies that the gauge transformations are
reducible, with a gauge-for-gauge parameter χ.
In L∞ language, these fields, gauge parameters, field

equations and so on are elements of a graded vector space V
which decomposes, in the b-picture, as the direct sum

V ¼ ⨁
þ2

i¼−3
Vi: ð3:3Þ

In non-negative degree it contains the gauge-for-gauge
parameter χ and the multiplets of gauge parameters Λ and
fields ψ :

χ ∈ V2; Λ ¼
�
λμ; λ̄μ̄
η

�
∈ V1; ψ ¼

0
B@

eμν̄

fμ; f̄μ̄
e; ē

1
CA ∈ V0:

ð3:4Þ

The negative degree spaces consist of the field equations F
(dual to fields), Noether identities N and the Noether-for-
Noether identity R dual to reducibility:

F ¼

0
B@

Fμν̄

Fμ; F̄μ̄

F; F̄

1
CA ∈ V−1;

N ¼
�
Nμ; N̄μ̄

N

�
∈ V−2; R ∈ V−3: ð3:5Þ

A nilpotent differential b1, which will be discussed in the
following, maps between these spaces, making V into a
chain complex:

V2 !b1 V1 !b1 V0 !b1 V−1 !b1 V−2 !b1 V−3
χ Λ ψ F N R

: ð3:6Þ

We conclude this presentation by introducing a further
Z2 grading of V, which we name cþ-degree and which is
analogous to the one introduced for K in Yang-Mills. The
vector space V can thus be split into two components
according to their cþ-degree:

V ¼ Vð0Þ ⊕ Vð1Þ; ð3:7Þ

where we assign cþ-degree zero and one to the component
fields as

0
BBBBBB@

χ

λμ; λ̄μ̄
e; eμν̄; ē

F̄μ̄; Fμ

N

1
CCCCCCA

∈ Vð0Þ;

0
BBBBBB@

η

fμ; f̄μ̄

F;Fμν̄; F̄

N̄μ̄; Nμ

R

1
CCCCCCA

∈ Vð1Þ: ð3:8Þ

Notice that fields in (3.8) are organized vertically by
decreasing L∞ degree and, as in the Yang-Mills case,
one can see that Vð0Þ and Vð1Þ are isomorphic as vector
spaces, with L∞ degrees shifted by −1 between the two.
We are now in the position to show that the complex V of

double field theory is a subspace of the tensor product
K ⊗ K̄ of two C∞-algebras of Yang-Mills. To this end, let
us consider two copies K and K̄ of the Yang-Mills
kinematic algebras. As we have seen in Sec. II C, these
split according to their respective c-degrees as

K ¼ Kð0Þ ⊕ Kð1Þ; K̄ ¼ K̄ð0Þ ⊕ K̄ð1Þ: ð3:9Þ

From the decomposition (2.57) of Yang-Mills theory, one
can see that the L∞ vector space of DFT given by the direct
sum V ¼ Vð0Þ ⊕ Vð1Þ can be accommodated in the tensor
products

Vð0Þ ¼ Kð0Þ ⊗ K̄ð0Þ;

Vð1Þ ¼ ðKð0Þ ⊗ K̄ð1ÞÞ ⊕ ðKð1Þ ⊗ K̄ð0ÞÞ: ð3:10Þ

In particular, we take the tensor products of spaces of
functions of x and functions of x̄ to give functions of ðx; x̄Þ,
as in (1.4).
The tensor product requires a degree shift, which we

describe in the following. To this end it is convenient to
introduce a basis. We take the basis vectors for the two
copies K and K̄ to be fjθMi; jcθMig and fjθ̄M̄i; jc̄θ̄M̄ig,
respectively, according to our discussion in Sec. II C.
Similarly, we introduce two copies of the dual vectors:
fhθM�j; hθM�bjg and fhθ̄M̄�j; hθ̄M̄�b̄jg, each obeying the
relations (2.66) and (2.67) with the respective ðb; cÞ and
ðb̄; c̄Þ operators. We introduce now the linear combinations

c� ≔ c� c̄ ≔ c ⊗ 1� 1 ⊗ c̄;

b� ≔
1

2
ðb� b̄Þ ≔ 1

2
ðb ⊗ 1� 1 ⊗ b̄Þ; ð3:11Þ

defined as above on K ⊗ K̄. They obey

ðc�Þ2 ¼ 0; ðb�Þ2 ¼ 0; b�c� þ c�b� ¼ 1;

b�c∓ þ c∓b� ¼ 0; ð3:12Þ

and allow us to write down a basis for Vð0Þ and Vð1Þ as
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jθMθ̄N̄i ¼ jθMi ⊗ jθ̄N̄i;
jcþθMθ̄N̄i ¼ jcθMi ⊗ jθ̄N̄i þ ð−1ÞM−1jθMi ⊗ jc̄θ̄N̄i;

ð3:13Þ

in terms of the natural basis fjθMi; jcθMig ⊗ fjθ̄N̄i; jc̄θ̄N̄ig
ofK ⊗ K̄. The isomorphism between Vð0Þ and Vð1Þ is given
by the action of ðbþ; cþÞ as

cþjθMθ̄N̄i ¼ jcþθMθ̄N̄i; cþjcþθMθ̄N̄i ¼ 0;

bþjθMθ̄N̄i ¼ 0; bþjcþθMθ̄N̄i ¼ jθMθ̄N̄i: ð3:14Þ

An arbitrary element Ψ ∈ V can thus be expanded as

Ψ ¼ jθMθ̄N̄iϕMN̄ þ jcþθMθ̄N̄iχMN̄; ð3:15Þ

where both ϕ and χ depend on doubled coordinates ðx; x̄Þ.
In order to match the L∞ degrees of the V complex, one has
to shift by two the C∞ degrees of the tensor product: given
u ∈ K and ū ∈ K̄, one defines

Ψ ¼ u ⊗ ū ∈ V; jΨjV ¼ jujK þ jūjK̄ þ 2; ð3:16Þ

which implies the following assignment for the basis
vectors and the ðb�; c�Þ operators:

jjθMθ̄N̄ijV ¼ M þ N; jjcþθMθ̄N̄ijV ¼ M þ N − 1; jc�jV ¼ −1; jb�jV ¼ þ1: ð3:17Þ

Using this basis one can rewrite the L∞ elements (3.4) and (3.5) of homogeneous degree as

χ ¼ jθþθ̄þiχ ∈ V2;

Λ ¼ jθþθ̄μ̄iλ̄μ̄ − jθμθ̄þiλμ − 2jcþθþθ̄þiη ∈ V1;

ψ ¼ jθμθ̄ν̄ieμν̄ þ 2jθþθ̄−iēþ 2jθ−θ̄þieþ 2jcþθþθ̄μ̄if̄μ̄ þ 2jcþθμθ̄þifμ ∈ V0;

F ¼ jcþθμθ̄ν̄iFμν̄ þ jcþθþθ̄−iF̄ þ jcþθ−θ̄þiF þ jθμθ̄−iFμ þ jθ−θ̄μ̄iF̄μ̄ ∈ V−1;

N ¼ 2jcþθ−θ̄μ̄iN̄μ̄ − 2jcþθμθ̄−iNμ − jθ−θ̄−iN ∈ V−2;

R ¼ −jcþθ−θ̄−iR ∈ V−3; ð3:18Þ

where the normalizations have been chosen to match the ones of [15].
We conclude this subsection by giving an alternative and more useful characterization of the vector space V as a subspace

of the full tensor product K ⊗ K̄. Taking linear combinations of the natural basis vectors jθMi ⊗ jθ̄N̄i, jcθMi ⊗ jθ̄N̄i,
jθMi ⊗ jc̄θ̄N̄i, and jcθMi ⊗ jc̄θ̄N̄i of K ⊗ K̄ we define the new basis

jθMθ̄N̄i ¼ jθMi ⊗ jθ̄N̄i; jc�θMθ̄N̄i ¼ c�jθMθ̄N̄i; jc−cþθMθ̄N̄i ¼ c−cþjθMθ̄N̄i; ð3:19Þ

where the action of ðb�; c�Þ follows with the algebra (3.12). This shows that vectors of V that have components only along
jθMθ̄N̄i and jcþθMθ̄N̄i are the vectorsΨ ofK ⊗ K̄ obeying b−Ψ ¼ 0. This is analogous to the constraint usually imposed in
closed string field theory [28]. Recalling that all fields in V are subject to the weak constraint (3.1), the DFT complex V can
be defined as the subspace

V ¼ fΨ ∈ K ⊗ K̄jb−Ψ ¼ 0;ΔΨ ¼ 0g: ð3:20Þ

B. L∞-algebra of double field theory to cubic order

Wewill now construct cubic double field theory by identifying its differentialQ and two-bracket B2. It will be shown that
these obey the quadratic relations

Q2ðΨÞ ¼ 0; ∀ Ψ ∈ V;

QðB2ðΨ1;Ψ2ÞÞ þ B2ðQðΨ1Þ;Ψ2Þ þ ð−1ÞjΨ1jB2ðΨ1;QðΨ2ÞÞ ¼ 0; ∀ Ψ1; Ψ2 ∈ V; ð3:21Þ

which ensure consistency up to cubic order. In order to prove nilpotency of Q and the Leibniz property, it will be
instrumental to consider V as the subspace (3.20) and work onK ⊗ K̄. We start from the differential, which defines the free
theory. Let us consider two copies Q and Q̄ of the Yang-Mills differential (2.69), obeying

BONEZZI, DÍAZ-JARAMILLO, and HOHM PHYS. REV. D 106, 026004 (2022)

026004-14



Q∶ K → K; jQjK ¼ −1; Q2 ¼ 0;

Q̄∶ K̄ → K̄; jQ̄jK̄ ¼ −1; Q̄2 ¼ 0; ð3:22Þ

and define their sum ðQþ Q̄Þ, acting on K ⊗ K̄ as

Qþ Q̄ ¼ Q ⊗ 1þ 1 ⊗ Q̄;

ðQþ Q̄Þðu ⊗ ūÞ ¼ ðQuÞ ⊗ ūþ ð−1Þuu ⊗ ðQ̄ ūÞ: ð3:23Þ

As defined, this operator is not a map from V to V, but
rather from the full K ⊗ K̄ to itself. We will now prove,
however, that Qþ Q̄ is well-defined on V, meaning that

∀Ψ ∈ V ⊂ K ⊗ K̄ ⇒ ðQþ Q̄ÞðΨÞ ∈ V: ð3:24Þ

The first requirement for this is that Qþ Q̄ preserves the
weak constraint. This is trivial, since Δ in (3.1) commutes
with both Q and Q̄, as is evident from (2.69). The second
requirement is to preserve the space kerðb−Þ, according
to (3.20). In order to see this, let us compute ðQþ Q̄Þb−:

ðQþ Q̄Þb− ¼ 1

2
ðQ⊗ 1þ 1⊗ Q̄Þðb⊗ 1− 1⊗ b̄Þ

¼ 1

2
½ðQbÞ⊗ 1−Q⊗ b̄− b⊗ Q̄− 1⊗ ðQ̄ b̄Þ�;

ð3:25Þ

where signs are determined by all operators having odd
degree. One can compute b−ðQþ Q̄Þ in the same way and
obtain the anticommutator

ðQþ Q̄Þb− þ b−ðQþ Q̄Þ

¼ 1

2
½ðQbþ bQÞ ⊗ 1 − 1 ⊗ ðQ̄ b̄þb̄ Q̄Þ�

¼ 1

2
ð□ − □̄Þ1 ¼ Δ1; ð3:26Þ

where we used (2.71). It is now easy to see that Qþ Q̄ is
well defined on V:

b−Ψ ¼ 0;ΔΨ ¼ 0 →

b−ðQþ Q̄ÞðΨÞ ¼ −ðQþ Q̄Þb−Ψþ ΔΨ ¼ 0: ð3:27Þ

Since Qþ Q̄ preserves the V subspace of K ⊗ K̄, we shall
define the DFT differential Q as the restriction

Q ¼ ðQþ Q̄ÞjV ; s:t: ∀ Ψ ∈ V;QðΨÞ ¼ ðQþ Q̄ÞðΨÞ:
ð3:28Þ

Nilpotency or Q2 ¼ 0 then follows immediately from
ðQþ Q̄Þ2 ¼ 0, which in turn follows from (3.23) together
with Q2 ¼ Q̄2 ¼ 0 and Q and Q̄ being odd. According to
the degree assignment (3.16) and the definition (3.23), the
L∞ degree is given by jQjV ¼ jQþ Q̄jV ¼ −1, as it should.
As a concrete example of the action of Q, let us compute

the gauge transformation of the tensor field eμν̄ from the
general formula δψ ¼ QðΛÞ. Given the basis decomposi-
tion (3.18), this is obtained as the jθμθ̄ν̄i component of
QðΛÞ. Using the form (2.69) of Q (and the same for Q̄),
one has

δeμν̄ ¼ hθ̄ν�jhθμ�jQðΛÞ ¼ hθ̄ν�jhθμ�jfðjθρihθþ�j∂ρ ⊗ 1þ 1 ⊗ jθ̄ρ̄ihθ̄þ�j∂̄ρ̄Þðjθþθ̄σ̄iλ̄σ̄ − jθσθ̄þiλσ − 2jcþθþθ̄þiηÞg
¼ ðhθþ�j∂μ ⊗ hθ̄ν̄�j − hθμ�j ⊗ hθ̄þ�j∂̄ν̄Þðjθþθ̄σ̄iλ̄σ̄ − jθσθ̄þiλσ − 2jcþθþθ̄þiηÞ
¼ ∂

μλ̄ν̄ þ ∂̄
ν̄λμ; ð3:29Þ

where in the first step we excluded all components of Q
which have zero overlap with hθ̄ν�jhθμ�j. The rest of the
gauge transformations can be computed in the same way,
yielding the component expressions

δeμν̄ ¼ ∂μλ̄ν̄ þ ∂̄ν̄λμ;

δfμ ¼ −
1

2
□λμ þ ∂μη; δf̄μ̄ ¼

1

2
□λ̄μ̄ þ ∂̄μ̄η;

δe ¼ −
1

2
∂ · λþ η; δē ¼ 1

2
∂̄ · λ̄þ η; ð3:30Þ

where we used □ ¼ □̄ on weakly constrained fields. The
linearized reducibility is encoded in parameters of the form
Λ ¼ QðχÞ, i.e.,

λμ ¼ −∂μχ; λ̄μ̄ ¼ ∂̄μ̄χ; η ¼ −
1

2
□χ; ð3:31Þ

which generate no gauge transformations at this order.
The free field equations are given by QðψÞ ¼ 0, with the
string field ψ as in (3.18). Expanding QðψÞ in components
one finds:

□eμν̄þ2∂̄ν̄fμ−2∂μf̄ν̄¼0;

□e−∂ ·f¼0; □ē− ∂̄ · f̄¼0;

∂μē−
1

2
∂̄
ρ̄eμρ̄−fμ¼0; ∂̄μ̄eþ

1

2
∂
ρeρμ̄− f̄μ̄¼0; ð3:32Þ

in agreement with [15]. Finally, given the field equations
F , the Noether identities are obtained by N ¼ QðF Þ and,
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analogously, R ¼ QðN Þ is the Noether-for-Noether
identity.
Having determined the DFT differential, the next goal is to

find the two-bracket B2 starting from two copies of the
kinematic productsM andM. Themain idea comes from the
fact that the separate copies ofM obey the Leibniz relations
in the operator form (2.78), as discussed in Sec. II C. In this
formalism, the two-bracket of double field theory can
similarly be written as an element B ∈ V ⊗ V� ⊗ V� acting
on the tensor product of two vectors in V:

B2ðΨ1;Ψ2Þ ¼ BðΨ1 ⊗ Ψ2Þ; jBjV ¼ −1; ð3:33Þ

where the action on the tensor product V ⊗ V is defined
analogously to (2.73). The Leibniz relation in (3.21) can be
expressed as

QB þ BðQ ⊗ 1þ 1 ⊗ QÞ ¼ 0; ð3:34Þ

where the second term defines the action of Q on the tensor
product V ⊗ V, namely

ðQ ⊗ 1þ 1 ⊗ QÞðΨ1 ⊗ Ψ2Þ
¼ ðQΨ1Þ ⊗ Ψ2 þ ð−1ÞΨ1Ψ1 ⊗ ðQΨ2Þ: ð3:35Þ

Let us now discuss the ansatz for the two-bracket. The
naive guess B ∼M ⊗ M cannot work for two reasons.

First of all, this naive ansatz does not respect the
weak constraint, i.e., generally ðM ⊗ MÞðΨ1 ⊗ Ψ2Þ ∉ V
for Ψ1;Ψ2 ∈ V. Moreover, the degree is wrong: the
operator M carries degree jMjK ¼ 0 in K, same for M
in K̄. According to the degree shift (3.16), one has
jM ⊗ MjV ¼ −2, while jBjV ¼ −1. The simplest ansatz
which maintains the structure of a tensor product and
solves both issues is given by

B ¼ −
1

2
PΔb−M ⊗ M; ð3:36Þ

where the overall normalization − 1
2
can be chosen at will

and has been fixed to make contact with the literature.
In (3.36) we have introduced the projector PΔ to kerðΔÞ,
satisfying

P2
Δ ¼ PΔ; ΔPΔ ¼ 0; PΔΔ ¼ 0: ð3:37Þ

The ansatz (3.36) automatically respects both the weak
and the algebraic constraints, in that b−B ¼ ΔB ¼ 0
thanks to the explicit projection. Given two vectors
Ψ1;Ψ2 ∈ V of the form Ψi ¼ ui ⊗ ūi, with ui ∈ K and
ūi ∈ K̄, the action of B is defined by

BðΨ1 ⊗ Ψ2Þ ¼ −
1

2
PΔb−ðM ⊗ MÞððu1 ⊗ ū1Þ ⊗ ðu2 ⊗ ū2ÞÞ

¼ −
1

2
ð−1Þū1u2PΔb−Mðu1 ⊗ u2Þ ⊗ Mðū1 ⊗ ū2Þ; ð3:38Þ

where we denoted ū1 ¼ jū1jK̄, u2 ¼ ju2jK in the exponent, and we recall that the action of b− onK ⊗ K̄ is given by (3.11).
We start checking the consistency of the construction by verifying the symmetry property of the two-bracket B. Taking

two elements Ψi ¼ ui ⊗ ūi with i ¼ 1, 2 we compute

BðΨ1 ⊗ Ψ2Þ ¼ −
1

2
ð−1Þū1u2PΔb−Mðu1 ⊗ u2Þ ⊗ Mðū1 ⊗ ū2Þ

¼ −
1

2
ð−1Þū1u2þu1u2þū1ū2PΔb−Mðu2 ⊗ u1Þ ⊗ Mðū2 ⊗ ū1Þ

¼ ð−1Þū1u2þu1u2þū1ū2þū2u1BðΨ2 ⊗ Ψ1Þ
¼ ð−1ÞΨ1Ψ2BðΨ2 ⊗ Ψ1Þ; ð3:39Þ

which is the expected graded symmetry of the two-bracket
in the b-picture. In order to obtain (3.39) we have used the
symmetry property (2.77) and (3.16), namely that jΨjV ¼
jujK þ jūjK̄ þ 2 for Ψ ¼ u ⊗ ū. We can now prove that
the two-bracket B satisfies the Leibniz relation in the

form (3.34). To do so, it is important to recall that Q ¼
Qþ Q̄ when acting on V, as well as the identity (3.26),
which allow us to write

QPΔb− ¼ ðQþ Q̄ÞPΔb− ¼ −PΔb−ðQþ Q̄Þ; ð3:40Þ
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where the first equality comes from the fact that PΔb−Ψ ∈
V for any Ψ ∈ K ⊗ K̄, while the second one holds under
the projector PΔ thanks to (3.26). The last ingredient to
prove the Leibniz property is thatQ and Q̄ “commute”with
M and M, respectively, in the tensor product, i.e.,

ðQþ Q̄ÞðM ⊗ MÞ ¼ ðQMÞ ⊗ MþM ⊗ ðQ̄MÞ:
ð3:41Þ

We start by computing the first term of (3.34):

QB¼−
1

2
QPΔb−M⊗M¼ 1

2
PΔb−ðQþ Q̄ÞðM⊗MÞ

¼ 1

2
PΔb−fðQMÞ⊗MþM⊗ ðQ̄MÞg; ð3:42Þ

where we used (3.40) and (3.41) to move the factors of Q
and Q̄ in the tensor product. The expression above is meant
to act on V ⊗ V ⊂ ðK ⊗ K̄Þ ⊗ ðK ⊗ K̄Þ, with the
unbarred and barred operators in (3.42) acting on the K ⊗
K and K̄ ⊗ K̄ subspaces, respectively. One can now use the
Yang-Mills Leibniz relation (2.78) and write (3.42) as

QB ¼ 1

2
PΔb−f½MðQ ⊗ 1þ 1 ⊗ QÞ� ⊗ MþM ⊗ ½MðQ̄ ⊗ 1þ 1 ⊗ Q̄Þ�g

¼ 1

2
PΔb−ðM ⊗ MÞfðQ ⊗ 1þ 1 ⊗ QÞ þ ðQ̄ ⊗ 1þ 1 ⊗ Q̄Þg

¼ −BfðQþ Q̄Þ ⊗ 1þ 1 ⊗ ðQþ Q̄Þg
¼ −BðQ ⊗ 1þ 1 ⊗ QÞ; ð3:43Þ

where we used that QB is meant to act on V ⊗ V, ensuring
that Qþ Q̄ ¼ Q in the last line above.

C. Action and gauge transformations

Having proved that the two-bracket B2 obtained by
doubling obeys the Leibniz rule with respect to Q, the
resulting DFT is guaranteed to be consistent at cubic order
and so must be equivalent to the formulation by Hull and
Zwiebach [15]. As a consistency check we explicitly

compute the entire cubic action, as well as the gauge
transformations of the classical fields, and show that they
coincide with the original form in [15] up to field and
parameter redefinitions.
We start by identifying the gauge transformations of the

fields ψ ≡ ðeμν̄; e; ē; fμ; f̄μ̄Þ. To do so, we compute the
gauge bracket by applying the operator (3.36) on the tensor
product ðΛ ⊗ ψÞ, using the explicit expressions (2.75). We
recall that the gauge parameter Λ and the string field ψ read

Λ ¼ jθþθ̄μ̄iλ̄μ̄ − jθμθ̄þiλμ − 2jcþθþθ̄þiη;
ψ ¼ jθμθ̄ν̄ieμν̄ þ 2jθþθ̄−iēþ 2jθ−θ̄þieþ 2jcþθþθ̄μ̄if̄μ̄ þ 2jcþθμθ̄þifμ; ð3:44Þ

and the deformed gauge transformations can be read off from δψ ¼ QðΛÞ þ BðΛ ⊗ ψÞ. As an explicit example, let us
consider the action of B on λμ and e, i.e., we restrict to Λ ¼ −jθμθ̄þiλμ and ψ ¼ 2jθ−θ̄þie. One then obtains

BðΛ ⊗ ψÞ ¼ PΔb−M ⊗ Mðjθμθ̄þiλμ ⊗ jθ−θ̄þieÞ

¼ 1

2
PΔðbM ⊗ M −M ⊗ b̄MÞðjθμθ̄þiλμ ⊗ jθ−θ̄þieÞ

¼ 1

2
PΔðbjcθ−ihθμ�jhθ−�j∂2μÞ ⊗ ðjθ̄þihθ̄þ�jhθ̄þ�jÞðjθμθ̄þiλμ ⊗ jθ−θ̄þieÞ

¼ 1

2
PΔjθ−θ̄þiðλμ∂μeÞ: ð3:45Þ

One can compute all components of BðΛ ⊗ ψÞ in the same fashion, finally yielding

GAUGE STRUCTURE OF DOUBLE FIELD THEORY FOLLOWS … PHYS. REV. D 106, 026004 (2022)

026004-17



δeμν̄ ¼ ∂μλ̄ν̄ þ ∂̄ν̄λμ þ
1

4
ðλ • eν̄Þμ þ

1

4
ðλ̄ • eμÞν̄ þ

1

2
λμðf̄ν̄ − ∂̄ν̄ēÞ −

1

2
λ̄ν̄ðfμ − ∂μeÞ;

δe ¼ −
1

2
∂ · λþ η −

1

4
λμðfμ − ∂μeÞ;

δē ¼ 1

2
∂̄ · λ̄þ η −

1

4
λ̄μ̄ðf̄μ̄ − ∂̄μ̄ēÞ;

δfμ ¼ −
1

2
□λμ þ ∂μη −

1

8
∂̄
ν̄ðλ • eν̄Þμ þ

1

4
∂̄
ν̄½λ̄ν̄ðfμ − ∂μeÞ�;

δf̄μ̄ ¼
1

2
□λ̄μ̄ þ ∂̄μ̄ηþ

1

8
∂
νðλ̄ • eνÞμ̄ þ

1

4
∂
ν½λνðf̄μ̄ − ∂̄μ̄ēÞ�; ð3:46Þ

where a projection PΔ is implied on every quadratic term, and we used the bullet product (2.31). Specifically, the ν̄ index in
ðλ • eν̄Þμ is viewed as inert, with the • product only acting on unbarred indices. The opposite happens for the μ index
in ðλ̄ • eμÞν̄.
One can use the gauge transformations (3.46) to derive the gauge brackets between parameters, upon taking two

successive transformations. Since the operator (3.36) already contains all the DFT brackets, one can simply compute the
gauge algebra by applying (3.36) to Λ1 ⊗ Λ2, yielding B2ðΛ1;Λ2Þ ¼ Λ12, with

λμ12 ¼
1

4
ðλ1 • λ2Þμ −

1

4
∂̄ν̄ðλμ1λ̄ν̄2Þ þ

1

4
∂̄ν̄ðλμ2λ̄ν̄1Þ;

λ̄μ̄12 ¼
1

4
ðλ̄1 • λ̄2Þμ̄ −

1

4
∂νðλ̄μ̄1λν2Þ þ

1

4
∂νðλ̄μ̄2λν1Þ;

η12 ¼ −
1

8
∂μ∂̄ν̄ðλμ1λ̄ν̄2 − λμ2λ̄

ν̄
1Þ; ð3:47Þ

where the projector PΔ is left implicit. Let us notice that this basis of parameters allows one (to this order) to consistently
set λ̄μ̄ and η to zero, in which case (3.47) reduces to Bμ

2ðλ1; λ2Þ ¼ ðλ1 • λ2Þμ.
The gauge transformations (3.46) do not coincide yet with the ones given in [15]. In order to match the latter, one has to

redefine the gauge parameters as

λHZμ ¼ λμ −
1

4
ēλμ; λ̄HZμ̄ ¼ λ̄μ̄ þ

1

4
eλ̄μ̄;

ηHZ ¼ ηþ 1

16
ηðe − ēÞ − 1

8
ðλ · ∂ēþ λ̄ · ∂̄eÞ − 3

32
ð∂ · λēþ ∂̄ · λ̄eÞ; ð3:48Þ

and further redefine the scalars as

eHZ ¼ e −
1

16
eē −

1

8
e2; ēHZ ¼ ēþ 1

16
eēþ 1

8
ē2: ð3:49Þ

Having discussed the gauge transformations, we can now turn to the action. Given a classical string field ψ as in (3.44)
and a dual field equation

F ¼ jcþθμθ̄ν̄iFμν̄ þ jcþθþθ̄−iF̄ þ jcþθ−θ̄þiF þ jθμθ̄−iFμ þ jθ−θ̄μ̄iF̄μ̄; ð3:50Þ

the inner product can be defined by the pairing

hψ ;F i ¼
Z

dxdx̄

�
1

2
eμν̄Fμν̄ þ ēF þ eF̄ þ fμFμ þ f̄μ̄F̄μ̄

�
: ð3:51Þ

The action, up to cubic order, is given in L∞ language by

S ¼ 1

2
hψ ;QðψÞi þ 1

6
hψ ;Bðψ ⊗ ψÞi þOðψ4Þ; ð3:52Þ
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whereQðψÞ and the two-bracket Bðψ ⊗ ψÞ can be computed by using (3.23), (2.69) and (3.36), (2.75), respectively. After a
number of integrations by parts one obtains

S ¼
Z

dxdx̄

�
1

4
eμν̄□eμν̄ þ 2ē□e − fμfμ − f̄μ̄f̄μ̄ − fμð∂̄ν̄eμν̄ − 2∂μēÞ þ f̄ν̄ð∂μeμν̄ þ 2∂̄ν̄eÞ

þ 1

8
eμν̄ð∂̄λ̄eμλ̄∂ρeρν̄ þ ∂

λeλρ̄∂̄ρ̄eμν̄ þ 2∂μeλρ̄∂̄ν̄eλρ̄ − 2∂μeλρ̄∂̄ρ̄eλν̄ − 2∂̄ν̄eλρ̄∂λeμρ̄Þ

þ 1

2
eμν̄ðfμ − ∂μeÞðf̄ν̄ − ∂̄ν̄ēÞ

�
: ð3:53Þ

Let us mention that every component of Bðψ ⊗ ψÞ has a
projector PΔ, which we assume to be self-adjoint,5 thus
yielding the identity when acting on the weakly constrained
field ψ . In order to match the action of Hull and Zwiebach
[15], one has to perform the field redefinition (3.49),
together with

fHZμ ¼ fμ −
1

4
ēfμ þ

3

16
ē∂μe −

1

16
e∂μē;

f̄HZμ̄ ¼ f̄μ̄ þ
1

4
ef̄μ̄ −

3

16
e∂̄μ̄ēþ

1

16
ē∂̄μ̄e: ð3:54Þ

We stress that the form (3.53) of the cubic DFT action is a
significant simplification of the one given in [15].

IV. CONCLUSIONS AND OUTLOOK

In this paper, we strengthened the recent results in [13]
according to which a natural Lagrangian implementation of
double copy applied to Yang-Mills theory yields, at least to
cubic order, double field theory. More precisely, in [13] this
was shown upon integrating out the DFT dilaton and, for
the cubic couplings, upon choosing Siegel gauge. Here we
generalized these results by providing a gauge invariant and
off-shell double copy procedure that yields the complete
DFT to cubic order, including all dilaton couplings. To this
end we employed a formulation in terms of strongly
homotopy Lie or L∞-algebras, which encode the complete
data of a classical field theory. Our results highlight the
usefulness of homotopy algebras for a first-principle
understanding of double copy. (This point was also made
at some length in [36].)
We close this section with a brief list of open questions

and possible follow-up projects:
(i) It would be interesting to generalize our construction

to other gauge and DFT-type theories, for instance to
supersymmetric Yang-Mills theory which should be
related to supersymmetric DFT [44,45].

(ii) Given the relation between the L∞-algebras of Yang-
Mills theory and DFT at least to cubic order there

should be an intimate relation between the classical
(perturbative) solutions of both theories. In the
homotopy algebra formulation these solutions are
given by the Maurer-Cartan elements corresponding
to the L∞ structure. It would be interesting to
investigate this in detail and to compare with
existing attempts in the literature on establishing
double copy relations at the level of classical
solutions [46–48].

(iii) Arguably the most important open problem is that of
extending this gauge invariant and off-shell double
copy procedure to quartic and ultimately to all
orders. This appears to be a hard problem for the
following reason: The 2-bracket of DFT is defined
by B ¼ − 1

2
PΔb−M ⊗ M in terms of the 2-product

M of the kinematic algebra of Yang-Mills theory,
but it also involves projectors onto the subspace of
level-matched states. This projection seems to be
indispensable for various reasons, notably for degree
reasons, and it leads to significant technical com-
plications when trying to establish the next L∞
relation involving the Jacobiator of the 2-bracket
and the 3-bracket encoding the quartic couplings.
Intriguingly, however, solving this problem would
also amount to constructing a weakly constrained
DFT which so far has only been possible to cubic
order (due to exactly the same technical challenges).
Such a weakly constrained DFT is guaranteed to
exist, since in principle it is derivable from the full
closed string field theory by integrating out all string
modes except the ones of the DFT sector [49–51].
Due to the complications of closed string field
theory it would, however, be extremely challenging
to do so explicitly, and it is an enticing prospect that
double copy might provide a shortcut.
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APPENDIX: BRST QUANTIZATION OF
WORLDLINE THEORY

In this appendix, we show how to derive the formulation
of Yang-Mills theory used in Sec. II by a worldline
quantization, using the N ¼ 2 spinning particle [52–55]
and its BRST quantization.
We begin by reviewing the classical worldline theory and

then proceed to its BRST quantization. The fundamental
worldline fields constitute a graded phase space which
consists of the bosonic canonical pair ðxμ; pμÞ, representing
target space coordinates and momenta, together with a
fermionic canonical pair ðθμ; θ�μÞ, which is associated with
spin degrees of freedom in spacetime. The fermions θμ and
θ�μ are related by complex conjugation, i.e., ðθμÞ� ¼ θ�μ,
where we raise and lower spacetime indices with the
Minkowski metric. The rigid model is invariant under
global supersymmetries, as well as global time translations,
generated by supercharges and the free Hamiltonian,
respectively:

q ¼ θμpμ; q� ¼ θμ�pμ; H ¼ 1

2
p2: ðA1Þ

The N ¼ 2 spinning particle is constructed by gauging
worldline supersymmetries and translations, thus turning
them into local symmetries. This is achieved by means of
complex worldline gravitini χ and χ� and an einbein e,
respectively, leading to the action

S¼
Z

dτ

�
pμ∂τxμþ iθ�μ∂τθμ−

1

2
ep2− iχ�θμpμ− iχθμ�pμ

�
:

ðA2Þ

The action (A2) is invariant under time reparametrizations
τ → τ − ξðτÞ and local supersymmetries ðϵðτÞ; ϵ�ðτÞÞ, with
transformations laws

δxμ ¼ ξpμ þ iϵθμ� þ iϵ�θμ; δpμ ¼ 0;

δθμ ¼ −ϵpμ; δθμ� ¼ −ϵ�pμ;

δe¼ ∂τξþ 2iϵχ� þ 2iϵ�χ; δχ ¼ ∂τϵ; δχ� ¼ ∂τϵ
�;

ðA3Þ

where both ϵ� and χ� are related to ϵ and χ by complex
conjugation. Canonical quantization of the graded sym-
plectic structure of (A2) gives rise to the (anti)commutation
relations

½xμ; pν� ¼ iδμν; fθμ; θ�νg ¼ δμν; ðA4Þ

where we denoted the quantum operators with the same
symbols as the classical variables, since from now on we
will only work with the quantum theory. The generators of
local (super) symmetries (A1) turn into quantum first-class
constraints obeying the superalgebra

fq; qg ¼ 0; fq�; q�g ¼ 0; fq; q�g ¼ 2H;

½H; q� ¼ 0; ½H; q�� ¼ 0: ðA5Þ

The worldline model, as it stands, describes Abelian
massless p-forms of arbitrary degree. In order to accom-
modate color degrees of freedom, we shall extend the
graded phase space by a further fermionic canonical pair
ðta; ta�Þ, as originally introduced in [56], and supplement
the action (A2) by the term

Scolor ¼ i
Z

dτta�∂τta; ðA6Þ

where a ¼ 1;…; dim g is an adjoint index of a Lie algebra
g. Canonical quantization of these fermions leads to the
anticommutator

fta; tb�g ¼ δa
b; ðA7Þ

and we shall lower and raise adjoint indices with the
Cartan-Killing metric κab ¼ δab and its inverse. Rather than
studying the physical state conditions of the theory in this
form, we shall proceed to its BRST quantization, which
makes the spacetime gauge structure manifest.

1. BRST-extended Hilbert space

The canonical quantization of the action (A2) leads to a
constrained Hamiltonian system, with first-class quantum
constraints ðq; q�; HÞ. In order to proceed with the BRST
formalism we introduce a canonical (super)ghost pair for
each constraint, namely

H → ðb; cÞ; q → ðβ; γ�Þ; q� → ðβ�; γÞ; ðA8Þ

with Grassmann parity ϵ and ghost number assignments as
follows:

ϵðb; cÞ ¼ 1; ϵðγ; γ�; β; β�Þ ¼ 0;

ghðc; γ; γ�Þ ¼ þ1; ghðb; β; β�Þ ¼ −1; ðA9Þ

while all other worldline operators have ghost number zero.
The canonical (anti)commutation relations are given by

fb; cg ¼ 1; ½β; γ�� ¼ 1; ½β�; γ� ¼ 1; ðA10Þ

with all other (anti)commutators vanishing. Coming now to
the extended Hilbert space, we realize the ðx; pÞ algebra as
usual by identifying pμ ¼ −i∂μ acting on smooth functions
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of x. The space of smooth functions of x is then tensored
with the Fock space of matter (the θμ and ta sectors) and
ghost oscillators. We choose the Fock vacuum to be
annihilated by b and all starred operators:

ðb; θ�μ; ta�; γ�; β�Þj0i ¼ 0: ðA11Þ

A basis of the Fock space is thus given by arbitrary
monomials in all the creation operators acting on the
vacuum j0i, which we assume to be bosonic and of ghost
number zero:

ji; j; kjμ1���μpa1���aqi ¼ ðγÞiðβÞjðcÞkðθμ1 � � � θμpÞðta1 � � � taqÞj0i:
ðA12Þ

An arbitrary state of the Hilbert space is thus given by
linear combinations of smooth functions tensored with the
states (A12):

jψi ¼
XD
p¼0

Xdim g

q¼0

X∞
i;j¼0

X1
k¼0

ji; j; kjμ1���μpa1���aqiψ ðijkÞa1���aq
μ1���μp ðxÞ; ðA13Þ

where the functions of x are interpreted as spacetime
p-forms taking values in antisymmetric products of the
adjoint representation of g. Using the definition (A12) of
the Fock space basis, one can sum over the oscillator
numbers in (A13) and rewrite the arbitrary state jψi as

jψi ¼ Ψðx; θ; tjγ; β; cÞj0i; ðA14Þ

where the Ψ on the right-hand side is taken to be an
operator-valued function acting on the vacuum. This
correspondence is analogous to the operator-state corre-
spondence in string theory and allows one to identify the
state jψi itself with the operatorΨ. In the following, we will
refer interchangeably to the state jψi and the operator Ψ as
the “string field.”

2. Truncation and Yang-Mills complex

Turning to the spectrum of off-shell states, one infers
from (A13) that it goes vastly beyond the spectrum of
Yang-Mills. In order to remedy this, we shall decompose
the full Hilbert spaceH by means of two number operators:

N ¼ θμθ�μ þ γβ� − βγ� ¼ Nθ þ Nγ þ Nβ;

Nt ¼ tata�; ðA15Þ

whose choice will be clarified in the following. The Hilbert
space thus decomposes as a double direct sum as follows:

H ¼ ⨁
∞

N¼0

⨁
dim g

Nt¼0

HN ;Nt
; ðA16Þ

where in the above formula we denoted the eigenvalues
with the same symbol as the operators (A15). The basis
elements (A12), for instance, belong to the subspacesHm;n

according to ji; j; kjμ1���μpa1���aqi ∈ Hpþiþj;q. The Hilbert sub-
space describing Yang-Mills is given by H1;1 which, as we
will now show, is isomorphic to the L∞ complex X .
Let us study in more detail the structure of the subspace

H1;1. To this end, and to make contact with the formulation
of Sec. II C, it is convenient to group the creation operators
ðθμ; γ; βÞ and the annihilation operators ðθμ�; γ�; β�Þ into
the graded oscillators

θM ¼ ðθþ; θμ; θ−Þ ¼ ð−iβ; θμ;−iγÞ;
θM� ¼ ðθþ�; θμ�; θ−�Þ ¼ ð−iγ�; θμ�; iβ�Þ: ðA17Þ

The ghost number assignments (A9) and graded commu-
tation relations (A4), (A10) can be summarized as

ghðθMÞ ¼ −M; ghðθM�Þ ¼ M; ½θM�; θNg ¼ δMN;

ðA18Þ

which will be useful in identifying the Yang-Mills L∞
complex as X ≃H1;1. As in Sec. II C, the index M ¼
ðþ; μ;−Þ counts as ðþ1; 0;−1Þwhen assigning degrees. By
using the creation operators θM and c one can introduce the
basis for the Fock space of H1;1 as

jθMtai ¼ θMtaj0i; jcθMtai ¼ cθMtaj0i: ðA19Þ

One can now write an arbitrary state of H1;1 in a compact
way as

jui ¼ jθMtaiuMaðxÞ þ jcθMtaivMaðxÞ ∈ H1;1; ðA20Þ

which, comparing with (2.61) and (2.63), makes it clear
that H1;1 is isomorphic to the L∞ complex of Yang-Mills
X . The L∞ degree assignments (2.63) are recovered, once
we identify the degree in X with (minus) the worldline
ghost number:

jujX ¼ −ghðjuiÞ; u ∈ X ; jui ∈ H1;1; X ≃H1;1:

ðA21Þ

Similarly, it is clear from (2.58), (2.60) and the decom-
position (A16) that the C∞ algebra K is isomorphic to
the Hilbert subspace H1;0, since the decomposition in
kinematic and color degrees of freedom is manifest on
the worldline. An arbitrary state ofH1;0 is given, in fact, by

jui ¼ jθMiuMðxÞ þ jcθMivMðxÞ ∈ H1;0; ðA22Þ

as in (2.61), with the obvious definition for the vectors jθMi
and jcθMi of the Fock basis of H1;0. The C∞ degree is
similarly related to the worldline ghost number as
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jujK ¼−ghðjuiÞ−1; u∈K; jui∈H1;0; K≃H1;0:

ðA23Þ

Both subspaces H1;1 and H1;0 can be further decomposed
according to the ghost number, with the aforementioned
isomorphisms extending to the subspaces of fixed degree
(or ghost number):

H1;1 ¼ ⨁
2

k¼−1
ðH1;1Þk; ghðH1;1Þk ¼ k; ðH1;1Þk≃X−k;

H1;0 ¼ ⨁
2

k¼−1
ðH1;0Þk; ghðH1;0Þk ¼ k; ðH1;0Þk≃K−1−k:

ðA24Þ

Finally, the Z2 split introduced in Sec. II C is nothing but
the two-dimensional Hilbert space representing the ðb; cÞ
algebra, with the c-degree counted by the number oper-
ator Nc ¼ cb.

3. BRST differential

After identifying the vector spaces X ≃H1;1 and
K ≃H1;0, we now turn to the construction of the differ-
ential. Given the constraint superalgebra (A5) and the ghost
commutation relations (A10), the nilpotent BRST operator
can be defined in the standard way, yielding

Q¼−2cHþ γq� þ γ�qþ γγ�b; Q2 ¼ 0; ghðQÞ¼þ1:

ðA25Þ

At this point, we can justify our choice of decomposition
(A16) according to the number operators defined in (A15):
the BRST operator Q commutes with both N and Nt,
making it a well-defined endomorphism on each subspace
Hm;n [57–59]:

H ¼ ⨁
∞

m¼0

⨁
dim g

n¼0

Hm;n; Q∶ Hm;n → Hm;n; ðA26Þ

which allows us to study the BRST cohomology on each
Hm;n and, in particular, on the spaces of interest H1;1 and
H1;0. Since the BRST cohomology only probes the free
theory, which is independent of color, we shall focus on the
C∞ complex K ≃H1;0. Upon identifying the momentum
operator as pμ ¼ −i∂μ and using the definition (A17), Q
can be rewritten as

Q ¼ c□þ ðθμθþ� þ θ−θ
μ�Þ∂μ − θ−θ

þ�b; ðA27Þ

which reproduces the form (2.69) given in Sec. II C. In
order to see that (A27) actually coincides with the differ-
ential (2.69), it is useful to introduce the bra states for the

Fock space of the dual H�
1;0. To do this, we introduce the

bra vacuum state h0j, which is annihilated by the θM and b:
h0jθM ¼ h0jb ¼ 0. The fact that the bra vacuum is also
annihilated by b is compatible with ðb; cÞ† ¼ ðb; cÞ. This,
together with the anticommutator (A10), implies the basic
overlaps

h0jcj0i ¼ 1; h0j0i ¼ 0: ðA28Þ

Given the basis vectors of the Fock space of H1;0:

jθMi ¼ θMj0i; jcθMi ¼ cθMj0i; ðA29Þ

one can construct the dual vectors hθM�j and hθM�bj
introduced in (2.66) by defining

hθM�j ¼ h0jcθM�; hθM�bj ¼ h0jcθM�b; ðA30Þ

which allows us to decompose the identity on the Fock
space of H1;0 as

1 ¼ jθMihθM�j þ jcθMihθM�bj: ðA31Þ

Inserting the decomposition of the identity in (A27) one
recovers the differential in the form (2.69). For instance,
one has

θμθ
þ�
∂
μ ¼ θμθ

þ�ðjθMihθM�j þ jcθMihθM�bjÞ∂μ
¼ ðjθμihθþ�j − jcθμihθþ�bjÞ∂μ; ðA32Þ

which is the second term of (2.69). This ensures that the
action ofQ onH1;0 reproduces the differentialm1 (2.25) on
K, with the different components (2.62) of K identified as

jΛi ∈ ðH1;0Þ−1; jAi ∈ ðH1;0Þ0;
jEi ∈ ðH1;0Þ1; jN i ∈ ðH1;0Þ2: ðA33Þ

As we have discussed in Sec. II, the field theoretic
interpretation of field equations, gauge transformations and
so on is properly encoded in the L∞ algebra X , rather than
the kinematic algebra K. In this respect, given the iden-
tification X ≃H1;1, on-shell fields obeying b1ðAÞ ¼ 0,
modulo gauge symmetries δA ¼ b1ðΛÞ are given by the
BRST cohomology on H1;1 at ghost number zero:

QjAi ¼ 0; jAi ∈ ðH1;1Þ0 →
�
□Aμ

a − ∂μφ
a ¼ 0

∂ · Aa − φa ¼ 0
;

δjAi ¼ QjΛi; jΛi ∈ ðH1;1Þ−1 →
�
δAμ

a ¼ ∂μλ
a

δφa ¼ □λa
:

ðA34Þ
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