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The connection between the bulk and the boundary first law of thermodynamics in anti–de Sitter space
has been discussed in generic higher derivative gravity. String theory corrections to supergravity render
higher derivative terms in the bulk action, proportional to different powers of string theory parameter α0.
Avariation in the cosmological constant induces a variation in the ’t Hooft coupling in the boundary theory.
We show that in order to match the bulk first law and Smarr relation with the boundary side we need to
include the variation of α0 in the bulk thermodynamics as a bookkeeping device. Accordingly, the boundary
first law and Euler relation are modified with the inclusion of two central charges (a, c) and/or other
chemical potentials as thermodynamic variables. We consider four- and six-derivative terms as well as the
Weyl4 terms (in type IIB) in bulk in support of our generic result.
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I. INTRODUCTION

The thermodynamics of anti–de Sitter (AdS) black holes
entered into a new paradigm after considering the cosmo-
logical constant as the thermodynamic pressure and inclu-
sion of its variation in the first law [1–9]. This new
paradigm is dubbed as black hole chemistry [8,9]. In the
context of the AdS/CFT correspondence the black hole
provides a dual description of the field theory living on the
boundary, and hence it is expected that the thermodynamic
variables and the laws on both sides match. To make the
bulk first law and Smarr relation consistent with the
boundary thermodynamics it was shown by [10–12]
(following the earlier work [13]) that the inclusion of
variation of Newton’s constant along with the cosmological
constant in the bulk first law is required. Before we
elaborate further let us summarize the current status
of the first law and the Smarr relation for uncharged
AdS-black holes in two-derivative gravity.1

The first law in the bulk is given by

dM ¼ T
4G

dAþ Θ
8πG

dΛ −M
dG
G

; ð1:1Þ

where

M¼ADMmass of the black hole;

T¼Hawking temperature;

A¼Area of the event horizon;

Λ¼Cosmological constant; G¼Newton’s constant:

ð1:2Þ

The parameter Θ has a geometrical interpretation in terms
of proper volume weighted locally by the norm of the
Killing vector ξ [1,14,15],

Θ ¼
Z
BH

jξjdV −
Z
AdS

jξjdV; ð1:3Þ

where the integrations are taken over the constant time
hypersurfaces in black hole and AdS spacetimes. The
generalized Smarr relation for (dþ 1)-dimensional bulk
is given by [16,17]

M ¼ d − 1

d − 2

TA
4G

−
1

d − 2

ΘΛ
4πG

: ð1:4Þ

The inclusion of variation of Newton’s constant in the
first law is needed in order to make the black hole
thermodynamics consistent with the boundary one.
Without including the variation of G and considering the
bulk pressure P ¼ −Λ=8πG, the first law (1.1) takes the
form

dM ¼ TdSþ VdP ð1:5Þ

with V ¼ −Θ, and the Smarr relation becomes
M ¼ ðd − 1Þ=ðd − 2ÞTS − 2=ðd − 2ÞPV. There are two
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1The formulas can be written for electrically charged black
holes as well.
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main objections with (1.5), in the context of the AdS/CFT
correspondence. From a simple computation of the asymp-
totic stress energy tensor [18] one can find both the energy
and the pressure of the boundary theory. The boundary
pressure evaluated in this way does not match with the bulk
pressure defined above. Also the energy of the boundary
theory turns out to be equal to the Arnowitt-Deser-Misner
(ADM) mass M of the black hole. Whereas M, which
appears in the first law (1.5), is identified with the enthalpy
of the black hole system and not energy, hence we see that
the bulk first law (1.5) cannot be interpreted as the
boundary first law.
In AdSdþ1=CFTd correspondence the AdS radius L, the

effective (dþ 1)-dimensional Newton’s constantG, and the
number of colors N (number of coincident D branes) are
related by

dictionary 1∶
Ld−1

G
∼ N2: ð1:6Þ

The exact relation depends on the particular string theory
and its reduction over the compact manifold. Since the bulk
cosmological constant is given by

Λ ¼ −
dðd − 1Þ
2L2

; ð1:7Þ

a variation of Λ in the bulk, therefore, induces a variation in
the number of color N (degrees of freedom or the central
charge) in the boundary. Also, from the asymptotic struc-
ture of the AdS metric it follows that the spatial volume of
the boundary theory goes as V ∼ Ld−1. As a result Λ
variation also induces a variation in the spatial volume of
the boundary theory. To disentangle the variations of N and
V on the boundary (as a result of Λ variation) the variation
of bulk Newton’s constant was included in the bulk
thermodynamics as a “bookkeeping” device [10], such
that a variation in N at fixed V in the boundary corresponds
to a variation ofG−1 at fixed L in the bulk and a variation of
V at fixed N corresponds to a variation of L keeping
Ld−1=G fixed in the bulk. After the inclusion of a G
variation, the bulk first law takes the form (1.1).
Inclusion of a G variation in the first law has an

advantage that the first law (1.1) can be rewritten in the
following way:

dM ¼ TdS −
M

d − 1

dLd−1

Ld−1 þ ðM − TSÞ dðL
d−1=GÞ

Ld−1=G
ð1:8Þ

and hence can immediately be mapped to the boundary first
law [11,12,19]. Ld−1 is proportional to the thermodynamic
volume of the boundary theory. The coefficient of the
dLd−1 term is therefore identified with the pressure of the
boundary theory which satisfies the equation of state:
E ¼ M ¼ ðd − 1ÞpV. Finally, the last term in the first
law dðLd−1=GÞ=ðLd−1=GÞ is identified with the variation of

the central charge c, and its coefficient is a new chemical
potential μc. This new chemical potential satisfies the
boundary Euler relation

E ¼ M ¼ TSþ μcc: ð1:9Þ

In this paper we establish the connection between the
bulk and the boundary thermodynamics in AdS space in
generic higher derivative gravity.2 String theory correction
to supergravity renders higher derivative terms in the bulk
action, proportional to different powers of string theory
parameter α0. A priori it may seem trivial to extend the
connection beyond the supergravity limit by including
higher derivative corrections to all the thermodynamic
variables. But one has to be careful because the second
holographic dictionary (2.2) implies that the variation of the
cosmological constant in the bulk also induces a variation
of the ’t Hooft coupling λ of the boundary theory. To
disentangle the variation of λ from the variation of N and
volume V, one needs to include the variation of α0 (along
with G and L) in the bulk as a bookkeeping device. We
show that under a suitable change of thermodynamic
variables the bulk first law can be interpreted as the
boundary first law and the Smarr relation renders the
generic Euler relation of the boundary theory.
The summary of our results is as follows. We find that

the variation of G and α0 in the bulk first law can be traded
with the variations of two boundary central charges, and
thus the boundary first law can be written as

dMc ¼ TcdSc −
Mc

d − 1

dLd−1
c

Ld−1
c

þ μþdcþ þ μ−dc−: ð1:10Þ

The subscript c denotes the higher derivative corrected
thermodynamic variables. c� are related to two boundary
central charges c and a as c� ¼ ðc� aÞ=2, μ� are the
corresponding chemical potentials (associated with c�,
respectively) satisfying the generic Euler relation

Ec ¼ Mc ¼ TcSc þ μþcþ þ μ−c−: ð1:11Þ

The organization of this paper is as follows: In Sec. II we
discuss how bulk first law and the Smarr relation are
modified in the presence of generic higher derivative terms.
In the next section (Sec. III) we show how the bulk first law
can be interpreted as the boundary first law in generic
higher derivative gravity. In Sec. IV we discuss a few
examples in support of our generic statement. In particular,
we consider six-derivative corrections as well as the Weyl4

correction to supergravity action.

2Large N corrections to the holographic Smarr relation in the
presence of Lovelock gravity was considered in [20].
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II. THE BULK FIRST LAW AND SMARR
RELATION IN HIGHER DERIVATIVE GRAVITY

In the throat limit [21] the effective (dþ 1)-dimensional
action has the following qualitative form3 (in the Einstein
frame):

I ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R − 2Λþ

X
n≥2

ðα0Þn−1Rð2nÞ
�
;

ð2:1Þ

where α0 is proportional to the square of the string length.
Rð2nÞ is the 2n-derivative term in the action.
Such higher derivative terms appear in low energy

effective action of different closed string theories. For
example, the appearance of the curvature square term
(Riemann2 ∼Rð4Þ) in heterotic string theory is well known.
Rð8Þ terms appear in superstring theories, whereas Rð6Þ
appears in bosonic string theory. In general, such lower
dimensional effective actions are also endowed with other
fields, for example Uð1Þ gauge fields, higher form fields,
and dilaton. However, in this section we shall consider
the effect of pure curvature higher derivative terms on the
boundary thermodynamics. In Sec. IV B we include the
effect of dilaton coupled to higher derivative terms in
the bulk and boundary thermodynamics.
The supergravity limit corresponds to α0=L2 ≪ 1. In this

limit all the higher derivative terms drop out. The structures
of these higher derivative terms are completely fixed for a
specific string theory. The only parameter that appears in
front of these terms is different powers of α0 as this is the
only dimensional full parameter in the theory. In the context
of gauge/gravity duality such higher derivative terms
correspond to the large ’t Hooft coupling correction in
the strongly correlated field theory. The AdS/CFT corre-
spondence provides another relation between the parame-
ters in the string theory and gauge theory

dictionary 2∶ α0 ¼ L2ffiffiffi
λ

p ; ð2:2Þ

where λ ¼ Ngs is the ’t Hooft coupling of the boundary
theory and gs is the string coupling. This means that the
two-derivative gravity (supergravity) is dual to strongly
coupled gauge theory on the boundary.
From the relation (2.2) we see that a variation of Λ

induces a variation in the ’t Hooft coupling constant λ.
Therefore, as before, to disentangle the λ variation from N
and V variations on the boundary side we allow the
parameter α0 to vary in the bulk along with L and G as
a bookkeeping device [10,19]. A variation with respect to λ

on the boundary corresponds to the variation of α0 keeping
other combinations fixed.
The Smarr relation for Lovelock gravity in AdS space-

time was considered in [13,20]. Considering the variations
of the coefficients of Lovelock terms they derived the
Smarr relation and showed that it gives the mass of the
black hole in terms of geometrical quantities together with
the parameters of the Lovelock theory. Following a similar
argument the Smarr relation in a generic higher derivative
gravity (2.1) takes the following form:

Mc ¼
d − 1

d − 2

TcAc

4G
−

1

d − 2

ΘcΛc

4πG
þ 2

d − 2

Uα0

G
α0; ð2:3Þ

and the first law turns out to be

dMc ¼
Tc

4G
dAc þ

Θc

8πG
dΛc −Mc

dG
G

þ Uα0

G
dα0: ð2:4Þ

In the presence of higher derivative terms the mass, entropy,
temperature, and cosmological constant receive correc-
tions. Here we denote the higher derivative corrected
thermodynamic quantities with the same variables with a
subscript c. The new thermodynamic variable Uα0 is
conjugate to the coupling constant α0, and the Uα0dα0 term
in the first law disappears in the supergravity limit: α0 ¼ 0.
The quantity Ac appearing in the first law is given by

Ac ¼ 4GSc: ð2:5Þ

We call this quantity the “Wald area.” Later we shall see that
in our parametrization the horizon area remains unchanged
under higher derivative corrections. The Wald area is equal
to the horizon area in the α0 → 0 limit. The Wald area will
appear in the first law of black hole thermodynamics. In the
presence of higher derivative terms the effective radius of the
AdS spacetime changes.Denoting the effective radius byLc,
the corrected cosmological constant Λc is given by
Λc ¼ −dðd − 1Þ=2L2

c. The value of Lc depends on the
nature of higher derivative terms.
The first law and Smarr relation are consistent with those

given in [13]. However, unlike [13] we have only one
coupling constant α0. Another important point to note here
is that unlike two-derivative gravity the variable Θc does
not have the geometrical meaning (1.3) any more. In
Secs. IVA and IV B we explicitly calculate all the higher
derivative corrected thermodynamic variables up to order
ðα0Þ2 and ðα0Þ3, respectively, and show that the first law and
Smarr relation are satisfied.
Our next goal is to use the AdS/CFT dictionary (1.6) and

(2.2) to obtain the boundary first law from the bulk first law
by suitably choosing boundary thermodynamic variables.
We also show that the bulk Smarr relation boils down to the
generic Euler relation under that choice.

3In writing (2.1) we have made another simplification. In
principle, there could be other matter terms also, but we have
ignored those terms.
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III. HOLOGRAPHIC FIRST LAW
AND EULER EQUATION

The first law written in terms of ðAc;Λc; G; α0Þ cannot
immediately be identified with the boundary first law. To do
so we need to express the first law in terms of boundary
thermodynamic variables. In two-derivative gravity it was
shown that instead of ðA;Λ; GÞ one can write the first law
in the ðS; Ld−1; cÞ basis, where Ld−1 is (proportional to)
spatial volume and c is the central charge of the boundary
theory [11,12,19]. In higher derivative gravity we have an
extra variable α0 in the bulk. Therefore the natural question
is what is the correct thermodynamic basis in the boundary
theory in this case.
CFTs in higher dimensions are endowed with two central

charges c and a. These two central charges are an artifact of
the breaking of conformal symmetry at quantum level. The
expectation value of the trace of the CFT stress tensor is
given by hTμ

νi ¼ −aE4 − cI4 where E4 and I4 are two
invariants made of the Riemann tensor. The holographic
computation of these central charges [22] shows that
c ¼ a ∼ Ld−1=G in the supergravity limit. However, in
the presence of string theory corrections they are not the
same anymore; they differ by the inverse powers of the
’t Hooft coupling [23–25]. Motivated by [11,12,19] we
identify that the extra bulk parameter α0 can be replaced in
terms of the second central charge a. However, instead of
writing the first law in terms of ðc; aÞ we define a new set

c� ¼ c� a
2

ð3:1Þ

and write down the first law in the ðcþ; c−Þ basis such that
in the α0 → 0 limit we readily get back the two-derivative
results.
The holographic dictionary (2.2) relates two dimension

full parameters α0 and L in the bulk with a dimensionless
parameter λ on the boundary. The effective (corrected)
length of AdS spacetime therefore can be written as

Lc ¼ Lb̃ðλÞ; ð3:2Þ

where b̃ðλÞ depends on the form of the higher derivative
terms and b̃ðλÞ ¼ 1 as λ → ∞. Therefore the string theory
parameter α0 can be written in terms of the effective radius
of AdS spacetime as

α0 ¼ L2
cffiffiffi

λ
p

b̃2ðλÞ¼L2
cbðλÞ; where bðλÞ¼ 1ffiffiffi

λ
p

b̃2ðλÞ: ð3:3Þ

From the similar dimensional analysis the generic form of
c� in higher derivative gravity can be written as

cþ ¼ Ld−1
c

G
hþðλÞ and c− ¼ Ld−1

c

G
h−ðλÞ; ð3:4Þ

where hþ and h− are functions of dimensionless parameter
λ and depend on the nature of the higher derivative terms
added. In holographic theory they also satisfy

hþðλÞ ∼ 1 and h−ðλÞ ∼
1ffiffiffi
λ

p λ → ∞: ð3:5Þ

Varying Eqs. (3.4) we find

dc� ¼ c�
dL3

c

L3
c
− c�

dG
G

þ c�h0�
h�

dλ: ð3:6Þ

Taking the variation of Eq. (3.3),

dα0 ¼ 2bL2
c

3

dL3
c

L3
c
þ L2

cb0dλ; ð3:7Þ

we replace dα0 in terms of dL3
c

L3
c
and dλ in the bulk first law.

We then solve (3.6) to replace dG and dλ in the first law in
terms of dc�. We also use the Smarr relation (2.3) to
replace Θc in the first law. After simplification the final
result is given by

dMc ¼ TcdSc−
Mc

ðd− 1ÞLd−1
c

dLd−1
c þ

�
h0þðMc−ScTcÞ− c−Ub0L3−d

c

ðcþh−0 − c−hþ0 Þ
�
dcþ þ

�
cþUb0L3−d

c −h0þðMc−ScTcÞ
ðcþh0− − c−hþ0 Þ

�
dc−: ð3:8Þ

Identifying the coefficient of dc� as the chemical potentials
μ� associated with c� we see that μ� satisfy the generic
Euler relation (1.11).
Thus we see that the bulk first law (2.4) can immedi-

ately be identified with the extended first law of the
boundary CFT (1.10), and the generic Smarr relation
renders the Euler relation (1.11). As a consistency
check we see that the chemical potentials c− ¼ 0, cþ ¼
c ¼ a in the limit λ → ∞, and we get back (1.8) and

(1.9). We also note that though individual thermo-
dynamic quantities explicitly depend on specific combi-
nations of higher derivative terms, the first law and
the Euler relation are independent of any specific
combinations.
In the next section we consider a few examples of higher

derivative gravity and compute different thermodynamic
quantities and the chemical potential in order to check our
generic statement.
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IV. HIGHER DERIVATIVE THERMODYNAMICS:
EXAMPLES

The higher derivative terms that appear in the effective
(dþ 1)-dimensional Lagrangian under a consistent trunca-
tion of string theory have a very specific form. For example,
if we consider type IIB string theory on AdS5 × S5 back-
ground and truncate the string theory action over S5, the
resulting effective theory in AdS5 has the first nontrivial
higher derivative correction term at the order of ðα0Þ3 [26–
30]. We shall consider the effect of such terms on bulk and
boundary thermodynamics in Sec. IV B. Before that, we
consider a bulk action with four- and six-derivative terms.
The curvature square terms appear in heterotic string
theory, whereas the curvature cube terms appear in bosonic

string theory. The four-derivative terms in the action are
proportional to α0 and the six-derivative terms appear at the
order ðα0Þ2. Our goal is to compute all the thermodynamic
quantities up to order ðα0Þ2 and check the generic first law,
the Smarr relation, and the Euler relation. In this section we
work in 4þ 1 dimensions.

A. Six-derivative theory

We start with the most general four- and six-derivative
terms. Before we find the corrections to bulk metric and
thermodynamic quantities, we briefly discuss the field re-
definition ambiguity with these terms. There are five
possible dimension-six invariants that do not involve
Ricci tensors or curvature scalars,

I1 ¼ Rμν
αβRαβ

λρRλρ
μν; I2 ¼ Rμν

ρσRρτ
λμRσ

τ
λ
ν; I3 ¼ Rαν

μβRβγ
νλRλμ

γα;

I4 ¼ RμναβRμα
γδRνβγδ; I5 ¼ RμναβD2Rμναβ: ð4:1Þ

These five invariants satisfy the following relations:

I3 ¼ I2 −
1

4
I1; I4 ¼

1

2
I1; I5 ¼ −I1 − 4I2: ð4:2Þ

Hence only two of them are independent. We choose these
two invariants to be I1 and I2.
Including the invariants made out of Ricci tensor and

scalar the most general Lagrangian (density) containing all
possible independent curvature invariants are given by

L ¼ a0R − 2Λþ α0ðβ1R2 þ β2RμνρσRμνρσ þ β3RμνRμνÞ
þ α02ðα1I1 þ α2I2 þ α3RμαβγR

αβγ
ν Rμν þ α4RRμνρσRμνρσ þ α5RμνρλRνλRμρ

þ α6RμνRνλRμ
λ þ α7RμνD2Rμν þ α8RRμνRμν þ α9R3 þ α10RD2RÞ þOðα03Þ: ð4:3Þ

However, many terms in this Lagrangian are ambiguous up to a field redefinition [23,31]. Under the following field
redefinition:

gμν → g̃μν ¼ gμν þ α0ðd1gμνRþ d2RμνÞ þ α02ðd3RμαβγRν
αβγ þ d4gμνRαβγσRαβγσ þ d5RμαβνRαβ þ d6RμλRλ

ν þ d7D2Rμν

þ d8gμνRαβRαβ þ d9gμνR2 þ d10gμνD2RÞ þOðα03Þ; ð4:4Þ

only the coefficients a0, β2, α1, and α2 remain invariant as it
is not possible to generate any higher rank tensor from a
lower rank tensor in (4.4). Therefore the coefficients β2, α1,
and α2 are unambiguous. By proper choice of field redefi-
nition one can set all other ambiguous coefficients to zero

L→a0R−2Λþα0β2RμνρσRμνρσþα02ðα1I1þα2I2Þ: ð4:5Þ

In the Euclidean approach the thermodynamic quantities are
obtained by evaluating the Euclidean on-shell action. Since
the action is not invariant under such field redefinition, the
thermodynamic quantities depend on unambiguous as well
as different ambiguous coefficients. However, in this section

we turn on only the unambiguous higher derivative terms,
i.e., β2, α1, and α2 to maintain the simplicity of different
thermodynamic variables. In Appendix A we present the
results for other ambiguous coefficients also.

1. The solution

We start with the following six-derivative action:

I ¼ 1

16πG

Z
d5x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ α0β2RμνρσRμνρσ

þ α02ðα1I1 þ α2I2Þ�: ð4:6Þ
The coefficients β2, α1, and α2 are fixed, so they do not vary.
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The equations of motion for the metric obtained from the
action (4.6) are given by

Rαβ −
1

2
Rgαβ −

6

L2
gαβ ¼ α0Tð4Þ

αβ þ α02Tð6Þ
αβ ; ð4:7Þ

where Tð4Þ
αβ and Tð6Þ

αβ are given by (A1) and (A2), respec-
tively. To solve these equations we consider the following
metric ansatz (for a static spherically symmetric solution):

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ r2dΩ2

3; ð4:8Þ

where dΩ2
3 is a metric on a 3-sphere of unit radius. We solve

Einstein’s equations perturbatively to obtain fðrÞ and gðrÞ.
In the absence of any higher derivative terms the equations
of motion admit an asymptotically AdS black hole solution
given by4

f0ðrÞ ¼ g0ðrÞ ¼
ðr2 − r2þÞðL2 þ r2 þ r2þÞ

L2r2
; ð4:9Þ

where rþ is the horizon radius that is related to the ADM
mass by [32]

M ¼ 3πr2þðL2 þ r2þÞ
8GL2

: ð4:10Þ

Treating the higher derivative terms perturbatively one
can systematically find the corrections to the leading
solutions. The equations ofmotion (4.7) are ordinary second
order differential equations (while treated perturbatively).
Therefore at every order in α0 we have two integration
constants. We fix these constants by demanding that the
horizon radius rþ remains unaffected under perturbations
and the spacetime remains AdS in the limit r → ∞. With
these two conditions the final formoffðrÞ and gðrÞ are given

in Appendix B. Asymptotically the metric takes the follow-
ing form:

ds2∼−
�
1þ r2

L2
c

�
dt2þ

�
1þ r2

L2
c

�−1
dr2þr2dΩ2

3; ð4:11Þ

where

Lc¼L

�
1−

β2
3

α0

L2
−
1

6

�
4α1þ3α2þ

5

3
β22

��
α0

L2

�
2
�

ð4:12Þ

is the corrected AdS radius. For a consistency, one can also
compute the Ricci scalar for the corrected solution (B2),
(B3) and check that

R ¼ −
20

L2
c
: ð4:13Þ

2. The thermodynamic variables

Once we have the black hole metric corrected up to ðα0Þ2,
one can compute different thermodynamic variables asso-
ciated with the corrected geometry.
The correction to the black hole temperature can be

computed in different ways. One simple method to com-
pute is the Euclidean method. In this method we first
Euclideanize the time direction by replacing t → iτ. The
Euclidean metric will show a conical singularity at r ¼ rþ
unless the Euclidean time τ is periodic. One can compute
the periodicity β of τ, and the black hole temperature is
inversely proportional to the periodicity

T ¼ 1

β
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðrÞf0ðrÞ

p
jrþ : ð4:14Þ

After simplification we find that the corrected temperature
is given by

Tc ¼
�

rþ
πL2

þ 1

2πrþ

�
−
�
2β2ð3L4 þ 6L2r2þ þ 2r4þÞ

3πL2r3þ

�
α0

L2
þ
�
2ð−21L6 þ 18L4r2þ þ 99L2r4þ þ 62r6þÞα1

3πL2r5þ

þ ðL6 − 3r2þð2L2 þ r2þÞðL2 þ 2r2þÞÞα2
2πL2r5þ

þ 8ð36L6 þ 36L4r2þ − 39L2r4þ − 38r6þÞβ22
9πL2r5þ

��
α0

L2

�
2

: ð4:15Þ

The entropy of the black hole can also be computed using either Wald’s formula or the Euclidean method. In either
method the corrected entropy turns out to be

Sc ¼
π2r3þ
2G

�
1þ β2

�
12L2

r2þ
þ 8

�
α0

L2
þ
�
12L2ð12α1 þ 3α2 − 24β22Þ

r2þ
þ 3L4ð36α1 þ 3α2 − 48β22Þ

r4þ

þ 36ð4α1 þ 3α2Þ − 416β22
3

��
α0

L2

�
2
�
: ð4:16Þ

4The subscript 0 means the leading solution.
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The ADM mass of the black hole can also be obtained by either computing the asymptotic stress tensor [18,33] or on-
shell Euclidean action [32,34]. The result is given by

Mc ¼
3π

8πG

�
r2þ þ r4þ

L2
þ β2

�
6L4 þ 20r4þ þ 24r2þL2

3L2

�
α0

L2
þ
�
2L4ð32α1 þ α2 − 48β22Þ

r2þ
þ 3ð84α1 þ 5α2 − 128β22ÞL2

þ r2þ
3
ð3ð276α1 þ 45α2Þ − 1424β22Þ þ

r4þ
9L2

ð3ð268α1 þ 99α2Þ − 1648β22Þ
��

α0

L2

�
2
�
: ð4:17Þ

3. The first law and chemical potentials

To write down the higher derivative corrected first law of thermodynamics we first note that the effective radius of AdS
spacetime has been modified (4.12). As a result the cosmological constant Λ will also be corrected

Λ → Λc ¼ −
6

L2
c
: ð4:18Þ

Allowing the variations of G, L, and α0 we find that the thermodynamic variables Mc, Tc, Ac, and Λc satisfy the first law
(2.4). The thermodynamic potentials Θc and Uα0 are given by

Θc ¼ −
1

2
π2r4þ −

2π2β2r2þα0ð2L2 þ r2þÞ
3L2

þ π2

18
ð−36α1ð39L4 þ 74L2r2þ þ 35r4þÞ

þ 27α2ð3L4 þ 2L2r2þ − r4þÞ þ 16β22ð96L4 þ 190L2r2þ þ 93r4þÞÞ
�
α0

L2

�
2

ð4:19Þ

and

Uα0 ¼ −
πð9L4 þ 20L2r2þ þ 6r4þÞβ2

4L4
þ π

12r2þL4
ð12α1ð−6L6 þ 9L4r2þ þ 39L2r4þ þ 19r6þÞ

− 9α2ð4L6 þ 21L4r2þ þ 27L2r4þ þ 15r6þÞ þ 16β22ð9L6 þ 24L4r2þ þ 19L2r4þ þ 5r6þÞÞ
α0

L2
: ð4:20Þ

As we mentioned in the Introduction, the thermodynamic
potential Θc associated with the Λc variation does not have
the geometrical meaning (1.3) in the presence of higher
derivative terms. For the spacetime metric (B2), (B3) the
correction to the geometric volume Θc is different from
(4.19). With these corrected thermodynamic potentials it is
easy to check that the corrected Smarr relation (2.3) is
satisfied.
To cast the bulk first law in terms of boundary variables

we compute the anomaly coefficients c and a in the
presence of higher derivative terms in the action (4.6).
The answers are given by [23]

c ¼ L3
c

128πG

�
1þ 4β2ffiffiffi

λ
p þ ð−36α1 þ 21α2Þ

λ

�
ð4:21Þ

and

a ¼ L3
c

128πG

�
1 −

4β2ffiffiffi
λ

p þ 12α1 þ 9α2
λ

�
: ð4:22Þ

Replacing the variations dG and dα0 as discussed in
Sec. III, in terms of dc�, we can write the first law in
the form given in (1.10) with

μþ¼16π2r2þðr2þ−L2Þ
L5

−
128π2β2ð3L4þ6L2r2þþ2r4þÞ

3
ffiffiffi
λ

p
L5

−
8π2

9λL5r2þ
ð36L6ð40α1þ5α2−64β22Þþ36L4r2þð12α1þ24α2−61β22Þ

þ3L2r4þð−1200α1þ396α2þ875β22Þþr6þð−2688α1þ432α2þ2423β22ÞÞ ð4:23Þ

and5

5Note that β2 is a nonzero coefficient. It comes in the denominator because c− ∼ β2.
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μ− ¼ 8π2ð9L4 þ 20L2r2þ þ 7r4þÞ
L5

þ 8π2

3β2
ffiffiffi
λ

p
L5r2þ

ð24ðL2 þ r2þÞð3L4ð2α1 þ α2Þ þ 6L2r2þð2α1 þ α2Þ

þ r4þð4α1 þ 3α2ÞÞ − β22ð288L6 þ 756L4r2þ þ 591L2r4þ þ 147r6þÞÞ; ð4:24Þ

and they satisfy Euler relation (1.11) up to order 1
λ.

B. W4 term

Finally, we discuss a string theory example in the context
of the AdS/CFT. Since the conjecture is valid for the
complete string theory, one should consider the stringy
corrections to the ten-dimensional (10D) supergravity
action. In particular, we consider the string theory correc-
tion to type IIB supergravity. The first corrections occur at
order ðα0Þ3 [26–28]. The bosonic part of the action in the
Einstein frame is given by

I ¼ 1

16πG10

Z
d10x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2

−
1

4.5!
1

N2
F2
5 þ γe−

3
2
ϕW4

�
; ð4:25Þ

where F5 is a self-dual five-form field strength, ϕ is the
dilaton, andW4 denotes the eight-derivative term in action,
which can be expressed as a contraction of four Weyl
tensors,

W4 ¼ CabcdCebcfCa
gheC

ghd
f þ 1

2
CadbcCefbcCa

gheC
ghd
f :

ð4:26Þ

The coupling constant γ is given by

γ ¼ 1

8
ζð3Þðα0Þ3: ð4:27Þ

These higher derivative terms do not alter the extremal
AdS5 × S5 geometry [29,35]. However, this observation is
not true in the nonextremal case [30,36]. Moreover, the
higher derivative action (4.25) is not supersymmetrically
complete. Supersymmetric completion of eight-derivative
terms in type IIB string theory can be found in [37–43].
Tentative corrections to black hole free energy and other
thermodynamic quantities in the presence of these super-
symmetrically complete terms were considered in [43]. The
answer is tentative in a sense that the author did not
compute the corrections to the full black hole geometry in
the presence of these terms since those computations are
extremely cumbersome. In this paper we shall consider
only the W4 term (4.26) in the action and see how the bulk
and boundary first laws are modified.
In the supergravity limit (γ → 0) the type IIB vacuum

admits a solution of the form AdS5 × S5 with constant five-

form field strength over AdS5 and S5 with a constant
dilaton. As a result, one can truncate the ten-dimensional
action over S5 and the effective five-dimensional action
takes the form of Einstein-Hilbert action in AdS5. Fo the
W4 term apparently it appears that one can proceed exactly
in the similar way that we discussed in the previous
sections, i.e., replacing the dG and dα0 terms in the bulk
first law in terms of the variations of two central charges c�.
However, it turns out that the central charges a and c do not
receive any corrections in the presence of W4 terms and
hence c ¼ aþOðγ2Þ. Therefore the question is what is the
relevant boundary parameter with which we trade the dα0
term in the bulk first law.
The dilaton field plays an important role here. The

massless dilaton field in 4þ 1 dimensions corresponds to a
dimension-four scalar operator Ô4 ∼ 1

g2YM

R
TrF2 in the

boundary theory. The dilaton has the asymptotic falloff

ϕðrÞ ¼ φ∞ þ φ1

r4
þOðr−6Þ; ð4:28Þ

where φ∞ plays the role of source for Ô4 and φ1 is the
expectation value of Ô4 [44,45]. At the leading order
(γ ¼ 0) the dilaton is constant and the expectation value of
Ô4 is zero. However, at subleading order φ∞ induces an
expectation value for O4 proportional to γ. Hence the
boundary first law and Euler relation can be written in terms
of hO4i and other standard thermodynamic variables.

1. W4 corrected geometry and the boundary first law

Following [30,36] we consider the following ansatz for
the ten-dimensional metric and the five-form field strength:

ds2 ¼ r2

L2
e−

10
3
CðrÞðe2AðrÞþ8BðrÞdτ2 þ e2BðrÞdr2

þ L2dΩ2
3Þ þ e2CðrÞL2dΩ2

5; ð4:29Þ

F5 ¼ F 5 þ ⋆F 5; F 5 ¼ dB4 ð4:30Þ

where

B4 ¼ fðrÞdt ∧ dvol3: ð4:31Þ

Here dvol3 is the volume element of S3 with radius L. The
leading order metric solution is given by (subscript 0 stands
for leading solution)
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A0ðrÞ ¼ −2 log
�
r
L

�
þ 5

2
log

�
r2

L2
þ r4

L4
−

r20
L4

�
;

B0ðrÞ ¼ −
1

2
log

�
r2

L2
þ r4

L4
−

r20
L4

�
;

C0ðrÞ ¼ 0: ð4:32Þ

The leading dilaton field is constant and denoted as φ∞, and
the solution of the four-form field isB4 ¼

ffiffiffi
2

p
r4

L4 dt ∧ dvol3.

Here r0 is the nonextremality parameter; i.e., in the limit
r0 → 0 the ten-dimensional geometry corresponds to
the near horizon limit of an extremalD3 branes.We consider
the higher derivative terms perturbatively, such that
AðrÞ ¼ A0ðrÞ þ γA1ðrÞ, BðrÞ ¼ B0ðrÞ þ γB1ðrÞ, fðrÞ ¼
f0ðrÞ þ γf1ðrÞ, and φ ¼ φ∞ þ γϕ1. Solving the ten-
dimensional equations of motion up to OðγÞ we find that
the corrections are given by

A1ðrÞ ¼ e−
3φ∞
2 ðr4 þ L2ðr2 − r20ÞÞ−1

�
5r60ð312r4 þ L2ð272r2 − 237r20ÞÞ

2r12
−
5r60ð312r4þ þ L2ð272r2þ − 237r20ÞÞ

2r12þ

�
; ð4:33Þ

B1ðrÞ ¼ e−
3φ∞
2 ðr4 þ L2ðr2 − r20ÞÞ−1

�
r60ð312r4þ þ L2ð272r2þ − 237r20ÞÞ

2r12þ
−
5r60ð64L2r2 − 57L2r20 þ 72r4Þ

2r12

�
; ð4:34Þ

f1ðrÞ ¼ 60
ffiffiffi
2

p
e−

3
2
φ∞

r60
L4r8

: ð4:35Þ

Here rþ is the corrected horizon radius. Correction to the dilaton solution is given by

ϕ1ðrÞ ¼ 45e−
3
2
φ∞

ðL8 þ 4L6r2þ þ 7L4r4þ þ 6L2r6þ þ 3r8þÞ
4L4r4þðL2 þ r2þÞ3

log

�
L2 þ r2 þ r2þ

r2

�

−
e−

3
2
φ∞

16L4r12r40
ð36L4r80r

2 þ 30L4r100 þ 60L2r40r
6ðL2 þ 2r20Þ þ 45L4r60r

4

þ45L4r80r
4 þ 180r10ðL4 þ 4L2r20 þ 3r40Þ þ 90r20r

8ðL4 þ 3L2r20 þ r40ÞÞ: ð4:36Þ

The asymptotic expansion of the dilaton field near the AdS
boundary is given by

ϕðrÞ ¼ φ∞ −
45γe−

3
2
φ∞ðL2 þ r2þÞ4
8L6r4þ

1

r4
þO

�
1

r6

�
: ð4:37Þ

Following [44,45] we find the expectation value of the
corresponding boundary operator O4 is given by

hÔ4i ¼ 4φ1 ¼ −
45γe−

3
2
φ∞ðL2 þ r2þÞ4
2L6r4þ

: ð4:38Þ

From the asymptotic expansion of the metric one can
easily show that unlike four- and six-derivative cases, the
AdS radius L does not receive any higher derivative
correction.

2. Bulk thermodynamics and the first law

Using the Euclidean technique (4.14) one can correct the
higher derivative correction to the black hole temperature,
and it is given by [also using the relation (4.27)]

Tc¼
L2þ2r2þ
2πL2rþ

�
1−

5ζð3Þe−3
2
φ∞ðL2−3r2þÞðL2þr2þÞ3ðα0Þ3
4L6r6þðL2þ2r2þÞ

�
:

ð4:39Þ

Correction to the entropy can be computed using the Wald
formula or Euclidean method. The corrected entropy is
given by

Sc ¼
π2rþ3

2G

�
1þ 15ζð3Þe−3

2
φ∞ðL2 þ r2þÞ3ðα0Þ3
2L6r6þ

�
: ð4:40Þ

The ADM mass of the black hole is given by

Mc ¼
3πr2þðL2 þ r2þÞ

8GL2

�
1þ 5ζð3Þe−3

2
φ∞ðL2 þ r2þÞ2ð7L2 þ 15r2þÞðα0Þ3

8L6r6þ

�
: ð4:41Þ
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In the presence of moduli the first law of the black hole
changes [46]. Including the variation of φ∞ in the first law
we find that

dMc¼
Tc

4G
dAcþ

Θc

8πG
dΛc−

Mc

G
dGþUα0dðα0Þ3þμφdφ∞;

ð4:42Þ

where

Θc ¼ −
π2r4þ
2

−
15π2ζð3Þe−3

2
φ∞ðL2 þ r2þÞ3ðα0Þ3
4L6r2þ

; ð4:43Þ

Uα0 ¼ −
15πζð3Þe−3

2
φ∞ðL2 þ r2þÞ4

64GL8r4þ
; ð4:44Þ

μφ ¼
�
∂Mc

∂φ∞

�
¼ −

π

8GL2
hÔ4i; ð4:45Þ

and these thermodynamics quantities satisfy the Smarr
relation

Mc ¼
3

2
TcSc þ

Θc

8πG
Λc þ 3

Uα0

G
ðα0Þ3: ð4:46Þ

3. Boundary thermodynamics

The dilaton couples to the bulk operator 1
g2YM

TrF2. We
define a variable

ψ ¼ e−φ∞ ð4:47Þ

and use the holographic dictionary

α0 ∼
L2ffiffiffi
λ

p ; λ ∼
L3=2eφ∞ffiffiffiffi

G
p ; and c ¼ cþ ∼

L3

G
ð4:48Þ

to replace variations of α0, φ∞, and G in terms of the
variation of cþ and ψ in the bulk first law (4.42) to obtain
the same in terms of boundary parameters

dEc ¼ dMc ¼ TcdSc −
Mc

3

dL3
c

L3
c
þ μcdc − μψdψ ; ð4:49Þ

where Lc ¼ L and

μc ¼
16π2r2þðL2 − r2þÞ

L5

þ 5π2ζð3Þe−3φ=2ð13L2 − 51r2þÞðL2 þ r2þÞ3ðα0Þ3
2L11r4þ

;

μψ ¼ −
2μφ
ψ

: ð4:50Þ

Here we see that the pressure satisfies the equation of state
Ec ¼ 3pV. The chemical potentials μc and μψ satisfy the
Euler equation

Ec ¼ TcSc þ μccþ
1

4
μψψ : ð4:51Þ

V. SUMMARY AND DISCUSSION

In this paper we consider string theory corrections to
black hole thermodynamics in AdS space and its consis-
tency with the thermodynamics of the boundary theory in
the context of the AdS/CFT correspondence. Since the
higher derivative terms are low energy effects of some bona
fide string theories, their couplings are also fixed. The only
parameter that appears in the bulk action with these higher
derivative terms is α0. From the AdS/CFT dictionary we see
that a variation of Λ induces a variation in the ’t Hooft
coupling λ, apart from variations in color N and boundary
volume V. Therefore, to disentangle the λ variation from
that of N and V we allow the parameter α0 to vary in the
bulk along with L and G as a bookkeeping device. This
allows us to establish the equivalence between the bulk and
boundary thermodynamics. We consider two types of
examples. In the first type we added pure metric higher
derivative terms in the action (for example, four- and six-
derivative terms). In the presence of such terms we include
the variation of α0 in the bulk first law and show that trading
the variations of G and α0 with the variations of cþ and c−,
where c� ¼ ðc� aÞ=2, the bulk first law can be beautifully
interpreted as the boundary first law which is written in
terms of variations of c�. As a result, the boundary theory is
endowed with two chemical potentials μ� (corresponding
to c�), and they satisfy the generalized Euler relation
(1.11). In the second example we considered an eight-
derivative term in the bulk Lagrangian coming from the
superstring theory. In this case the term is coupled with the
dilaton. In the leading case the dilaton solution is constant,
and we see that the effective five-dimensional bulk first law
is the same as before. In the presence of the higher
derivative term the dilaton solution is modified, and it
turns out that the dilaton sources an expectation value of a
dimension-four operator, namely TrF2, and the expectation
value is ∼α03. In this case we trade theG and α0 variations in
the bulk with the variations of c and the asymptotic value of
the dilaton, which acts as a source for the TrF2 operator,
and we write the boundary first law in terms of their
variations. Again the boundary theory is endowed with two
chemical potential μc, which corresponds to c, and μφ,
proportional to hTrF2i, which corresponds to φ∞. These
two chemical potentials satisfy the generalized Euler
relation (4.51).
The phase structure of AdS black holes in higher

derivative gravity is endowed with an extra chemical
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potential, and hence the dimension of the thermodynamic
phase will increase. In this paper we study the thermody-
namics perturbatively; however, it would be interesting to
study the black hole phase structure in the presence of the
extra parameter, even perturbatively. It would also be
interesting to find an effective van der Waals–type descrip-
tion (following [47]) of higher derivative black holes and
understand the effect of the central charges on the mean-
field potential.
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APPENDIX A: EOM’s FOR FOUR-DERIVATIVE
AND SIX-DERIVATIVE TERMS

Here we present the expressions for Tð4Þ
ab and Tð6Þ

ab that
appear in the equations of motion (4.7) in the presence of
four- and six-derivative terms.
The contribution from the four-derivative term, i.e.,

RαβγδRαβγδ, is given by

Tð4Þ
αβ ¼ β2

16πG

�
4RγδRαγβδ þ 2Rα

γδζRβγδζ − 4Rα
γRβγ

−
1

2
gαβRγδζλRγδζλ − 2∇β∇αRþ 4□Rαβ

�
; ðA1Þ

and the same for the six-derivative terms is given by

Tð6Þ
αβ ¼ 1

16πG
ðTðaÞ

αβ þ TðbÞ
αβÞ; ðA2Þ

where

TðaÞ
αβ ¼ α1

�
6Rγδð2Rα

ζ
γ
λRβδζλ þ Rαγ

ζλðRβδζλ þ 2RβζδλÞÞ − 6RðαjγRjβÞδζλRγζδλ − 3Rα
γδζðRβ

μ
γ
νRδζμν þ 4Rβ

μ
δ
νRγμζνÞ

þ 3

2
Rα

γδζRβ½γjμνRjδ�ζμν −
1

2
gαβI1 þ 6∇δRα

γ∇½δjRβjγ� þ 6Rðαjδγζ∇ζ∇δRjβÞγ þ 6∇γRβλδζ∇λRα
γδζ

�
ðA3Þ

and

TðbÞ
αβ ¼ α2

2
ð6Rγδð−Rγ

ζRαδβζ − Rα
ζ
γ
λRβλδζ þ Rα

ζ
β
λRγζδλÞ þ 9Rα

γδζRβδ
μνRγμζν þ 3Rα

γδζRβ
μ
δ
νRγðμjζjνÞ þ 3Rα

γδζRβ
λ
γ
λ1Rδλζλ1

− gαβI2 − 3∇αRγδ∇½βjRγjδ� þ 3∇δRα
γ∇ðβjRγjδÞ − 3Rαγβδ∇δ∇γRþ 3Rðαjγδζ∇ζ∇jβÞRγδ þ 6Rαγβδ□Rγδ

− 3∇δRαðγjβjζÞ∇ζRγδ þ 12∇ζRαγβδ∇ζRγδ − 3Rðαjγδζ∇ζ∇δRjβÞγ þ 6Rγδζλ∇λ∇δRαγβζ − 6∇ζRβδγλ∇λRα
γδζÞ: ðA4Þ

APPENDIX B: α0 CORRECTED METRIC

In this appendix we present the higher derivative
corrected metric in the presence of generic four- and six-
derivative terms. Although in our calculations in the main
text only three unambiguous terms are turned on, in general

one can study black hole thermodynamics in the presence
of these generic terms. Therefore, it will be helpful to find
the perturbative metric up to Oðα02Þ in the presence of all
these terms.
Einstein-Hilbert action with negative cosmological con-

stant and generic four-derivative and six-derivative terms is
given by

I ¼ 1

16πG

Z
d5x

ffiffiffiffiffiffi
−g

p fR − 2Λþ α0ðβ1R2 þ β2RμνρσRμνρσ þ β3RμνRμνÞ þ α02ðα1Rμν
αβRαβ

λρRλρ
μν þ α2Rμν

ρσRρτ
λμRσ

τ
λ
ν

þ α3RμαβγRν
αβγRμν þ α4RRμνρσRμνρσ þ α5RμνρλRνλRμρ þ α6RμνRνλRμ

λ þ α7RμνD2Rμν

þ α8RRμνRμν þ α9R3 þ α10RD2RÞg: ðB1Þ
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With the metric ansatz (4.8), the higher derivative corrected metric solution for action (B1) is given by

fðrÞ¼1þ r2

L2
−
r20
r2
þðα0=L2Þ

3L2r6
ð6β2L4r40þ2ð10β1þβ2þ2β3Þr8Þ−

ðα0=L2Þ2
9L2r10

½72L6r60ðα1þ2α2−2α3−12α4þβ2ð8β1−7β2ÞÞ
−18L6r40r

2ð36α1þ9α2−24α4−16β2ð−β1þ5β2þβ3ÞÞ−9L4r40r
4ð132α1þ27α2þ8α3−40α4

þ8β2ð10β1−33β2−6β3ÞÞ−r12ð3ð4α1þ3α2þ8α3þ40α4þ16α5þ16α6þ80α8þ400α9Þþ8ð10β1þβ2þ2β3Þ2Þ�
ðB2Þ

and

gðrÞ ¼ 1þ r2

L2
−
r20
r2

þ ðα0=L2Þ
3L2r6

ð6β2L6r40 þ 2ð10β1 þ β2 þ 2β3ÞL2r8Þ

þ ðα0=L2Þ2
9L2r10

½144L6r40r
2ð24α1 þ 7α3 þ 24α4 − 4β2ð4β1 þ 8β2 þ 3β3ÞÞ

þ 18L6r60ð−160α1 þ α2 − 48α3 − 168α4 þ 4β2ð28β1 þ 51β2 þ 20β3ÞÞ
þ 9L4r40r

4ð444α1 þ 9α2 þ 120α3 þ 392α4 − 8β2ð26β1 þ 77β2 þ 26β3ÞÞ
þ r12ð12α1 þ 9α2 þ 8ð3α3 þ 15α4 þ 6α5 þ 6α6 þ 30α8 þ 150α9 þ ð10β1 þ β2 þ 2β3Þ2ÞÞ�: ðB3Þ

Here r0 is the integration constant and is related to the mass
of the black hole, and rþ is the event horizon fðrþÞ ¼ 0.
r0 ¼ 0 corresponds to the pure AdS spacetime solution.

APPENDIX C: EUCLIDEAN FORMULATION

In this appendix we give a quick review of the Euclidean
approach to calculating the total energy, entropy, and other
thermodynamic variables of the AdS black holes. We start
with the Lorentzian metric that describes pure AdS space-
time; after the Wick rotation, τ ¼ it, the metric becomes
Euclidean, i.e., positive definite, where we can construct a
thermal state in AdS space where the imaginary time
coordinate is periodic. The period of the τ direction is
mapped to the inverse temperature of thermal AdS gas. The
Euclidean metric of AdS5 is given by

ds2 ¼
�
1þ r2

L2

�
dτ2 þ dr2

ð1þ r2

L2Þ
þ r2dΩ2

3; ðC1Þ

where L is the radius of AdS space. Similarly, the
Euclidean AdS5 Schwarzschild metric is given by

ds2¼
�
1þ r2

L2
−
r20
r2

�
dτ2þ

�
1þ r2

L2
−
r20
r2

�−1
dr2þr2dΩ2

3;

ðC2Þ

where r0 is the black hole parameter related with the ADM
mass of the black hole given as M ¼ 3Ω3

16πG r
2
0. This space-

time has a horizon at r ¼ rþ, given by the relation

1þ r2þ
L2 −

r2
0

r2þ
¼ 0. The Euclidean black hole metric has a

conical singularity at r ¼ rþ unless we consider the
imaginary time direction to be periodic. This fixes the
temperature of the AdS Schwarzschild spacetime.
To discuss the thermodynamics of the black hole in the

Euclidean framework [32] we define the canonical partition
function as the functional integration of Euclidean action
IE, Z ¼ R ½Dg�e−IE . In the semiclassical limit G → 0, the
predominant contributions to the path integral come from
the classical solution. So lnZ ¼ −IOSE , where IOSE is the on-
shell action. Thus, the free energy of the system is

logZ ¼ −IE ¼ −βF; ðC3Þ

and the thermodynamical energy (or ADM mass) of the
black hole is

E ¼ −
∂ðlogZðβÞÞ

∂β
¼ ∂IE

∂β
; ðC4Þ

and the entropy is given by

S ¼ β
∂IE
∂β

− IE: ðC5Þ

However, the above thermodynamic quantities receive
divergence contributions since the black hole spacetime
has infinite volume (the integration over the radial direction
ranges to ∞). To read off the finite values of the thermo-
dynamic quantities, we subtract the contribution of
thermal AdS spacetime from the black hole as a regulari-
zation prescription. First, we evaluate the action integral for
the black hole putting a cutoff on the radial integration:
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rþ ≤ r ≤ Rc where Rc is an IR cutoff on the spacetime and
rþ is the outermost horizon. In the pure AdS spacetime the
region of integration is 0 ≤ r ≤ Rc. The important point
here is that the temperature of the pure AdS spacetime
cannot be fixed from the conical singularity of the metric as
the AdS metric is well defined everywhere between
0 ≤ r < ∞. Rather we demand that both the AdS and
black hole spacetimes have the same geometry asymptoti-
cally. This fixes the temperature of the AdS spacetime

βBH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gBHττ ðr ¼ RcÞ

q
¼ βAdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gAdSττ ðr ¼ RcÞ

q
: ðC6Þ

Via this consideration, the periodicity of the reference AdS
spacetime depends on the black hole parameters [such as
the mass and temperature ð1=βBHÞ].

1. Six-derivative gravity

Here we present the higher derivative corrected [for the
action (B1)] thermodynamic quantities using the Euclidean
method.
The temperature of the black hole can be computed from

the Euclidean metric using (4.14) where βBH is the inverse
Hawking temperature in corrected geometry,

β−1BH ¼ T ¼ 1

2πrþ
þ rþ
πL2

þ α0

L2

�
1

3πr3þL2

�
ð4ð5β1 − β2 þ β3Þr4þ − 6β2L2ðL2 þ 2r2þÞÞ

þ
�
α0

L2

�
2
�

1

18πL2r5þ

�
½12α1ð−21L6 þ 18L4r2þ þ 99L2r4þ þ 62r6þÞ þ 9α2ðL6 − 6L4r2þ − 15L2r4þ − 6r6þÞ

þ 24α3ð−3L6 þ 6L4r2þ þ 21L2r4þ þ 14r6þÞ − 24α4ð9L6 − 30L4r2þ − 87L2r4þ − 58r6þÞ
þ 32r6þð3α5 þ 3α6 þ 15α8 þ 75α9Þ þ 16β22ð36L6 þ 36L4r2þ − 39L2r4þ − 38r6þÞ þ 64r6þð5β1 þ β3Þ2
þ 16β2ð9β1L6þ9β3L6 − 18ð5β1 þ β3ÞL4r2þ − 3ð79β1 þ 23β3ÞL2r4þ − 2ð59β1 þ 19β3Þr6þÞ�: ðC7Þ

The temperature of the thermal AdS can be fixed using Eq. (C6). For a six-derivative it becomes

βAdS ¼ βBH

�
1 −

L2r0
2R4

c
−

α0

L2

�ð10β1 þ β2 þ 2β3ÞL2r0
3R4

c

�
þ ðα0=L2Þ2

18R4
c

ðL2r0ð3ð4α1 þ 3α2 þ 8α3 þ 40α4 þ 16α5 þ 16α6

þ80α8 þ 400α9Þ þ 4ð10β1 þ β2 þ 2β3Þ2ÞÞ
�
: ðC8Þ

Following the background subtraction method the regularized on-shall Euclidean action is given by

IEOS ¼ −
βBHΩ3

16πG

�
r2þ

�
1−

r2þ
L2

�
þ α0

L2

�
−10β2L2 − 8ð5β1 þ 3β2 þ β3Þr2þ þ 20

3L2
ð5β1 − β2 þ β3Þr4þ

�

þ
�
α0

L2

�
2
�
2L4

r2þ
ð16α1 − 7α2 − 8α3 þ 24α4Þ−

32L4

r2þ
β2ðβ1 þ β2 þ β3Þ−L2ð8ð5α3 − 25α4 − 16β22Þ þ 12α1 þ 51α2Þ

−
r4þ
3L2

ð268α1 þ 99α2 − 56α3 þ 88α4Þ þ
16r4þ
9L2

ð250β21 þ 11β2β1 þ 100β3β1 þ 103β22 þ 10β23 þ 31β2β3Þ

− r2þð108α1 þ 51α2 þ 56α3 − 376α4Þ−
16r2þ
3

ð50β21 þ 17β2β1 þ 20β3β1 − 63β22 þ 2β23 − 11β2β3Þ
��

: ðC9Þ
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The ADM mass of a black hole can be computed from the free energy (C3) using the definition (C4)

M ¼ 3Ω3

16πG

�
r2þ þ r4þ

L2
þ ðα0=L2Þ

3L2
ð6β2L4 − 4ð5β1 − β2 þ β3Þr2þð6L2 þ 5r2þÞÞ

þ ðα0=L2Þ2
9r2þL2

ð12α1ð48L6 þ 189L4r2þ þ 207L2r4þ þ 67r6þÞ þ 9α2ð2L6 þ 15L4r2þ

þ 45L2r4þ þ 33r6þÞ þ 24α3ð6L6 þ 21L4r2þ þ 21L2r4þ þ 7r6þÞ þ 24α4ð18L6

þ 57L4r2þ þ 45L2r4þ þ 11r6þÞ þ 48α5r4þð9L2 þ 10r2þÞ þ 48α6r4þð9L2 þ 10r2þÞ
þ 240α8ð9L2r4þ þ 10r6þÞ þ 1200α9ð9L2r4þ þ 10r6þÞ − 288β2ðβ1 þ β3ÞL6

− 32ð5β1 þ β3Þ2r4þð3L2 þ 5r2þÞ − 16β22ð54L6 þ 216L4r2þ þ 267L2r4þ þ 103r6þÞ

− 16β2ðþ72ðβ1 þ β3ÞL4r2þ þ 3ð25β1 þ 29β3ÞL2r4þ þ ð11β1 þ 31β3Þr6þÞÞ
�
: ðC10Þ

The entropy of the black hole can be computed using (C5)

S¼Ω3r3þ
4G

�
1þðα0=L2Þ

r2þ
ð12β2L2−8ð5β1−β2þβ3Þr2þÞþ

ðα0=L2Þ2
3r4þ

ð27α2ðL2þ2r2þÞ2þα1ð3L2þ2r2þÞ2þ72α3L4

þ72α4ð3L4−4L2r2þ−2r4þÞþ16ð9α5þ9α6þ45α8þ225α9Þr4þ−16β22ð27L4þ54L2r2þþ26r4þÞ−16β2ð9ðβ1þβ3ÞL4

þ18ðβ1þβ3ÞL2r2þþ4ðβ1þ2β3Þr4þÞ−32ð5β1þβ3Þ2r4þÞ
�
; ðC11Þ

and this expression is identical to what we computed from Wald’s approach. In the main text we use these expressions by
setting all the coefficients to zero except β2, α1, and α2.

2. W4 gravity

Here we present the Euclidean computation for the AdS5 black hole in type IIB string theory with theW4 term. The on-
shell action can be depicted by

IEOS ¼ βBH
πr2þðL2 − r2þÞ

8GL2

�
1þ γe−

3
2
φ∞

5ðL2 − 15r2þÞðL2 þ r2þÞ3
L6r6þðL2 − r2þÞ

�
: ðC12Þ

Thus (C3) implies the free energy of the black hole is

F ¼ πr2þðL2 − r2þÞ
8GL2

�
1þ γe−

3
2
φ∞

5ðL2 − 15r2þÞðL2 þ r2þÞ3
L6r6þðL2 − r2þÞ

�
; ðC13Þ

and the internal energy or ADM mass and the entropy of the black hole is S ¼ ∂F
∂T. The final expression is given by

∂IEOS

∂β
⇒ M ¼ 3πr2þðL2 þ r2þÞ

8GL2

�
1þ γe−

3
2
φ∞

5ðL2 þ r2þÞ2ð7L2 þ 15r2þÞ
L6r6þ

�
; ðC14Þ

β
∂IE
∂β

− IE ⇒ S ¼ π2rþ3

2G

�
1þ γe−

3
2
φ∞

60ðL2 þ r2þÞ3
L6r6þ

�
: ðC15Þ
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