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We propose a method to create a star orbiting in an asymptotically AdS spacetime using the AdS=CFT
correspondence. We demonstrate that by applying an appropriate source in the quantum field theory
defined on a 2-sphere, the localized star gradually appears in the dual asymptotically AdS geometry. Once
the star is created, the angular position can be observed from the response function. The relationship
between the parameters of the created star and those of the source is studied. We show that information
regarding the bulk geometry can be extracted from the observation of stellar motion in the bulk geometry.
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I. INTRODUCTION

Stellar motion around Sagittarius A� has been observed
for decades, and these observations provide strong evi-
dence for the existence of a black hole at the centre of our
galaxy [1]. They have also provided important information
regarding the curved spacetime around the black hole. In
this paper, we propose a method for creating a star orbiting
in an asymptotically AdS spacetime using the AdS=CFT
correspondence [2–4]. We also discuss how it is possible to
extract information about the bulk geometry from the stellar
motion. Our main target is AdS=CFT in the “bottom-up
approach,” such as the correspondence between condensed
matter systems and gravitational systems [5–9]. In many
cases, there is no concrete guiding principle for construct-
ing dual gravitational theories of condensed matter. Our
proposal provides a direct way to extract information
regarding the dual geometries of condensed matter through
experiments.
Figure 1 shows a schematic image of our setup. We

consider the pure global AdS and Schwarzschild-AdS4
(Sch-AdS4) spacetime with a spherical horizon as the
background spacetimes. These correspond to the (2þ 1)-
dimensional quantum field theory (QFT) on S2. We deal
with the bulk scalar field as the probe, which corresponds to
a scalar operatorO in the dual QFT. We regard the operator
O as the source of the bulk field. The source is localized in
S2, and its packet rotates with angular velocityΩ. It also has

frequency ω and wave number m. We demonstrate that by
tuning the parameters ðω; m;ΩÞ, a bulk star is created.
Previous studies have proposed that gravitational lensing

can be used to test the existence of a given QFT [10–13].
The Einstein ring formed by gravitational lensing provides
information about the photon sphere of the null geodesic
in dual geometry. In this paper, we propose another method
to probe dual geometry using the timelike geodesic. In
Refs. [14,15], dual operators corresponding to localized
states in the AdS bulk have been investigated. Our work
provides an explicit source function for creating similar
states through a time evolution.

II. EIKONAL APPROXIMATION
FOR MASSIVE SCALAR FIELD

We consider the Sch-AdS4 with the spherical horizon as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

FIG. 1. Schematic image of our setup.
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where fðrÞ ¼ 1þ r2 − rhð1þ r2hÞ=r in units of the AdS
radius. For rh ¼ 0, this spacetime describes the pure global
AdS. Let us consider the circular orbit of the massive particle
in this spacetime. The specific energy and angular momen-
tumof the particle aregivenby ϵ≡ −ut and j≡ uϕ, whereuμ

is the 4-velocity. The angular velocity of revolution is
Ω≡ dϕ=dt ¼ uϕ=ut. For a circular orbit with radius
r ¼ R, the parameters of the timelike geodesic (ϵ, j, Ω)
are given by the one-parameter family of R (for fixed rh) as

ϵ2 ¼ 2ðR − rhÞ2ðR2 þ rhRþ r2h þ 1Þ2
Rf2R − 3rhð1þ r2hÞÞg

;

j2 ¼ R2ð2R3 þ r3h þ rhÞ
2R − 3rhð1þ r2hÞ

; Ω2 ¼ 2R3 þ r3h þ rh
2R3

: ð2Þ

Wewill consider the creation of the massive particle (or star)
as the coherent excitation of the bulk field.
We deal with the massive scalar field in a fixed back-

ground whose Lagrangian is given by:

L ¼ −ð∂ΦÞ2 − μ2Φ2: ð3Þ

The scalar field obeys the Klein-Gordon equation
□Φ ¼ μ2Φ. Using the Eikonal approximation, we can
obtain the timelike geodesic equation from the Klein-
Gordon equation. We assume that the typical frequency
ω and mass μ of the scalar field are sufficiently large, and
that they are of the same order, ω ∼ μ ≫ 1. Substituting
ΦðxμÞ ¼ aðxμÞeiSðxμÞ into the Klein-Gordon equation and
assuming ∂μS ∼OðωÞ, we obtain

gμν∂μS∂νS ¼ −μ2 ð4Þ

as the leading-order equation for ω. Introducing the
4-velocity uμ¼∂μS=μ, we have uμuμ¼−1. Differentiating
this equation, we also obtain the geodesic equation for a
massive particle as 0 ¼ ∇ρðgμν∂μS∂νSÞ=μ2 ¼ 2uμ∇μuρ.
Thus, the relationship between the parameters of the
timelike geodesic and the massive scalar field is

ϵ ¼ −
1

μ
∂tS; j ¼ 1

μ
∂ϕS: ð5Þ

Analysis of the Eikonal approximation indicates that
massive particles should also be expressed as the localized
configuration of the massive scalar field. Our main task is
to determine the appropriate boundary condition for the
scalar field at the AdS boundary and create a particle (or
star) orbiting in AdS, as shown in Fig. 1.

III. MASSIVE SCALAR FIELD IN
ASYMPTOTICALLY AdS SPACETIMES

Near the AdS boundary r ¼ ∞, the scalar field
behaves as

Φðt; r; θ;ϕÞ ≃ J ðt; θ;ϕÞr−Δ− þ hOðt; θ;ϕÞir−Δþ ; ð6Þ

where Δ� ¼ 3=2� ν and ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þ μ2

p
. We refer to

J ðt; θ;ϕÞ and hOðt; θ;ϕÞi as the “source” and “response,”
respectively.
Caution is needed when considering the source for the

massive scalar field. For μ2 > 0, the corresponding operator
O has a conformal weight Δþ > 3, and applying the source
to such an operator corresponds to an irrelevant deforma-
tion of the dual QFT. From a gravitational point of view, if a
non-asymptotically mode is present, the energy-momentum
tensor of the scalar field diverges near the AdS boundary
and the probe approximation is no longer valid [16].
One way to avoid this problem is to introduce an explicit
cutoff at the finite radius of asymptotically AdS spacetime.
The AdS with a finite radial cutoff is considered as the
gravitational dual of the TT̄-deformed theory [17]. It has
also been considered in the context of the brane-world
holography [18]. The other way is to introduce a renorm-
alization group flow to a UV fixed point where O is
relevant. One of the simplest examples is the addition of
another scalar field ψ , which controls the mass for Φ:

L0 ¼ −ð∂ΦÞ2 − λðψÞ2Φ2 − ð∂ψÞ2 þ 2ψ2; ð7Þ

where λðψÞ is now a function of the dynamic scalar field ψ .
Because the mass square of ψ is −2, ψ behaves as ψ ∼
1=r; 1=r2 near the AdS boundary, and both modes are
normalizable. When Φ ¼ 0, we can obtain a static and
spherically symmetric profile ψ ¼ ψðrÞ by imposing only
the regularity at the horizon or center of the global AdS.
(Then, both the 1=r and 1=r2 modes are present at the AdS
boundary in general.) By carefully choosing the mass
function λðψÞ, for example, λðψÞ ¼ μ tanhðψÞ, the effective
mass for Φ can be almost constant, except for the region
near the AdS boundary. Considering the infinitesimal
perturbation of Φ, we have a scalar field whose mass
vanishes near the AdS boundary and whose energy-
momentum tensor is still finite. (The backreaction to ψ
is second-order in Φ and negligible.) Let us take the cutoff
r ¼ Λ so that

λðψÞ ¼
�
μ ðr≲ ΛÞ
0 ðr≳ ΛÞ ; ð8Þ

is satisfied. We consider only the region r≲ Λ, where the
theory is described by Eq. (3). Subsequently, the source in
Eq. (6) can be regarded as J ≃ rΔ−Φjr¼Λ. Although this J
is different from the “real” source defined in UV-complete
theory (7), J UV ¼ Φjr¼∞, we assume that they are quali-
tatively similar because Φðr ¼ ΛÞ and Φðr ¼ ∞Þ are only
related to the r evolution of the equation of motion derived
from Eq. (7). In this paper, we refer to J as the source.
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IV. MASSIVE SCALAR FIELD LOCALIZED IN
BOUNDED ORBIT

We adopt the following form of the source function:

J ðt; θ;ϕÞ ¼ J0 exp

�
−
ðt − TÞ2
2σ2t

−
ðθ − π=2Þ2

2σ2θ

−
ðϕ −ΩtÞ2

2σ2ϕ
− iωtþ imϕ

�
: ð9Þ

This function is localized in S2 at θ ¼ π=2 and ϕ ¼ Ωt,
with widths σθ and σϕ, respectively. (We take the domain of
the coordinate ϕ as −π < ϕ −Ωt ≤ π.) The center of the
localized source rotates on the equator with angular
velocityΩ. This has a wave numberm along the ϕ-direction
and oscillates over time with frequency ω. (See Fig. 1 for
the schematic picture of the source.) The source is also
localized in time at t ¼ T with width σt. We take a large σt
such that the modes with frequency ∼ω are sufficiently
excited. We take T < 0 and σt ≪ jTj such that the
application of the source has already been terminated at
t ¼ 0. J0 is the amplitude of the source; however, it is not
important in our analysis because of the linearity of the
scalar field.
There are some requirements for the parameters in

Eq. (9) to realise a localized star in the bulk. The scalar
field induced by the source (9) typically has a frequency ω
and wave number m. In addition, its angular size is
determined by σθ and σϕ. Conversely, in momentum space,
the scalar field is distributed with a width ∼1=σϕ, 1=σθ.
Therefore, the condition that the scalar field is localized in
both the real and momentum spaces is given by:

1

m
≪ σθ; σϕ ≪ 1: ð10Þ

It is also necessary that ω and μ be sufficiently large
compared with the curvature scale of the bulk geometry, so
that the Eikonal approximation is valid.
Equation (9) is regarded as the boundary condition of the

scalar field near the AdS boundary. We now explain how
this boundary condition is imposed and the equation of
motion for the scalar field is solved. If we decompose Φ as
Φ ¼ r−1

P
ω0m0l0 e

−iω0tΨω0l0m0 ðxÞYl0m0 ðθ;ϕÞ, where Yl0m0 is
the spherical harmonics, then Ψωl0m0 ðxÞ obeys the equation
in the Schrödinger form:

�
−

d2

dx2
þ VðxÞ

�
Ψω0l0m0 ðxÞ ¼ ω02Ψω0l0m0 ðxÞ; ð11Þ

VðxÞ ¼ fðrÞ
�
l0ðl0 þ 1Þ

r2
þ μ2 þ 1

r
df
dr

�
; ð12Þ

where x ¼ R
dr=fðrÞ is the tortoise coordinate. We can also

decompose the source (9) as

J ðt; θ;ϕÞ ¼
X
ω0l0m0

Jω0l0m0e−iω
0tYl0m0 ðθ;ϕÞ: ð13Þ

The coefficient Jω0l0m0 provides the boundary condition for
Ψω0l0m0 ðxÞ at the AdS boundary: Ψω0l0m0 ðxÞ → Jω0l0m0r−Δ−þ1.
For rh > 0, we impose the ingoing wave boundary con-
dition at horizonΨω0l0m0 ðxÞ ∼ e−iω

0x. For rh ¼ 0, we impose
regularity at the centre of the AdS, Ψω0l0m0 ðxÞ ∼ rl

0
. Under

these boundary conditions, Eq. (11), and superposing the
numerically obtained solutions, we obtain the scalar field in
real space Φðt; r; θ;ϕÞ. (See Appendix for details).
For source (9), the typical frequency and wave number of

the bulk scalar field are given by ω and m, respectively.
From Eq. (5), the specific energy and angular momentum
of the created star are given by

ϵ ¼ ω

μ
; j ¼ m

μ
: ð14Þ

We can expect the angular velocity of the revolution of the
star to be determined byΩ in Eq. (9). This is verified by our
numerical results. The rest mass is the energy measured by
the observer accompanying the star: ∼

R
dΣTμνuμuν, where

Tμν is the energy-momentum tensor of the scalar field andR
dΣ denotes the integral on the t ¼ const surface. This is

proportional to jJ0j2 with other parameters fixed. The
relationships between the parameters of the created star
and those of the external source are summarized in Table I.
The scalar field is localized at the local minimum of the
effective potential VðxÞ. The radial size is determined by its
curvature σx ¼ ðV;xxjlocal minÞ−1=2.
Note that Table I does not mean that a star is created for

any value of ω, m, and Ω. As in Eq. (2), ϵ, j, and Ω are
given by the one-parameter family of the radius of circular
orbit R. Hence, if we want to create a star at r ¼ R, we need
to tune ω, m, and Ω to the values obtained by these
equations and Table I.

V. RESULTS

In Fig. 2, we depict the time evolution of the scalar field
orbiting in the equatorial plane θ ¼ π=2. The parameters
used in our numerical calculation are summarized in
Table II. In addition, we set σθ¼σϕ¼0.2;T¼−20;σt¼5.
The black disks are the event horizons, and each embedded

TABLE I. Relationship between parameters of the created star
and those of the external source J ðt; θ;ϕÞ.
Physical quantities of star Parameters of source

Specific energy ω=μ
Specific angular momentum m=μ
Rest mass ∝ jJ0j2
Angular velocity of revolution Ω
Size σθ; σϕ; σx ¼ ðV;xxjlocal minÞ−1=2
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figure on the top left shows the source (9) at θ ¼ π=2 with
respect to ϕ. The scalar field accumulates at the local
minimum of the potential (12) and forms a localized wave
packet revolving anticlockwise. Using Table I, we can
estimate the specific energy ω=μ and angular momentum
m=μ of the corresponding timelike geodesic. From Eq. (5),
the radii of revolution are R ≃ 1.015, 3.07, 5.02 for
rh ¼ 0; 0.3; 1, respectively. This was consistent with the
results shown in Fig. 2 and indicates that the motion of the
created star obeys the timelike geodesic equation.
Generally, in Sch-AdS4 spacetime, the amplitude of

the scalar field decays in time because of tunneling toward
the horizon. The decay rate is characterized by the
imaginary part of the quasinormal mode frequency ωqnm.

For rh ¼ 0.3, the potential barrier is high and the decay rate
is extremely suppressed. Conversely, for rh ¼ 1.0, we have
ωqnm ≃ 215 − 0.0932i for l0 ¼ 210, and the timescale of the
decay is τdecay ¼ 10.7. This is why the scalar field decays at
a later time in the bottom line of Fig. 2]. Although we
employed modest values for ω, m and μ because of the

t=– – –30.0 t= 20.0 t= 8.0 t=0.0
A
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h
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h
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1.
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and more
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FIG. 2. Time evolution of the creation of the scalar field orbiting in AdS4 and Sch-AdS4. (Animated gifs are available in Supplemental
Material [19]).

TABLE II. Parameters for numerical calculations, where
ν2 ≡ μ2 þ 9=4.

rh ν ω m Ω ϵ ¼ ω=μ j ¼ m=μ

0 50 101.5 50 1 2.0309 1.0005
0.3 20.5 230.78 210 1.00312 11.288 10.271
1 5.5 215.19 210 1.00727 40.667 10.271

0

1x1013

2x1013

3x1013

4x1013

5x1013

6x1013

-3 -2 -1 0 1 2 3

FIG. 3. Response in Sch-AdS4 (rh ¼ 0.3; ν ¼ 20.5;M ¼ 210;
σθ ¼ σϕ ¼ 0.2; T ¼ −20; σ ¼ 5).
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limitations of computational power, in principle, we
can realise a long-lived localized scalar field by using
larger values for ω, m and μ for fixed ω=μ and m=μ. Thus,
a higher potential barrier is realized, and we have a
small decay rate. Once we obtain the star orbiting in an
asymptotically AdS spacetime, we can compute the
response function from Eq. (6). In Fig. 3, we depict the
response of θ ¼ π=2 for rh ¼ 0.3 after the star is created
t≳ 0. The response circulates on the equator, following the
orbiting scalar field. This indicates that the angular position
of the star can be observed using the response function.

VI. DISCUSSION

We demonstrated that a star orbiting in the asymptoti-
cally AdS spacetime can be created by applying the
appropriate source (9) in the dual QFT. The parameters
in the source should be tuned to create the localized star.
If the dual geometry is known, we can determine the
parameters by studying the timelike geodesic, as in Eq. (5).
However, for a real material, in general, we do not know the
dual geometry explicitly. Thus, in a real experiment, we
must tune the parametersω,m, andΩ by trial and error. The
creation of a star in the bulk is verified by the response
function, as shown in Fig. 3. Once we can create a star in
the bulk, we obtain the relationship between ϵ, m, and Ω:
j ¼ jðϵÞ and Ω ¼ ΩðϵÞ. This provides information regard-
ing the geometry of the AdS bulk.
In this paper, only a circular orbit was considered: the

scalar field was radially localized at the local minimum of
the potential (12). The noncircular orbit is the coherent
excitation around the local minimum. Such a bulk coherent
state can be realized by varying J0 in time in the source (9).
Observing the star in the noncircular orbit through the
response function, we can obtain information about a wider
region of the bulk geometry.
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APPENDIX: HOW TO FIND THE SOURCE TO
CREATE THE STAR IN THE BULK

In this appendix, we provide a practical way to find the
boundary condition for the scalar field to create a star
orbiting in asymptotically AdS spacetime. We also describe
the numerical method used to determine the time evolution
of the scalar field for a given boundary condition.

1. Klein-Gordon equation in Schwarzschild-AdS4

We consider the Klein-Gordon equation □Φ ¼ μ2Φ in
Schwarzschild-AdS4 with a spherical horizon:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ðA1Þ

where fðrÞ ¼ 1þ r2 − rhð1þ r2hÞ=r is the AdS radius and
rh is the horizon radius. Our main goal is to create a
localized profile of the scalar field, which is orbiting in the
AdS spacetime.
Decomposing the scalar field by spherical harmonics as

Φðt; r; θ;ϕÞ ¼ r−1Ψl0m0 ðt; rÞYl0m0 ðθ;ϕÞ, we obtain the wave
equation in two dimensions as

ð−∂2t þ ∂
2
x − Vl0 ðxÞÞΨl0m0 ðt; rÞ ¼ 0; ðA2Þ

where

x≡
Z

r

r0

dr0

fðr0Þ ; ðA3Þ

is a tortoise coordinate system. We consider r0 ¼ 0 and
r0 ¼ ∞ for rh ¼ 0 and rh > 0, respectively. The effective
potential is given by

Vl0 ðxÞ ¼ fðrÞ
�
l0ðl0 þ 1Þ

r2
þ μ2 þ 1

r
df
dr

�
: ðA4Þ

Near the AdS boundary r ¼ ∞, the scalar field behaves as

r−1Ψl0m0 ðt; rÞ ≃ Jl0m0 ðtÞr−Δ− þ hOl0m0 ðtÞir−Δþ ; ðA5Þ

where Δ� ¼ 3=2� ν and ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þ μ2

p
. The typical

profile of the effective potential is shown in Fig. 4. For
appropriate parameters, the potential has a local minimum.
The radially localized solution at the local minimum is
given by the fundamental quasinormal mode, which is
shown in Fig. 4. Our first task is to dynamically create this

V
QNM

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

r

n= =200

n= =210

n=

0,

0,

0,

l

l

l =220

l

FIG. 4. Effective potentials of the scalar field in Sch-AdS4.
The parameters are rh¼0.3;ν¼20.5;n¼0;l0¼200;210;220. The
fundamental quasi-normal mode is localized at the local mini-
mum potential.
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localized quasinormal mode by choosing the source
Jl0m0 ðtÞ.

2. Toy example: String vibration

Let us consider string vibration as a toy example. Our
setup is illustrated in Fig. 5: the string is initially static, and
we can shake the endpoint of the string as desired. How
should we shake the endpoint to realize a single normal
mode at a later time? This is a good exercise to understand
the problem raised in the previous section.
The amplitude of the string oscillation obeys an ordinary

wave equation:

ð−∂2t þ ∂
2
xÞΨðt; xÞ ¼ 0: ðA6Þ

We take its domain as 0 ≤ x ≤ π and impose the Dirichlet
boundary conditions

Ψðt; x ¼ 0Þ ¼ 0; Ψðt; x ¼ πÞ ¼ JðtÞ: ðA7Þ

We assume that the endpoint is not shaken sufficiently early
or late: JðtÞ → 0, for t → �∞. As the initial condition, we
impose

Ψðt; xÞjt→−∞ ¼ 0: ðA8Þ

In the case of JðtÞ ¼ 0, we have normal modes

Ψnðt; xÞ ¼ e−int sin nx; ðA9Þ

whose eigenfrequencies are ωn ¼ n for n ¼ 1; 2; 3;…. Let
us seek function JðtÞ to realize Ψnðt; xÞ at a sufficiently
late time.
We can express the general solution of Eq. (A6) as

Ψðt; xÞ ¼
Z

∞

−∞

dω
2π

CðωÞe−iωt sinωx; ðA10Þ

This satisfies Ψðt; x ¼ 0Þ ¼ 0 trivially. Applying the
Fourier transformation to the boundary condition of the
other side, Ψðt; x ¼ πÞ ¼ JðtÞ, we obtain:

CðωÞ ¼ J̃ðωÞ
sin πω

; ðA11Þ

where J̃ðωÞ is the Fourier transformation of JðtÞ, i.e.,

J̃ðωÞ≡
Z

∞

−∞
dt0Jðt0Þeiωt0 : ðA12Þ

Thus, we find the solution of the wave equation satisfying
Eq. (A7) as

Ψðt; xÞ ¼
Z

∞

−∞

dω
2π

J̃ðωÞ
sin πω

e−iωt sinωx: ðA13Þ

Note that the integrand has an infinite number of poles at
normal mode frequencies ω ¼ n. We consider the integral
contour that passes through the upper side of the poles (See
Fig. 6.) This contour corresponds to the initial condition
(A8), as we will see shortly.
Substituting Eq. (A12) into Eq. (A13), we obtain

Ψðt; xÞ ¼
Z

∞

−∞
dt0Jðt0Þ

Z
∞

−∞

dω
2π

sinωx
sin πω

e−iωðt−t0Þ: ðA14Þ

We used the closed contour for the ω-integration as in
Fig. 6. For t − t0 > 0 and t − t0 < 0, we employ the lower
and upper semicircles, respectively, to make the contribu-
tion from the circular contours equal to zero. The con-
tribution from the infinite poles leads to

Ψðt; xÞ ¼ −
i
π

Z
t

−∞
dt0Jðt0Þ

X∞
n0¼−∞

ð−1Þn0 sin n0xe−in0ðt−t0Þ:

ðA15Þ

In this expression, the initial condition (A8) is apparently
satisfied. If we use an integral contour passing the lower
sides of some poles, we obtain the contribution of the poles,
even at t ¼ −∞. For a sufficiently late time t → ∞, the
solution is given as

FIG. 5. Illustration of our toy example. FIG. 6. Contour of the ω integration in Eq. (A14).
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Ψðt; xÞ ≃ −
i
π

X∞
n0¼−∞

ð−1Þn0 J̃ðn0Þe−in0t sin n0x; ðA16Þ

where we used Eq. (A12). If J̃ðωÞ is a localized function at
ω ¼ n, we can realize the single nth normal mode at a later
time. Such a localized function in the frequency domain can
be realized by the Gaussian:

JðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2t

p exp

�
−
ðt − TÞ2
2σ2t

− int

�
; ðA17Þ

J̃ðωÞ ¼ exp

�
−
σ2t
2
ðω − nÞ2 þ iðω − nÞT

�
: ðA18Þ

where σt and T are the width and center of the Gaussian,
respectively, in the time domain. For σt ≫ 1, we obtain the
single nth normal mode at a later time. We take the
parameters T < 0 and 1 ≪ σt ≪ jTj such that the source
is already negligible at t ¼ 0. Figure 7 shows the source
function for T ¼ −20, σt ¼ 5, and n ¼ 2.

3. How to excite a single (quasi) normal mode
in the asymptotically AdS spacetime

We apply the above argument to the scalar field in
asymptotically AdS spacetime. The general solution of
Eq. (A2) is given by

Ψl0m0 ðt; xÞ ¼
Z

∞

−∞

dω
2π

Cl0m0 ðωÞFl0 ðω; xÞe−iωt; ðA19Þ

where Fl0 ðω; xÞ is the solution of

ð∂2x − Vl0 ðxÞ þ ω2ÞFl0 ðω; xÞ ¼ 0: ðA20Þ

Note that Fl0 ðω; xÞ does not depend on m0 because the
above equation does not contain m0. At the horizon or the
centre of the global AdS, we impose

Fl0 ðω; xÞ ∼
�
e−iωx ðrh > 0Þ
rl

0 ðrh ¼ 0Þ ; ðr → rhÞ: ðA21Þ

Because of the linearity of the equation, there is ambiguity
in choosing the overall factor of Fl0 ðω; xÞ. Here, we require

Fl0 ðω; xÞ ≃ r−Δ−þ1; ðr → ∞Þ; ðA22Þ

i.e., the coefficient of the divergent part at the AdS boundary
is tuned to 1. Note that at (quasi) normal frequencies,
ω ¼ ωnl0 , where ωnl0 denotes the nth (quasi) normal mode
frequency with angular momentum l0.Fl0 ðω; xÞ is ill-defined
because the (quasi) normal modes decay as ∼r−Δþþ1 at
infinity. For pure AdS rh ¼ 0, ωnl0 is located on the real axis
of the complexωplane. For rh > 0, however, it is in the lower
half-plane. Because the potential barrier near the horizon
becomes sufficiently high for large μ and l0, the decay rate (or
tunnelling rate toward the horizon) of the quasinormal mode,
Im½ωnl0 � is typically small in our computations. (For example,
we have jIm½ωnl0 �j < 10−16 for the quasinormalmode shown
in Fig. 4.)
For the pure AdS spacetime rh ¼ 0, we obtain the exact

solution as

Fl0 ðω; xÞ ¼
Γðγ − αÞΓðγ − βÞ
ΓðγÞΓðγ − α − βÞ
× cos−νþ1=2xsinlþ1x2F1½α; β; γ; sin2x� ðA23Þ

where x ¼ arctanðrÞ and

α ¼ 1

2

�
ωþ l − νþ 3

2

�
;

β ¼ 1

2

�
−ωþ l − νþ 3

2

�
; γ ¼ lþ 3

2
: ðA24Þ

Γ and 2F1 are the gamma function and the Gaussian hyper-
geometric function, respectively. Then, Fl0 ðω; xÞ has poles
at the normal frequencies ω ¼ ωnl0 ¼ 2nþ l0 þ νþ 3=2.
For rh > 0, numerical integration is required to deter-
mine Fl0 ðω; xÞ.
Applying the Fourier transformation to the boundary

condition r−1Ψðt; xÞjr→∞ ¼ Jl0m0 ðtÞr−Δ− , we obtain
Cl0m0 ðωÞ ¼ J̃l0m0 ðωÞ, and the general solution is written as

Ψl0m0 ðt; xÞ ¼
Z

∞

−∞

dω
2π

J̃l0m0 ðωÞFl0 ðω; xÞe−iωt; ðA25Þ

where

J̃l0m0 ðωÞ≡
Z

∞

−∞
dt0Jl0m0 ðt0Þeiωt0 : ðA26Þ

Again, note that the integral contour should pass the
upper side of the poles for the initial condition

Re

Im

−40 −30 −20 −10 0 10 20

−0.05

0.00

0.05

t

J(
t)

FIG. 7. Time dependence of the source JðtÞ.
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Ψl0m0 ðt;xÞjt→−∞¼0. Substituting Eq. (A26) into Eqs. (A25)
and taking the consistent closed contour for the ω integra-
tion in a manner similar to Fig. 6, we obtain

Ψl0m0 ðt; xÞ ¼
Z

t

−∞
dt0Jl0m0 ðt0Þ

X
n0
qn0l0 ðxÞe−iωn0 l0 ðt−t0Þ: ðA27Þ

where

qnl0 ðxÞ≡ −iðω − ωnl0 ÞFl0 ðω; xÞjω→ωnl0
; ðA28Þ

is the quasinormal mode function. For a sufficiently late
time, this solution becomes

Ψl0m0 ðt; xÞ ¼
X
n0
J̃l0m0 ðωn0l0 Þqn0l0 ðxÞe−iωn0 l0 t: ðA29Þ

Thus, if J̃l0m0 ðωÞ is localized at the (quasi) normal fre-
quency, we have a single (quasi) normal mode later. This
situation is realized by

Jl0m0 ðtÞ ¼ Al0m0ffiffiffiffiffiffiffiffiffiffi
2πσ2t

p exp

�
−
ðt − TÞ2
2σ2t

− iωnl0t

�
; ðA30Þ

J̃l0m0 ðωÞ ¼ Al0m0 exp

�
−
σ2t
2
ðω − ωnl0 Þ2 þ iðω − ωnl0 ÞT

�
;

ðA31Þ
where Al0m0 is a complex constant.
Let us denote x ¼ x0, at which jqnlðxÞj takes the

maximum value. We choose the overall constant of the
source as [20]

Al0m0 ¼ 1

qn0l0 ðx0Þ
: ðA32Þ

Then, for a sufficiently large σt, Eq. (A29) becomes

Ψl0m0 ðt; xÞ ≃Qn0l0 ðxÞe−iωn0 l0 t; ðA33Þ

where

Qn0l0 ðxÞ ¼
qn0l0 ðxÞ
qn0l0 ðx0Þ

: ðA34Þ

This is the quasi-normal mode function, which is normal-
ized such that its peak is equal to 1, as shown in Fig. 4.

4. Numerical method for time evolution

In Sec. A 3, we found that the single (quasi) normal
mode is created by the source (A30) and (A31). Numerical
calculations are necessary to determine the time evolution
of the scalar field at intermediate times. In our numerical
calculation, we evaluate the ω-integral of Eq. (A25).
(Although Eq. (A27) is an equivalent expression, we
find that the convergence of summation n0 is slow, and
Eq. (A25) is better for numerical calculations.) Hereafter,
we focus only on the creation of the fundamental tone

n ¼ 0. For notational simplicity, we omit the index “0” for
the fundamental tone, as

ω0l0 ¼ ωl0 ; q0l0 ðxÞ ¼ ql0 ðxÞ; Q0l0 ðxÞ ¼ Ql0 ðxÞ: ðA35Þ

Substituting the explicit expression of the source (A31) into
Eq. (A25) and completing the square with respect to ω in
the exponent, we obtain:

Ψl0m0 ðt; xÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2πσ2t

q
Jl0m0 ðtÞ

Z
∞

−∞

dω
2π

e−
σ2t
2
ðω−ωl0þiτÞ2Fl0 ðω; xÞ;

ðA36Þ

where

τ≡ t − T
σ2t

: ðA37Þ

After completing the square, the remaining terms are
gathered outside the integral and can be written simply
by the source in the time domain (A30). The contour in this
integral is on the real axis of the complex ω plane.
However, this contour is unsuitable for actual numerical
integration. The integrand is proportional to

e−
σ2t
2
z2e−iðt−TÞðω−ωl0 ÞFl0 ðω; xÞ: ðA38Þ

When jt − Tj is large, this integrand quickly oscillates as a
function of ω, and the numerical integration loses its
accuracy. In addition, Fl0 ðω; xÞ changes rapidly when ω
is close to the (quasi) normal frequency. (Note that the
imaginary part of the quasi-normal frequency is typically
very small, even for rh > 0.) It is possible to suppress the
oscillation of the integrand by changing the contour to pass
through the saddle point of the exponential factor ω ¼
sþ ωl0 − iτ (−∞ < s < ∞). However, when jτj is small,
this contour passes near the poles of Fl0 ðω; xÞ. Hence, we
slightly modify the contour for a small jτj as

ω − ωl0 ¼
�
s − iτ for jt − Tj > Δt
s − iΔt=σ2t for jt − Tj ≤ Δt

; ðA39Þ

where s is the parameter of the contour integration andΔt is
an artificial parameter for the period to avoid poles. (In our
numerical calculation, we used Δt ¼ σt.) In Fig. 8, we
show the time-dependent integral contour in the complex
plane of ω − ωl0 . The red and blue crosses are the poles of
the fundamental tone and the overtones, respectively, which
exist on or below the real axis. When jt − Tj > Δt, the
contour passes the saddle point depicted by the green dot,
as shown in the left and right figures, respectively. In the
middle figure, we show the contours for jt − Tj ≤ Δt. The
contour is given by a fixed path to avoid poles and does not
pass through the saddle point, which is depicted by a
dashed line. We should add the contributions of the poles
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when −Δt ≤ t − T, because the contour goes under the
poles. From Eq. (A25), the contribution of the poles is

Ψpole
l0m0 ðt; xÞ ¼

X
n0
J̃l0m0 ðωn0l0 Þqn0l0 ðxÞe−iωn0 l0 t

≃ J̃l0m0 ðωl0 Þql0 ðxÞe−iωl0 t

≃Ql0 ðxÞe−iωl0 t; ðA40Þ

where ql0 ðxÞ and Ql0 ðxÞ are the (quasi) normal-mode
functions defined in Eqs. (A28) and (A34). At the second
equality, we neglect the poles of the overtone modes
because they are suppressed by J̃l0m0 ðωÞ. For the final
equality, we used Eqs. (A31) and (A32), respectively. In
summary, the expression of the scalar field suitable for
numerical evaluation is given by

Ψl0m0 ðt; xÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2πσ2t

q
Jl0m0 ðtÞ

Z
Ct

dω
2π

e−
σ2t
2
ðω−ωl0þiτÞ2Fl0 ðω; xÞ

þQl0 ðxÞe−iωl0 tθðt − T þ ΔtÞ; ðA41Þ

where Ct denotes the contour in Eq. (A39) and θ is a step
function.
We consider discrete points on the contour parameters

as s ¼ sk ≡ −5=σt þ kΔs, where Δs ¼ 0.1=σt and k ¼ 0;
1;…; 100. For each sk, the complex value of ω ¼ ωk is
determined using Eq. (A39). For ω ¼ ωk, we integrate
Eq. (A20) from the horizon (x ¼ xmin ≃ −3) to infinity
(x ¼ xmax ≃ −0.01), using the 4th-order Runge-Kutta
method. (For rh ¼ 0, we have the exact solution (A23).)
We obtain a trial solutionFtrial

l0 ðω; xÞ by setting the boundary
conditions toFtrial

l0 ðω; xminÞ ¼ 1 and ∂xFtrial
l0 ðω; xminÞ ¼−iω.

From the asymptotic behavior of the trial solution,
Ftrial
l0 ðω; xminÞ ≃ jl0 ðωÞr−Δ−þ1, we obtain the coefficient of

the divergent term jlðωÞ. Subsequently, the solution that
satisfies Eq. (A22) is given by Fl0 ðω; xÞ ¼ Ftrial

l0 ðω; xÞ=
jl0 ðωÞ. We perform the integral in Eq. (A41) using the
trapezoidal rule.
To obtain the quasinormal mode function, we tune ω

using the shooting method such that the solution decays at
infinity, i.e., jðωÞ ¼ 0. We then obtain the quasinormal

frequency as ω ¼ ωl0 and mode function Ftrial
l0 ðωl0 ; xÞ.

The overall factor of Ftrial
l0 ðωl0 ; xÞ differs from that of

ql0 ðxÞ defined in Eq. (A28). Their relationship is given by:

qnl0 ðxÞ ¼ −i
ω − ωl0

jðωÞ Ftrial
l0 ðω; xÞ

����
ω→ωl0

¼ −
i

jl00 ðωl0 Þ
Ftrial
l0 ðωl0 ; xÞ; ðA42Þ

where j0l0 ðωÞ¼djl0 ðωÞ=dω.We evaluate j0l0 ðωÞ using numeri-
cal differentiation, j0l0 ðωl0 Þ ≃ ðjl0 ðωl0 þ hÞ − jl0 ðωl0 − hÞÞ=
ð2hÞ (h ≃ 0.01).
Figure 9 shows the time evolution of Ψl0m0 ðt; xÞ for

rh ¼ 0.3, ν ¼ 20.5 and l0 ¼ 210. The quasinormal mode is
created at a late time.

5. Orbiting scalar field solution

In the previous sections, we explained the method
for constructing a single (quasi) normal mode using the
boundary condition of the scalar field for fixed l0 and m0.
The scalar field in the coordinate space is written using
their superposition:

FIG. 8. Time dependence of integral contour.
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FIG. 9. Creation of the single quasi-normal mode using the
source (A30). The parameters are rh ¼ 0.3, ν ¼ 20.5, and
l0 ¼ 210.
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Ψðt;r;θ;ϕÞ≡rΦðt;r;θ;ϕÞ¼
X
l0m0

cl0m0Ψl0m0 ðt;xÞYl0m0 ðθ;ϕÞ;

ðA43Þ

where cl0m0 are arbitrary constants. Then, for a sufficiently
long time, source (A30) is sufficiently small, andΨl0m0 ðt; xÞ
is approximated by Eq. (A33). Therefore, we have

Ψðt; r; θ;ϕÞ ≃
X
l0m0

cl0m0e−iωl0 tQl0 ðxÞYl0m0 ðθ;ϕÞ: ðA44Þ

This expression is not functionally complete, as only
fundamental tones are included. Let us choose constants
cl0m0 so that the scalar field is localized on the 3-dimen-
sional timeslice at a later time and orbits in the ϕ direction
with an angular velocity Ω. Such a configuration of the
scalar field is given by

Ψðt; r; θ;ϕÞ ¼ e−iωmtQmðxÞ

× exp

�
−
ðθ − π=2Þ2

2σ2θ
−
ðϕ − ΩtÞ2

2σ2ϕ
þ imϕ

�
;

ðA45Þ

which is localized at θ ¼ π=2 and ϕ ¼ Ωt, with widths
σθ and σϕ. (We take the domain of the coordinate ϕ as
−π < ϕ −Ωt ≤ π.) We multiply eimϕ by the Gaussian,
which gives momentum m to the scalar field: L̂zΨðt ¼ 0;
r; θ;ϕÞ ≃mΨðt ¼ 0; r; θ;ϕÞ, where L̂z ≡ −i∂ϕ denotes the
angular momentum operator. For parameters σθ, σϕ and m,
we require

1

m
≪ σθ; σϕ ≪ 1; ðA46Þ

to localize the scalar field in both position and momentum
space. The angular velocity Ω will be determined later.
We now introduce ϕt ≡ ϕ −Ωt. Then, (A44) can be

rewritten as follows:X
l0m0

cl0m0e−iωl0 tQl0 ðxÞYl0m0 ðθ;ϕÞ

¼
X
l0m0

cl0m0e−iðωl0−m
0ΩÞtQl0 ðxÞYl0m0 ðθ;ϕtÞ; ðA47Þ

and Eq. (A45) is rewritten as

Ψðt; r; θ;ϕÞ ¼ e−iðωm−mΩÞtQmðxÞgðθ;ϕtÞ; ðA48Þ

gðθ;ϕÞ≡ exp

�
−
ðθ − π=2Þ2

2σ2θ
−

ϕ2

2σ2ϕ
þ imϕ

�
: ðA49Þ

From Eqs. (A47) and (A48), the equation to determine
cl0m0 is

cl0m0Ql0 ðxÞe−iðωl0−m
0ΩÞt ≃ hYl0m0 jgiQmðxÞe−iðωm−mΩÞt;

ðA50Þ

where hf1jf2i≡ R
dΩf�1ðθ;ϕÞf2ðθ;ϕÞ. As we will see

shortly, this equation is approximately satisfied, even though
Eq. (A47) is not complete. Because of the condition σθ,
σϕ ≪ 1, the inner product hYl0m0 jgi is explicitly calculated as
follows. When l0 −m0 is an even number, we obtain [21]

hYl0m0 jgi ≃ σθσϕð−Þl
0þm0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2l0 þ 1Þ ðl

0 − jm0jÞ!
ðl0 þ jm0jÞ!

s

×
ðl0 þ jm0j − 1Þ!!
ðl0 − jm0jÞ!! exp

�
−
σ2ϕ
2
ðm0 −mÞ2

−
σ2θ
2

�
l0ðl0 þ 1Þ −m02 þ 1

2

��
: ðA51Þ

When l0 −m0 is an odd number, we have hYl0m0 jgi ¼ 0. This
is non-negligible only when l0 ∼m0 ∼m. The widths are
given by

Δm0 ≡ jm0 −mj ≃ 1

σϕ
≪ m; ðA52Þ

Δl0 ≡ jl0 −m0j ≃ 1

σ2θm
≪ m; ðA53Þ

where inequalities follow from Eq. (A46). We will further
require

1

σ2θm
≲ 1: ðA54Þ

Wewill see that this condition is necessary so that the scalar
field is localized for sufficiently long time. (Parameters used
in the main text satisfy this condition.) Under this condition,
we have

jl0 −mj ≃ 1

σϕ
: ðA55Þ

Our choice of cl0m0 is

cl0m0 ¼ hYl0m0 jgi: ðA56Þ

In this choice, we can approximate Ql0 ðxÞ ≃QmðxÞ in
Eq. (A50) since cl0m0 is localized at l0 ∼m. We can explicitly
verify that Ql0 ðxÞ does not radically depend on l0 in Fig. 4.
Equation (A50) also requires that the phase factors be appro-
ximately equal for a long time T 0, i.e., e−iðωl0−m

0ΩÞT 0≃
e−iðωm−mΩÞT 0

. Taking the time as the period of the orbital
motion, T 0 ¼ 1=Ω, we can write this condition as
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1

Ω
jðωl0 − ωmÞ − ðm0 −mÞΩj

≃
����ðl0 −mÞ 1

Ω

�
∂ωl0

∂l0

�
l0¼m

− ðm0 −mÞ
����≲ 1: ðA57Þ

Typically, jm0 −mj and jl0 −mj are much larger than 1
as in Eqs. (A52) and (A55). In order for above inequality
to be satisfied, the two terms must be cancelled out with
sufficiently good accuracy. The cancellation occurs only
when

Ω ¼ ∂ωl0

∂l0

����
l0¼m

: ðA58Þ

Then, the inequality is written as jl0 −m0j≲ 1 and this is
satisfied because of Eqs. (A53) and (A54). Therefore, the
choice of cl0m0 in Eq. (A56) creates the localized orbiting
scalar field solution in Eq. (A45).

The source in the coordinate space is written as

J ðt; θ;ϕÞ ¼
X
l0m0

Jl0m0 ðtÞYl0m0 ðθ;ϕÞhYl0m0 jgi; ðA59Þ

where Jl0m0 ðtÞ is defined in Eq. (A30). From a similar
argument, we obtain

J ðt; θ;ϕÞ ∝ exp

�
−
ðt − TÞ2
2σ2t

−
ðθ − π=2Þ2

2σ2θ
−
ðϕ − ΩtÞ2

2σ2ϕ

− iωmtþ imϕ

�
: ðA60Þ

This function is localized in S2, and its centre rotates on
the equator with angular velocity Ω. This has a wave
number m along the ϕ-direction and oscillates over time
with frequency ω.
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