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We consider the ϱ-Minkowski spacetime, a model with linear noncommutativity involving the time and
azimuthal angle. We study its quantum symmetries, the ϱ-Poincaré quantum group, and analyze the
concepts of localizability and quantum observers.
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I. INTRODUCTION

In this work, we investigate the basic features of local-
izability in a specific model of noncommutative spacetime,
ϱ-Minkowski, based on a previous analysis [1,2] which has
been carried out for themore famous κ-Minkowski spacetime.
The interest for quantum, or noncommutative, space-

times is deeply motivated by the search for a consistent
theory of quantum gravity, valid at Planck scale, of which
quantum spacetimes should represent a signature at lower
energies. Noncommutative spacetimes, whose symmetry
groups are deformations of the Poincaré group, are there-
fore the natural candidates to be investigated.
The space we investigate, ϱ-Minkowski, has a non-

commutativity of the angular type, involving time and the
azimuthal angle. Time has a quantized discrete spectrum.
Noncommutativity in the coordinates implies the presence
of uncertainty relations among time and angle. A perfectly
localized state in time is totally spread in φ, and vice
versa, angle localization increases the time measurement
uncertainty.
The presence of a noncommutative spacetime, invariant

under a quantumgroup, implies that also observers, reference
frames, have to be quantized, and this is the important feature
of this activity. Observers are quantum objects as well. We
have collected observations and definitions about states,
observers, and observables in Appendix A.
We start in Sec. II by defining the commutation relations

of the ϱ-Minkowski model and showing explicitly its

angular nature. In Sec. III, we obtain the κ-Poincaré
quantum group in order to illustrate the differences between
the ϱ and κ deformations and explain the approach carried
on for the ϱ case by means of comparison. Once having
obtained the ϱ-Poincaré quantum group as the symmetry
group of our model, we tackle in Sec. IV the problem of
localizability in the ϱ-Minkowski spacetime, comparing
the results with the known ones for the κ case. To this, we
realize both the spacetime observables and the quantum
group generators as operators and represent them on a
suitable Hilbert space. Section V, dealing with conclusions
and perspectives, closes the work. In Appendix A, as we
mentioned, the notions of states, observables, and observers
employed throughout the paper are formally stated, while
Appendix B is devoted to recalling the classical r-matrix
deformation method to obtain the Poincaré quantum
groups.

II. THE ϱ-MINKOWSKI SPACETIME

The ϱ-Minkowski spacetime is characterized by the
following commutation relations of the angular type:

½x0; x1� ¼ iϱx2;

½x0; x2� ¼ −iϱx1; ð2:1Þ
all other commutators being zero. In particular, x3 is
central; it commutes with all coordinates. The ϱ parameter
has the dimension of a length, and it is often identified with
the Planck length, the scale at which quantum gravity
effects are expected to be manifest.
These relations are a part of a larger family of “Lie-

algebra-type” commutation relations, of which the most
famous case is κ-Minkowski spacetime defined by1
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½x0; xi� ¼ iλxi; ð2:2Þ

again all other commutators vanishing. The λ parameter
with the dimension of a length is sometimes expressed as 1

κ,
hence, the name of the model.
The Lie algebra (2.1) has the structure of the Euclidean

algebra in 2þ 1 dimensions; it goes back to at least [3]
(also see [4,5]). In the context of twisted symmetries, it was
analyzed by Lukierski and Woronowicz in [6]. In [7] it was
discussed in relation to the principle of relative locality [8].
This kind of noncommutative spacetime might have con-
crete physical relevance [9–11] and phenomenological/
observational consequences [12]. In [13], a field theory on
this space has been built; in the same paper, a different
physical identification of the noncommuting variables has
been also considered, with time a commuting coordinate.
The latter has been studied in [14] in the context of Poisson
gauge models and in [15] in the context of double
quantization.2

The commutation relations (2.1) give rise to two non-
trivial uncertainty relations:

Δx0Δx1 ≥
ϱ

2
jhx2ij;

Δx0Δx2 ≥
ϱ

2
jhx1ij: ð2:3Þ

This implies that in this kind of noncommutative spacetime,
sharp localization of event operators is not always possible.
Note that, by the centrality of x3, this coordinate can be
determined with absolute precision.
A realization of ϱ-Minkowski spacetime is given by [16]

xiψðxÞ ¼ xiψðxÞ;
x0ψðxÞ ¼ −iϱðx1∂2 − x2∂1ÞψðxÞ; ð2:4Þ

with xi a complete set of observables on the Hilbert space
L2ðR3Þ, x0 a self-adjoint operator on L2ðR3Þ acting like an
angular momentum along the 3-axis, and ψðxÞ a state in the
Hilbert space.
We can choose a more convenient way of writing

commutators and uncertainty relations, given by the fact
that the ϱ deformation is of angular nature. We therefore use
cylindrical coordinates defining

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2

q
;

z ¼ x3;

φ ¼ arctan
x2

x1
: ð2:5Þ

We take eiφ instead of φ, for the latter is a multivalued
function, and it cannot be promoted to a self-adjoint
operator, so that the commutation relations (2.1) become

½x0; r� ¼ 0;

½x0; z� ¼ 0;

½x0; eiφ� ¼ ϱeiφ: ð2:6Þ

In this way, we have two complete sets of commuting
observables given by ðr; z;φÞ and ðr; z; x0Þ. On the Hilbert
space of L2 functions of the first set, the operators r; z;φ act
as multiplication operators, while the action of x0 is that of
the angular momentum along the 3-axis

x0ψðr; z; x0Þ ¼ −iϱ∂φψðr; z; x0Þ: ð2:7Þ

Expressing the functions of x⃗ in cylindrical coordi-
nates as

ψðx⃗Þ ¼ ψðr; z;φÞ ¼
X∞
n¼−∞

ψnðr; zÞeinφ; ð2:8Þ

we have that3

½x0;ψ � ¼
X
n

nϱψnðr; zÞeinφ ¼ −iϱ∂φψðr; z;φÞ ¼ nϱψ :

ð2:9Þ

Therefore, in this case the spectrum of time is discrete,
being the whole ofZ [16]. The eigenstates of φ are given by
a Fourier superposition

δðφÞ ¼ 1

2π

X∞
n¼−∞

einφ: ð2:10Þ

III. ϱ VS κ: THE QUANTUM GROUPS

Central in the discussion on localizability are the
symmetry groups of noncommutative spacetimes. In this
section, we will present the quantum group ϱ-Poincaré
by means of comparison with the well-known κ-Poincaré
quantum group starting by a review of the latter.

A. The κ-Poincaré quantum group CκðPÞ
Although historically, the κ-Minkowski spacetime was

found starting from the κ-Poincaré Hopf algebra as a quotient
by the Lorentz subgroup, here we will follow the opposite
path; i.e., we will find the algebra and the group as

2In order to distinguish the two spacetimes, the one with
commutative time has been named λ-Minkowski spacetime.

3Equation (2.9) is valid (convergent) only for a class of
functions. However, since this class is sufficiently large, we will
ignore this subtlety.
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symmetries of κ-Minkowski spacetime. The content of this
subsection is not new; we present it as a prelude to the ϱ case.
We start by defining the κ-Poincaré CκðPÞ4 as the

deformation of the algebra of continuous functions on
the Poincaré group that preserves the κ-Minkowski com-
mutation relations, i.e., the algebra generated by fΛμ

ν ; aμg
that leaves (2.2) invariant under the transformation

xμ → x0μ ¼ Λμ
ν ⊗ xν þ aμ ⊗ 1; ð3:1Þ

fromMκ to CκðPÞ⊗Mκ. Note that (3.1) has the form of a
left coaction of CκðPÞ on Mκ ⊂ p�, the latter being the
dual of the Poincaré algebra. Let us recall that, given an
algebra ðA; μ; ηÞ and a coalgebra ðC;Δ; εÞ, a left coaction
βL∶ A → C⊗A is a linear mapping satisfying

ðid⊗ βLÞ ∘ βL ¼ ðΔ⊗ idÞ ∘ βL ðcoassociativityÞ;
ð3:2aÞ

ðε⊗ idÞ ∘ βL ¼ id ðcounitalityÞ: ð3:2bÞ

The coaction is said to be covariant if it is a homomor-
phism:

βLðabÞ ¼ βLðaÞβLðbÞ; a; b ∈ A; ð3:3aÞ

βLð1Þ ¼ 1⊗ 1; ð3:3bÞ

in this case, it preserves the algebra structure on which it
coacts.
We require (3.1) to be a covariant left coaction. In

other words, recalling (2.2), and since from (3.3a)
βLð½xμ; xν�Þ ¼ ½βLðxμÞ; βLðxνÞ�, we ask that

½x0μ; x0ν� ¼ iλðδμ0x0ν − δν0x0μÞ: ð3:4Þ

By imposing Eq. (3.4), it is possible to recover part of the
full algebra structure of CκðPÞ. Indeed, the left-hand side
(lhs) of (3.4) yields

½x0μ; x0ν� ¼ ½Λμ
α ⊗ xα þ aμ ⊗ 1;Λν

β ⊗ xβ þ aν ⊗ 1�
¼ Λμ

αΛν
β ⊗ xαxβ − Λν

βΛμ
α ⊗ xβxα

þ Λμ
αaν ⊗ xα − aνΛμ

α ⊗ xα þ aμΛν
β ⊗ xβ

− Λν
βaμ ⊗ xβ þ ½aμ; aν�⊗ 1; ð3:5Þ

while the right-hand side (rhs) of (3.4) assumes the form

iλðδμ0x0ν − δν0x0μÞ ¼ iλðδμ0ðΛν
σ ⊗ xσ þ aν ⊗ 1Þ

− δν0ðΛμ
ρ ⊗ xρ þ aμ ⊗ 1ÞÞ: ð3:6Þ

Thus, equating terms at order 0 in x, it follows straight-
forwardly

½aμ; aν� ¼ iλðδμ0aν − δν0aμÞ; ð3:7Þ

and the translational parameters, unlike the classical
Poincaré group case, do not commute. This poses pro-
blems in localizability of κ-Poincaré transformed observ-
ables [1]. These commutation relations are isomorphic to
the κ-Minkowski ones, a feature connected to the bicross-
product structure of the quantum group [17].
Consider the terms quadratic in Λ:

Λμ
αΛν

β ⊗ xαxβ − Λν
βΛμ

α ⊗ xβxα

¼ Λμ
αΛν

β ⊗ xαxβ − Λν
βΛμ

α ⊗ xβxα

þ Λν
βΛμ

α ⊗ xαxβ − Λν
βΛμ

α ⊗ xαxβ

¼ ½Λμ
α;Λν

β�⊗ xαxβ þ Λν
βΛμ

α ⊗ iλðδα0xβ − δβ0xαÞ;
ð3:8Þ

from which it follows, since (3.4) has no second order terms
in x on the right-hand side,

½Λμ
α;Λν

β� ¼ 0: ð3:9Þ

Therefore, the Lorentz sector remains undeformed, having
trivial commutators.
We remark that in this discussion we are considering a

single particle. One could consider also multiparticle
systems described by set of coordinates xμðmÞ and consider
commutators ½xμðmÞ; xνðnÞ�. The situation is then more
complicated, and the coaction is not covariant for ordinary
κ-Minkowski spacetime. Nevertheless, it becomes covari-
ant for a lightlike version of it [18]. In this paper, we will
remain in the usual one-particle case, but it would be
interesting to consider in the ϱ-Minkowski setting also the
two-particle case.
Let us equate the remaining terms on the left- and right-

hand sides:

Λν
βΛμ

α ⊗ iλðδα0xβ − δβ0xαÞ þ Λμ
αaν ⊗ xα − aνΛμ

α ⊗ xα

þ aμΛν
β ⊗ xβ − Λν

βaμ ⊗ xβ

¼ iλðδμ0Λν
σ ⊗ xσ − δν0Λμ

ρ ⊗ xρÞ: ð3:10Þ

It is easy to see that this last condition imposes that the
remaining commutators ½Λμ

ν ; aρ� satisfy a compatibility
condition:

½Λμ
α;aν�þ½aμ;Λν

α�¼ iλðΛμ
αðΛν

0−δν0Þ−Λν
αðΛμ

0−δμ0ÞÞ;
ð3:11Þ

which should be settled by further requests. This is a
consequence of the fact that relations (2.2) admit more than
one single covariance group.

4To be distinguished from the quantum group UκðpÞ obtained
deforming the Hopf algebra of the universal enveloping
algebra p.
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From (3.2a) and (3.2b), we can find the coproducts and
the counits. Acting with the lhs of (3.2a) on xμ, and
recalling (3.3b), we find

ðid⊗ βLÞ ∘ ðΛμ
ν ⊗ xν þ aμ ⊗ 1Þ

¼ Λμ
ν ⊗ Λν

α ⊗ xα þ Λμ
ν ⊗ aν ⊗ 1þ aμ ⊗ 1⊗ 1;

ð3:12Þ

while from the rhs we have

ðΔ⊗ idÞ ∘ ðΛμ
ν ⊗ xν þ aμ ⊗ 1Þ

¼ ΔðΛμ
νÞ⊗ xν þ ΔðaμÞ⊗ 1: ð3:13Þ

Comparing the results, we have that

ΔðaμÞ ¼ Λμ
ν ⊗ aν þ aμ ⊗ 1; ð3:14aÞ

ΔðΛμ
νÞ ¼ Λμ

α ⊗ Λα
ν: ð3:14bÞ

Turning to (3.2b), and acting on xμ, we have that

ðε⊗ idÞ ∘ ðΛμ
ν ⊗ xν þ aμ ⊗ 1Þ

¼ εðΛμ
νÞ⊗ xν þ εðaμÞ⊗ 1 ¼ idðxμÞ ¼ xμ; ð3:15Þ

and therefore,

εðaμÞ ¼ 0; ð3:16aÞ

εðΛμ
νÞ ¼ δμν: ð3:16bÞ

As far the antipodes are concerned, by the Hopf algebra
axioms, it can be shown that they remain undeformed:

SðaμÞ ¼ −aνðΛ−1Þμν; ð3:17aÞ

SðΛμ
νÞ ¼ ðΛ−1Þμν: ð3:17bÞ

B. CκðPÞ structure from the r matrix

To fully compute the commutators between coordinate
functions of CκðPÞ, we may follow a different approach
based on the introduction of the classical r matrix (see
Appendix B for details), which will turn out to be useful for
the ϱ-Minkowski case.
A classical r matrix for CκðPÞ is found to be [19]

r ¼ iλM0ν ∧ Pν ð3:18Þ

with Mμν and Pν the generators of the Poincaré algebra. It
can be checked to satisfy the modified Yang-Baxter
equation

⟦r; r⟧ ¼ iλ2
�
1

2
g00Mμν ∧ Pμ ∧ Pν −Mν0 ∧ Pν ∧ P0

�
;

ð3:19Þ

where ⟦·; ·⟧ denotes the bracket (B1) described in
Appendix B, while the rhs is invariant under the group
action. In order to compute the Sklyanin brackets (B2) of
the group parameters, we need the Poincaré left- and right-
invariant vector fields. These are obtained starting from the
five-dimensional representation5 of ISOð1; 3Þ:

g ¼
� Λ a⃗

0⃗
T

1

�
ð3:20Þ

through the left- and right-invariant Maurer-Cartan 1-forms

ΘL ¼ g−1dg ¼ Θαβ
L Mαβ þ Θα

LPα; ð3:21Þ

ΘR ¼ dgg−1 ¼ Θαβ
R Mαβ þ Θα

RPα: ð3:22Þ

By duality, the left- and right-invariant vector fields result
to be

XL
αβ ¼ Λμ

α
∂

∂Λμβ − Λμ
β

∂

∂Λμα ; XL
α ¼ Λμ

α
∂

∂aμ
;

XR
αβ ¼ Λβν

∂

∂Λα
ν
− Λαν

∂

∂Λβ
ν
þ aβ

∂

∂aα
− aα

∂

∂aβ
;

XR
α ¼ ∂

∂aα
; ð3:23Þ

which enable us to rewrite (B2) as

ff; gg ¼ −λðXR
0ν ∧ XRν − XL

0ν ∧ XLνÞðdf; dgÞ: ð3:24Þ

Here we have rescaled the vector fields Xαβ by a factor of i.
Performing the calculation for aρ and aσ:

faρ; aσg ¼ −λ
�
aν

∂

∂a0
− a0

∂

∂aν

�
∧ ∂

∂aν
ðdaρ; daσÞ

¼ −λðaσδρ0 − aρδσ0Þ: ð3:25Þ

The commutators are then obtained via the canonical
prescription f; g → 1

i ½; �, and we find the previously stated
result (3.7) quantizing the Poisson-Hopf algebra to a
deformed one.
A calculation of fΛα

β;Λμ
νg gives identically 0, since Pμ

does not contain derivatives in Λ in the left or right bases,
so the result (3.9) comes straightforwardly.
Unlike what we found employing the covariance

method, we can now fix the mixed brackets:

5The arrow indicates four-dimensional vectors.
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fΛα
β; aρg ¼ −λ

�
Λνμ

∂

∂Λ0
μ
− Λ0μ

∂

∂Λν
μ
þ aν

∂

∂a0
− a0

∂

∂aν

�

∧ ∂

∂aν
ðdΛα

β; daρÞ þ λ

�
Λμ

0

∂

∂Λμν − Λμ
ν

∂

∂Λμ0

�

∧ Λκν ∂

∂aκ
ðdΛα

β; daρÞ
¼ λððΛα

0 − δα0ÞΛρ
β þ ðΛ0β − g0βÞgαρÞ: ð3:26Þ

Considering the commutators,6 we obtain

½Λα
β;aρ� ¼−iλððΛα

0− δα0ÞΛρ
β þðΛ0β − g0βÞgαρÞ: ð3:27Þ

Having completed the algebra structure of CκðPÞ, we note
that in this formulation the Lorentz sector is undeformed,
while the translational one and the cross-relations are
noncommutative, giving intuitively an increase in uncer-
tainty of transformed observables.

C. The ϱ-Poincaré quantum group CϱðPÞ
Following the discussion in Sec. III B, we will derive

the commutation relations (i.e., the algebra sector) of the
CϱðPÞ quantum group starting from the classical rmatrix of
ϱ-Minkowski spacetime.
First, note that left- and right-invariant vector fields

retain the same expressions (3.23). The only difference with
the κ-Poincaré quantum group is in the r matrix, which in
this case assumes the form [6,16]

r ¼ −iϱðP0 ∧ M12Þ: ð3:28Þ

Note that, unlike the case of the classical r matrix of
κ-Minkowski spacetime which satisfies a modified Yang-
Baxter equation (MYBE), (3.28) satisfies the classical
Yang-Baxter equation (CYBE)—in fact, computing the
brackets

½r12; r13� ¼ −ϱ2½M12;M12�⊗ P0 ⊗ P0 ¼ 0;

½r12; r23� ¼ ϱ2P0 ⊗ ½M12;M12�⊗ P0 ¼ 0;

½r13; r23� ¼ −ϱ2P0 ⊗ P0 ⊗ ½M12;M12� ¼ 0; ð3:29Þ

and thus, ⟦r; r⟧ ¼ 0.
The Sklyanin bracket (B2) assumes the form

ff; gg ¼ −ϱðXR
12 ∧ XR

0 − XL
12 ∧ XL

0 Þðdf; dgÞ; ð3:30Þ

so that we can compute the brackets between Poincaré
coordinates as done earlier:

fαμ;ανg ¼−ϱ½δν0ða2δμ1 −a1δμ2Þ− δμ0ða2δν1−a1δν2Þ�;
fΛμ

ν;Λϱ
σg ¼ 0;

fΛμ
ν;aϱg ¼−ϱ½δϱ0ðΛ2νδ

μ
1−Λ1νδ

μ
2Þ

−Λϱ
0ðΛμ

1g2ν−Λμ
2g1νÞ�: ð3:31Þ

Therefore, the commutators are

½aμ; aν� ¼ −iϱ½δν0ða2δμ1 − a1δμ2Þ − δμ0ða2δν1 − a1δν2Þ�;
ð3:32aÞ

½Λμ
ν;Λϱ

σ� ¼ 0; ð3:32bÞ

½Λμ
ν; aϱ� ¼ −iϱ½δϱ0ðΛ2νδ

μ
1 − Λ1νδ

μ
2Þ

− Λϱ
0ðΛμ

1g2ν − Λμ
2g1νÞ�: ð3:32cÞ

Again, it is easy to see that the commutation relations
between aμ and aν reproduce Eqs. (2.1), and ϱ-Minkowski
spacetime can therefore be recovered from the momenta
sector of CϱðPÞ. Moreover, it can be checked that the
commutation relations of the ϱ-Minkowski spacetime (2.1)
are covariant under the left coaction (3.1) if the commu-
tation relations (3.32a)–(3.32c) are implemented.
For the coalgebra sector and the antipode, since the left

coaction is the same as that of the κ-Poincaré quantum
group, they retain the forms (3.14a), (3.14b), (3.16a),
(3.16b), (3.17a), and (3.17b). It is then trivial to see that
taking the limit ϱ → 0, the classical commutative case is
recovered.
The fundamental result of this analysis is that the algebra

sector of the translational parameters and the cross-relations
between translational and Lorentz parameters are non-
commutative [16]. This will lead to an increase in uncer-
tainty in ϱ-Poincaré transformations, as we will show in the
following.

IV. LOCALIZABILITY IN ϱ-MINKOWSKI SPACE

We now analyze localizability in the ϱ-Minkowski space,
following what has been done in [1] for the κ case. We first
consider coordinate localizability features coming from
(2.3), then we realize the elements of the quantum group on
a suitable Hilbert space, we derive uncertainty relations for
them, and we discuss localizability in ϱ-Minkowski space
in relation to observers and observables.

A. Localized states in Mϱ

Let us suppose we sharply measure an eigenvalue ϱn̄ of
the time operator. The system would be in an eigenstate of
time χ̄ðφÞ ¼ ein̄φ, so that we would have complete delo-
calization in φ. If the measure has instead some degree of
uncertainty in time, we would have a finite sum over the
available elements of the basis, and this would give, in turn,

6Note that the canonical substitution prescription is ordering
unambiguous due to the commutativity of the Λ’s.
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a degree of uncertainty in φ, as in the ordinary quantum
mechanical angular momentum theory.
From (2.3), we expect, however, that sharp spacetime

localization is possible in the case hx1i ¼ hx2i ¼ 0. In our
cylindrical coordinates, this corresponds to perfect locali-
zation in hri ¼ 0. Since r commutes with z and x0, we can
find a state that localizes in r as well as in z and x0. As
usual, the state will not be a proper square integrable vector,
but a δ-like distribution reachable via a limiting process. A
state of this kind can be constructed as

ψn0ðr; z; x0Þ ¼
1

2π

Z
π

−π
dφe−iðn−n0Þφξðr; zÞ; ð4:1Þ

where the integral yields a δðn − n0Þ that gives a state
localized in time at n0, and ξðr; zÞ is a function of r and z
localized around ðr0; z0Þ. This can be taken to be a
factorized product of two states in the Hilbert space
(e.g., Gaussian distributions) that tend to delta distribu-
tions in the limit of their amplitudes going to 0 (e.g.,
the Gaussian variances → 0).
From (2.5), x1 ¼ r cosφ, x2 ¼ r sinφ, but φ is com-

pletely undetermined since we are in an eigenstate of x0.
Computing the mean values on the state, we have hx1i ¼
r0 cosφ and hx2i ¼ r0 sinφ; hence, perfect localization in
xμ is possible only if r0 ¼ 0. We obtain then a two-
parameter localized family of states jon;zi. In the particular
case of n0 ¼ z0 ¼ 0, we can define a localized origin state
joi. This result is analogous with the case of κ-Minkowski
spacetime [1,2], for which it was found that a one-
parameter family of localized states joτi does exist,
allowing for the definition of a localized origin state joi.
Let us note here an important fact. The following

function also gives a localized state at time n0 þ α:

ψn0þαðr; z; x0Þ ¼
1

2π

Z
π

−π
dφe−iðn−n0þαÞφξðr; zÞ; ð4:2Þ

which is only periodic in φ up to the phase ei2πα. This
means that these two states belong to different domains of
self-adjointness of the operator x0. This aspect will be
discussed elsewhere.

B. ϱ-Poincaré realization

Since later on we will deal with the localization proper-
ties of the quantum group parameters, we now present a
realization for the ϱ-Poincaré group, following the
approach carried on for the κ-Poincaré group in [1].
We start noting that, as in the κ-Poincaré case, the Λ’s

commute with each other, and so they can be realized
classically. In terms of the infinitesimal generators of the
Lorentz group ωμ

ν, we have that

Λμ
ν ¼ ðexpωÞμν ð4:3Þ

with the auxiliary antisymmetry condition ωμ
ϱgϱν ¼

−ων
ϱgϱμ.

For the a’s, by considering the commutation relation
(3.32c), we formulate the ansatz

aϱ ¼ iϱ½δϱ0ðΛ2νδ
μ
1 − Λ1νδ

μ
2Þ

− Λϱ
0ðΛμ

1g2ν − Λμ
2g1νÞ�

∂

∂Λμ
ν
: ð4:4Þ

To have a realization of the group, we must show that this is
coherent with (3.32a). From (3.32a), it has to be

½aμ; aν� ¼ −ϱ2ð−δμ0Λ20δ
ν
1 þ δμ0Λ10δ

ν
2

þ δν0Λ20δ
μ
1 − δν0Λ10δ

μ
2Þ

× ðΛα
1g2β − Λα

2g1βÞ
∂

∂Λα
β
: ð4:5Þ

On computing the lhs, we find

½aϱ; aσ� ¼ ϱ2½δϱ0ðΛ20δ
σ
1 − Λ10δ

σ
2ÞðΛδ

2g1λ − Λδ
1g2λÞ

þ −δσ0ðΛ20δ
ϱ
1 − Λ10δ

ϱ
2ÞðΛδ

2g1λ − Λδ
1g2λÞ�

×
∂

∂Λδ
λ
; ð4:6Þ

which is in agreement with Eq. (4.5); therefore, Eqs. (4.3)
and (4.4) give a true realization of the ϱ-Poincaré quan-
tum group.
Finally, in analogy with the κ case (cf. [1]), we add to

Eq. (4.4) the realization of ϱ-Minkowski Eq. (2.4):

aϱ ¼ i
ϱ

2
½δϱ0ðΛ2νδ

μ
1 − Λ1νδ

μ
2Þ − Λϱ

0ðΛμ
1g2ν − Λμ

2g1νÞ�

×
∂

∂Λμ
ν
þ i

ϱ

2
½δϱiqi − δϱ0ðq1∂2 − q2∂1Þ� þ H:c:

ð4:7Þ
defined on the Hilbert space L2ðSOð1; 3Þ ×R3Þ.

C. ϱ-Poincaré parameters, localization,
and constraints on transformations

Since the symmetry group of ϱ-Minkowski spacetime is
deformed according to Eqs. (3.32a)–(3.32c), we expect
localization problems to arise also in observer transforma-
tions. Indeed, we obtain uncertainty relations in the form

ΔaμΔaν ≥
ϱ

2
jδν0ðha2iδμ1 − ha1iδμ2Þ

− δμ0ðha2iδν1 − ha1iδν2Þj; ð4:8aÞ
ΔΛμ

αΔΛν
β ≥ 0; ð4:8bÞ

ΔΛμ
νΔaρ ≥

ϱ

2
jδϱ0ðhΛ2νiδμ1 − hΛ1νiδμ2Þ − hΛϱ

0Λμ
1ig2ν

þ hΛϱ
0Λμ

2ig1νj: ð4:8cÞ
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Let us analyze the localization properties of this algebra
structure. We start with the case of pure ϱ-Lorentz trans-
formations, i.e., transformations for which translational
parameters are sharply localized in 0 (haμi ¼ 0, Δaμ ¼ 0).
The relevant constraint on localizability comes from (4.8c):

δϱ0ðhΛ2νiδμ1 − hΛ1νiδμ2Þ − hΛϱ
0Λμ

1ig2ν
þ hΛϱ

0Λμ
2ig1ν ¼ 0: ð4:9Þ

This, like the case of κ-Poincaré quantum group [20],
admits a solution7 for hΛϱ

0i ¼ δϱ0, hΛ3
1i ¼ Λ3

2 ¼ 0,
hΛ1

1i ¼ hΛ2
2i, and so the only admitted pure ϱ-Lorentz

transformations are rotations around the 3-axis and the
identical transformation, and they can be sharply localized.
For the κ-Poincaré quantum group, a slightly different
result was found in [20], namely, that just pure boosts are
not admitted, in accord with [21].
For the case of pure translations, i.e., hΛμ

νi ¼ δμν and
ΔΛμ

ν ¼ 0, substituting in (4.8c) we see that the relation is
automatically satisfied, and the only relevant condition is
(4.8a). Since a3 is central in the algebra, pure translations
along the 3-axis do exist without issues and can be sharply
localized.
Considering a pure time translation, the conditions to

impose on (4.8a) are that haii ¼ 0 and Δai ¼ 0, and the
equation is trivially satisfied, meaning that pure time trans-
lations do exist and can be localized. For pure translations
along the 1- and 2-axes the result is different: If we consider,
for example, the first case, one would have ha2i ¼ 0 that is
compatible with Δx0 ¼ 0, but this last condition imposes
also that ha1i ¼ 0, the same being true switching a1 and a2.
This means that the ϱ-Poincaré quantum group admits only
pure time translations and pure space translations along the
3-axis. For comparison, in the κ case, it was found that the
only possible pure translation is the temporal one.
Summarizing the localization features of the quantum

group, the only transformations that can be sharply local-
ized are translations along x0, translations along x3,
rotations around x3, and their combinations.
As a special case, we turn our attention to the identical

transformation haμi ¼ 0, hΛμ
νi ¼ δμν,Δaμ ¼ 0,ΔΛμ

ν ¼ 0;
as we expect, the uncertainty relations are satisfied, and
therefore, the identity in the ϱ-Poincaré quantum group is a
well-defined sharp state.

D. Observers, observables, and uncertainties
on ϱ-Poincaré quantum group

Let us analyze the uncertainties in Poincaré transforma-
tions (3.1) coming from the deformation features of the

quantum group. Since our transformation is a left coaction
from x ∈ Mϱ to x0 ∈ CϱðPÞ⊗Mϱ, we want to find a
realization of the tensor product CϱðPÞ⊗Mϱ. It is con-
venient to lift x ∈ Mϱ to 1⊗ x ∈ CϱðPÞ⊗Mϱ. We can
find the action of elements x0μ ∈ CϱðPÞ⊗Mϱ on functions
fðω; q; xÞ ∈ L2ðSOð1;3Þ×R3

qÞ×L2ðR3
xÞ∼L2ðSOð1;3Þ×

R3
q ×R3

xÞ by means of the direct sum of realizations (2.4)
and (4.7):

x0ϱfðω; q; xÞ
¼ iϱΛϱ

σ½δσ ixi − δσ0ðx1∂x2 − x2∂x1Þ�fðω; q; xÞ
þ i

ϱ

2
½δϱ0ðΛ2νδ

μ
1 − Λ1νδ

μ
2Þ − Λϱ

0ðΛμ
1g2ν − Λμ

2g1νÞ�

×
∂

∂Λμ
ν
fðω; q; xÞ þ i

ϱ

2
½δϱiqi − δϱ0ðq1∂q2 − q2∂q1Þ�

× fðω; q; xÞ þ 1

2
H:c: ð4:10Þ

The Hilbert space admits separable states of the kind

jϕ;ψi ¼ jϕi⊗ jψi; ð4:11Þ

with jϕi ∈ L2ðSOð1; 3Þ ×R3
qÞ and jψi ∈ L2ðR3

xÞ normal-
ized according to hϕjϕi ¼ 1, hψ jψi ¼ 1.
We are ready to give an interpretation of the realization

constructed here. We defineL2ðSOð1; 3Þ ×R3
qÞ as the space

of states of an observer (i.e., the space of ϱ-Poincaré states)
and L2ðR3

xÞ as the space of observables (i.e., the space of
states of ϱ-Minkowski spacetime); furthermore, we assume
that a generic state can be realized as a separable element
jϕ;ψi ¼ jϕi⊗ jψi, a reasonable assumption since it reflects
the fact that the relation between two inertial observers does
not depend on the observed state.
The point here is that we have at the same time a

noncommutative spacetime on which observables are
defined and a noncommutative observer state space, mean-
ing that in general, a ϱ-Poincaré transformation between
different observers could decrease localizability of states.
Taking into account (3.1), and interpreting xμ as the

coordinates of an inertial observerO, while x0μ as those of a
transformed observer O0, the mean value of the coordinates
of a transformed observer would be

hx0μi ¼ hϕj⊗ hψ jðΛμ
ν ⊗ xν þ aμ ⊗ 1Þjϕi⊗ jψi

¼ hϕjΛμ
νjϕihψ jxνjψi þ hϕjaμjϕi; ð4:12Þ

while for the uncertainties of transformed states in relation
to those of the starting ones, we can write

Δðx0μÞ2 ¼ hðx0μÞ2i − hx0μi2 ¼ ΔðΛμ
ν ⊗ xνÞ2 þ ΔðaμÞ2

þ 2covðΛμ
ν; aμÞhxνi; ð4:13Þ

7We consider a state jϕi on whichΔaμ ¼ 0. Then, if we take an
eigenstate jϕλi of Λμ

ν, we have that, since the Λ’s commute, their
eigenvalues on jϕλi are classical Lorentz parameters λμν. It is
possible to show that the only solution of (4.9) is λμ0 ¼ δμ0, λ13 ¼
λ23 ¼ 0, λ11 ¼ λ22 for every eigenstate such that hϕjϕλi ≠ 0.
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since ha⊗ bi ¼ hai⊗ hbi and the covariance between
elements on different sides of the tensor product is 0. In
the following, we will specialize the construction to three
notable cases, that is, identity transformations, origin states
transformations, and translations.

1. Identity transformation state

Since we know from our analysis that a sharp identity
state does exist in the ϱ-Poincaré quantum group, we can
consider identity transformations. We define the identity
state jii for our realization of CϱðPÞ as follows:

hijfða;ΛÞjii ¼ εðfÞ ð4:14Þ

with fða;ΛÞ ∈ CϱðPÞ. Then the state

ji;ψi ¼ jii⊗ jψi ð4:15Þ

can be linked to the ϱ-Poincaré transformation between two
coincident observers, as one can see working the following
calculation:

hx0μi ¼ hij⊗ hψ jðΛμ
ν ⊗ xν þ aμ ⊗ 1Þjii⊗ jψi

¼ hijΛμ
νjiihψ jxνjψi þ hijaμjii; ð4:16Þ

but recalling the counits (3.16a) and (3.16b)

hx0μi ¼ hψ jxμjψi: ð4:17Þ

The same result is achieved for a generic monomial in
coordinates x0μ1 � � � x0μn :

hx0μ1 � � �x0μni¼ hij⊗ hψ jx0μ1 � � �x0μn jii⊗ jψi
¼ hijaμ1 � � �aμn jiiþhijOμ1���μn

ν ða;ΛÞjiihψ jxνjψi
þ �� �þhijOμ1���μn

ν1���νn ða;ΛÞjiihψ jxν1 � � �xνn jψi
ð4:18Þ

with Oða;ΛÞ generic monomials in a’s and Λ’s. Since the
counit map is a homomorphism, every monomial that
contains at least one a vanishes [εðaμÞ ¼ 0], and the
only surviving term is the one with an equal number of
upper and lower indices that is a product of Λ’s only. Again
from the homomorphism property, one obtains that
εðOμ1���μn

ν1���νn ða;ΛÞÞ ¼ δμ1ν1 � � � δμnνn , and

hx0μ1 � � � x0μni ¼ hψ jxμ1 � � � xμn jψi: ð4:19Þ

Then one easily sees that uncertainties between the two
events coincide:

Δðx0μÞ2 ¼ hðx0μÞ2i− hx0μi2 ¼ hðδμνxνÞ2i− hxμi2 ¼ΔðxμÞ2:
ð4:20Þ

Coincident observers are well defined in ϱ-Minkowski
spacetime and they agree on every measurement they
make. These results are identical to those found in [1]
for κ-Minkowski spacetime.

2. Origin state transformations

We ask what the observer O0 measures after the ϱ-
Poincaré quantum group transforming the origin state; the
starting state is

jϕ; oi ¼ jϕi⊗ joi; ð4:21Þ

therefore,

hx0μi ¼ hϕj⊗ hojðΛμ
ν ⊗ xν þ aμ ⊗ 1Þjϕi⊗ joi

¼ hϕjΛμ
νjϕihojxνjoi þ hϕjaμjϕi: ð4:22Þ

Recalling that hojxμjoi ¼ 0, we have

hx0μi ¼ hϕjaμjϕi: ð4:23Þ

This result entails the fact that the two observers O and O0
are comparing positions and not directions, so the expect-
ation value is determined only by the mean value of
translation operators.
It can be shown by an analogous computation that the

result remains true also for a generic monomial in coor-
dinates x0μ1 � � � x0μn ; in fact, since hojxμ1 � � � xμn joi ¼ 0∀ n,

hx0μ1 � � � x0μni ¼ hϕj⊗ hojx0μ1 � � � x0μn jϕi⊗ joi
¼ hϕjaμ1 � � � aμn jϕi: ð4:24Þ

In this case, the uncertainty of the transformed event
coincides with that of the translation operator:

Δðx0μÞ2 ¼ hðx0μÞ2i − hx0μi2 ¼ hðaμÞ2i − haμi2 ¼ ΔðaμÞ2:
ð4:25Þ

Comparing with the κ case [1], we notice that when the
translational parameter can be localized, in both cases the
uncertainty on the final state is zero. For the ϱ-Poincaré
quantum group recalling (4.8), this occurs when ha1i ¼
ha2i ¼ 0, namely, for pure translations along a0, a3 or even
mixed translations in a0, a3, while for the κ-Poincaré
quantum group, this occurs only for pure temporal
translations.

3. Translations

Another interesting case is that of a pure translation
x0μ ¼ 1⊗ xμ þ aμ ⊗ 1 of a generic state. To demonstrate
that states jϕTi corresponding to translations do exist in
L2ðSOð1; 3Þ ×R3

qÞ, it is necessary to take a sequence
of functions which converge to a δ for the diagonal
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elements of Λ and to 0 for off-diagonal ones, so that
hϕT jΛμ

νjϕTi ¼ δμν. We observe that taking such states and
(co)acting with the usual coaction (3.1), it is the same thing
as (co)acting on a generic state of L2ðSOð1; 3Þ ×R3

qÞ ×
L2ðR3

xÞ with x0μ ¼ 1⊗ xμ þ aμ ⊗ 1. The expectation value
is then

hx0μi ¼ hϕj⊗ hψ jð1⊗ xμ þ aμ ⊗ 1Þjϕi⊗ jψi
¼ hψ jxμjψi þ hϕjaμjϕi; ð4:26Þ

while the variance

Δðx0μÞ2 ¼ hðxμÞ2 þ ðaμÞ2 þ xμaμ þ aμxμi
− hxμi2 − haμi2 − 2hxμihaμi

¼ ΔðxμÞ2 þ ΔðaμÞ2 ≥ ΔðxμÞ2: ð4:27Þ

Therefore, one sees that acting with a pure translation leads,
in general, to an increase in the state uncertainty. As for the
comparison with the κ case, the same considerations apply
as those at the end of Sec. IV D 2.

V. CONCLUSIONS AND OUTLOOK

We have analyzed the localization features of spacetime
states ofMϱ aswell as those of the quantumgroupCϱðPÞ and
their consequences on Poincaré-deformed transformations.
The main difference between the κ- and ϱ-Minkowski

spacetimes is in the nature of the commutation relations.
While for the former, these are clearly of radial nature; for
the latter, they are explicitly of an angular one. In the first
case, there are no central Cartesian coordinates, while in
the second case, x3 commutes with every other one. It is
therefore legitimate to think that this coordinate can be
determined without any uncertainty and will not pose
problems for its localizability. We have shown that perfect
localization of observable states can be achieved in the
“special position” x1 ¼ x2 ¼ 0, in accord with the angular
nature of the only nonmultiplicative operator x0 that acts as
an angular momentum along the 3-axis.
Turning our attention to the issue of symmetries, we have

shown that the deformed nature of the Poincaré quantum
groups leads to the interesting feature of having uncertain-
ties arising from deformed-Poincaré transformations. This
implies that two different observers will, in general, not
agree on the localizability properties of the same state.
The localizability properties of the quantum groups can
be analyzed by writing uncertainty relations between the
noncommutative group parameters. These relations, sur-
prisingly, pose constraints on the admissible deformed-
Poincaré transformations; for example, we have seen that
for the ϱ-Poincaré quantum group, pure space translations
along the 1- and 2-axes and pure Lorentz transformations
are not allowed except for the rotations around the 3-axis.
These features were previously discussed for the κ case,

leading to the so-called “no-pure” features of the quantum
group [20,21].
It is worth noticing that in [1], a particular mixed

transformation in the (1þ 1)-dimensional κ case leading
to a decrease in uncertainty was found. It would be
interesting to see if also the ϱ-Poincaré quantum group
admits some transformation of this kind and to give some
physical interpretation to it.
We have not considered the dual picture of the quantum

universal enveloping algebra UϱðpÞ that was obtained in
[9,13] within the twist approach. In that framework, the
Lie algebra sector is naturally underformed, whereas the
cosector is modified. There is, however, the possibility of
finding a nonlinear change of basis which could lead to a
different quantum universal enveloping algebra ŨϱðpÞ with
a bi-cross-product structure, in analogy with the κ-Poincaré
case. This could have interesting physical implications
(such as consequences ondeformed infinitesimal symmetries
and deformed dispersion relations) and it is presently under
investigation.
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APPENDIX A: STATES, OBSERVABLES,
AND OBSERVERS

We review in this appendix the notions of states,
observables, and observers, which hold true both in the
commutative and the noncommutative cases.
States: A state ϕ is a linear functional from a C�-algebra

C to the complex field (see, for example, [22]):

ϕ∶ C → C; ðA1Þ

positive defined

ϕða�aÞ ≥ 0; ∀ a ∈ C; ðA2Þ

and normalized

kϕk ¼ sup
kak≤1

fϕðaÞg ¼ 1: ðA3Þ
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The space of states can be shown to be convex. Any state
that can be expressed as a convex combination is said to be
a mixed state, while states that cannot are called pure states.
From a commutative algebra and its set of pure states,

it is possible to define a topology and thus obtain the
associated topological space through the so-called
Connes construction (see [22] for details). Furthermore,
we can associate the notion of (functional) states to that
of vector states on a Hilbert space via a Gelfand-
Naimark-Segal (GNS) construction. Given, in fact, an
algebra of bounded operators BðHÞ on a Hilbert space
H, any normalized vector jξi defines a state with
expectation value ϕξðaÞ ¼ hξjâjξi, â ∈ BðHÞ. On the
contrary, to any state ϕ it corresponds a vector state ξϕ ∈

H such that hξϕjâjξϕi ¼ ϕðaÞ. If the variance ΔðaÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕða2Þ − ϕðaÞ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hξϕjâ2jξϕi − ðhξϕjâjξϕiÞ2

q
is equal

to zero, the state is said to be localized.
Observables. An observable A is, heuristically, a physi-

cal quantity that can be measured. Formally, in classical
mechanics it is defined as a real-valued function on the
phase space, while in quantum mechanics as a self-adjoint
operator defined on a Hilbert space. Therefore, in the
present context, an observable A is a self-adjoint element
of the C�-algebra C. In this way, we can say that a state is a
mapping from physical observables to their measured
value.
Observers. The notion of an observer is a more subtle

one. Loosely speaking, an observer in classical mechanics
is something that performs a measure on a physical system
and associates a real numerical value to the corresponding
observable function; in quantum mechanics instead, it is
a filter procedure that sends, after having performed a
measure on a quantum object, a quantum state to a classical
one associating numerical eigenvalues to observable oper-
ators with discrete spectra, or continuous density eigen-
values to operators with continuous spectra. In this work,
we avoid the problem of giving a rigorous definition by
relating an observer to its reference frame.
An observerO is a reference frame with respect to which

the ordinary theory of measurement (i.e., the possibility of
finding mean values, variances, and other higher moments
of one or more observables in a state) can be applied. As a
final remark, let us notice that, since we are dealing with
special-relativistic theories, not taking into account general
relativity (GR) features, we always mean inertial observers.

APPENDIX B: DEFORMATION OF HOPF
ALGEBRAS

In this appendix, we recall the basic facts about the
classical r matrix [23], as well as an approach [24,25] to
quantize solvable Lie algebras employing them, which is
used to obtain the quantum Poincaré groups associated with
κ- and ϱ-Minkowski spacetimes.
Given a Lie algebra g the classical r matrix is a tensor

r ∈ ⋀2g, satisfying the MYBE, namely,

⟦r; r⟧ ¼ t ðB1Þ

with t ∈ ⊗3g a g-invariant element and ⟦r; r⟧ ¼ ½r12;
r13 þ r23� þ ½r13; r23�. In the case ⟦r; r⟧ ¼ 0, this is the
CYBE. Here, rαβ ∈ ⊗3g, α, β ¼ 1, 2, 3 so that

r12 ¼ cijai ⊗ aj ⊗ 1; r23 ¼ cij1⊗ ai ⊗ aj;

r13 ¼ cijai ⊗ 1⊗ aj

with ai ∈ g.
The classical r matrix has the important property of

defining a Lie bialgebra structure on the Lie algebra g.
Moreover, it allows for the definition of a Poisson bracket
on the group manifold, which is compatible with the group
structure, yielding to the notion of the Poisson-Lie group,
whose quantum counterpart is a quantum group. Hence, a
Poisson-Lie group G is a Lie group with group operations
being Poisson maps [23]. The algebra of smooth functions
C∞ðGÞ is a Hopf algebra (with trivial cosector and anti-
pode), which is referred to as a Poisson-Hopf algebra. The
classical r matrix provides the Poisson-Lie structure
through the following Sklyanin bracket:

ff; gg ¼ rαβðXR
αfXR

β g − XL
αfXL

β gÞ; f; g ∈ C∞ðGÞ;
ðB2Þ

where XL, XR are the left- and right-invariant vector fields.
If there are no ordering issues, one can quantize the

Poisson-Hopf algebra by means of the usual canonical
quantization f; g → 1

i ½; � to obtain the corresponding quan-
tum Hopf algebra, namely, the quantum group. This is the
case for both κ-Poincaré and ϱ-Poincaré deformations
considered in Secs. III B and III C.
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