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The gravitational chiral quantum anomaly is calculated in the framework of the extended Rarita-
Schwinger-Adler (RSA) field theory, which includes the interaction with an additional spin 1=2 field. It is
shown that the factor in the gravitational chiral anomaly normalized to the Dirac field anomaly is equal
to −19. The resulting value distinguishes the RSA theory from the other theories of spin 3=2. A direct
verification of the conformality of the RSA theory in the strong interaction limit at the level of one-loop
three-point graphs is made.
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I. INTRODUCTION

Quantum anomalies for fields with spin 1=2 have been
well studied over the past years. In particular, there is a
famous axial quantum anomaly, which includes gauge and
gravitational (also called mixed axial-gravitational) parts

h∇μĵ
μ
AiS¼1=2 ¼ −

1

16π2
ffiffiffiffiffiffi−gp εμναβFμνFαβ

þ 1

384π2
ffiffiffiffiffiffi−gp εμνρσRμνκλRρσ

κλ; ð1:1Þ

where Fμν is the gauge field strength tensor, Rμνκλ is the
curvature tensor, and ∇μ is the covariant derivative.
Initially, the chiral anomaly (1.1) was shown to play a
fundamental role in high-energy physics, but now there is
great interest in its manifestations in other areas such as
hydrodynamics, statistical physics, and condensed matter
physics [1–6]

In the case of higher spins, the theory turns out to be more
complicated and, as a rule, has internal problems, which
makes the question of quantum anomalies nontransparent.
One of the most common ways of constructing a spin

3=2 theory is based on the Rarita-Schwinger (RS) fields.
However, the conventional Rarita-Schwinger field theory
has a number of pathologies (see [7] and references
therein). There is rich literature devoted to the solution
of these problems, which we do not have the opportunity to
discuss here, for example, an alternative way of quantizing
Rarita-Schwinger fields as a constrained system was
considered in [8].
In [9] the extended Rarita-Schwinger-Adler (RSA)

theory was proposed, in which some of the pathologies
were overcome by introducing a nontrivial chirally sym-
metric interaction with an additional spin 1=2 field.
In particular, in [9], an important problem with the
singularity in the Dirac bracket in the limit of weak gauge
fields was solved, which allowed to consistently gauge the
theory beyond the supergravity approach. Since the Rarita-
Schwinger field theory is a generalized Hamiltonian
dynamics, the quantum anticommutator is given by the
Dirac bracket, not the Poisson bracket. The existence of a
singularity in this bracket does not allow constructing a
perturbation theory. The introduction of the interaction with
an additional spin 1=2 field shifted the pole in the Dirac
bracket, which allowed them to find in [9] (see also [10])
the gauge chiral anomaly by the famous shift method
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h∂μĵμAiRSA ¼ −
5

16π2
εμναβFμνFαβ: ð1:2Þ

Thus, the gauge chiral anomaly turns out to be 5 times
larger than for spin 1=2. This numerical factor distinguishes
RSA theory from other theories with Rarita-Schwinger
fields, such as supergravity [11].
Subsequently, the anomaly (1.2) was generalized to the

non-Abelian case and used for the grand unification in [12],
where fields with spin 3=2 participate in the anomaly
cancellation.
In this paper, we continue to analyze the RSA theory and

find the gravitational chiral anomaly. For Rarita-Schwinger
fields, there is a well-known result for the gravitational
chiral anomaly [11]

h∇μĵ
μ
AiRS ¼

−21
384π2

ffiffiffiffiffiffi−gp εμνρσRμνκλRρσ
κλ; ð1:3Þ

where the factor in the anomaly is −21 times larger
compared to the anomaly for Dirac field (1.1). This value
has been obtained in various ways, in particular, in super-
gravity [11,13], as well as for quantized Rarita-Schwinger
fields on a classical geometric background [14] (with
restrictions imposed on the geometry). Note that (1.1)
and (1.3) are special cases of the more general relation
obtained in the framework of the supergravity [11] for an
arbitrary spin S,

h∇μĵ
μ
AiS ¼

ðS − 2S3Þ
96π2

ffiffiffiffiffiffi−gp εμνρσRμνκλRρσ
κλ: ð1:4Þ

In the case of the gauge anomaly (1.2), the result differed
from the other theories with Rarita-Schwinger field.
Therefore, we expect in advance that the RSA theory will
give a new numerical factor also for the gravitational chiral
anomaly instead of (1.3). The study of this issue is the aim
of our paper.
To find the anomalies, we use a new method described

in [15,16] and based on considering the form of the three-
point quantum correlation function. In this case, a three-
point function with two vector current operators and one
axial current operator defines a gauge chiral anomaly.
A three-point function with two stress-energy tensors
and an axial current defines a gravitational chiral anomaly.
Typical diagrams to be found are shown in Fig. 1.
It was shown that in conformally symmetric theories,

these three-point functions should have a universal form.
The specific choice of the theory affects only the numerical
factor in front of the universal function, and the key point is
the equality of this numerical factor to the coefficient in the
quantum anomalies: gauge and gravitational.
The advantage of this method of calculating anomalies is

that everything can be done in coordinate representation,
and thus there is no need to explicitly find nontrivial

divergent loop momentum integrals. Moreover, in the case
of a gravitational chiral anomaly, the correlator (Fig. 1 on
the right) can be found in a flat space-time, and we do not
need to consider Rarita-Schwinger fields in curved space.
This method of finding anomalies corresponds to ’t Hooft’s
interpretation, according to which anomalies are properties
of the quantum theory, and gauge or gravitational fields
only make them visible in conservation laws [2].
First, we reproduce the gauge quantum anomaly (1.2):

This allows us to demonstrate the features of the method.
Then we move on to a more complicated case and find the
gravitational chiral anomaly in RSA theory.
Our result for the anomaly can be further used in the

extended, beyond the Standard Model, field theories con-
taining higher spin fields for the cancellation of the
gravitational chiral anomalies. In particular, it can be
considered in the framework of the theory [12].
But additional motivation for us comes from a new field,

considering the manifestations of quantum anomalies in
relativistic fluids and condensed matter. Namely, there is
a new phenomenon, the chiral vortical effect (CVE)
[1,17,18], which is a transfer of chirality along the vorticity
in a vortical fluid.
This effect turns out to be related to the gauge chiral

anomaly [1,17,19], which was explicitly shown for the case
of spin 1=2. The case of higher spins is less obvious, but
in [20] we derived the CVE in the RSA theory and showed
its relationship with the anomaly (1.2). We also note that a
similar relationship was substantiated for the RSA theory
for a close phenomenon, the chiral separation effect, in the
presence of a magnetic field [21].
Much less trivial is the question of manifestations of the

gravitational chiral anomaly [2,22–25] and is based on
the interpretation of Hawking radiation as an effect of the
anomaly on the black hole horizon [26]. The calculation of
the axial-gravitational anomaly for the RSA theory will
allow us to analyze the concepts of the relationship between
the gravitational anomaly and thermodynamics in the case
of higher spins.
The paper has the following structure. In Sec. II we give a

short introduction to the extended Rarita-Schwinger-Adler
theory. In Sec. III we describe a method for calculating

FIG. 1. Typical diagrams to be calculated in [15,16] to find
the gauge chiral anomaly (left) and the gravitational chiral
anomaly (right).
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quantum anomalies based on an analysis of the form of
three-point functions. Section IV contains original results:
the derivation of the gauge chiral anomaly and the gravi-
tational chiral anomaly in the RSA theory. Section V
provides an interpretation of the obtained factor in the
gravitational chiral anomaly. The Conclusion lists the main
results. The Appendix contains the calculation of the three-
point function needed to find the gauge chiral anomaly, in a
general case of arbitrary points.
Analytical calculations in Sec. IVand the Appendix were

made using the WolframMathematica system for technical
computing and the package [27] on the parallel computing
server Theor4 of JINR BLTP.
We use the notations ημν¼ diagð1;−1;−1;−1Þ, ϵ0123¼ 1,

γ5 ¼ iγ0γ1γ2γ3, and the system of units e ¼ ℏ ¼ c ¼ 1.

II. THE THEORY OF SPIN 3=2 FIELD
INTERACTING WITH A FIELD WITH SPIN 1=2

In [9], Adler formulated an extended theory for spin 3=2.
It is described by an action of the form

S ¼
Z

d4xð−ελρμνψ̄λγ5γμ∂νψρ þ iλ̄γμ∂μλ

− imλ̄γμψμ þ imψ̄μγ
μλÞ; ð2:1Þ

where ψμ is the Rarita-Schwinger field, λ is an additional
field with spin 1=2, andm is the interaction constant. These
interaction terms have the form of “protomassive” terms:
They describe the interaction of the fields ψμ and λ with the
same-sign chirality, which does not allow us to consider
them as usual massive terms. Following [9], we will
consider the limit m → ∞. In this limit, the negative
Dirac bracket vanishes, and also the calculations become
more compact.
The introduced interaction with the λ field shifts the pole

in the Dirac bracket in the presence of an external gauge
field, which ultimately made it possible to find the chiral
quantum anomaly.
In some cases, it is convenient to write the action (2.1) in

terms of the product of three Dirac matrices

γλρν¼1

6
ðγλγργν−γλγνγρ−γργλγνþγργνγλþγνγλγρ−γνγργλÞ

¼1

2
ðγλγργν−γνγργλÞ

¼ iελρμνγ5γμ: ð2:2Þ

The classical equations of motion can be obtained by
varying the fields ψμ and λ and have the form

ελμνργ5γμ∂νψρ − imγλλ ¼ 0;

ερνλμ∂νψ̄λγ5γμ þ imλ̄γρ ¼ 0;

γμ∂μλ −mγμψμ ¼ 0;

∂μλ̄γ
μ −mψ̄μγ

μ ¼ 0: ð2:3Þ

Taking the derivative in the first pair of equations and using
the second pair of equations, we obtain

γμψ
μ ¼ ψ̄μγμ ¼ γμ∂

μλ ¼ ∂
μλ̄γμ ¼ 0: ð2:4Þ

To derive the stress-energy tensor, it is necessary to pass
to an arbitrary space-time metric

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
i
2
½ψ̄ λγ

λρν∇νψρ −∇νψ̄λγ
λρνψρ�

þ i
2
½λ̄γμ∇μλ −∇μλ̄γ

μλ� þ im½ψ̄μγ
μλ − λ̄γμψμ�

�
ð2:5Þ

using tetrads eμa. Tetrads satisfy the usual relations

γμ ¼ eμaγa; eaμeaν ¼ gμν;

eμaebμ ¼ ηab ¼ ð1;−1;−1;−1Þ: ð2:6Þ

The covariant derivative for the Rarita-Schwinger field
contains a term with Christoffel symbols Γσ

νρ and a spinor
connection ωab

ν ,

∇νψρ¼∂νψρ−Γσ
νρψσþ

i
2
ωab
ν σabψρ;

∇νλ¼∂νλþ
i
2
ωab
ν σabψρ;

σab¼
i
2
½γa;γb�;

Γσ
νρ¼

1

2
gσαð∂νgαρþ∂ρgαν−∂αgνρÞ;

ωab
ν ¼1

4
ðebλ∂νeaλ −eaλ∂νebλÞþ

1

4
ðebτeaλ−eaτebλÞΓτ

λν: ð2:7Þ

The stress-energy tensor can be obtained by varying with
respect to the metric

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
: ð2:8Þ

It is convenient to first vary all the quantities with respect to
the metric g0μν ¼ ημν þ hμν (see, e.g., [28])
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δgμν ¼ −hμν; δeμa ¼ −
1

2
hμρe

ρ
a;

δ
ffiffiffiffiffiffi
−g

p ¼ 1

2

ffiffiffiffiffiffi
−g

p
hμμ; δγμ ¼ −

1

2
hμργρ;

δωab
μ ¼ −

1

4
ðeaτebλ − ebτeaλÞ∂λhμτ; ð2:9Þ

where the above relations are valid in the first order in hμν.
There are the useful properties [28,29]

∇τgμν ¼ 0; ∇τeaμ ¼ 0; ∇τγ
μ ¼ 0: ð2:10Þ

As a result, we obtain the following expression for the
stress-energy tensor in flat space-time:

Tμν ¼ 1

2
ελαβρψ̄λγ5ðγμδνα þ γνδμαÞ∂βψρ

þ 1

8
∂ηðελαβρψ̄λγ5γαð½γη; γμ�δνβ þ ½γη; γν�δμβÞψρÞ

þ i
4
ðλ̄γν∂μλ − ∂

μλ̄γνλþ λ̄γμ∂νλ − ∂
νλ̄γμλÞ

þ i
2
mðψ̄μγνλ − λ̄γμψν þ ψ̄νγμλ − λ̄γνψμÞ; ð2:11Þ

where we have omitted the terms equal to zero, when the
equations of motion are taken into account. The first two
lines correspond to the usual Rarita-Schwinger field theory.
When deriving (2.11) and checking its conservation, it is
necessary to use the identity

ηϑμεναβγ þ ηϑγεμναβ þ ηϑβεγμνα þ ηϑαεβγμν

þ ηϑνεαβγμ ¼ 0: ð2:12Þ

Also, the product of three gamma matrices can be
expanded

γμγνγλ ¼ iερμνλγ5γρ þ ημνγλ þ ηνλγμ − ημλγν: ð2:13Þ

Vector and axial currents can be obtained using Noether’s
theorem for global symmetries ψμ → eiαþiβγ5ψμ and
λ → eiαþiβγ5λ,

jμV ¼ −iελρνμψ̄λγνγ5ψρ þ λ̄γμλ;

jμA ¼ −iελρνμψ̄λγνψρ þ λ̄γμγ5λ: ð2:14Þ

At the classical level, the conservation laws are satisfied,
and the stress-energy tensor is symmetric and traceless

∂μTμν ¼ 0; ∂μj
μ
V ¼ 0; ∂μj

μ
A ¼ 0;

Tμ
μ ¼ 0; Tμν ¼ Tνμ: ð2:15Þ

Note that the trace of the stress-energy tensor turns out to be
zero only in the extended theory [9], while for the standard

Rarita-Schwinger it is nonzero [30]. Before using the
equations of motion, we have from (2.11)

Tμ
μ ¼ 1

2
ελμβρðψ̄ λγ5γμ∂βψρ − ∂βψ̄λγ5γμψρÞ

þ i∂η½ðψ̄γÞψη − ψ̄ ηðγψÞ� þ i
2
½λ̄ðγ∂Þλ − ð∂λ̄γÞλ�

þ im½ðψ̄γÞλ − λ̄ðγψÞ�: ð2:16Þ

Using now the equations of motion, we would get for
the usual Rarita-Schwinger field theory (without any
additional fields or ghosts) and for the RSA theory (for
arbitrary m)

RS theory∶ Tμ
μ ¼ i∂η½ðψ̄γÞψη − ψ̄ ηðγψÞ� ≠ 0;

RSA theory∶ Tμ
μ ¼ 0: ð2:17Þ

Thus, the dilatation current is conserved only in the
extended theory.
As in the case of spin 1=2, a chiral anomaly (1.2) arises

when passing to the quantum field theory, which breaks
classical conservation law (2.15). However, one can see,
that 5 can be obtained as the sum of the nonghost
contribution of the Rarita-Schwinger field and the free
spin 1=2 field.
Propagators for fields ψμ and λ can be obtained from the

path integral by constructing the inverse matrix for the
action (2.1). Passing to the Fourier transforms

ψμðxÞ ¼
Z

d4p
ð2πÞ4 e

−ipxψμðpÞ;

λðxÞ ¼
Z

d4p
ð2πÞ4 e

−ipxλðpÞ; ð2:18Þ

we can write the action in the matrix form, introducing

matrix M ¼
�
Mλρ

11

Mρ
21

Mλ
12

M22

�
,

S ¼ i
Z

d4p
ð2πÞ4 ð ψ̄ λðpÞ λðpÞ ÞM

�
ψρðpÞ
λðpÞ

�
;

M ¼
�
ϵλρμνγ5γμpν mγλ

−mγ̃ρ −ip

�
: ð2:19Þ

The propagators are then defined by the inverse matrix

N ¼
�
N 11ρ

σ

N σ
21

N 12ρ

N 22

�
for which MN ¼ ðηλσ

0
0
1
Þ,

N ¼
 i

2p2

h
γσpγρ−2

�
1
m2þ 2

p2

�
pσpρp

i
− ppρ

mp2

ppσ

mp2 0

!
: ð2:20Þ
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As a result, we have for the time ordered Green’s
functions

hTψρ
aðxÞψ̄σ

bð0Þi¼Gρσ
ψψ̄ðxÞ¼

Z
d4p
ð2πÞ4 e

−ipxN ρσ
11

¼ i
2ð2πÞ4

Z
d4p
p2

�
γσpγρ

−2

�
1

m2
þ 2

p2

�
pσpρp

�
ab
e−ipx;

hTλaðxÞψ̄σ
bð0Þi¼Gσ

λψ̄ ðxÞ¼
Z

d4p
ð2πÞ4 e

−ipxN σ
21

¼ 1

ð2πÞ4
Z

d4p
mp2

pabpσe−ipx;

hTψρ
aðxÞλ̄bð0Þi¼Gρ

ψλ̄
ðxÞ¼

Z
d4p
ð2πÞ4 e

−ipxN ρ
12

¼−
1

ð2πÞ4
Z

d4p
mp2

pabpρe−ipx;

hTλaðxÞλ̄bð0Þi¼Gλλ̄ðxÞ¼
Z

d4p
ð2πÞ4 e

−ipxN 22¼ 0; ð2:21Þ

where a, b are bispinor indices and p ¼ pμγ
μ. Propagators

(2.21) can be written in coordinate representation using the
general formula [31,32]

Z
dDpeipx

p2ðλþ1−αÞ ¼
i22απλþ1ΓðαÞ

x2αΓðλþ 1 − αÞ ;

λ ¼ 1 − ε; D ¼ 2ðλþ 1Þ: ð2:22Þ

In particular, we have for the case when p2 is in the
denominator

Z
d4peipx

p2
¼ 4iπ2

x2
;

Z
d4peipxpμ

p2
¼ −

8π2xμ

x4
;

Z
d4peipxpμpν

p2
¼ 8iπ2

x4

�
ημν − 4

xμxν

x2

�
;

Z
d4peipxpμpνpα

p2
¼ −

32π2

x6

�
ημνxα þ ημαxν þ ηναxμ

− 6
xμxνxα

x2

�
; ð2:23Þ

and similar formulas for the case with p4 in the
denominator

Z
d4peipxpμ

p4
¼ −

2π2xμ

x2
;

Z
d4peipxpμpν

p4
¼ 2iπ2

x2

�
ημν − 2

xμxν

x2

�
;

Z
d4peipxpμpνpα

p4
¼ −

4π2

x4

�
ημνxα þ ημαxν þ ηναxμ

− 4
xμxνxα

x2

�
: ð2:24Þ

Using (2.23) and (2.24) in (2.21), we obtain the following
expressions for the propagators:

hTψρ
aðxÞψ̄σ

bð0Þi ¼
i

4π2x4

�
γσ=xγρ − 2

�
1þ 4

m2x2

�
× ðηρσ=xþ γρxσ þ γσxρÞ

þ 8

�
1þ 6

m2x2

�
xρxσ=x
x2

�
ab
;

hTλaðxÞψ̄σ
bð0Þi ¼

i
2π2mx4

�
γσ −

4xσ=x
x2

�
ab
;

hTψρ
aðxÞλ̄bð0Þi ¼

−i
2π2mx4

�
γρ −

4xρ=x
x2

�
ab
;

hTλaðxÞλ̄bð0Þi ¼ 0: ð2:25Þ

Note also that, as was noted in [9] (see also [10]), the
ghosts in the RSA theory turn out to be nonpropagating and
do not contribute to the quantities of interest to us.

III. ANOMALY CALCULATION METHOD:
UNIVERSAL FORM OF THREE-POINT

FUNCTIONS

There are many ways to find quantum anomalies. In
particular, the anomaly (1.2) in [9] was derived by the well-
known method of shifting in the momentum integrals:
Before taking the divergence, the three-point function for
the mean value of the current allows a shift in the
momentum variable under the integral, which at the next
stage leads to a finite difference of linearly diverging
integrals. However, it turns out that there is a universal
method for calculating anomalies that does not require
explicit consideration of divergent integrals. This method is
based on an analysis of the form of three-point functions in
x space. Quantum correlators in x space are usually well-
defined functions and do not contain the singularities and
ambiguities associated with regularization, which usually
appear when passing to p space [33].
In [15] in this way, a gauge chiral anomaly was found,

and in [16], a gravitational chiral anomaly. We start with a
simpler case with a gauge chiral anomaly.
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A. Gauge chiral anomaly

In [15], it was shown that for conformally symmetric
field theories the three-point connected correlator
hTĵμVðxÞĵνVðyÞĵωAðzÞic has a universal form

hTĵμVðxÞĵνVðyÞĵωAðzÞic

¼ −4B
Iμμ0 ðx − zÞIνν0 ðy − zÞ
ðx − zÞ6ðy − zÞ6 εμ

0ν0λω Zλ

Z4
; ð3:1Þ

where B is an uncertain coefficient that depends on a
particular choice of the field theory. The notations are
introduced

IμνðxÞ ¼ ημν − 2
xμxν
x2

;

Zμ ¼
ðx − zÞμ
ðx − zÞ2 −

ðx − yÞμ
ðx − yÞ2 : ð3:2Þ

Equation (3.1) was derived using (2.15), in particular, the
property Tμ

μ ¼ 0. On the other hand, we can consider the
gauge chiral anomaly

h∂μĵμAi ¼ −b
π4

4
εμναβFμνFαβ: ð3:3Þ

The central point for us is the relationship between the
three-point function and the gauge chiral anomaly

B ¼ b: ð3:4Þ

To substantiate this relationship of the factors, one needs to
take the divergence from (3.1) and multiply it by the
external fields.
It is technically convenient to consider a special case

when all three points in (3.1) lie on the same axis

xμ ¼ xeμ; yμ ¼ yeμ; zμ ¼ zeμ; ð3:5Þ

where e2 ¼ �1. In this case, (3.1) takes the form

hTĵμVðxÞĵνVðyÞĵωAðzÞic ¼
4Be2eϑεϑμνω

ðx − yÞ3ðx − zÞ3ðy − zÞ3 : ð3:6Þ

Thus, to calculate the gauge chiral quantum anomaly, it is
enough to find the three-point function hTĵμVðxÞĵνVðyÞĵωAðzÞi
using the Feynman rules in the coordinate representation.
In fact, for this we need to multiply the propagators and find
the trace of Dirac matrices. Then it is necessary to check
that the three-point function has the form (3.1) or (3.6), and
then the factor B in front of the universal function
determines the coefficient in the gauge chiral anomaly.
In particular, this was done for spin 1=2 in [15]

Bs¼1=2 ¼
1

4π6
; ð3:7Þ

which reproduces the standard formula (1.1). In Sec. IVA,
we will use this method to find the anomaly in the extended
spin 3=2 theory.

B. Gravitational chiral anomaly

The method described above was generalized in [16] to
the case of a gravitational chiral anomaly. In this case, we
have to consider a three-point connected correlator with
two stress-energy tensors and one axial current. Then for a
conformally symmetric theory, it will have the universal
form

hTT̂μνðxÞT̂σρðyÞĵωAðzÞic
¼ 1

ðx − zÞ8ðy − zÞ8I
μν;μ0ν0
T ðx − zÞ

×I σρ;σ0ρ0
T ðy − zÞtTTAμ0ν0σ0ρ0

ωðZÞ; ð3:8Þ

where the notations are introduced

I T
μν;σρðxÞ ¼ E T

μν;αβI
α
σðxÞIβρðxÞ;

E T
μν;αβ ¼

1

2
ðημαηνβ þ ημβηναÞ −

1

4
ημνηαβ;

tTTAμνσρωðZÞ ¼
A

Z6
ðE T

μν;η
εE T

σρ;κεεω
ηκλZλ

− 6E T
μν;ηγE

T
σρ;κδεω

ηκλZγZδZλZ−2Þ: ð3:9Þ

Here we have the same necessary conditions (2.15) for (3.8)
to be valid, as in the case of a gauge chiral anomaly. In
particular, the coefficient 6 in (3.9) is a direct consequence
of the vanishing of the trace of the stress-energy tensor. On
the other hand, it is known that there is a chiral anomaly in
the gravitational field

h∇μj
μ
5i ¼ a

π4

384
ffiffiffiffiffiffi−gp εμνρσRμνκλRρσ

κλ: ð3:10Þ

Of key importance for us is the equality of the factor A to
the coefficient a in the axial-gravitational anomaly

A ¼ a: ð3:11Þ

To substantiate this equality, in [16] it was first shown that
despite the fact that the one-point anomalous divergence,
like (3.10), vanishes in a flat space-time limit, a similar
identity for the three-point function (3.8) is not equal to
zero. In more detail, the quantum mean value of the stress-
energy tensor in curved space-time in terms of the effective
action is
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hTμνi ¼ −
2ffiffiffiffiffiffi−gp δW

δgμν
; ð3:12Þ

where W is the effective quantum action that can be
constructed from the amplitude of the vacuum-vacuum
transition [34]. Then the three-point function can be
represented as

hTT̂μνðxÞT̂σρðyÞĵωAðzÞic
¼ 4ffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞp ffiffiffiffiffiffiffiffiffiffiffiffi

−gðzÞp
×

δ

δgμνðxÞ
δ

δgμνðyÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
hĵωAðzÞiÞ; ð3:13Þ

which determines the choice of the gravitational (not
canonical) stress-energy tensor in (3.8).
Taking the divergence from (3.13), we will obtain an

anomaly (3.10) on the right, which is also quadratic in
small fluctuations δgμν. Thus, passing to the flat space-time
limit gμν → ημν, the expression on the right will not be
equal to zero but evidently will include the factor a, while
the left-hand side can be found from (3.8) and includes the
factor A . In such a way, the equality (3.11) and the
possibility of calculating the anomaly from the flat-space
correlator can be shown.
As with the gauge anomaly, calculations can be sim-

plified by assuming that all three points lie on the same
axis (3.5). Then (3.1) takes the form

hTT̂μνðxÞT̂σρðyÞĵωAðzÞi
¼ A ð4ðx − yÞ5ðx − zÞ3ðy − zÞ3Þ−1eϑðηνρεσϑμω
þ ημρεσϑνω þ ηνσεϑμρω þ ημσεϑνρω − 6e2ðeνeρεσϑμω
þ eμeρεσϑνω þ eσeνεϑμρω þ eσeμεϑνρωÞÞ: ð3:14Þ

Thus, it is necessary to find a three-point correlator
hT̂ðxÞT̂ðyÞĵAðzÞi in an ordinary flat space-time and check
that it satisfies (3.8) or (3.14). The coefficient in front of the
universal function will give us a factor of the gravitational
chiral anomaly. In particular, the anomaly for spin 1=2 was
found in this way [16]

A s¼1=2 ¼
1

π6
; ð3:15Þ

which matches (1.1). In the next section, we will use the
described method to find the gravitational chiral anomaly
for the extended theory of spin 3=2.
The calculation of the correlator (3.8) [as well as (3.1)]

does not contain ambiguities associated with regularization,
since these three-point functions are well defined in x
space. However, differential regularization was used to
justify the connection (3.11) in [16]. In the general case, the
question of the dependence of quantum anomalies on the

regularization scheme is nontrivial; see, e.g., [35,36] for the
trace anomaly case. On the other hand, it was shown that
with different regularizations for spin 3=2, the same result
was obtained [14]. We hope that there will be no such
dependence also in our case, although the question
remains open.
We also note that the three-point function (3.8) is not

invariant with respect to pseudo-gauge transformations
[35,37–39], and passing to another definition of the
stress-energy tensor, for example, the canonical one, we
will get a different answer. We directly verified this for
Dirac field.

IV. CALCULATION OF ANOMALIES IN THE
RARITA-SCHWINGER-ADLER THEORY

A. Gauge chiral anomaly

In contrast to the free Rarita-Schwinger fields, for the
extended Rarita-Schwinger-Adler theory (2.1), all of the
relations (2.15) are satisfied. Vanishing of the trace of
the stress-energy tensor allows us to assume the existence
of a conformal symmetry, since in most of the known
theories with a conserved dilatation current there is also a
conformal symmetry [2,40]. This allows us to use the
method described in the previous section to find the
anomalies.
We will start by considering the gauge anomaly, for

which the result (1.2) is already known, to demonstrate the
features of the methods.
Operators of the currents can be decomposed depending

on the field content

ĵμ ¼ ĵμψ̄ψ þ ĵμ
λ̄λ
;

ĵμA ¼ ĵμAψ̄ψ þ ĵμ
Aλ̄λ

; ð4:1Þ

where

ĵμψ̄ψ ¼ J μη1η2
ðψ̄ψÞabψ̄

a
η1ψ

b
η2 ; J μη1η2

ðψ̄ψÞ ¼ −iεη1η2νμγνγ5;

ĵμ
λ̄λ
¼ J μ

ðλ̄λÞabλ̄aλb; J μ
ðλ̄λÞ ¼ γμ;

ĵμAψ̄ψ ¼ J μη1η2
Aðψ̄ψÞabψ̄

a
η1ψ

b
η2 ; J μη1η2

Aðψ̄ψÞ ¼ −iεη1η2νμγν;

ĵμ
Aλ̄λ

¼ J μ
Aðλ̄λÞabλ̄aλb; J μ

Aðλ̄λÞ ¼ γμγ5: ð4:2Þ

Following [9], we will consider the limit m → ∞.
According to the Wick theorem, we have

hTφ̄1ðxÞφ2ðxÞφ̄3ðyÞφ4ðyÞφ̄5ðzÞφ6ðzÞic
¼−hTφ̄1ðxÞφ4ðyÞihTφ2ðxÞφ̄5ðzÞihTφ̄3ðyÞφ6ðzÞi
þhTφ̄1ðxÞφ6ðzÞihTφ2ðxÞφ̄3ðyÞihTφ4ðyÞφ̄5ðzÞi; ð4:3Þ

where we left only connected contributions. φi is either a
ψμ field or a λ field.
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Then we obtain

hTĵμðxÞĵνðyÞĵωAðzÞi
¼ −trfJ μη1η2

ðψ̄ψÞG
ψψ̄
η2η5ðx − zÞ

× J ωη5η6
Aðψ̄ψÞG

ψψ̄
η6η3ðz − yÞJ νη3η4

ðψ̄ψÞG
ψψ̄
η4η1ðy − xÞg

− trfJ μη1η2
ðψ̄ψÞG

ψψ̄
η2η3ðx − yÞJ νη3η4

ðψ̄ψÞG
ψψ̄
η4η5ðy − zÞ

× J ωη5η6
Aðψ̄ψÞG

ψψ̄
η6η1ðz − xÞg: ð4:4Þ

All the terms with field λ are to be dropped out: They are
either equal to zero due to hλλ̄i ¼ 0, or tend to zero in the
limit m → ∞.
The calculations can be simplified by considering the

case of codirectional vectors (3.5) (the case with arbitrary
points is considered in the Appendix). Taking into account
the limit m → ∞ the Green’s function will be

Gψψ̄
μν ðxÞ → gμναðxÞγα þ fμναðxÞγ5γα;

gμναðxÞ ¼ −
i

4π2x3

�
ηναeμ þ ημαeν − 8

eαeμeν
e2

þ 3eαημν

�
;

fμναðxÞ ¼ −
1

4π2x3
eβεμναβ; ð4:5Þ

where in x3 there is a power of a number, and in e2 there is a
square of a vector. We also used the properties of Dirac
matrices, expanding the product of three matrices. Thus, we
need to find a trace with only six or seven gamma matrices.
Finally, we obtain

hTĵμðxÞĵνðyÞĵωAðzÞic ¼
5e2eϑεϑμνω

π6ðx − yÞ3ðx − zÞ3ðy − zÞ3 : ð4:6Þ

Function (4.6) corresponds to the universal conformally
symmetric form (3.6), and the coefficient in the anomaly is

B ¼ 5

4π6
: ð4:7Þ

Taking into account (3.3) and (3.4), we get agreement with
the original result (1.2).

B. Gravitational chiral anomaly

Now we move on to the gravitational chiral anomaly. In
this case, we need to find a three-point function with two
operators of the stress-energy tensor and one operator of the
axial current (3.8). Now the interaction between the fields
ψμ and λ plays a significant role, since in the limit m → ∞
negative powers m−n from the propagators can be canceled
by positive powers mn from the operators of the stress-
energy tensor in the vertices.
First, we decompose the stress-energy tensor (2.11)

depending on the field content

T̂μν ¼ T̂μν
ψ̄ψ þ T̂μν

λ̄λ
þ T̂μν

ψ̄λ þ T̂μν
λ̄ψ
; ð4:8Þ

where

T̂μν
ψ̄ψ ¼ 1

2
ελαβρψ̄ λγ5ðγμδνα þ γνδμαÞ∂βψρ;

þ 1

8
∂ηðελαβρψ̄λγ5γαð½γη; γμ�δνβ þ ½γη; γν�δμβÞψρÞ;

T̂μν
λ̄λ

¼ i
4
ðλ̄γν∂μλ − ∂

μλ̄γνλþ λ̄γμ∂νλ − ∂
νλ̄γμλÞ;

T̂μν
ψ̄λ ¼

i
2
mðψ̄μγνλþ ψ̄ νγμλÞ;

T̂μν
λ̄ψ

¼ −
i
2
mðλ̄γμψν þ λ̄γνψμλÞ: ð4:9Þ

Then the correlator (3.8) splits into 32 terms depending on
the set of fields

hTT̂μνðxÞT̂σρðyÞĵωAðzÞic
¼ hT̂ψ̄ψ T̂ ψ̄ψ ĵ

A
ψ̄ψ i þ ð31 termsÞ; ð4:10Þ

where we have omitted some notations for short. A typical
diagram is shown in Fig. 1 on the right.
It is clear from the condition hλλ̄i ¼ 0 in (2.25) in

advance that 12 terms in (4.10) are equal to zero

hT̂ψ̄ψ T̂ λ̄λĵ
A
λ̄λi¼ hT̂ψ̄λT̂ ψ̄λĵ

A
λ̄λi¼ hT̂ψ̄λT̂ λ̄ψ ĵ

A
λ̄λi¼ hT̂ ψ̄λT̂ λ̄λĵ

A
λ̄λi

¼ hT̂ λ̄ψ T̂ ψ̄λĵ
A
λ̄λi¼ hT̂ λ̄ψ T̂ λ̄ψ ĵ

A
λ̄λi¼ hT̂ λ̄ψ T̂ λ̄λĵ

A
λ̄λi

¼ hT̂ λ̄λT̂ψ̄ψ ĵ
A
λ̄λi¼ hT̂ λ̄λT̂ψ̄λĵ

A
λ̄λi¼ hT̂ λ̄λT̂ λ̄ψ ĵ

A
λ̄λi

¼ hT̂ λ̄λT̂ λ̄ψ ĵ
A
ψ̄ψ i¼ hT̂ λ̄λT̂ λ̄λĵ

A
λ̄λi¼ 0; ð4:11Þ

since they contain one or more propagators with two fields
λ. Also, in the m → ∞ limit, 11 more terms vanish

hT̂ψ̄ψ T̂ ψ̄ψ ĵ
A
λ̄λi; hT̂ ψ̄ψ T̂ψ̄λĵ

A
λ̄λi; hT̂ψ̄ψ T̂ λ̄ψ ĵ

A
λ̄λi;

hT̂ψ̄ψ T̂ λ̄λĵ
A
ψ̄ψi; hT̂ ψ̄λT̂ψ̄ψ ĵ

A
λ̄λi; hT̂ψ̄λT̂ λ̄λĵ

A
ψ̄ψi;

hT̂ λ̄ψ T̂ψ̄ψ ĵ
A
λ̄λi; hT̂ λ̄ψ T̂ λ̄λĵ

A
ψ̄ψi; hT̂ λ̄λT̂ ψ̄ψ ĵ

A
ψ̄ψi;

hT̂ λ̄λT̂ ψ̄λĵ
A
ψ̄ψ i; hT̂ λ̄λT̂ λ̄ψ ĵ

A
ψ̄ψi → 0 ðm → ∞Þ; ð4:12Þ

since negative powers from the propagators hψλ̄i; hλψ̄i ∼
1=m are not compensated by positive powers from the
operators T̂μν

ψ̄λ; T̂
μν
λ̄ψ

∼m. Thus, in contrast to the gauge

anomaly, the terms of interaction with the λ field start to
play a role. Finally, in (4.10), only nine terms remain
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hTT̂μνðxÞT̂σρðyÞĵAωðzÞic ¼ hT̂ψ̄ψ T̂ ψ̄ψ ĵ
A
ψ̄ψi þ hT̂ψ̄ψ T̂ψ̄λĵ

A
ψ̄ψ i

þ hT̂ ψ̄ψ T̂ λ̄ψ ĵ
A
ψ̄ψi þ hT̂ψ̄λT̂ ψ̄ψ ĵ

A
ψ̄ψ i

þ hT̂ ψ̄λT̂ ψ̄λĵ
A
ψ̄ψ i þ hT̂ψ̄λT̂ λ̄ψ ĵ

A
ψ̄ψi

þ hT̂ λ̄ψ T̂ ψ̄ψ ĵ
A
ψ̄ψi þ hT̂ λ̄ψ T̂ ψ̄λĵ

A
ψ̄ψi

þ hT̂ λ̄ψ T̂ λ̄ψ ĵ
A
ψ̄ψ i; ð4:13Þ

where all the terms except the first one give a finite
contribution just due to the cancellation of the powers of
m. Note that the terms of the order of 1=m2 in the
propagator hψψ̄i can obviously be omitted in advance.
Correlators from (4.13) can be calculated using the

Feynman rules. It is convenient to represent all the
operators in a split form

T̂στ
ψ̄ψðxÞ ¼ lim

x1;x2→x
Dστηξ

ðψ̄ψÞabð∂x1 ; ∂x2Þψ̄ηaðx1Þψξbðx2Þ; T̂στ
ψ̄λðxÞ ¼ lim

x1;x2→x
Dστη

ðψ̄λÞabψ̄ηaðx1Þλbðx2Þ;

T̂στ
λ̄ψðxÞ ¼ lim

x1;x2→x
Dστη

ðλ̄ψÞabλ̄aðx1Þψηbðx2Þ; ĵσAψ̄ψðxÞ ¼ lim
x1;x2→x

J σηξ
Aðψ̄ψÞabψ̄ηaðx1Þψξbðx2Þ;

Dστηξ
ðψ̄ψÞð∂x1 ; ∂x2Þ ¼

1

2
εηξαβγ5ðγσδτα þ γτδσαÞ∂x2β þ 1

8
εηξαβγ5γαð½γϑ; γσ�δτβ þ ½γϑ; γτ�δσβÞð∂x1ϑ þ ∂

x2
ϑ Þ;

Dστη
ðψ̄λÞ ¼

i
2
mðγσητη þ γτησηÞ; Dστη

ðλ̄ψÞ ¼ −
i
2
mðγσητη þ γτησηÞ; ð4:14Þ

and J σηξ
Aðψ̄ψÞ was written out earlier in (4.2). Note that in the

case under consideration, point splitting does not split
composite operators, since, by construction, (3.1) and (3.8)
contain only connected diagrams with fields at different
space-time points, does not lead to singularities, and

splitting is necessary only to take derivatives out of the
brackets.
Each of the nine terms in (4.13) splits into two due to

Wick’s theorem (4.3). In particular, the first term in (4.13)
has the form

hTT̂μν
ψ̄ψðxÞT̂σρ

ψ̄ψ ðyÞĵωAψ̄ψ ðzÞic ¼ lim
x1 ;x2→x
y1 ;y2→y
z1 ;z2→z

ð−trfDμνη1η2
ðψ̄ψÞ ð∂x1 ; ∂x2ÞGψψ̄

η2η5ðx2 − z1ÞJ ωη5η6
Aðψ̄ψÞG

ψψ̄
η6η3ðz2 − y1Þ

×Dσρη3η4
ðψ̄ψÞ ð∂y1 ; ∂y2ÞGψψ̄

η4η1ðy2 − x1Þg − trfDμνη1η2
ðψ̄ψÞ ð∂x1 ; ∂x2ÞGψψ̄

η2η3ðx2 − y1Þ
×Dσρη3η4

ðψ̄ψÞ ð∂y1 ; ∂y2ÞGψψ̄
η4η5ðy2 − z1ÞJ ωη5η6

Aðψ̄ψÞG
ψψ̄
η6η1ðz2 − x1ÞgÞ; ð4:15Þ

where the derivatives act on the function regardless of whether it is on the left or on the right. The rest of the terms in (4.13)
contain λ fields, either one or two. In particular, we obtain

hTT̂μν
ψ̄ψ ðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψ ðzÞic ¼ lim
x1 ;x2→x
y1 ;y2→y
z1 ;z2→z

ð−trfDμνη1η2
ðψ̄ψÞ ð∂x1 ; ∂x2ÞGψψ̄

η2η4ðx2 − z1ÞJ ωη4η5
Aðψ̄ψÞG

ψψ̄
η5η3ðz2 − y1ÞDσρη3

ðψ̄λÞG
λψ̄
η1 ðy2 − x1Þg

− trfDμνη1η2
ðψ̄ψÞ ð∂x1 ; ∂x2ÞGψψ̄

η2η3ðx2 − y1ÞDσρη3
ðψ̄λÞG

λψ̄
η4 ðy2 − z1ÞJ ωη4η5

Aðψ̄ψÞG
ψψ̄
η5η1ðz2 − x1ÞgÞ; ð4:16Þ

hTT̂μν
ψ̄λðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψðzÞic ¼ lim
x1 ;x2→x
y1 ;y2→y
z1 ;z2→z

ð−trfDμνη1
ðψ̄λÞG

λψ̄
η3 ðx2 − z1ÞJ ωη3η4

Aðψ̄ψÞG
ψψ̄
η4η2ðz2 − y1ÞDσρη2

ðψ̄λÞG
λψ̄
η1 ðy2 − x1Þg

− trfDμνη1
ðψ̄λÞG

λψ̄
η2 ðx2 − y1ÞDσρη2

ðψ̄λÞG
λψ̄
η3 ðy2 − z1ÞJ ωη3η4

Aðψ̄ψÞG
ψψ̄
η4η1ðz2 − x1ÞgÞ; ð4:17Þ

hTT̂μν
ψ̄λðxÞT̂σρ

λ̄ψ
ðyÞĵωAψ̄ψðzÞic ¼ − lim

x1 ;x2→x
y1 ;y2→y
z1 ;z2→z

trfDμνη1
ðψ̄λÞG

λψ̄
η3 ðx2 − z1ÞJ ωη3η4

Aðψ̄ψÞG
ψλ̄
η4 ðz2 − y1ÞDσρη2

ðλ̄ψÞG
ψψ̄
η2η1ðy2 − x1Þg: ð4:18Þ

Equation (4.18) contains only one term due to hλλ̄i ¼ 0.
Now we need to use the general form of the propa-

gators (2.25) and take the derivatives coming from the
operators of the stress-energy tensor, and after that we

can use (3.5). To simplify the calculations, it is conven-
ient to expand the products with three Dirac matrices
coming from (2.25) and (4.14). This will reduce the
number of Dirac matrices under the trace from 16 to
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six or seven. So, for Dστηξ
ðψ̄ψÞð∂x1 ; ∂x2Þ using (2.13) and (3.5),

we get

Dστηξ
ðψ̄ψÞð∂x1 ; ∂x2Þ ¼ ð∂x1 þ ∂

x2ÞϑγμAστηξμϑ
1

þ ð∂x1ϑ − ∂
x2
ϑ Þγ5γμAστηξμϑ

2 ;

Aστηξμϑ
1 ¼ i

4
ð2ηημηστηϑξ − ητηησμηϑξ − ησηητμηϑξ

− ηημησξηϑτ − 2ηϑηηξμηστ þ ησηηξμηϑτ

þ ητηηξμηϑσ þ ηϑηητμησξ − ηημητξηϑσ

þ ηϑηησμητξÞ;

Aστηξμϑ
2 ¼ 1

4
ðημτεηξϑσ þ ημσεηξϑτÞ: ð4:19Þ

The propagator Gμ
ψλ̄

will take the form

Gμ
ψλ̄
ðxÞ → iγη

2π2mx4
ð4e2eηeμ − ηημÞ; ð4:20Þ

and the propagator Gμν
ψψ̄ was given in (4.5).

Similarly, derivatives of the propagators can be
simplified

∂
αGμν

ψψ̄ðxÞ→−
iγη

4π2x4
fηημηανþηηνηαμþ3ηηαημν

−4e2eαeνηημ−4e2eμð2eνηηαþeαηηνÞ
þ4eη½3eαð4eμeν−e2ημνÞ−2e2ðeνηαμþeμηανÞ�g

−
γ5γηε

σημν

4π2x4
ð4e2eαeσ−δασÞ;

∂
αGμ

ψλ̄
ðxÞ→ 2iγη

π2mx5
½e2ðeμηηαþeαηημÞ

þeηðe2ηαμ−6eαeμÞ�: ð4:21Þ

Also, second order derivatives can be obtained from (2.25)
using (3.5). The formulas for Gμ

λψ̄ differ only in common
sign from Gμ

ψλ̄
.

Now we can calculate (4.15)–(4.18) using (4.19), (4.14),
(4.5), (4.20), and (4.21). The most time consuming is to
find the term hT̂ ψ̄ψ T̂ψ̄ψ ĵ

A
ψ̄ψi, since it contains the largest

number of derivatives and the longest Green’s function,
wherein some of the terms are equal to each other up to a
change of variables. Namely,

hTT̂μν
ψ̄ψðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψðzÞic
¼ hTT̂μν

ψ̄ψðxÞT̂σρ
λ̄ψ
ðyÞĵωAψ̄ψ ðzÞic

¼ −hTT̂μν
ψ̄λðyÞT̂σρ

ψ̄ψ ðxÞĵωAψ̄ψ ðzÞic
¼ −hTT̂μν

λ̄ψ
ðyÞT̂σρ

ψ̄ψ ðxÞĵωAψ̄ψ ðzÞic; ð4:22Þ

also, one could check that

hTT̂μν
λ̄ψ
ðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψðzÞic
¼ hTT̂μν

ψ̄λðxÞT̂σρ
λ̄ψ
ðyÞĵωAψ̄ψðzÞic ð4:23Þ

and

hTT̂μν
λ̄ψ
ðxÞT̂σρ

λ̄ψ
ðyÞĵωAψ̄ψðzÞic

¼ hTT̂μν
ψ̄λðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψðzÞic: ð4:24Þ

Therefore, only four matrix elements are independent in
(4.13). Finally, we obtain

hTT̂μν
ψ̄ψ ðxÞT̂σρ

ψ̄ψðyÞĵωAψ̄ψðzÞic ¼
1

4π6ðx − yÞ5ðx − zÞ4ðy − zÞ4 eϑð28e
2x2eμeσεϑνρω − εσϑνωð2e2eμeρð−14x2 þ 9zðxþ yÞ

þ 19xy − 14y2 − 9z2Þ þ ð26x2 − 3zðxþ yÞ − 49xyþ 26y2 þ 3z2ÞημρÞ
þ 2e2eνð14x2 − 19xy − 9xzþ 14y2 − 9yzþ 9z2Þðeρεσϑμω þ eσεϑμρωÞ
− 38e2xyeμeσεϑνρω − 18e2xzeμeσεϑνρω þ 28e2y2eμeσεϑνρω − 18e2yzeμeσεϑνρω

þ 18e2z2eμeσεϑνρω − 26x2ηνρεσϑμω − 26x2ημσεϑνρω − ð26x2 − 3zðxþ yÞ − 49xy

þ 26y2 þ 3z2Þηνσεϑμρω þ 49xyηνρεσϑμω þ 49xyημσεϑνρω þ 3xzηνρεσϑμω þ 3xzημσεϑνρω

− 26y2ηνρεσϑμω − 26y2ημσεϑνρω þ 3yzηνρεσϑμω þ 3yzημσεϑνρω − 3z2ηνρεσϑμω

− 3z2ημσεϑνρωÞ; ð4:25Þ
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hTT̂μν
ψ̄ψ ðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψ ðzÞic ¼
1

4π6ðx − yÞ5ðx − zÞ4ðy − zÞ4 eϑð4e
2x2eμeσεϑνρω − εσϑνωð2e2eμeρð−2x2

þ 3zð7xþ yÞ − 17xyþ 7y2 − 12z2Þ þ ð10x2 þ 7xy − 27xz − 13y2 þ 19yzþ 4z2ÞημρÞ
þ 2e2eνð2x2 þ 17xy − 21xz − 7y2 − 3yzþ 12z2Þðeρεσϑμω þ eσεϑμρωÞ þ 34e2xyeμeσεϑνρω

− 42e2xzeμeσεϑνρω − 14e2y2eμeσεϑνρω − 6e2yzeμeσεϑνρω þ 24e2z2eμeσεϑνρω − 10x2ηνρεσϑμω

− 10x2ημσεϑνρω − ð10x2 þ 7xy − 27xz − 13y2 þ 19yzþ 4z2Þηνσεϑμρω − 7xyηνρεσϑμω

− 7xyημσεϑνρω þ 27xzηνρεσϑμω þ 27xzημσεϑνρω þ 13y2ηνρεσϑμω þ 13y2ημσεϑνρω

− 19yzηνρεσϑμω − 19yzημσεϑνρω − 4z2ηνρεσϑμω − 4z2ημσεϑνρωÞ; ð4:26Þ

hTT̂μν
ψ̄λðxÞT̂σρ

ψ̄λðyÞĵωAψ̄ψðzÞic ¼
4e2eϑðeνðeρεσϑμω þ eσεϑμρωÞ þ eμðeρεσϑνω þ eσεϑνρωÞÞ

π6ðx − yÞ3ðx − zÞ4ðy − zÞ4 ; ð4:27Þ

hTT̂μν
ψ̄λðxÞT̂σρ

λ̄ψ
ðyÞĵωAψ̄ψðzÞic ¼

5

2π6ðx − yÞ3ðx − zÞ4ðy − zÞ4 eϑð−2e
2eμeρεσϑνω − 2e2eνðeρεσϑμω þ eσεϑμρωÞ

− 2e2eμeσεϑνρω þ ηνρεσϑμω þ ημρεσϑνω þ ησνεϑμρω þ ησμεϑνρωÞ: ð4:28Þ

We see that each of the expressions (4.25)–(4.28) sepa-
rately does not have the universal conformally symmetric
form (3.14). However, when we sum them in (4.13), we get

hTT̂μνðxÞT̂σρðyÞĵωAðzÞic
¼ −19ð4π6ðx − yÞ5ðx − zÞ3ðy − zÞ3Þ−1eϑðηνρεσϑμω
þ ημρεσϑνω þ ηνσεϑμρω þ ημσεϑνρω − 6e2ðeνeρεσϑμω
þ eμeρεσϑνω þ eσeνεϑμρω þ eσeμεϑνρωÞÞ; ð4:29Þ

which has the necessary form following from the sym-
metries (3.14). The anomaly coefficient will be

A RSA ¼ −19A s¼1=2 ¼ −
19

π6
: ð4:30Þ

Taking into account (3.11) and (3.10), we obtain the
following expression for the gravitational chiral anomaly in
the RSA theory:

h∇μĵ
μ
AiRSA ¼ −19

384π2
ffiffiffiffiffiffi−gp εμνρσRμνκλRρσ

κλ; ð4:31Þ

which is–19 times larger compared to the spin 1=2
anomaly (1.1).
In this way, we calculated the anomaly and simulta-

neously verified that the RSA theory, in the infinitely strong
coupling limit m → ∞, satisfies conformal symmetry.
Namely, one-loop graphs of the form Fig. 1 calculated
by us in (4.29), as well as earlier in (4.6) and (A1), meet the
conformal symmetry prediction for the form of the three-
point functions (3.1) and (3.14).

V. DISCUSSION

A. Interpretation of the factor − 19
The factor in the gravitational chiral anomaly in the RSA

theory (4.31) differs from the well-known value (1.3). The
difference between the factors was expected, as it already
existed for the gauge chiral anomaly (1.2), as discussed
in [9].
Gauge and gravitational anomalies, e.g., (1.3), (1.4), for

massless higher spin fields were calculated in [11]. Here the
particles of spin S are defined as having on mass shell two
polarization states with chirality � S. If we switch off the
interaction, the Adler model describes on mass shell one
field of spin 3=2 and two fields of spin 1=2. The same
counting should apply when we keep interaction non-
vanishing but tend to momentum to infinity. This limit is
relevant to evaluate the chiral anomaly. In this way, the
coefficient −19 is readily restored from (1.3) as
−19 ¼ −21þ 2, and the general rule for the relationship
between the chiral anomalies in the RSA theory and in the
conventional (unmodified) Rarita-Schwinger theory will be

RSA anomaly ¼ RS anomaly

þ 2 · ðspin 1=2 anomalyÞ: ð5:1Þ

A similar conclusion can be reached if we analyze the
contribution of the ghosts. In particular, the factor −21 in
(1.3) can be obtained as −21 ¼ −20 − 1, where −20 is the
“ghostless” contribution and −1 is the contribution of the
ghosts [13]. Now, the −19 factor could be obtained by
adding the ghostless contribution and the contribution of
spin 1=2, i.e., −19 ¼ −20þ 1. That is, the rule is also to
be true

GRAVITATIONAL CHIRAL ANOMALY FOR SPIN 3=2 FIELD … PHYS. REV. D 106, 025022 (2022)

025022-11



RSA anomaly ¼ ðRS anomaly ghostlessÞ
þ 1 · ðspin 1=2 anomalyÞ; ð5:2Þ

which is equivalent to (5.1).
Note that, as discussed in [9], a similar correspondence is

also observed for the gauge chiral anomaly, for which
5 ¼ 4þ 1, with 4 being the ghostless contribution, and 1
being the contribution from spin 1=2 field. The need to
consider the ghostless part of the anomaly can be motivated
by the fact that ghosts do not propagate in the RSA theory,
and the need to add the contribution of the field with spin
1=2 corresponds to the additional field λ. Thus, the rules
(5.1) and (5.2) are valid for both the gravitational and gauge
chiral anomalies.

B. Numerical factors and Landau levels

Another aspect of appearing numerical factors may be
discussed in connection with the Landau levels for spin 3=2
particles [41], which was recently explored [42] in the
studies of Delta baryons in strongly magnetized neutron-
star matter.
The results of [41] may be interpreted as pointing out to

the gyromagnetic ratio g ¼ 2 for spin 3=2 particles corre-
sponding in fact to its “natural” value [43].
Passing to the relativistic case by substitution E →

ðE2 −m2Þ=2m (see, e.g., [44]), one may cancel mass m
in the denominator with the one in the Bohr magneton and
approach the chiral limitm ¼ 0. In that case, the zero mode
is obtained by cancellation of spin energy with the orbital
one at the first excited Landau level.1 Treating the Landau
levels flow similarly to the one for spin 1=2, the ratio 5
in (1.2) can be obtained by adding to the 3=2 contribution
the one from 1=2 multiplied by 2,2

5 ¼
3
2
þ 2 · 1

2
1
2

: ð5:3Þ

Factor −19 may in fact be represented in a similar way

−19 ¼ ϕð3
2
Þ þ 2 · ϕð1

2
Þ

ϕð1
2
Þ ; ð5:4Þ

with ϕðSÞ ¼ S − 2S3 from (1.4). The interpretation in
terms of Landau levels flow is not directly applicable here,
as the spin precession frequency in the gravitational field is
fixed by the equivalence principle to be equal to that
of orbital angular momentum (see [45] and references

therein), while the rhs of (1.4) is not controlled by the
equivalence principle containing the S3 term.

VI. CONCLUSION

Wehave calculated thegravitational chiral anomaly for the
extended Rarita-Schwinger-Adler model for spin 3=2 fields
and found that it is −19 times larger than the standard
anomaly for spin 1=2. The obtained factor differs from the
well-known factor−21 for theRarita-Schwinger field theory.
We can associate the−19 factor with the results for spin 3=2
from supergravity [11] for free fields by counting the degrees
of freedom and their contributions. Then it is obtained either
as −19 ¼ −21þ 2 or −19 ¼ −20þ 1.
We have also calculated the chiral gauge anomaly in the

RSA theory. The obtained numerical factor coincides with
the original result obtained using the shift method [9]. At
the same time, our derivation of the anomalies is a direct
verification of the conformality of the RSA theory in the
limit of the infinitely strong couplingm → ∞ at the level of
one-loop three-point functions. We have explicitly shown
that one-loop three-point functions with two vector currents
and one axial current, as well as with two stress-energy
tensors and one axial current, satisfy the consequences of
conformal symmetry [15,16].
The method used by us for calculating the gravitational

chiral anomaly does not need a transition to a curved space-
time. The calculation of a three-point function consists of a
simple multiplication of usual propagators in the coordi-
nate space.
The obtained result can be used when considering the

theories beyond the Standard Model, where the fields with
higher spins should participate in the cancellation of
anomalies. Another application relates to a new direction
in the physics of anomalies, which considers the manifes-
tation of quantum anomalies in the properties of relativistic
fluids and in condensed matter, where a number of new
effects corresponding to various quantum anomalies have
been discovered. However, consideration of these questions
is beyond the scope of this work.
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APPENDIX: THREE-POINT FUNCTION
WITH ARBITRARY POINTS

In this appendix, we will verify that the three-point
function with currents hĵVðxÞĵVðyÞĵAðzÞi satisfies the
general conformally symmetric form for an arbitrary

1The tachyon mode from the lowest Landau level requires a
separate investigation and may be hopefully eliminated in the
framework of the Adler procedure.

2The 1=2 contribution is provided by the Adler procedure with
the proper treatment of ghosts, as discussed in the previous
subsection, which may also have counterparts in [41].
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position of the points xμ, yν, zα and once again check the
factor from the anomaly (1.2).
Without loss of generality, we can put z ¼ 0, since both

sides in (3.1), obviously, have translation invariance with
respect to the simultaneous shift of all three variables. As
before, the three-point function is described by a single
term (4.4), which now, however, must be calculated using
the general form of the propagator (2.25) (in which,
however, we can again neglect the terms of the order 1=m2).
The correlator is calculated according to the same

algorithm as in the Sec. IVA. Finally, we obtain

hTĵμVðxÞĵνVðyÞĵωAð0Þic ¼
5

π6x4y4ðx − yÞ4 ðy
2xϑεμνwϑ

− x2yϑεμνwϑ − 2yνxϑyηεμwϑη

þ 2xμxϑyηενwϑηÞ: ðA1Þ

On the other hand, from (3.1) when z ¼ 0 we obtain

hTĵμVðxÞĵνVðyÞĵωAðzÞic ¼
4B

x4y4ðx − yÞ4 ðy
2xϑεμνwϑ

− x2yϑεμνwϑ − 2yνxϑyηεμwϑη

þ 2xμxϑyηενwϑηÞ: ðA2Þ

Comparing (A1) and (A2), we see that the three-point
function has a conformally symmetric form, and the factor
in the anomaly is the same as in the Sec. IVA

B ¼ 5

4π6
; ðA3Þ

and thus, the anomaly (1.2) is confirmed.
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