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The gravitational chiral quantum anomaly is calculated in the framework of the extended Rarita-
Schwinger-Adler (RSA) field theory, which includes the interaction with an additional spin 1/2 field. It is
shown that the factor in the gravitational chiral anomaly normalized to the Dirac field anomaly is equal
to —19. The resulting value distinguishes the RSA theory from the other theories of spin 3/2. A direct
verification of the conformality of the RSA theory in the strong interaction limit at the level of one-loop

three-point graphs is made.
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I. INTRODUCTION

Quantum anomalies for fields with spin 1/2 have been
well studied over the past years. In particular, there is a
famous axial quantum anomaly, which includes gauge and
gravitational (also called mixed axial-gravitational) parts
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where F,, is the gauge field strength tensor, R,,; is the
curvature tensor, and Vﬂ is the covariant derivative.
Initially, the chiral anomaly (1.1) was shown to play a
fundamental role in high-energy physics, but now there is
great interest in its manifestations in other areas such as
hydrodynamics, statistical physics, and condensed matter
physics [1-6]
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In the case of higher spins, the theory turns out to be more
complicated and, as a rule, has internal problems, which
makes the question of quantum anomalies nontransparent.

One of the most common ways of constructing a spin
3/2 theory is based on the Rarita-Schwinger (RS) fields.
However, the conventional Rarita-Schwinger field theory
has a number of pathologies (see [7] and references
therein). There is rich literature devoted to the solution
of these problems, which we do not have the opportunity to
discuss here, for example, an alternative way of quantizing
Rarita-Schwinger fields as a constrained system was
considered in [8].

In [9] the extended Rarita-Schwinger-Adler (RSA)
theory was proposed, in which some of the pathologies
were overcome by introducing a nontrivial chirally sym-
metric interaction with an additional spin 1/2 field.
In particular, in [9], an important problem with the
singularity in the Dirac bracket in the limit of weak gauge
fields was solved, which allowed to consistently gauge the
theory beyond the supergravity approach. Since the Rarita-
Schwinger field theory is a generalized Hamiltonian
dynamics, the quantum anticommutator is given by the
Dirac bracket, not the Poisson bracket. The existence of a
singularity in this bracket does not allow constructing a
perturbation theory. The introduction of the interaction with
an additional spin 1/2 field shifted the pole in the Dirac
bracket, which allowed them to find in [9] (see also [10])
the gauge chiral anomaly by the famous shift method

Published by the American Physical Society
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Thus, the gauge chiral anomaly turns out to be 5 times
larger than for spin 1/2. This numerical factor distinguishes
RSA theory from other theories with Rarita-Schwinger
fields, such as supergravity [11].

Subsequently, the anomaly (1.2) was generalized to the
non-Abelian case and used for the grand unification in [12],
where fields with spin 3/2 participate in the anomaly
cancellation.

In this paper, we continue to analyze the RSA theory and
find the gravitational chiral anomaly. For Rarita-Schwinger
fields, there is a well-known result for the gravitational
chiral anomaly [11]
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where the factor in the anomaly is —21 times larger
compared to the anomaly for Dirac field (1.1). This value
has been obtained in various ways, in particular, in super-
gravity [11,13], as well as for quantized Rarita-Schwinger
fields on a classical geometric background [14] (with
restrictions imposed on the geometry). Note that (1.1)
and (1.3) are special cases of the more general relation
obtained in the framework of the supergravity [11] for an
arbitrary spin S,
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In the case of the gauge anomaly (1.2), the result differed
from the other theories with Rarita-Schwinger field.
Therefore, we expect in advance that the RSA theory will
give a new numerical factor also for the gravitational chiral
anomaly instead of (1.3). The study of this issue is the aim
of our paper.

To find the anomalies, we use a new method described
in [15,16] and based on considering the form of the three-
point quantum correlation function. In this case, a three-
point function with two vector current operators and one
axial current operator defines a gauge chiral anomaly.
A three-point function with two stress-energy tensors
and an axial current defines a gravitational chiral anomaly.
Typical diagrams to be found are shown in Fig. 1.

It was shown that in conformally symmetric theories,
these three-point functions should have a universal form.
The specific choice of the theory affects only the numerical
factor in front of the universal function, and the key point is
the equality of this numerical factor to the coefficient in the
quantum anomalies: gauge and gravitational.

The advantage of this method of calculating anomalies is
that everything can be done in coordinate representation,
and thus there is no need to explicitly find nontrivial
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FIG. 1. Typical diagrams to be calculated in [15,16] to find
the gauge chiral anomaly (left) and the gravitational chiral
anomaly (right).

divergent loop momentum integrals. Moreover, in the case
of a gravitational chiral anomaly, the correlator (Fig. 1 on
the right) can be found in a flat space-time, and we do not
need to consider Rarita-Schwinger fields in curved space.
This method of finding anomalies corresponds to 't Hooft’s
interpretation, according to which anomalies are properties
of the quantum theory, and gauge or gravitational fields
only make them visible in conservation laws [2].

First, we reproduce the gauge quantum anomaly (1.2):
This allows us to demonstrate the features of the method.
Then we move on to a more complicated case and find the
gravitational chiral anomaly in RSA theory.

Our result for the anomaly can be further used in the
extended, beyond the Standard Model, field theories con-
taining higher spin fields for the cancellation of the
gravitational chiral anomalies. In particular, it can be
considered in the framework of the theory [12].

But additional motivation for us comes from a new field,
considering the manifestations of quantum anomalies in
relativistic fluids and condensed matter. Namely, there is
a new phenomenon, the chiral vortical effect (CVE)
[1,17,18], which is a transfer of chirality along the vorticity
in a vortical fluid.

This effect turns out to be related to the gauge chiral
anomaly [1,17,19], which was explicitly shown for the case
of spin 1/2. The case of higher spins is less obvious, but
in [20] we derived the CVE in the RSA theory and showed
its relationship with the anomaly (1.2). We also note that a
similar relationship was substantiated for the RSA theory
for a close phenomenon, the chiral separation effect, in the
presence of a magnetic field [21].

Much less trivial is the question of manifestations of the
gravitational chiral anomaly [2,22-25] and is based on
the interpretation of Hawking radiation as an effect of the
anomaly on the black hole horizon [26]. The calculation of
the axial-gravitational anomaly for the RSA theory will
allow us to analyze the concepts of the relationship between
the gravitational anomaly and thermodynamics in the case
of higher spins.

The paper has the following structure. In Sec. Il we give a
short introduction to the extended Rarita-Schwinger-Adler
theory. In Sec. III we describe a method for calculating
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quantum anomalies based on an analysis of the form of
three-point functions. Section IV contains original results:
the derivation of the gauge chiral anomaly and the gravi-
tational chiral anomaly in the RSA theory. Section V
provides an interpretation of the obtained factor in the
gravitational chiral anomaly. The Conclusion lists the main
results. The Appendix contains the calculation of the three-
point function needed to find the gauge chiral anomaly, in a
general case of arbitrary points.

Analytical calculations in Sec. IV and the Appendix were
made using the Wolfram Mathematica system for technical
computing and the package [27] on the parallel computing
server Theor4 of JINR BLTP.

We use the notations 77, = diag(1,-1,-1,-1),
vs = iy%7'y?y3, and the system of units e = 4 = ¢ = 1.

PUE

II. THE THEORY OF SPIN 3/2 FIELD
INTERACTING WITH A FIELD WITH SPIN 1/2

In [9], Adler formulated an extended theory for spin 3/2.
It is described by an action of the form

S = /d4x(_8ipﬂyl/_//175yﬂavl//p + lzyﬂaﬂﬂ

- im/_ly”l//ﬂ + imyr, y* 1), (2.1)

where v, is the Rarita-Schwinger field, 4 is an additional
field with spin 1/2, and m is the interaction constant. These
interaction terms have the form of “protomassive” terms:
They describe the interaction of the fields y, and 4 with the
same-sign chirality, which does not allow us to consider
them as usual massive terms. Following [9], we will
consider the limit m — oo. In this limit, the negative
Dirac bracket vanishes, and also the calculations become
more compact.

The introduced interaction with the A field shifts the pole
in the Dirac bracket in the presence of an external gauge
field, which ultimately made it possible to find the chiral
quantum anomaly.

In some cases, it is convenient to write the action (2.1) in
terms of the product of three Dirac matrices

1
Y= =Y = T Y =1y

1
IjﬁWW—WWﬂ)

=ie""ysy,. (2.2)

The classical equations of motion can be obtained by
varying the fields y, and 1 and have the form

8’1"’“"’7/57/#61/1//[, —imy*’1 =0,
gpwﬂaylpﬂyﬁ/y —+ lm/_iy” =0,
}//4()”/1 - myﬂl//ﬂ =0,

0, Ar* — mig,y* = 0. (2.3)

Taking the derivative in the first pair of equations and using
the second pair of equations, we obtain

Yt =y, =y,0'0 = d”/_lyﬂ =0. (2.4)

To derive the stress-energy tensor, it is necessary to pass
to an arbitrary space-time metric

. _ v _ v
S = /d4xH<§ [l//ﬂ/lp vpl//p -V l//p]

i - oo -
+3 WV 4 =V Ay 2] + im[p A — /17/”1//”]) (2.5)
using tetrads ¢}. Tetrads satisfy the usual relations
v = ear”,

a —
eﬂeazx - g;w ’

egeby = Nab = (la -1,-1, _1) (26)

The covariant derivative for the Rarita-Schwinger field

contains a term with Christoffel symbols I'7, and a spinor

connection @?,

i

2

vvl//p = aul//p - ngl//a + wlljbaabl/’p’
VA= 0,450 0,
— i a .,b
Oab _5[7 7 ]’
1
ng = Eg(m(avgap =+ apgou/ - aaglzp) ,

1 1
wgh :Z(ebﬂauefll - eaﬂaveg) +Z(e£eai - e?ehi)rjly‘ (27)

The stress-energy tensor can be obtained by varying with
respect to the metric

2 oS
VoY) 5gﬂl/ .

THY — _

(2.8)

It is convenient to first vary all the quantities with respect to
the metric g, = 1, + h,, (see, e.g., [28])
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where the above relations are valid in the first order in £,
There are the useful properties [28,29]

V.9, =0, Ve =0, V.# =0. (2.10)
As a result, we obtain the following expression for the

stress-energy tensor in flat space-time:

1
T = &gy (r 3 + 1 6k) v,

1 _ )
+ g 0wy 110 + [ v 15p)w)
th Gy 4 — 0y A + Iyt ¥ A — # Iyt d)
i _ -
omtyA = Ayt A= Ayy), (201)

where we have omitted the terms equal to zero, when the
equations of motion are taken into account. The first two
lines correspond to the usual Rarita-Schwinger field theory.
When deriving (2.11) and checking its conservation, it is
necessary to use the identity

7/,'9/48”“/37 + ]7'91/8/'”’&/} _|_ ngﬂgyﬂl’a + ]7'9!18/}7/“/

+ et = 0. (2.12)
Also, the product of three gamma matrices can be

expanded
7Yt = e sy, ity it =yt (2.13)
Vector and axial currents can be obtained using Noether’s
theorem for global symmetries w, — ¢ *"#rsy, and
1 — ei“+i/}75j,,
jﬂ

1%
o
Ja

= —ie"Mgy, 5w, + At

= =iy, p, + Ay si. (2.14)
At the classical level, the conservation laws are satisfied,

and the stress-energy tensor is symmetric and traceless

9,T" =0, 3, /b=0, 9,4 =0,

TII: =0, T;w = Tuu-

(2.15)

Note that the trace of the stress-energy tensor turns out to be
zero only in the extended theory [9], while for the standard

Rarita-Schwinger it is nonzero [30]. Before using the
equations of motion, we have from (2.11)

1 _ _
T, = Egl”ﬂp(l//ﬂsha/ﬂl/p - aﬁll/z}’shll/p)

+ iyl =) + 5 ()0 -

+ im[(§ry)2 = A(yw))-

(047)4]
(2.16)

Using now the equations of motion, we would get for
the usual Rarita-Schwinger field theory (without any
additional fields or ghosts) and for the RSA theory (for
arbitrary m)

RS theory: T} = id, [(yry)w" — " (rw)] # O,

RSA theory: T4 = 0. (2.17)

Thus, the dilatation current is conserved only in the
extended theory.

As in the case of spin 1/2, a chiral anomaly (1.2) arises
when passing to the quantum field theory, which breaks
classical conservation law (2.15). However, one can see,
that 5 can be obtained as the sum of the nonghost
contribution of the Rarita-Schwinger field and the free
spin 1/2 field.

Propagators for fields y, and 4 can be obtained from the
path integral by constructing the inverse matrix for the
action (2.1). Passing to the Fourier transforms

4
Vulx) = / (;zﬂ,),4 e~ Py, (p),

4
0 = [ e o

we can write the action in the matrix form, introducing

1 — M/llll) M/llz
matrix M = (/Vl’;l v )

(2.18)

s=i [ & wtr) ip M

A, A
M= (6”"”757,41% my )

2.19

The propagators are then defined by the inverse matrix
N = <A//\}L" Nl;") for which MN = (7"9),

7p°
mpz 0
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As a result, we have for the time ordered Green’s

functions

4
TVE)75(0)) = ) = [ (5B mny

/—p v’ oy’

p

2( + )p pf’ﬂ) e P,
P’

(T2, (0)75(0)) = G5, (x) = / (‘;ﬂ)4e—ipx .

1 d*p —ipx,
= W 7 ﬁabP e

4
(Tyh(0),(0)) = Gy () = / (‘2’”’)’ 0

1 d4 peipx,
= _(2”)4 zﬁahp

(T4, ()7 (0)) = G 5 (x) = / (;’ﬂ1>’4e—fpr22:o, (2.21)

where a, b are bispinor indices and p = p,y*. Propagators
(2.21) can be written in coordinate representation using the
general formula [31,32]

/’deele - i22aﬂ.ﬂ+ll—*(a)
plitl=a) x24T} 41 —q)’
A=1-—g¢, D=2(A+1). (2.22)
In particular, we have for the case when p? is in the
denominator
d*pe'r* B 4in?
PO
d* pe'P* pt 8 xt
/ P2 T A
/d4pei1’xp"p” 8in? x*x
= ’,],ul/ 5 s
p? x* X
d4 IPX U 7 32 2
/ pe f pp — _ Z (nﬂyx(l+nﬂ(lxv+nb(lxﬂ
)4 X
XHxPx*
-6 = ) (2.23)
and similar formulas for the case with p* in the

denominator

d*pe'r* pH 272 xH
» -T2

P X X
d* peiPX pk p¥ pa 472
ST/
—4 ) (2.24)

Using (2.23) and (2.24) in (2.21), we obtain the following
expressions for the propagators:

(TWAE0)) = ;5 [yw > <1 . m‘*)

X

X (¥ + 1’ X7 + yox)
6 \ x'x°
+8(1 +— 2) x—xf} :
m-x X ab
b (ya _ 4x”f>
22 mxt 2 )

(VT (0) = (yﬂ —‘”?‘) .
(T4 (x)3,(0)) = 0.

(2.25)

Note also that, as was noted in [9] (see also [10]), the
ghosts in the RSA theory turn out to be nonpropagating and
do not contribute to the quantities of interest to us.

III. ANOMALY CALCULATION METHOD:
UNIVERSAL FORM OF THREE-POINT
FUNCTIONS

There are many ways to find quantum anomalies. In
particular, the anomaly (1.2) in [9] was derived by the well-
known method of shifting in the momentum integrals:
Before taking the divergence, the three-point function for
the mean value of the current allows a shift in the
momentum variable under the integral, which at the next
stage leads to a finite difference of linearly diverging
integrals. However, it turns out that there is a universal
method for calculating anomalies that does not require
explicit consideration of divergent integrals. This method is
based on an analysis of the form of three-point functions in
x space. Quantum correlators in x space are usually well-
defined functions and do not contain the singularities and
ambiguities associated with regularization, which usually
appear when passing to p space [33].

In [15] in this way, a gauge chiral anomaly was found,
and in [16], a gravitational chiral anomaly. We start with a
simpler case with a gauge chiral anomaly.
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A. Gauge chiral anomaly
In [15], it was shown that for conformally symmetric
field theories the three-point connected correlator
(T7(x)7% ()74 (2)), has a universal form

~

(TF ()75 ()4 (2)).

U _ 12 —
et —4% Iﬂ/ (x Z)II/ (y Z) gﬂ/y/ﬂa) é ) (3 1)
(x—2)%(y—2)° zt

where % is an uncertain coefficient that depends on a
particular choice of the field theory. The notations are
introduced

I;w(x) = My — ZXZ;CD ,
. ('x—Z)/A _ ('x_y),u
s s G2)

Equation (3.1) was derived using (2.15), in particular, the
property T}, = 0. On the other hand, we can consider the
gauge chiral anomaly

4

3 i Q
<aﬂJﬁ> = _bzglw ﬁFﬂuFaﬁ'

(3.3)
The central point for us is the relationship between the
three-point function and the gauge chiral anomaly

B =b. (3.4)
To substantiate this relationship of the factors, one needs to
take the divergence from (3.1) and multiply it by the
external fields.

It is technically convenient to consider a special case
when all three points in (3.1) lie on the same axis

X, = xe,, Vi = Yey, zZ, = zey, (3.5)
where ¢ = +1. In this case, (3.1) takes the form
M R A 4B e? e yerve
(T1y(x)1v (9)J2(2)). (3.6)

Ty —2)

Thus, to calculate the gauge chiral quantum anomaly, it is
enough to find the three-point function (775 (x)7%(y)j4(z))
using the Feynman rules in the coordinate representation.
In fact, for this we need to multiply the propagators and find
the trace of Dirac matrices. Then it is necessary to check
that the three-point function has the form (3.1) or (3.6), and
then the factor & in front of the universal function
determines the coefficient in the gauge chiral anomaly.
In particular, this was done for spin 1/2 in [15]

1
'@szl/Z = mv

(3.7)
which reproduces the standard formula (1.1). In Sec. IVA,
we will use this method to find the anomaly in the extended
spin 3/2 theory.

B. Gravitational chiral anomaly

The method described above was generalized in [16] to
the case of a gravitational chiral anomaly. In this case, we
have to consider a three-point connected correlator with
two stress-energy tensors and one axial current. Then for a
conformally symmetric theory, it will have the universal
form

(T ()T (y)]4(2),
1 (I
IR R A

X ]‘;—pﬁp (y - Z)l‘;zfi/p/w(Z), (38)
where the notations are introduced
Iy op(x) = ET, LI2(x) I (x),
1 1
g/];y,aﬂ = E (’7;4(1’71//} + 77;4/)”71/0) - Znﬂvﬂaﬂv
y4 ) .
tZIJTrfIL})a)(Z) = ? (éa/{v.r/ééa({p.mgw” iZﬂ
— 68 6t xs€" L 2°2,277). (3.9)

Here we have the same necessary conditions (2.15) for (3.8)
to be valid, as in the case of a gauge chiral anomaly. In
particular, the coefficient 6 in (3.9) is a direct consequence
of the vanishing of the trace of the stress-energy tensor. On
the other hand, it is known that there is a chiral anomaly in
the gravitational field

24
g—
384.,/—g

Of key importance for us is the equality of the factor .o to
the coefficient a in the axial-gravitational anomaly

AN )
<vﬂ]5> - EﬂmeﬂbKiR/mK .

(3.10)

o = a. (3.11)
To substantiate this equality, in [16] it was first shown that
despite the fact that the one-point anomalous divergence,
like (3.10), vanishes in a flat space-time limit, a similar
identity for the three-point function (3.8) is not equal to
zero. In more detail, the quantum mean value of the stress-
energy tensor in curved space-time in terms of the effective
action is
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where W is the effective quantum action that can be
constructed from the amplitude of the vacuum-vacuum
transition [34]. Then the three-point function can be
represented as

(T ()T (y )JA( ))e

Ve \/ —9(»)v/—9(z)

0 5 .
8y (x) 5g,w(y)( ~9(2)(J3(2)))-

(") = (3.12)

X

(3.13)

which determines the choice of the gravitational (not
canonical) stress-energy tensor in (3.8).

Taking the divergence from (3.13), we will obtain an
anomaly (3.10) on the right, which is also quadratic in
small fluctuations &g,,. Thus, passing to the flat space-time
limit g,, — n,,, the expression on the right will not be
equal to zero but evidently will include the factor a, while
the left-hand side can be found from (3.8) and includes the
factor 7. In such a way, the equality (3.11) and the
possibility of calculating the anomaly from the flat-space
correlator can be shown.

As with the gauge anomaly, calculations can be sim-
plified by assuming that all three points lie on the same
axis (3.5). Then (3.1) takes the form

(TT ()T (v)]4(2))
— (4 =) =20 = 2)) ey oprere
4 ,,Iypeaﬁuw + ’,Imrgl();tpw + ’7/40'6191470) _ 662(61/6/78619;4(0

+ e;te/)em()vw + eaeve&yﬂw + 666”881'/)“})). (314)

Thus, it is necessary to find a three-point correlator
(T(x)T()ja(z)) in an ordinary flat space-time and check
that it satisfies (3.8) or (3.14). The coefficient in front of the
universal function will give us a factor of the gravitational
chiral anomaly. In particular, the anomaly for spin 1/2 was
found in this way [16]

1

A1y =
s=1/27 6"

(3.15)
which matches (1.1). In the next section, we will use the
described method to find the gravitational chiral anomaly
for the extended theory of spin 3/2.

The calculation of the correlator (3.8) [as well as (3.1)]
does not contain ambiguities associated with regularization,
since these three-point functions are well defined in x
space. However, differential regularization was used to
justify the connection (3.11) in [16]. In the general case, the
question of the dependence of quantum anomalies on the

regularization scheme is nontrivial; see, e.g., [35,36] for the
trace anomaly case. On the other hand, it was shown that
with different regularizations for spin 3/2, the same result
was obtained [14]. We hope that there will be no such
dependence also in our case, although the question
remains open.

We also note that the three-point function (3.8) is not
invariant with respect to pseudo-gauge transformations
[35,37-39], and passing to another definition of the
stress-energy tensor, for example, the canonical one, we
will get a different answer. We directly verified this for
Dirac field.

IV. CALCULATION OF ANOMALIES IN THE
RARITA-SCHWINGER-ADLER THEORY

A. Gauge chiral anomaly

In contrast to the free Rarita-Schwinger fields, for the
extended Rarita-Schwinger-Adler theory (2.1), all of the
relations (2.15) are satisfied. Vanishing of the trace of
the stress-energy tensor allows us to assume the existence
of a conformal symmetry, since in most of the known
theories with a conserved dilatation current there is also a
conformal symmetry [2,40]. This allows us to use the
method described in the previous section to find the
anomalies.

We will start by considering the gauge anomaly, for
which the result (1.2) is already known, to demonstrate the
features of the methods.

Operators of the currents can be decomposed depending
on the field content

D

U S
.]A .]A’/(//+.]AA/I’ (41)

where

e gHmN2 —a ., b KN = maup

oy = ‘7 (pw) ahwﬂlw'h’ j(q’/y/) = —le Y5,

S Ho

I =T a b Ty =7
S _ /mm M2 Ui
Jagy = Ty abl//’hw’h’ J Agy) — € T

Jan =, A(U)ablallb’ J Z(/’u) =7"7s. (4.2)

Following [9], we will consider the limit m — oo.
According to the Wick theorem, we have

(TP1(x)@2(x)P3(¥) 04 () Ps5(2) 96 (2))
=—(TP1(x)p4()) (T2 (x)ps5(2))(TP3(y)p6(2))

+(T91(x)96(2)) (T2 (x) 3 () (Ta (y)5(2)).  (4.3)

where we left only connected contributions. ¢; is either a
w, field or a 4 field.
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Then we obtain

(T (x)J* ()]4(2)
= _tr{ijanns( -2)
X Ty, Grens (2= Y)T (i Gy, (v = x) }
tr{J"”‘”” G%%S (x - y)jmmes (y—2)

< T4 Gl (e - 0)

(4.4)

All the terms with field A are to be dropped out: They are
either equal to zero due to (1) = 0, or tend to zero in the
limit m — oo.

The calculations can be simplified by considering the
case of codirectional vectors (3.5) (the case with arbitrary
points is considered in the Appendix). Taking into account
the limit m — oo the Green’s function will be

G (X) = Gua(X)7* + Frua(X)7s57%,

i
g;wa(x) = _m <77vae;4 + Mya€y

1
f/wa (x) == m eﬂgﬂyaﬂ’
where in x° there is a power of a number, and in e? thereis a
square of a vector. We also used the properties of Dirac
matrices, expanding the product of three matrices. Thus, we
need to find a trace with only six or seven gamma matrices.
Finally, we obtain

5e2e3£‘9””‘“
x—y)Px-2)P3(y-2)*

Function (4.6) corresponds to the universal conformally
symmetric form (3.6), and the coefficient in the anomaly is

(T3 (x)7* ()74 (2))e =

(4.6)

5
=—. 4.7
475 (47)
Taking into account (3.3) and (3.4), we get agreement with
the original result (1.2).

B. Gravitational chiral anomaly

Now we move on to the gravitational chiral anomaly. In
this case, we need to find a three-point function with two
operators of the stress-energy tensor and one operator of the
axial current (3.8). Now the interaction between the fields
v, and 4 plays a significant role, since in the limit m — oo
negative powers m~" from the propagators can be canceled
by positive powers m”" from the operators of the stress-
energy tensor in the vertices.

First, we decompose the stress-energy tensor (2.11)
depending on the field content

=15, + T+ Ty + T4 (4.8)
where
™= le’W’P‘ KV, + 7Y 8 )0

=73 wars (V' + v 8a) Oy,
1 _
+ ga <€ﬂaﬂpw1y57a([}/’77 },/4]5% + [7/'7’ yy}éﬂ)l//p)’
™= I (/ly”()”/l XYY A+ Ayt ¥ A — 0¥ Ayt ),
v i TV U

T = MY+ ),
T’;:/ = ——m(/_ly”l//” + Ayt d). (4.9)

Then the correlator (3.8) splits into 32 terms depending on
the set of fields

(TT ()T (3)74(2)).
= Ty, Ty Jty) + (31 terms) (4.10)

where we have omitted some notations for short. A typical
diagram is shown in Fig. 1 on the right.

It is clear from the condition (11) =0 in (2.25) in
advance that 12 terms in (4.10) are equal to zero

<TW?M}?,1>:<T.,7&7AWW}%> :< W T/h//JM> < Tiﬁ%)
= (T3, Tyaity) = (T3, T3, 05) = (T3, T73)
:<T ATW/]M> <A .,//IJM> < AT,u,/J,u>
:<AZAT,‘1.,,]W> < ,‘1,1T,1,1]M>Zov (4~11)

since they contain one or more propagators with two fields
A. Also, in the m — oo limit, 11 more terms vanish

<TV7V’T'I7U/}?1>’ (T oy w]/u>’ <T7w Zw}ﬁw’
(T Tradin) Ty Ty do). (ToTudo)
<A2v/?ww}fl>’ <T/1V/T/1/1]yn//>’ <TZA?WW}$w>7
<A TWU;‘/W% <T/1/1T1y/]u/y/> -0 (m— o), (412)

since negative powers from the propagators (wA), () ~
1/m are not compensated by positive powers from the

operators T%,T’-‘” ~m. Thus, in contrast to the gauge

anomaly, the terms of interaction with the A field start to
play a role. Finally, in (4.10), only nine terms remain
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(TT LT, (y )JA(2),. = < - ]W> < - w/l ﬁ;y/) where all the terms except the first one give a finite
T Ap 7 contribution just due to the cancellation of the powers of
+< i) +< ‘/’J""”> m. Note that the terms of the order of 1/m” in the
+ ( AW Jou) + (T uanAw ]W) propagator (yy) can obviously be omitted in adv?mce.
A ag 'Y, Correlators from (4.13) can be calculated using the
+(T; iy Loy i) + (T3 V””‘/"/’> Feynman rules. It is convenient to represent all the
+ (1 . T; p» ]ﬁy), (4.13)  operators in a split form
|
To(x) = tim D, (0 00)iai sy (v2), T55(x) = lim DY iy (1) 25 (x2),
T (0) = lim D T, gy () = lim T e (),

vané

Do

o =g m ). g,

and j Aly) WVas written out earlier in (4.2). Note that in the

case under consideration, point splitting does not split
composite operators, since, by construction, (3.1) and (3.8)
contain only connected diagrams with fields at different
space-time points, does not lead to singularities, and

|

1 1
() (O, 0n) = 5 €Pys (170, + 1°00) 0 + g €5Pysya([r”. 77105 +

ot __

m(yn™ 4 y'n),

P, 77165 (95' + 05,

(4.14)

|
splitting is necessary only to take derivatives out of the
brackets.

Each of the nine terms in (4.13) splits into two due to
Wick’s theorem (4.3). In particular, the first term in (4.13)
has the form

(T, ()T, (9) 4 (D)) = Jim (—tr{ DI (0%, 0%2)GYF (3, = 21) T st GH (22 = 1)
Y y2—y
712272
X DI (0", )G, (v2 — 1)} — tr{ DU (0", 02) Gl (x2 — 1)

« D((’l%j)m (a}’l , 02 )Gmﬂs (

2)T 3 Ghon (22

—x1)}), (4.15)

where the derivatives act on the function regardless of whether it is on the left or on the right. The rest of the terms in (4.13)

contain 4 fields, either one or two. In particular, we obtain

(T35, ()T, ()R () = = lim (—tr{Dp, (07, 0% )G (X2 = 21) T4t Gi (20 = y1) DR Gl (v2 = x1)}

e

DI (0%, 0) YT, (53 — v DG (vs = 20) T G (o —x)]). (4.16)

AU 20 o . v Ay Wi 0, A

(T ()T (5) gy () = Jim (—r{ DI G (= 20) T G (23 = y1 ) DG (v — 1))

Y12y

21,222

v A oI, A o

—w{ DGy (x2 = Y1) D5 Gl (v2 = 20) T g G (22 = x1)}), (4.17)

(T2 (VT2 (39 gy () = = lim e (D1 G (xy = 2) T G (23 = 1 DL Gl (v = x1)). (4.18)

YIY2=y
21,2272

Equation (4.18) contains only one term due to (A1) = 0.

Now we need to use the general form of the propa-
gators (2.25) and take the derivatives coming from the
operators of the stress-energy tensor, and after that we

|

can use (3.5). To simplify the calculations, it is conven-
ient to expand the products with three Dirac matrices
coming from (2.25) and (4.14). This will reduce the
number of Dirac matrices under the trace from 16 to
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six or seven. So, for D‘(’”f)(axl ,0,,) using (2.13) and (3.5),

we get

O] otnéud
DT (0. 0,,) = (9% +02) yp, AT

+ (9y' -

0y )ysy AT,

A‘f‘”?‘fﬂs — %(27]11;4’761,7196 _ ,lm’,launﬁéj _ }7677,71/47,]195

_ ’1;1;4]1{;5’,,197: _ 21,[19;7’,]5/41,,{77: + ’,,011175;4;,]191
+ ’,Imnfﬂn&f + 1119;1;11/4’70'5 _ 17'7”777517‘9”
+ 0" e).
1
A"T’Yfﬂs [ /u'sr]&%' ﬂagnfz()f . 4.19
2 Y +1 ) (4.19)
m .
The propagator GW/-1 will take the form
iy
G'.(x) — de’ellet — pt 4.20
) = 5 . (420)

and the propagator G 7 Was given in (4.5).
Similarly, denvatlves of the propagators can be
simplified

Gy (x) = —

};;4 {ir"n™ ™0™ + 3
—4e?e eyt —4e? et (2eM 1 + i)
+4e[3e% (4et e’ — et ) —2e% (e n™ + et ™))}

£0MHY
_%(4626060 —58%),
v 4

2
G, (x) = ;zz;};ls [e*(e!n™ +en™)

Also, second order derivatives can be obtained from (2.25)
using (3.5). The formulas for G differ only in common
sign from G”

Now we can calculate (4.15)—(4.18) using (4.19), (4.14),
(4.5), (4.20), and (4 21) The most time consuming is to

find the term (TWTW ]W> since it contains the largest

number of derivatives and the longest Green’s function,
wherein some of the terms are equal to each other up to a
change of variables. Namely,

(T, ()T ) i ()
= (1T, ()T ()]

T )

= —(TT% ()T ()35 (D).

also, one could check that

(TT ()T (9) )Ry (2))

= (T3, ()T5) ()i (2)e (4.23)

and

(TT% (TS (9) T4y (2))

= (TT5, (T304 (2)) - (4.24)

Therefore, only four matrix elements are independent in

+e'(e*n™ —6e"e")]. (4.21) " (4.13). Finally, we obtain
|
. 1
(TT’(;,” (x)T”” (y )]fXW( ). = eg(28e%x%et P — o022 ek el (—14x% 4 9z(x + )

4z(x =y’ (x = 2)*(y — 2)*
+ 19xy — 14y> = 92%) +

(26x% = 3z(x +y)

—49xy + 26y* + 322)n*)

+2e%e¥(14x% — 19xy — 9xz + 14y? — 9yz + 972) (e e + eor®)

— 38e%xyet e’ e — 18> xzet e®e¥P? + 28e%y% et e e — 18> yzet e e

+ 182 72et P
+ 26y + 3z%)n*°
_ 26y2nyp 8619/4(1}

_ 3Z2n/w€8upa)) ,

—-26 x2’,]yp 85‘9’””
819/4p(u + 49xynvp868/4w + 49xy11;m€'91/p(u + 3xznvp8m9;4w + 3xz’1ﬂ0819vp(u

_ 26y2’,]/40819vp(u + 3yznup80'z9;4w + 3yZ],l,u6819upw

—26x% o — (26x2 — 3z(x +y) — 49xy
_ 3Z2’,]vp go&ﬂw

(4.25)
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<T?;‘.,f,,(x)?;ﬁ()’)}fy7w(z)>c = 455 (x— y)s(xl_ )y =2)*

ey (462)(:2 e 6681911/){0 _ gm%a) (262 et e/)(_2x2

+3z(7x 4+ y) = 17xy + 7y* = 122%) + (10x% + Txy — 27xz — 13y% + 19yz + 422)n#*)
+ 262eu(2x2 + 17xy —21xz — 7y2 _ 3yZ + 1222)(8/)8019/4(1) + eﬁg1gﬂ/)(1)) + 3462)()76”6”8'9”/”“

_ 4262)(26” 668191.//)(1) _ 1462)726” 6681911/){1} _ 662)/26” er)—g:‘)y/)m + 246212 et e{’g’g”/”” _ ]0x2’7y/)8m9mu

-1 Ox2]1/m€8y/)m _

(10)(2 + 7xy _ 27)(Z _ 13y2 + 19)72 + 4Z2)17p0€1‘)/4/)m _ 7xynzzp8m9ﬂw

_ 7xyl1;w€191//)w + 27xz;7vp€m9uw + 27xz’,,;m€19upa) + 13y2’1v/)8m9ym + 13)}2’,’;408191//)(0

_ 19yZ’,Iup€m9ﬂw _ lgyznpo-g&ypa) _ 4Z2’1y/)€m9yw _ 4Z2nﬂa€9upa})’

(TT ()T, (1) (2)) e =

46268 (eu (e/)gm‘);t(u + eo'gx‘?u/)w) 4 et (e,ugm‘?vw + 6661911/7(1)))

(4.26)

5
22°(x = y)}(x = 2)*(y — 2)*

(T (T2 () () =

_ 2626/4 eae&/pw + ',vago&/lw + ,7/4/)8681/(0 + 7]"”8‘9/410‘0 + l,lo'ﬂg«Sypw)_

We see that each of the expressions (4.25)—(4.28) sepa-
rately does not have the universal conformally symmetric
form (3.14). However, when we sum them in (4.13), we get

~

(TT* ()T ()3 (2))e
= —19(471’6()( — y)s(x — 2)3(); - Z)3)—1e8(nu/)8019ﬂ(0
+ n/tpgm‘)y(u + ’711(7819/4/)(1) + ’7/40'8191//1(1) _ 662 (eye/)gm();un

+ ek e/)em()um + e(reyg19ﬂ/)a) + e%et 8191//){0) ) , (429)

which has the necessary form following from the sym-
metries (3.14). The anomaly coefficient will be

19

'Q{RSA — —19%3:]/2 — —; (430)

Taking into account (3.11) and (3.10), we obtain the
following expression for the gravitational chiral anomaly in
the RSA theory:

-19
po R;wx/l R KA

T . (431
38472 /=G po (431)

<vy}fx >RSA =

which is-19 times larger compared to the spin 1/2
anomaly (1.1).

In this way, we calculated the anomaly and simulta-
neously verified that the RSA theory, in the infinitely strong
coupling limit m — oo, satisfies conformal symmetry.
Namely, one-loop graphs of the form Fig. 1 calculated
by us in (4.29), as well as earlier in (4.6) and (A1), meet the
conformal symmetry prediction for the form of the three-
point functions (3.1) and (3.14).

m(x—y)P(x -2y -2)* ’

(4.27)

eg(—2e%et el e — 22 e (eP e + oo Hr®)

(4.28)

I
V. DISCUSSION

A. Interpretation of the factor —19

The factor in the gravitational chiral anomaly in the RSA
theory (4.31) differs from the well-known value (1.3). The
difference between the factors was expected, as it already
existed for the gauge chiral anomaly (1.2), as discussed
in [9].

Gauge and gravitational anomalies, e.g., (1.3), (1.4), for
massless higher spin fields were calculated in [11]. Here the
particles of spin S are defined as having on mass shell two
polarization states with chirality £ S. If we switch off the
interaction, the Adler model describes on mass shell one
field of spin 3/2 and two fields of spin 1/2. The same
counting should apply when we keep interaction non-
vanishing but tend to momentum to infinity. This limit is
relevant to evaluate the chiral anomaly. In this way, the
coefficient —19 is readily restored from (1.3) as
—19 = —21 + 2, and the general rule for the relationship
between the chiral anomalies in the RSA theory and in the
conventional (unmodified) Rarita-Schwinger theory will be

RSA anomaly = RS anomaly

+2- (spin 1/2 anomaly). (5.1)

A similar conclusion can be reached if we analyze the
contribution of the ghosts. In particular, the factor —21 in
(1.3) can be obtained as —21 = —20 — 1, where —20 is the
“ghostless” contribution and —1 is the contribution of the
ghosts [13]. Now, the —19 factor could be obtained by
adding the ghostless contribution and the contribution of
spin 1/2, i.e., =19 = =20 + 1. That is, the rule is also to
be true
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RSA anomaly = (RS anomaly ghostless)

+ 1 (spin 1/2 anomaly), (5.2)
which is equivalent to (5.1).

Note that, as discussed in [9], a similar correspondence is
also observed for the gauge chiral anomaly, for which
5 =4+ 1, with 4 being the ghostless contribution, and 1
being the contribution from spin 1/2 field. The need to
consider the ghostless part of the anomaly can be motivated
by the fact that ghosts do not propagate in the RSA theory,
and the need to add the contribution of the field with spin
1/2 corresponds to the additional field A. Thus, the rules
(5.1) and (5.2) are valid for both the gravitational and gauge
chiral anomalies.

B. Numerical factors and Landau levels

Another aspect of appearing numerical factors may be
discussed in connection with the Landau levels for spin 3/2
particles [41], which was recently explored [42] in the
studies of Delta baryons in strongly magnetized neutron-
star matter.

The results of [41] may be interpreted as pointing out to
the gyromagnetic ratio g = 2 for spin 3/2 particles corre-
sponding in fact to its “natural” value [43].

Passing to the relativistic case by substitution £ —
(E? —m?)/2m (see, e.g., [44]), one may cancel mass m
in the denominator with the one in the Bohr magneton and
approach the chiral limit m = 0. In that case, the zero mode
is obtained by cancellation of spin energy with the orbital
one at the first excited Landau level." Treating the Landau
levels flow similarly to the one for spin 1/2, the ratio 5
in (1.2) can be obtained by adding to the 3/2 contribution
the one from 1/2 multiplied by 2,

3 1
_2t+25
—2.

5

(5.3)

Factor —19 may in fact be represented in a similar way

Pp3)+2-9()

~19 = (5.4)

with ¢(S) =S —25° from (1.4). The interpretation in
terms of Landau levels flow is not directly applicable here,
as the spin precession frequency in the gravitational field is
fixed by the equivalence principle to be equal to that
of orbital angular momentum (see [45] and references

"The tachyon mode from the lowest Landau level requires a
separate investigation and may be hopefully eliminated in the
framework of the Adler procedure.

*The 1 /2 contribution is provided by the Adler procedure with
the proper treatment of ghosts, as discussed in the previous
subsection, which may also have counterparts in [41].

therein), while the rhs of (1.4) is not controlled by the
equivalence principle containing the $° term.

VI. CONCLUSION

We have calculated the gravitational chiral anomaly for the
extended Rarita-Schwinger-Adler model for spin 3/2 fields
and found that it is —19 times larger than the standard
anomaly for spin 1/2. The obtained factor differs from the
well-known factor —21 for the Rarita-Schwinger field theory.
We can associate the —19 factor with the results for spin 3/2
from supergravity [11] for free fields by counting the degrees
of freedom and their contributions. Then it is obtained either
as —19=-21+2o0r—-19=-20+ 1.

We have also calculated the chiral gauge anomaly in the
RSA theory. The obtained numerical factor coincides with
the original result obtained using the shift method [9]. At
the same time, our derivation of the anomalies is a direct
verification of the conformality of the RSA theory in the
limit of the infinitely strong coupling m — oo at the level of
one-loop three-point functions. We have explicitly shown
that one-loop three-point functions with two vector currents
and one axial current, as well as with two stress-energy
tensors and one axial current, satisfy the consequences of
conformal symmetry [15,16].

The method used by us for calculating the gravitational
chiral anomaly does not need a transition to a curved space-
time. The calculation of a three-point function consists of a
simple multiplication of usual propagators in the coordi-
nate space.

The obtained result can be used when considering the
theories beyond the Standard Model, where the fields with
higher spins should participate in the cancellation of
anomalies. Another application relates to a new direction
in the physics of anomalies, which considers the manifes-
tation of quantum anomalies in the properties of relativistic
fluids and in condensed matter, where a number of new
effects corresponding to various quantum anomalies have
been discovered. However, consideration of these questions
is beyond the scope of this work.
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APPENDIX: THREE-POINT FUNCTION
WITH ARBITRARY POINTS

In this appendix, we will verify that the three-point
function with currents (jy(x)jy(y)ja(z)) satisfies the
general conformally symmetric form for an arbitrary
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position of the points x,, y,, z, and once again check the
factor from the anomaly (1.2).

Without loss of generality, we can put z = 0, since both
sides in (3.1), obviously, have translation invariance with
respect to the simultaneous shift of all three variables. As
before, the three-point function is described by a single
term (4.4), which now, however, must be calculated using
the general form of the propagator (2.25) (in which,
however, we can again neglect the terms of the order 1/m?).

The correlator is calculated according to the same
algorithm as in the Sec. IVA. Finally, we obtain

IR 5
T ) (0 _ 2 Hwd
(Tv(x)7v(3)J2(0)). =) (y2xge

2 vwd v w
— X7y = 2y¥xgy, e

+ 2xtxgy, 0. (A1)

On the other hand, from (3.1) when z = 0 we obtain

(TR )4 = %

_ x2y8€ybw8 _ 2yvx8yneuw8n

(y 2x 9 8MDW8

+ 2xtxgy, "), (A2)
Comparing (A1) and (A2), we see that the three-point
function has a conformally symmetric form, and the factor
in the anomaly is the same as in the Sec. IVA

S

B = ,
476

(A3)

and thus, the anomaly (1.2) is confirmed.
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