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In this work we present a “modest” holographic reconstruction of the bulk geometry in asymptotically
flat spacetime using the two-point correlators of boundary quantum field theory (QFT) in asymptotically
flat spacetime. The boundary QFT lives on the null boundary of the spacetime, namely null infinity and/or
the Killing horizons. The bulk reconstruction relies on two unrelated results: (i) there is a bulk-to-boundary
type correspondence between free quantum fields living in the bulk manifold and free quantum fields living
on its null boundary, and (ii) one can construct the metric by making use of the Hadamard expansion of
the field living in the bulk. This holographic reconstruction is “modest” in that the fields used are
noninteracting and not strong-weak holographic duality in the sense of AdS/CFT, but it works for generic
asymptotically flat spacetime subject to some reasonably mild conditions.
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I. INTRODUCTION

In general relativity, more often than not any reasonable
observers are located far away from any astrophysical
objects; thus in many situations one can approximate
observers as essentially at infinity. This is especially
evident in the detection of electromagnetic and gravita-
tional radiation from some astrophysical sources. At the
same time, electromagnetic and gravitational radiations
travel along null geodesics, and thus they will reach future
null infinityIþ. No observers can be exactly atIþ, but for
many practical calculations one can approximate them to be
“close” to null infinity to detect these radiations. Therefore,
physics at null infinity remains very relevant for studying
what faraway observers can see.
One less well-known but nonetheless remarkable result

in algebraic quantum field theory (AQFT) is that there is a
form of bulk-to-boundary correspondence between mass-
less QFT living in the bulk geometry and massless QFT
living in its null boundary [1–4]. In the case of asymp-
totically simple spacetimes (i.e., without horizons), the
null boundary is simply the null infinity, while for
Schwarzschild geometry this will be the union of the
Killing horizon and null infinity. This provides a form
of holography between the algebra of observables and
states of two scalar field theories. However, this is arguably
less attractive compared to the holographic duality pro-
vided by anti–de Sitter/conformal field theory (AdS/CFT)

correspondence [5–7] (see, e.g., Refs. [8–12] and refer-
ences therein for a nonexhaustive list of this very vast
research program). There, the CFT can be very strongly
coupled, and it can be used to construct directly the bulk
asymptotically AdS geometry. The flat holography pre-
sented above is really about the reconstruction of corre-
lators of the bulk noninteracting QFT from the correlators
of another noninteracting QFT at the boundary. As such,
they give us a very different and modest kind of holog-
raphy, as was already pointed out in [1].
In this work, we will show that we can do better by

actually reconstructing the metric of the bulk geometry
directly from the boundary correlators (the smeared n-point
functions). We use a method inspired from the work of
Saravani, Aslanbeigi, and Kempf [13,14], where they
reconstructed the bulk metric from bulk scalar propagators
(the Feynman propagator). The basic idea is that physically
reasonable states fall under the class of Hadamard states
[15–17], which have the property that the short-distance
(UV) behavior of the correlation functions is dominated by
the geodesic distance between two nearby points (typically
written in terms of Synge world functions). By augmenting
the bulk-to-boundary correspondence in [1–4] with the
metric reconstruction scheme in [13,14] but replacing the
bulk propagator with the boundary correlation functions,
we will be able to establish a form of holographic bulk
reconstruction. This works because the Hadamard property
of the states in the bulk is encoded nontrivially into the
boundary correlators. Note that the metric reconstruction
from bulk Wightman two-point functions, exploiting the
Hadamard property directly, was done explicitly for the
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first time in [18]. We will show this reconstruction using
Minkowski and Friedmann-Robertson-Walker (FRW)
spacetimes. We will refer to this version of bulk-to-
boundary correspondence “modest holography.”
We should emphasize what we are not doing in this

work. We do not claim that we can reconstruct all
asymptotically flat spacetimes purely from Iþ, and
certainly not the maximal analytic extensions in general.
The modest holography works as far as there is enough
“Cauchy data” at Iþ for the reconstruction. For example,
if we have a black hole with future horizonH þ, observers
near Iþ ∪ H þ can at most reconstruct the metric holo-
graphically in the exterior of the black hole. The reason is
simply that there is not enough Cauchy data to reconstruct
the interior using this method. In some cases one may need
to include timelike infinity (even for massless fields) to
have enough Cauchy data [19]. Note also that violation
of the strong Huygens’ principle in generic curved
spacetimes means that massless field causal propagators
can have timelike supports [20,21]. In this respect, our
bulk reconstruction construction is closer to that of
Hamilton-Kabat-Lifschytz-Lowe (HKLL) construction in
AdS/CFT [22–24]. What we propose here is that the bulk-
to-boundary correspondence proposed in [1–4], which was
only between bulk and boundary correlators, can (and
perhaps should) be promoted to an actual holographic
reconstruction of the bulk geometry. The limitation of the
bulk reconstruction is ultimately dependent on the validity
of the modest holography itself.
It is worth mentioning that our results are only guaran-

teed in (3þ 1)-dimensional asymptotically flat spacetimes,
where the asymptotic symmetry group is the Bondi-
Metzner-Sachs (BMS) group [25,26]. In higher dimensions
this may not be the case, and it has been debated in the
literature when the BMS group remains the asymptotic
symmetry group (see, e.g., Refs. [27,28]). This is closely
tied to the existence of the gravitational memory effect.
We are not aware of any analogous bulk-to-boundary
correspondence in higher dimensions.
A side goal of this work is to popularize the technique in

AQFT in a more accessible manner to people working in
QFT in curved spacetimes and also the relativistic quantum
information (RQI) community. One of the authors provided
a similar introduction to AQFT in [29], and in this work we
will refine some of the exposition, as well as complement it
by also providing an accessible introduction to the alge-
braic framework for scalar QFT on Iþ. Notation-wise we
will combine the best features of [15,16,29–35]. This work
is an extension to the shorter work in [36]. A much more
extensive description of the algebraic framework for fields
of various spins and masses in the context of S-matrix
formalism is given very recently in [37], which shares
similar language with what we do here.
This work is organized as follows. In Sec. II we will

briefly review the algebraic framework for real scalar QFT

in arbitrary globally hyperbolic spacetimes. In Sec. III we
briefly review algebraic framework for real scalar QFT living
on null infinity. In Sec. IV we present an explicit calculation
for the holographic reconstruction of the bulk correlators
from its boundary correlators and show how to construct the
bulk metric. In Sec. V we discuss the connection with large-r
expansion of the bulk fields. In Sec. VI we discuss our
results and outlook for further investigations.
Conventions: We use the convention c ¼ ℏ ¼ 1 and

mostly plus signature for the metric. Also, in order to match
both physics and mathematics literature without altering
each other’s conventions, we will make the following com-
promise. In most places we will follow “physicist’s con-
vention,” writing Hermitian conjugation as A† and complex
conjugation as B�. There will be three exceptions using
“mathematician’s convention”: (1) C�-algebra in Sec. II,
where � here really means (Hermitian) adjoint/Hermitian
conjugation, (2) complex conjugateHilbert space H̄ in Sec. II,
and (3) complex stereographic coordinates ðz; z̄Þ in
Appendix B, where complex conjugation is denoted by a bar.

II. SCALAR QFT IN CURVED SPACETIMES

In this section we briefly review the algebraic framework
for quantization of the real scalar field in arbitrary (globally
hyperbolic) curved spacetimes. We will follow largely
the conventions of Kay and Wald [16] with a small
modification.1 We caution the reader that in the AQFT
literature there are various different conventions being used
(cf. [1,15,30–32,35]), in particular the convention regard-
ing symplectic smearing (we explain some of these in
Appendix A). An accessible introduction to �-algebras
and C�-algebras can be found in [35].

A. Algebra of observables and algebraic states

Consider a free, real scalar field ϕ in (3þ 1)-dimensional
globally hyperbolic spacetime ðM; gabÞ. Global hyper-
bolicity guarantees that M admits foliation by spacelike
Cauchy surfaces Σt labeled by real (time) parameter t. The
field generically obeys the Klein-Gordon equation

Pϕ ¼ 0; P ¼ ∇a∇a −m2 − ξR; ð1Þ
where ξ ≥ 0, R is the Ricci scalar, and ∇ is the Levi-Civita
connection with respect to gab. Later we specialize to
massless conformally coupled fields.
Let f ∈ C∞

0 ðMÞ be a smooth compactly supported test
function on M. Let E�ðx; yÞ be the retarded and advanced
propagators associated with the Klein-Gordon operator P,
such that

E�f ≡ ðE�fÞðxÞ ≔
Z

dV 0 E�ðx; x0Þfðx0Þ ð2Þ

1This will be slightly different from the conventions used by
one of us in [29] which is closer to [31,38].
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solves the inhomogeneous equation PðE�fÞ ¼ f. Here
dV 0 ¼ d4x0

ffiffiffiffiffiffi−gp
is the invariant volume element. The

causal propagator is defined to be the advanced-minus-
retarded propagator E ¼ E− − Eþ. If O is an open neigh-
borhood of some Cauchy surface Σ and φ is any real
solution with compact Cauchy data to Eq. (1), which we
denote by φ ∈ SolRðMÞ, then there exists f ∈ C∞

0 ðMÞ
with suppðfÞ ⊂ O such that φ ¼ Ef [15].
Let us now review the algebraic approach to free,

real scalar quantum field theory (see the comparison with
canonical quantization formulation in Appendix A of [29],
and also [15,16,35]). In AQFT, the quantization of the real
scalar field is regarded as an R-linear mapping from the
space of smooth compactly supported test functions to a
unital �-algebra AðMÞ

ϕ̂∶ C∞
0 ðMÞ → AðMÞ; f ↦ ϕ̂ðfÞ; ð3Þ

which obeys the following conditions:
(a) (Hermiticity) ϕ̂ðfÞ† ¼ ϕ̂ðfÞ for all f ∈ C∞

0 ðMÞ;
(b) (Klein-Gordon) ϕ̂ðPfÞ ¼ 0 for all f ∈ C∞

0 ðMÞ;
(c) (Canonical commutation relations [CCR]) we have

½ϕ̂ðfÞ; ϕ̂ðgÞ� ¼ iEðf; gÞ1 for all f;g∈C∞
0 ðMÞ, where

Eðf; gÞ is the smeared causal propagator2

Eðf; gÞ ≔
Z

dV fðxÞðEgÞðxÞ: ð4Þ

(d) (Time slice axiom) Let Σ ⊂ M be a Cauchy surface
and O a fixed open neighborhood of Σ. AðMÞ is
generated by the unit element 1 [hence AðMÞ is
unital] and the smeared field operators ϕ̂ðfÞ for all
f ∈ C∞

0 ðMÞ with suppðfÞ ⊂ O.
The �-algebra AðMÞ is called the algebra of observables
of the real Klein-Gordon field. The smeared field
operator reads

ϕ̂ðfÞ ¼
Z

dVϕ̂ðxÞfðxÞ; ð5Þ

and ϕ̂ðxÞ is to be regarded as an operator-valued distribution.
The algebra of observables AðMÞ defined above is still

somewhat abstract. This can be made more concrete by
making explicit the symplectic structure of the theory.
First, the vector space of real-valued solutions of the
Klein-Gordon equation with compact Cauchy data, denoted
SolRðMÞ, can be made into a symplectic vector space
by equipping it with a symplectic form σ∶ SolRðMÞ×
SolRðMÞ → R, defined as

σðϕ1;ϕ2Þ ≔
Z
Σt

dΣa½ϕ1∇aϕ2 − ϕ2∇aϕ1�; ð6Þ

where dΣa ¼ −tadΣ,−ta is the inward-directed unit normal
to the Cauchy surface Σt, and dΣ ¼ ffiffiffi

h
p

d3x is the induced
volume form on Σt [39,40]. This definition is independent
of the Cauchy surface. With this, we can regard ϕ̂ðfÞ as the
symplectically smeared field operator [30]

ϕ̂ðfÞ≡ σðEf; ϕ̂Þ; ð7Þ

and the CCR algebra can be written as

½σðEf; ϕ̂Þ; σðEg; ϕ̂Þ� ¼ iσðEf; EgÞ1 ¼ iEðf; gÞ1; ð8Þ

where σðEf; EgÞ ¼ Eðf; gÞ in the second equality follows
from Eqs. (5) and (7). The symplectic smearing has the
advantage of keeping the dynamical content manifest at the
level of the field operators (via the causal propagator). We
will see later that sometimes it is much more obvious how
to proceed with this interpretation than working abstractly,
especially so for scalar QFT at Iþ. For convenience, we
will collect some results involving symplectic smearing in
Appendix A.
In many cases, it is more convenient to work with the

“exponentiated” version of AðMÞ called the Weyl algebra
[denoted by WðMÞ], since its elements are (formally)
bounded operators. The Weyl algebra WðMÞ is a unital
C�-algebra generated by the elements that formally take
the form

WðEfÞ≡ eiϕ̂ðfÞ; f ∈ C∞
0 ðMÞ: ð9Þ

These elements satisfy Weyl relations

WðEfÞ† ¼ Wð−EfÞ;
WðEðPfÞÞ ¼ 1;

WðEfÞWðEgÞ ¼ e−
i
2
Eðf;gÞWðEðf þ gÞÞ; ð10Þ

where f; g ∈ C∞
0 ðMÞ. The symplectic smearing picture

has the advantage that even for the Weyl algebra WðMÞ,
microcausality can be given in the same way as CCR
algebra of AðMÞ. That is, using σðEf; EgÞ ¼ Eðf; gÞ, the
Weyl relations Eq. (10), and the fact that suppðEfÞ ⊂
JþðsuppðfÞÞ where JþðsuppðfÞÞ is the causal future of
suppðfÞ, we have [1]

½WðEfÞ;WðEgÞ� ¼ 0; ð11Þ

whenever suppðfÞ ∩ suppðgÞ ¼ ∅ (supports of f and g are
causally disjoint, i.e., “spacelike separated”).3

2We have removed the redundant notationΔðf; gÞ in [29,31,38].

3Abstractly, one would have considered elements of the Weyl
algebra to be WðϕÞ for some ϕ ∈ SolRðMÞ. In this form,
microcausality is far from obvious because the third Weyl relation
would have read Wðϕ1ÞWðϕ2Þ ¼ e−iσðϕ1;ϕ2Þ=2Wðϕ1 þ ϕ2Þ.
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After specifying the algebra of observables, we need to
provide a quantum state for the field. In AQFT the state is
called an algebraic state, defined by a C-linear functional
ω∶ AðMÞ → C such that

ωð1Þ ¼ 1; ωðA†AÞ ≥ 0 ∀ A ∈ AðMÞ: ð12Þ

That is, a quantum state is normalized to unity and positive-
semidefinite operators have non-negative expectation val-
ues. The state ω is pure if it cannot be written as ω ¼
αω1 þ ð1 − αÞω2 for any α ∈ ð0; 1Þ and any two algebraic
states ω1, ω2; otherwise, the state is said to be mixed.
The connection to the usual notion ofHilbert spaces comes

from the Gelfand-Naimark-Segal (GNS) reconstruction
theorem [15,30,35]. This says that we can construct a GNS
triple4 ðHω; πω; jΩωiÞ, where πω∶ AðMÞ → EndðHωÞ is a
Hilbert space representation with respect to state ω such that
any algebraic state ω can be realized as a vector state
jΩωi ∈ Hω. The observables A ∈ AðMÞ are then repre-
sented as operators Â ≔ πωðAÞ acting on the Hilbert space.
With the GNS representation, the action of algebraic states
take the familiar form

ωðAÞ ¼ hΩωjÂjΩωi: ð13Þ

The main advantage of the AQFT approach is that it is
independent of the representations of the CCR algebra
chosen: there are as many representations as there are
algebraic states ω. Since QFT in curved spacetimes admits
infinitely many unitarily inequivalent representations of the
CCRalgebra, the algebraic framework allows us toworkwith
all of them at once.
In the case of Weyl algebra, the algebraic state and GNS

representation gives concrete realization of “exponentiation
of ϕ̂ðfÞ.” The exponentiation in Eq. (9) is only formal: we
cannot literally regard the smeared field operator ϕ̂ðfÞ as
the derivative ∂tjt¼0WðtEfÞ since the Weyl algebra itself
does not have the right topology [35]; instead, one takes the
derivative at the level of the GNS representation: that is, if
Πω∶WðMÞ → BðHωÞ is a GNS representation with
respect to ω, then we do have

πωðϕ̂ðfÞÞ¼−i
d
dt

����
t¼0

Πωðeitϕ̂ðfÞÞ≡−i
d
dt

����
t¼0

eitπωðϕ̂ðfÞÞ; ð14Þ

where now ϕ̂ðfÞ is the smeared field operator acting on
Hilbert space Hω. We can then define the formal n-point
functions to be the expectation value in its GNS represen-
tation. For example, in the case of two-point functions
we have

ωðϕ̂ðfÞϕ̂ðgÞÞ ≔ hΩωjπωðϕ̂ðfÞÞπωðϕ̂ðgÞÞjΩωi

≡ −
∂
2

∂s∂t

����
s;t¼0

hΩωjeisπωðϕ̂ðfÞÞeitπωðϕ̂ðgÞÞjΩωi:

ð15Þ

In what follows we will thus write the formal two-point
functions ωðϕ̂ðfÞϕ̂ðgÞÞ with this understanding that the
actual calculation is (implicitly) done with respect to the
GNS representation in question.

B. Quasifree states

In the AQFTapproach there are too many algebraic states
available for us and not all of them are physically relevant.
The general agreement among its practitioners is that all
physically reasonable states associated with ω should be
part of the class of Hadamard states [15–17]. Roughly
speaking, these states have the right “singular structure” at
short distances that respects the local flatness property in
general relativity and that the expectation values of field
observables are finite (see Refs. [16,30] and references
therein for more technical details). In this work, we work
with Hadamard states that are also quasifree, denoted by
ωμ: these are the states that can be completely described
only by their two-point correlators.5 Well-known field
states such as the vacuum states and thermal states are
all quasifree states, with thermal states [thermality defined
according to the Kubo-Martin-Schwinger (KMS) condition
[16] ] being an example of a mixed quasifree state.
The definition of quasifree states is somewhat tricky to

work with, so we review it here following [29] (largely
based on [15,16,35]). Any quasifree state ωμ is associated
with a real inner product μ∶ SolRðMÞ × SolRðMÞ → R
satisfying the inequality

jσðEf; EgÞj2 ≤ 4μðEf; EfÞμðEg; EgÞ; ð16Þ

for any f; g ∈ C∞
0 ðMÞ. The state is pure if it saturates the

above inequality appropriately [30]. Then the quasifree
state ωμ is defined as

ωμðWðEfÞÞ ≔ e−μðEf;EfÞ=2: ð17Þ

We will drop the subscript μ and simply write ω in what
follows. As stated, however, Eq. (17) is not helpful because
it does not provide a way to calculate μðEf; EfÞ.
To obtain a practical expression for the norm-squared

kEfk2 ≔ μðEf; EfÞ, we first make the space of solutions

4Strictly speaking we also need to provide a dense subset
Dω ⊂ Hω since the field operators are unbounded operators.

5By this we mean that all odd-point functions vanish and only
ωðϕ̂ðfÞϕ̂ðgÞÞ ≠ 0. All even-point functions can be written as
linear combinations of products of two-point functions. The term
Gaussian states is sometimes reserved for states that have
nonzero one-point correlators.
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of the Klein-Gordon equation into a Hilbert space.6 In [16]
it was shown that we can always construct a one-particle
structure associated with quasifree state ωμ, namely a pair
ðK;HÞ, where H is a Hilbert space ðH; h·; ·iHÞ together
with an R-linear map K∶ SolRðMÞ → H such that
for ϕ1;ϕ2 ∈ SolRðMÞ
(a) KSolRðMÞ þ iKSolRðMÞ is dense in H;
(b) μðϕ1;ϕ2Þ ¼ RehKϕ1; Kϕ2iH;
(c) σðϕ1;ϕ2Þ ¼ 2ImhKϕ1; Kϕ2iH.
In the more usual language of canonical quantization, the
linear map K projects out the “positive frequency part” of a
real solution to the Klein-Gordon equation. The smeared
Wightman two-point function Wðf; gÞ is then related to μ,
σ by [16,35]

Wðf; gÞ ≔ ωðϕ̂ðfÞϕ̂ðgÞÞ ¼ μðEf; EgÞ þ i
2
Eðf; gÞ; ð18Þ

where we have used the fact that σðEf; EgÞ ¼ Eðf; gÞ.
Finally, by antisymmetry we have Eðf; fÞ ¼ 0, hence

kEfk2 ¼ Wðf; fÞ ¼ hKEf;KEfiH: ð19Þ

Therefore, we can compute μðEf; EfÞ if either (i) we know
the (unsmeared) Wightman two-point distribution of the
theory associated with some quantum field state or (ii) we
know the inner product h·; ·iH and how to project using K.
The inner product h·; ·iH is precisely the Klein-Gordon

inner product ð·; ·ÞKG∶SolCðMÞ×SolCðMÞ→C restricted
to H, defined by

ðϕ1;ϕ2ÞKG ≔ iσðϕ�
1;ϕ2Þ; ð20Þ

where the symplectic form is now extended to complexified
solution SolCðMÞ of the Klein-Gordon equation. The
restriction to H is necessary since ð·; ·ÞKG is not an inner
product on SolCðMÞ. In particular, we have

SolCðMÞ ≅ H ⊕ H; ð21Þ

whereH is the complex conjugate Hilbert space ofH [30].
It follows that Eq. (17) can be written as

ωðWðEfÞÞ ¼ e−
1
2
Wðf;fÞ ¼ e−

1
2
kKEfk2KG : ð22Þ

The expression in Eq. (22) gives us a concrete way to
calculate kEfk2 more explicitly. For vacuum state, we
know that the (unsmeared) Wightman two-point distribu-
tion is defined by

Wðx; yÞ ¼
Z

d3k ukðxÞu�kðyÞ; ð23Þ

where ukðxÞ are (positive-frequency) modes of Klein-
Gordon operator P normalized with respect to Klein-
Gordon inner product Eq. (20):

ðuk; uk0 ÞKG ¼ δ3ðk − k0Þ; ðuk; u�k0 ÞKG ¼ 0;

ðu�k; u�k0 ÞKG ¼ −δ3ðk − k0Þ: ð24Þ

If we know the set fukg, we can calculate the symmetrically
smeared two-point function

Wðf; fÞ ¼
Z

dV dV 0 fðxÞfðyÞWðx; yÞ: ð25Þ

From the perspective of projection map K, we are projec-
ting out the positive-frequency part of Ef and expressing
this in the positive-frequency basis fukg: that is, we have

Ef ¼
Z

d3kðuk; EfÞKGuk þ ðuk; EfÞ�KGu�k; ð26Þ

so that using Eq. (24) we get

KEf ¼
Z

d3kðuk; EfÞKGukðxÞ: ð27Þ

It follows that the restriction of the Klein-Gordon inner
product to H gives

hKEf;KEfiH ¼ ðKEf;KEfÞKG
¼

Z
d3kjðuk; EfÞKGj2: ð28Þ

Therefore, using the fact that [30, Lemma 3.2.1] (See
Appendix A for details)

σðEf;ϕÞ ¼ −σðϕ; EfÞ ¼
Z

dV fðxÞϕðxÞ; ð29Þ

we can recast ðuk; EfÞKG as

ðuk; EfÞKG ¼ iσðu�k; EfÞ ¼ −i
Z

dV u�kðxÞfðxÞ; ð30Þ

so that, indeed, we recover hKEf;KEfiH ¼ Wðf; fÞ.
The nice thing about algebraic formulation is that if we

wish to consider another algebraic state, such as the thermal
KMS state ωβ where β labels the inverse KMS temperature,
we will obtain a different one-particle structure ðK0;H0Þ.
Hence the only thing that changes in the calculations so far
is the replacement of kEfk2 in terms of the new one-
particle structure. For thermal states, there is a nice
expression for this in terms of the vacuum one-particle
structure ðK;HÞ [16]:

6Wewill assume that the Hilbert space is already completed via
its inner product.
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kEfk2β ¼ Wβðf; fÞ≡ hK0Ef;K0EfiH0

¼ hKEf; cothðβĥ=2ÞKEfiH; ð31Þ

where Wβðf; fÞ is the smeared thermal Wightman distri-
bution (see, e.g., [Ref. 41, Chap. 2] for the unsmeared
version) and ĥ is the “one-particle Hamiltonian” (see
also Ref. [31]).

III. SCALAR QFT ON I +

In this section our goal is to review the construction of
scalar field quantization living on Iþ. This necessarily
requires us to restrict our attention to massless scalar fields
since solutions to massive Klein-Gordon equations do not
have support atI . Furthermore, we require that the field is
conformally coupled to curvature in order to exploit good
properties associated with Weyl rescaling of the bulk
metric. Since we are working in (3þ 1) dimensions, in
what follows the real scalar field obeying Eq. (1) will be
taken to have m ¼ 0 and ξ ¼ 1=6.
There are two reasons why scalar QFT on Iþ neces-

sarily requires separate treatment. First, viewing Iþ as
the conformal boundary of M, null infinity is a
(codimension-1) null surface with degenerate metric [i.e.,
signature ð0;þ;þÞ]. Second, the scalar QFT has no
equation of motion at Iþ. Clarifying how this works is
one of the main goals of this section. We will also connect
how the AQFT framework relates to the more pedestrian
(but perhaps more natural) approach used in asymptotic
quantization, where one quantizes a bulk field theory
and then performs near-Iþ expansion to obtain the
corresponding boundary field theory.

A. Geometry of null infinity

To set the stage, let us set up a few relevant definitions, in
particular the notion of asymptotic flatness. We follow the
rigorous definition in [4] and explain what the conditions
mean in practice [42].
Let ðM; gabÞ be a globally hyperbolic manifold, which

we call the physical spacetime. We say that ðM; gabÞ is
asymptotically flat with timelike infinity iþ if there exists an

unphysical spacetime ðfM; g̃abÞ with a preferred point

iþ ∈ fM, a smooth embedding F∶ M → fM (so that M

can be viewed as embedded submanifold of fM), such that
(a) The causal past of iþ, denoted J−ðiþÞ, is a closed

subset of fM such that M ¼ J−ðiþÞn∂J−ðiþÞ. The set
Iþ ⊂ fM is called future null infinity which is
topologically R × S2.

(b) There exists a smooth functionΩ > 0 on fM, such that
ΩjIþ ¼ 0, dΩjIþ ≠ 0, and

F�ðΩ−2g̃abÞ ¼ gab; ð32Þ

typically written as g̃ab ¼ Ω2gab. In the standard
physics terminology, Eq. (32) is known as Weyl
rescaling,7 typically written as g̃ab ¼ Ω2gab, and Ω
is called the conformal factor [42]. At iþ, we have
∇̃a∇̃bΩ ¼ −2g̃ab where ∇̃ is the Levi-Civita connec-
tion with respect to the unphysical metric g̃ab.

(c) Defining na ≔ ∇̃aΩ, there exists a smooth positive
function λ supported at least in the neighborhood
of Iþ such that ∇̃aðλ4naÞjIþ ¼ 0 and the integral
curves of λ−1na are complete on Iþ.

(d) The physical stress-energy tensor Tab sourcing the
Einstein field equation Gab ¼ 8πGTab obeys the
condition T̃ab ¼ Ω−2Tab,

8 where T̃ab is smooth onfM and Iþ. Note that for vacuum solutions this
condition is redundant.

The four conditions mainly say the following: Condition
(a) says that M lies in the causal past of its (future)
boundary ∂M ¼ Iþ ∪ fiþg, which is manifest when we
draw Penrose diagrams; Condition (b) says that Iþ is the
conformal boundary of M and the conditions on Ω are
the technical “price” for bringing infinity into an actual
boundary; Conditions (c) and (d) say that Iþ is a null
hypersurface with normal na and that Einstein equations are
approximately vacuum at Iþ [42]. Note that the technical
condition ∇̃aðλ4naÞ ¼ 0 is the statement that we can find
null generators of Iþ that are divergence-free [43]. This
amounts to choosing the Bondi condition ∇̃anb ¼ 0 and
implies nana ¼ OðΩ−2Þ [42].
We can now state the following properties of (future) null

infinity Iþ that we are interested in [32,40]:
(a) Since Iþ is a null hypersurface of fM diffeomorphic

to R × S2, there exists an open neighborhood U
containing Iþ and a coordinate system ðΩ; u; xAÞ
such that xA ¼ ðθ;φÞ defines standard coordinates of
the unit two-sphere, and u is an affine parameter along
the null geodesic of the generators ofIþ. In this chart,
Iþ is defined by the locus Ω ¼ 0, and hence the
metric reads

h ≔ gjIþ ¼ ðdΩ ⊗ duþ du ⊗ dΩÞ þ γS2 ; ð33Þ
where γS2 is the induced metric of g on S2, i.e.,

γS2 ¼ dθ ⊗ dθ þ sin2 θdφ ⊗ dφ: ð34Þ
The chart ðU; ðΩ; u; xAÞÞ is called the Bondi chart.

7In [40] it is called conformal transformation, while angle-
preserving diffeomorphism is called conformal isometry. In high
energy physics and AdS/CFT, conformal transformation often
refers to angle-preserving diffeomorphism.

8This condition formalizes the fact that to be asymptotically
flat the matter fields need to decay. For example, even if we treat
the cosmological constant as the stress-energy tensor (i.e.,
Tab ¼ −Λgab) instead of being a true cosmological constant,
the spacetime is still not asymptotically flat.
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(b) There exists a distinguished infinite-dimensional sub-
group BMS4ðIþÞ ⊂ DiffðIþÞ, called the BMS
group, which leaves invariant the metric Eq. (33).
This group is the semidirect product SLð2;CÞ ⋉
C∞ðS2Þ. This is exactly the same group that preserves
asymptotic symmetries of the physical spacetime
ðM; gabÞ [44] (see Appendix B for more details).

For completeness, we make a passing remark that this
construction could have been generalized to other null
surfaces, such as Killing horizons in black hole and
cosmological spacetimes. The idea is to consider more
generally the following ingredients [2,3,32]:
(a) Let N ⊂ fM be a null hypersurface diffeomorphic to

R × Ξ with Ξ a spacelike submanifold of M. We can

define the analogous Bondi chart ðΩ; λ; xAÞ on fM so
that on open neighborhood V containing N , the
hypersurface is the locus Ω ¼ 0 so that ðλ; xAÞ defines
a coordinate system for N . As before, we require
dΩjN ≠ 0.

(b) The metric restricted to N takes analogous form to
Eq. (33):

h ¼ C2ðdΩ ⊗ dλþ dλ ⊗ dΩþ γΞÞ; ð35Þ
where C ≠ 0 is real. As before λ will define an affine
parameter for null generators of N .

In this sense, the structures of null infinity and Killing
horizons are very similar. For example, the future horizon
H þ of Schwarzschild geometry is associated with λ ¼ U
where U is one of the Kruskal-Szekeres coordinates, with
C ≠ 1 (unlike the case forIþ). There is some extra care that
one needs to be aware of for metrics that contain horizons,
but in this work we will not consider these cases and leave it
for future investigations. We direct interested readers regard-
ing the same constructions involving horizons to [3,32].

B. Quantization at null infinity

Next we try to construct scalar field theory at Iþ. The
main subtlety compared to standard bulk scalar theory is that
Iþ is a null submanifold with a degenerate metric; also we
should consider the equivalence classes of the triple ½ðIþ;
h; nÞ�, where ðIþ; h; nÞ ∼ ðIþ; h0; n0Þ if they are related by
a transformation in BMS4ðIþÞ. This latter condition is the
statement that theBMS4ðIþÞ is an asymptotic symmetry of
all asymptotically flat spacetimes and Iþ is a universal
structure of these spacetimes [42] (seeAppendixB). For these
reasons, the scalar field theory at null infinity will “look”
different from the bulk theory, but procedurally the con-
struction proceeds the same way, as we will show.
First, fix a Bondi frame ðIþ; h; nÞ. We define a real

vector space of “solutions”9 [4]

SolRðIþÞ≔fψ ∈C∞ðIþÞ∶ψ ;∂uψ ∈L2ðIþ;dμÞg; ð36Þ

where dμ ¼ dudγS2 is the integration measure, dγS2 is the
standard volume form on S2, and L2ðIþ; dμÞ is the space
of square-integrable functions with respect to dμ. This
space becomes a symplectic vector space if we give it a
symplectic form σI∶ SolRðIþÞ × SolRðIþÞ → R with

σI ðψ1;ψ2Þ ¼
Z
I
dμðψ1∂uψ2 − ψ2∂uψ1Þ: ð37Þ

The symplectic structure is independent of the choice of
Bondi frames [32] (we reproduce the essential features to
demonstrate this in Appendix B). We can then define a
“Klein-Gordon” inner product

ðψ1;ψ2ÞI ≔ iσI ðψ�
1;ψ2Þ: ð38Þ

Recall from Sec. II that in order to obtain the quantiza-
tion for the bulk scalar theory, we needed the algebra of
observables AðMÞ [or WðMÞ] and an algebraic state ω.
For quasifree states ωμ defined by a real symmetric bilinear
inner product μ on SolRðMÞ, the characterization of ωμ

depends on the one-particle structure ðK;HÞ. The Hilbert
H is essentially the “positive frequency subspace” of the
complexified solution space SolCðMÞ, with an inner
product given by the Klein-Gordon inner product extended
to the complex domain. As we will see now, the definition
of ðSolRðIþÞ; σI Þ essentially lets us carry the same
procedure almost verbatim.

C. Algebra of observables

Similar to the bulk algebra of observables, we have the
boundary algebra of observables AðIþÞ whose elements
are generated by unit 1 and the smeared boundary field
operator φðψÞ, where ψ ∈ C∞

0 ðIþÞ. However, there are
several structural differences. First, there is no equation
of motion at Iþ, so AðIþÞ is defined differently from
AðMÞ. Second, the metric is degenerate at Iþ, and hence
the smeared field operator φðψÞ has to be defined carefully.
That said, we can still work directly with the Weyl

algebra corresponding to the “exponentiated” version of
AðIþÞ, denoted WðIþÞ, where many things are better
behaved. This is because given a symplectic vector space
ðSolRðIþÞ; σI Þ, there exists a complex C�-algebra gen-
erated by elements of SolRðIþÞ [45]. The Weyl algebra
WðIþÞ is generated by 1 and WðψÞ for ψ ∈ SolRðIþÞ.
The Weyl relations are10

9Although there is no equation of motion atIþ, we denote the
real vector space SolRðIþÞ this way because, as we will see, it is
related to the space of solutions in the bulk.

10We will not distinguish the notation of the elements of the
Weyl algebra in the bulk and in the boundary and useWð·Þ for the
Weyl algebra and Wð·Þ as its elements. The bulk elements will
always be written as WðEfÞ with causal propagator E, while the
boundary element will be written as WðψÞ.
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WðψÞ† ¼ Wð−ψÞ; ð39aÞ

WðψÞWðψ 0Þ ¼ e−iσI ðψ ;ψ 0Þ=2Wðψ þ ψ 0Þ: ð39bÞ

This Weyl algebra is unique up to (isometric) �-isomor-
phism [45]. Note that WðIþÞ contains a unit element
associated with ψ ¼ 0, and WðψÞ is uniquely specified by
ψ . Moreover, since there is no equation of motion on Iþ,
there is no causal propagator. Hence, the locality condition
(often calledmicrocausality in QFT) is not implemented by
the causal propagator; instead, this can be imposed using
the definition of σI by

½WðψÞ;Wðψ 0Þ� ¼ 0 suppðψÞ ∩ suppðψ 0Þ ¼ ∅: ð40Þ

Note that this is exactly the same locality relation as in the
bulk theory since there we have σðEf; EgÞ ¼ Eðf; gÞ
[cf. Eq. (10)].

D. Quasifree state at I +

Now, let us construct a one-particle structure for ðK;HÞ
for SolRðIþÞ. We will follow closely the construction in
[32], focusing on accessibility for physics-oriented readers.
First, define K∶ SolRðIþÞ → H to be the positive-

frequency projector given by

ðKψÞðu; xAÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dω e−iωuψ̃ðω; xAÞ; ð41Þ

ψ̃ðω; xAÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
du eiωuψ̃ðu; xAÞ: ð42Þ

That is, ψ̃ is the u-domain Fourier transform of ψ , and
hence KSolRðIþÞ þ iKSolRðIþÞ is dense in SolCðIþÞ.
The space H is a Hilbert space with the inner product
defined as a restriction to “Klein-Gordon” inner product
Eq. (38),

hKψ1;Kψ2iH ≔ ðKψ1;Kψ2ÞI : ð43Þ

It was shown in [32] that there exists a BMS4ðIþÞ-
invariant quasifree and regular algebraic state (see
also Ref. [15] for the definition of regular state)
ωI∶ WðIþÞ → C such that

ωI ðWðψÞÞ ¼ e−μI ðψ ;ψÞ=2; ð44Þ

where μI∶ SolRðIþÞ × SolRðIþÞ → R is a real bilinear
inner product given by

μI ðψ1;ψ2Þ ¼ RehKψ1;Kψ1iH: ð45Þ

Notice that up to this point, the procedure exactly parallels
that of the bulk scalar field theory.

In fact, we can be very explicit about this algebraic state.
First, since we already have the algebraic state ωI and the
Weyl algebra of observables WðIþÞ, we can use the GNS
theorem to construct the Fock representation of the boun-
dary field. Recalling that in the GNS representation we can
take derivatives of the representation of the Weyl algebra
[cf. Eq. (15)], we can calculate the smeared Wightman
two-point function at Iþ [4]:

WI ðψ1;ψ2Þ“ ≔ ”ωI ðφ̂ðψ1Þφ̂ðψ2ÞÞ

¼ −
1

π
lim
ϵ→0

Z
dγS2dudu

0 ψ1ðu; xAÞψ2ðu0; xAÞ
ðu − u0 − iϵÞ2 :

ð46Þ

The definition of ωI ðφ̂ðψ1Þφ̂ðψ2ÞÞ requires that we define
what “boundary field” φðψÞ with boundary smearing
function ψ means. We will clarify this point in Sec. V.
Note in particular that the integral is taken over the same
angular direction xA for ψ1 and ψ2. Equation (46) is the
main result we will use for our holographic reconstruction.

E. Modest holography:
Bulk-to-boundary correspondence

At this point, the Weyl algebras WðMÞ and WðIþÞ as
well as the space of solutions SolRðMÞ and SolRðIþÞ are
unrelated, so the two scalar field theories are a priori
unrelated. Indeed, it is not automatic that one can establish
some sort of holographic principle or bulk-to-boundary
correspondence between them. The reason is because
for this to work, we need to “project” bulk solutions to
Iþ; i.e., we need the existence of a projection map
Γ∶ SolRðMÞ → SolRðIþÞ. This is necessary in order
for an injective �-homomorphism i∶ WðMÞ → WðIþÞ
to exist and build the bulk-to-boundary correspondence.
The celebrated result in [1] shows that the boundary

Weyl algebra is, in fact, very natural: this is because one can
prove that if there exists a projection map Γ∶ SolRðMÞ →
SolRðIþÞ such that
(1) The bulk solutions projected to Iþ lies in

SolRðIþÞ, i.e., ΓSolRðMÞ ⊂ SolRðIþÞ;
(2) The symplectic forms are compatible with the

projection, i.e., σðϕ1;ϕ2Þ ¼ σI ðΓϕ1;Γϕ2Þ,
then the bulk algebra WðMÞ can be identified with a
C�-subalgebra of WðIþÞ, in that there exists an isometric
�-isomorphism ι∶ WðMÞ → ιðWðMÞÞ ⊂ WðIþÞ such
that

ιðWðEfÞÞ ¼ WðΓEfÞ ∈ WðIþÞ: ð47Þ

Furthermore, ðSolRðIþÞ; σI Þ is universal for all asymp-
totically flat spacetimes M. These conditions guarantee
that the Weyl algebras are compatible; i.e., the bulk scalar
field in M can be “holographically” projected to the
boundary Iþ and defines a boundary scalar field there.
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The injective �-homomorphism ι∶ WðMÞ → WðIþÞ
can be used to perform pullback on the algebraic state ωI .
That is, the state ω ≔ ðι�ωI Þ∶WðMÞ → C is an algebraic
state on WðMÞ, with the property [46]

ωðWðEfÞÞ≡ ðι�ωI ÞðWðEfÞÞ ¼ ωI ðWðΓEfÞÞ; ð48Þ

in accordance with Eq. (47). This result is remarkable
because (i) the BMS4ðIþÞ-invariant state ωI is unique (in
its folium), and thus the algebraic state ι�ωI is also unique
[32]; (ii) the pullback state ω is Hadamard and is invariant
under all isometries of ðM; gabÞ [33]. In the case when the
bulk geometry is flat, ι�ωI would define what we know as
the Poincaré-invariant Minkowski vacuum.
It is worth stressing that this construction relies on the

existence of the projection map Γ whose image lives
entirely in SolRðIþÞ. This assumption is not automatic,
and we can think of three representative examples:

(i) In Schwarzschild spacetime, we also have Killing
horizons H �. Thus Iþ alone is not enough, and
we also need H þ to build the correspondence [3].

(ii) In FRW spacetimes, we also have cosmological
horizonsH �

cosmo which play the role of null infinity
I� even if the spacetime is not asymptotically flat
[2]. Since the geometry is asymptotically de Sitter, it
is impossible to build the correspondence this way
for the entire de Sitter hyperboloid. For matter- or
radiation-dominated FRW models which are asymp-
totically flat, it is still possible that some information
is lost into the timelike infinity i�.

(iii) In spacetimes containing ergoregions,11 it is possible
for some bulk solutions to get projected into future
timelike infinity iþ instead ofIþ, essentially due to
the asymptotic time-translation Killing field becom-
ing spacelike.

In all these cases, the key observation is that it is not
automatic that if Ef ∈ SolRðMÞ, then it can be projected
properly to SolRðIþÞ: more concretely, in terms of Bondi
coordinates, the “conformally rescaled” boundary data

ψf ≔ lim
r→∞
u const

Ω−1Ef ð49Þ

may not be an element of SolRðIþÞ. It is in this sense that
in general null infinity is not a good initial data surface [19].
Even for globally hyperbolic spacetimes without horizons,
one typically needs to augment Iþ with future timelike
infinity iþ to make this work (also see Ref. [37] and
references therein). In what follows we will work with the
assumption that the spacetime is one where the bulk-to-
boundary correspondence (47) holds.

IV. HOLOGRAPHIC RECONSTRUCTION
OF THE BULK METRIC

The injective �-homomorphism ι allowed us to define the
bulk algebraic state ω via the pullback of algebraic state ωI

in Eq. (48). We also know that the elements of the Weyl
algebra are formally the “exponentiated” version of the
smeared field operator ϕðfÞ. Therefore, in order for us to
say that we can perform holographic reconstruction, we
require that for f; g ∈ C∞

0 ðMÞ, we can construct the
smeared Wightman function in the bulk in the sense given
in Sec. II such that it agrees with the boundary via the
relation

Wðf; gÞ ¼ WI ðψf;ψgÞ; ð50Þ

where ψf ¼ ΓEf and ψg ¼ ΓEg.
The holographic reconstruction is complete once we

modify the result from Saravani, Aslanbeigi, and Kempf
[13,14] to reconstruct the metric from Wðf; gÞ instead of
the Feynman propagator (or equivalently, following the
analogous proposal in [18]).12 The idea is that one can
reconstruct the metric formally by computing in (3þ 1)
dimensions the “coincidence limit” of the inverse
Wightman function

gμνðxÞ ¼ −
1

8π2
lim
x0→x

∂μ∂ν0Wðx; x0Þ−1: ð51Þ

Notice that this is not surprising (in hindsight) because
causal propagators and Green’s functions know about
the metric function directly. In particular, in the case of
Wightman functions, the requirement that the states are
Hadamard means that for closely separated events x; y the
Wightman function is of the form [30]

WMðx; yÞ ¼ Uðx; yÞ
8π2σϵðx; yÞ

þ Vðx; yÞ log σϵðx; yÞ þ Zðx; yÞ;

ð52Þ

where U, V, Z are regular smooth functions and U → 1 as
x → y. The biscalar σϵðx; yÞ is the Synge world function
with an iϵ prescription, i.e.,

σðx; yÞ ¼ 1

2
ðτy − τxÞ

Z
γ
gμνðλÞ_γμðλÞ_γνðλÞdλ; ð53aÞ

σϵðx; yÞ ¼ σðx; yÞ þ 2iϵðTðxÞ − TðyÞÞ þ ϵ2; ð53bÞ

where σðx; yÞ≡ σϵ¼0ðx; yÞ is the Synge world function,
T is a global time function (which exists by virtue of the
global hyperbolicity of M), and γðτÞ is a geodesic curve

11We thank Gerardo García-Moreno for pointing this out.

12There the focus was on measurement of metric components
using Unruh-DeWitt detectors that can probe the correlators.
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with affine parameter τ with γðτxÞ ¼ x and γðτyÞ ¼ y.
Schematically, Eq. (51) comes from the fact that when
y ≈ x, we have Δx ¼ x − y ≈ 0 and

WMðx; yÞ−1 ≈ 8π2σðx; yÞ
∼ 4π2gμνðxÞΔxμΔxν þOðΔx2Þ: ð54Þ

Our calculations in the previous sections treat the
Wightman two-point functions as smeared two-point func-
tions. In practice this means that the expression in Eq. (51)
should be computed as a difference equation centered around
the peak of the smearing functions. Furthermore, the
smearing implies that there is a “resolution limit” directly
defined by the supports of the smearing functions f, g.
Physically we can interpret this as the statement that vacuum
noise prevents us from reconstructing the metric with infinite
accuracy. Taking this into account, we calculate the metric
using the finite difference: let f, g be sharply peaked
functions with characteristic widths δ localized around x
and y, respectively.13 The finite-difference approximation of
∂μ∂ν0Wðx; x0Þ−1 applied to the reciprocal of the Wightman
function reads

∂μ∂ν0Wðx; x0Þ−1 ≈Wðxþ ϵμ; x0 þ ϵν
0 Þ−1 −Wðxþ ϵμ; x0Þ−1
δ2

−
Wðx; x0 þ ϵν

0 Þ−1 −Wðx; x0Þ−1
δ2

: ð55Þ

Here the vector ϵμ points in the direction of coordinate basis
∂μ with very small length

ffiffiffiffiffiffiffiffiffiffiffijϵμϵμj
p ¼ δ ≪ 1. A change of

variable (shift by ϵμ) and smearing the Wightman functions
before taking its reciprocal allows us to write the metric
approximation as

gμνðxÞ ≈ −
1

8π2δ2
½Wðfϵ; gϵÞ−1 −Wðfϵ; gÞ−1

−Wðf; gϵÞ−1 þWðf; gÞ−1�; ð56Þ

where fϵðxÞ ¼ fðx − ϵμÞ and gϵðxÞ ¼ gðx − ϵν
0 Þ. The

approximation improves with smaller δ but this is bounded
below by the resolution provided by characteristic widths of
f, g. Also note that the spacetime smearing functions must
be properly normalized to reproduce the metric.
For our purposes, however, we want to make this

reconstruction work from the boundary. So what we would
like to calculate is WI ðψ1;ψ2Þ in Eq. (46), use that to
reconstruct Wðf; gÞ using bulk-to-boundary correspon-
dence (50), and then reconstruct the metric by finite
difference scheme (55). From Eq. (46), we see that what

really remains to be done is to compute Γ∶ SolRðMÞ →
SolRðIþÞ. When this projection map exists, its action is
quite simple in a Bondi chart: it is given by14

ψf ≡ ðψfÞðu; xAÞ ¼ lim
r→∞

ðΩ−1EfÞðu; r; xAÞ; ð57Þ

where Ω ¼ 1=r.
The final step to obtain the holographic reconstruction

is to combine modest holography with the metric
reconstruction using bulk correlators—crucially, the state
induced in the bulk by (48) has the Hadamard property
[32]. That is, using Eqs. (48) and (56) we obtain

gμνðxÞ ≈ −
1

8π2δ2
½WI ðψfϵ ;ψgϵÞ−1 −WI ðψfϵ ;ψgÞ−1

−WI ðψf;ψgϵÞ−1 þWI ðψf;ψgÞ−1�; ð58Þ

where as before ψfϵ ¼ ΓðEfϵÞ. Equation (58) tells us how
to reconstruct the bulk metric from the boundaryWightman
function of the scalar field atIþ. This is the main result of
this paper.
On a more practical issue, the “bottleneck” of the

holographic reconstruction is the classical component,
namely the causal propagator E: the holographic
reconstruction is as simple or as hard as the computability
of the causal propagator and its action on compactly
supported test function f. Furthermore, it also relies on
the hardness of computing the integral, which in turn
depends on the boundary smearing functions.
In this work we will restrict our attention computing

the bulk and boundary correlators for two simple exam-
ples that are transparent and manageable yet physically
relevant: (1) Minkowski space, and (2) the FRW universe
conformally related to Minkowski space. For Minkowski
space, we will show how the bulk metric can be
reconstructed from its boundary explicitly, since there
is an exact closed-form expression for the bulk/boundary
correlator.15 For the FRW case, we will content ourselves
with showing that the bulk-to-boundary reconstruction
works by showing that the boundary and bulk correlators
agree since the remaining obstruction is merely numerical
in nature.

A. Example 1: Minkowski spacetime

For the metric reconstruction, it is useful to first give the
Penrose diagram as shown in Fig. 1. Because of spherical
symmetry, we can consider the holographic reconstruction

13We can take f, g to be Gaussian as an approximation since
the tails quickly become negligible and are effectively compactly
supported and δ measures the width of the Gaussian. This allows
for more controlled calculations in what follows.

14In the standard language of asymptotic symmetries literature,
ψf constitutes boundary data for the bulk scalar field theory [44].

15This is a much harder task than recovering the bulk metric
from its bulk unsmeared correlator, as done in [13,18], which can
be done quite easily, as we will see later. The problem is that the
unsmeared boundary correlator is “universal” (see Sec. V).

ERICKSON TJOA and FINNIAN GRAY PHYS. REV. D 106, 025021 (2022)

025021-10



to work if we can reconstruct the bulk Wightman function
for three types of pairs of events: one for timelike pairs, one
for null pairs, and one for spacelike pairs. For convenience,
let us fix the following four points in Bondi coordinates
ðt; r; xAÞ, setting xA ¼ 0 by spherical symmetry:

O ¼ ð0; 0; 0; 0Þ; A ¼ ðα; 0; 0; 0Þ;
B ¼ ð0; α; 0; 0Þ; C ¼ ð−α; 0; 0; 0Þ: ð59Þ

Without loss of generality we can consider the timelike pair
to be OA, the spacelike pair to be OB, and the null pair to
be BC (essentially due to translational and rotational
invariance).
For simplicity, let us consider four distinct spacetime

smearing functions,

fj ≡ fjðxÞ ¼ χ

�
t − tj
Tj

�
δ3ðx − xjÞ; ð60Þ

where χðτÞ is chosen to be a smooth function with a peak
centered at τ ¼ 0, j ¼ O;A;B;C labels the points in the
bulk geometry for which fj is localized, and Tj labels the
characteristic timescale of interaction. Thus the spacetime
smearing fj is very localized in space and slightly smeared

in time. For concrete calculations, let us fix the switching
function to be a normalized Gaussian, so that16

χjðtÞ ≔ χ

�
t − tj
Tj

�
¼ 1ffiffiffiffiffiffiffiffi

πT2
j

q e−ðt−tjÞ
2=T2

j ; ð61Þ

and for simplicity we set Tj ¼ T for all j. For the time
being we set λ ¼ 1. In flat space, this choice enables us to
compute the smeared Wightman function in closed form:

Wðfi;fjÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

128π3T2
p

jΔxijj
e−

jΔxij j2þðΔtijÞ2
T2

×
�
e
ðjΔxij jþΔtijÞ2

2T2

�
erfi

�jΔxijj−Δtijffiffiffi
2

p
T

�
þ i

�

þe
ðjΔxij j−ΔtijÞ2

2T2

�
erfi

�jΔxijjþΔtijffiffiffi
2

p
T

�
− i

��
; ð62Þ

where Δtij ¼ tj − ti and Δxij ¼ jxj − xij.
To calculate the boundary Wightman function, we need

the causal propagator. The causal propagator in flat space is
given by

Eðx; yÞ ¼ δðΔtþ jΔxjÞ − δðΔt − jΔxjÞ
4πjΔxj ; ð63Þ

where Δt ¼ t − t0 and Δx ¼ jx − yj. Using the modified
null coordinates (65), we get

EfjðxÞ ¼
Z

d4yEðx; yÞfjðyÞ

¼
χ
�
t−tjþjx−xjj

T

	
− χ

�
t−tj−jx−xjj

T

	
4πjx − xjj

: ð64Þ

We can introduce “modified null variables” uj, vj
defined by

uj ≔ t − tj − jx − xjj;
vj ≔ t − tj þ jx − xjj; ð65Þ

so that Efj takes the simple form

EfjðxÞ ¼
1

4πjx − xjj
�
χ

�
vj
T

�
− χ

�
uj
T

��
: ð66Þ

The boundary data associated with Efj, denoted by φj,
is the projection of Efj to Iþ via the projection map Γ.

FIG. 1. Penrose diagram for the bulk-to-boundary
reconstruction in Minkowski space.

16Note that the Gaussian switching renders suppðfjÞ ∉
C∞
0 ðMÞ; given any open neighborhood Oj of Σtj we can always

choose T small enough so that suppðfjÞ centered at t ¼ tj and
x ¼ xj is for all practical purposes compactly supported in Oj.
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This is done by taking the limit r ¼ jxj → ∞ while fixing
u ¼ t − r constant (or v ¼ tþ r → ∞ while fixing u
constant in double-null coordinates), so that

ΓEf ¼ lim
r→∞

Ω−1Ef; Ω ¼ 1

r
: ð67Þ

In this limit, the modified null variables become

uj → u − ðtj − jxjj cos θjÞ;
vj → v − ðtj þ jxjj cos θjÞ; ð68Þ

where θj is the angle between x and xj.
The modest holography amounts to the claim that

WI ðφi;φjÞ for Gaussian smearing is also given by
Eq. (62). Let us see how this works concretely using
examples. For brevity we will compute just one timelike
pair and one spacelike pair explicitly, and one can check
that it will work in general.

1. Timelike pair OA

For point O, we have sO ¼ 0 and xO ¼ 0, and hence

EfO ¼ 1

4πr

�
χ

�
v
T

�
− χ

�
u
T

��
: ð69Þ

It follows that the boundary data are

φO ¼ −
1

4π
χ

�
u
T

�
: ð70Þ

For point A, we have

EfA ¼ 1

4πr

�
χ

�
v − α

T

�
− χ

�
u − α

T

��
: ð71Þ

The boundary data associated with EfO read

φA ¼ −
1

4π
χðu − αÞ: ð72Þ

Using Eq. (50) with boundary smearing function φO, φA,
we get

WI ðφO;φAÞ ¼ −
1

4π2
lim
ϵ→0þ

Z
du du0

χðuTÞχðu
0−α
T Þ

ðu − u0 − iϵÞ2
¼ WðfO; fAÞ: ð73Þ

The second equality follows from the fact that the bulk
unsmeared Wightman function in flat space reads

Wðx; yÞ ¼ −
1

4π2
1

ðt − t0 − iϵÞ2 − jx − yj2 ; ð74Þ

and thus the integral is (up to change of variable u → t)
exactly the bulk smeared Wightman function in Eq. (62).

2. Case 2: Spacelike pair OB

For point B, we have tB ¼ 0 and xB ¼ ðα; 0; 0Þ, and near
Iþ the modified null variables are

uj ¼ uþ α cos θB; vj ¼ v − α cos θB: ð75Þ

The boundary data are

φB ¼ −
1

4π
χ

�
uþ α cos θB

T

�
: ð76Þ

The boundary Wightman function therefore reads

WI ðφO;φBÞ ¼ −
1

8π2
lim
ϵ→0þ

Z
π

0

dθB sin θB

×
Z

du du0
χðuTÞχðu

0þα cos θB
T Þ

ðu − u0 − iϵÞ2 : ð77Þ

Using a change of variable ũ0 ¼ u0 þ α cos θB and integrat-
ing over θB first, we can rewrite this into a suggestive form

WI ðφO;φBÞ ¼ −
1

4π2
lim
ϵ→0þ

Z
du du0χðuTÞχðu

0
TÞ

ðu − u0 − iϵÞ2 − jαj2 : ð78Þ

Let us first check this numerically (since in the FRW case
we have to do this), as shown in Fig. 2. Note that since the
spacetime smearing is real and O is spacelike separated
from B, hence Im½WðfO; fBÞ� ¼ 0. Thus for a spacelike
pair of points we do get

WI ðφO;φBÞ ¼ WðfO; fBÞ: ð79Þ

We could obtain the exact expression using the fact that
Eq. (78) has exactly the same expression as the smeared

2 4 6 8 10

0.02

0.04

0.06

0.08

FIG. 2. Real part of WðfO; fBÞ as a function of α=T, where
α ¼ jxO − xBj. The imaginary part vanishes since OB are space-
like separated.
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bulk Wightman function WðfO; fBÞ if we replace t → u
and jx − yj2 ¼ jαj2 in Eq. (74).
Let us also remark that the form in Eq. (78) is highly

suggestive, since the same expression in Eq. (78) can be
obtained by considering the final joint state of two Unruh-
DeWitt qubit detectors interacting with a massless scalar
field at proper separation α for a small/zero detector energy
gap (the “LAB” term in the joint detector density matrix; see,
e.g., Refs. [47,48]). Therefore these boundary correlators are
in principle measurable by asymptotic observers who carry
quantum-mechanical detectors. This is to be contrasted with
the calculations done in, for instance, Ref. [49], since it is not
obvious how the correlators of the Bondi news tensor and
Bondi mass can be measured in practice.

3. Bulk reconstruction using smeared
Wightman functions

It remains to show how to reconstruct the metric in
the bulk. We will content ourselves with reconstructing
gtt ¼ −1 and gjj ¼ 1 at the origin x ¼ O since we have
translational invariance.
Because of modest holography, we have just seen

that the bulk correlator Wðf; gÞ (62) is also the expression
for boundary correlator WI ðψf;ψgÞ. Therefore our
task is to simply reconstruct the metric using (58).
Through this prescription, the approximate expression
for the metric component (denoted gδ;Tμν ) at finite T and δ
are given by

gδ;Ttt ðOÞ ≔
T2

�
2

ffiffiffi
2

p
Te

δ2

T2F
�

δffiffi
2

p
T

	
− πδ

h
1þ erfi

�
δffiffi
2

p
T

	
2
i	

2δTe
δ2

T2

h
T − 2

ffiffiffi
2

p
δF

�
δffiffi
2

p
T

	i
þ πδ3

h
1þ erfi

�
δffiffi
2

p
T

	
2
i ; gδ;Tjj ðOÞ ≔ Tffiffiffi

2
p

δF ð δffiffi
2

p
T
Þ −

T2

δ2
; ð80Þ

where F ðzÞ is the Dawson function and erfiðzÞ ¼ −ierfðizÞ
is defined from erfðzÞ, the error function. Now, keeping
δ > 0 fixed but small for the finite difference scheme, we
have in the limit T → 0þ

lim
T→0þ

gδ;Ttt ðOÞ ¼ −1; lim
T→0þ

gδ;Tjj ðOÞ ¼ 1; ð81Þ

hence we recover the nontrivial component of the
Minkowski metric. It is important to note that the limits
do not commute: we cannot, for instance, rescale Δ ≔ δ=T
and takeΔ → 0. We need to keep δ finite or at least going to
zero slower than T.
Note that if we start from the unsmeared bulkWightman

function, we can easily reconstruct the metric according
to [13,14] because of the argument at the beginning of
Sec. IV using the Hadamard form of the unsmeared
Wightman function (52). For example, using the
Wightman function (74), it is straightforward to see that

WMðx; x0Þ−1 ¼ −4π2ððt − t0Þ2 − ðx − x0Þ2Þ; ð82Þ

and hence by taking derivatives with respect to x and x0 and
dividing both sides by −8π2 we simply get gtt ¼ −1 and
gjj ¼ 1 and gμν ¼ 0 when μ ≠ ν. However, for the boun-
dary correlator, we cannot quite do this because there is no
“unsmeared” version that is in the Hadamard form. We saw
earlier in the calculation leading to Eq. (78) that for the
spacelike pairs the boundary correlator WI ðφO;φBÞ may
involve an additional angular integral inside the boundary
smearing functions after propagating the bulk smearing
functions fO; fB to Iþ. This reflects the universal nature
of Iþ.

To summarize, our modest holographic reconstruction
relies on two steps: (1) the bulk-to-boundary correspon-
dence between the bulk and boundary correlators; (2) recon-
structing the metric using the smeared boundary correlator.
For Minkowski space, Step (2) can be done exactly,
which is given in Eq. (80). In the next example for
FRW spacetimes, Step (2) will be numerically difficult
to compute, so we will content ourselves with making sure
Step 1 is achieved and Step (2) follows in analogous
fashion as Minkowski space using prescription (58).

B. Example 2: FRW spacetime

The FRW universe with a flat spatial section is given by
the line element

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ; ð83Þ

where aðtÞ is the scale factor and the spatial section is
written in spherical coordinates. It is convenient to recast
this metric into the conformally flat form by using
conformal time η ¼ R

t dt0=aðt0Þ, so that the metric reads

ds2 ¼ aðηÞ2ð−dη2 þ dx2 þ dy2 þ dz2Þ: ð84Þ

Here we have used the Cartesian coordinates for the spatial
section which is convenient when computing theWightman
function. We will use the spherical coordinates when we
calculate the projection to the null boundary.
The bulk Wightman function is conformally related to

the Minkowski one by the relation [41]

WFRWðx; yÞ ¼ a−1ðηxÞWMðx; yÞa−1ðηyÞ; ð85Þ
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where aðηxÞ is the scale factor evaluated at point x. It
follows that the unsmeared Wightman function reads

WFRWðx; yÞ ¼ −
1

4π2
aðηxÞ−1aðηyÞ−1

ðΔη − iϵÞ2 − jΔxj2 ; ð86Þ

where Δη ¼ ηx − ηy and Δx ¼ x − y. In what follows we
will drop the subscript FRW to remove clutter.
If we regard the spacetime smearing as being associated

with observers prescribing the interaction in comoving
time t, then we can consider similar pointlike function

fjðxÞ ¼ χ

�
tðηÞ − tj

T

�
δ3ðx − xjÞ; ð87Þ

where now tðηÞ is written as a function of conformal time.
The bulk smeared Wightman function is thus given by

Wðfi; fjÞ

¼ −
1

4π2
lim
ϵ→0

Z
dηdη0

aðηÞ−3aðη0Þ−3
χðtðηÞ − tiÞχðtðη0Þ − tjÞ
ðη − η0 − iϵÞ2 − jΔxijj2

:

ð88Þ
As before, we need the causal propagator to find the
boundary correlator. The causal propagator is obtained
using the Weyl rescaling in Eq. (85), so that it reads

Eðx; x0Þ ¼ δðΔηþ jΔxjÞ − δðΔη − jΔxjÞ
4πaðηÞaðη0ÞjΔxj : ð89Þ

We can then define a set of modified null coordinates

Uj ¼ η − jx − xjj;
Vj ¼ ηþ jx − xjj: ð90Þ

It follows that

EfjðxÞ ¼
Z

d4y
ffiffiffiffiffiffi
−g

p
Eðx; yÞfjðyÞ

¼
aðVjÞ3χ

�
tðVjÞ−tj

T

	
− aðUjÞ3χ

�
tðUjÞ−tj

T

	
4πaðηÞjx − xjj

: ð91Þ

The boundary data associated with Efj, denoted by φj, are
the projection of Efj to Iþ via the projection map Γ. In
this limit, the modified null variables become

Uj → uj ≔ uþ jxjj cos θj;
Vj → vj ≔ v − jxjj cos θj; ð92Þ

where θj is the angle between x and xj. More concretely,
the projection map amounts to rescaling by Ω−1 ¼ raðηÞ,
taking r ¼ jxj → ∞ and keeping u ¼ η − r fixed, i.e.,

ΓEf ¼ lim
Iþ

raðηÞEf: ð93Þ

From this we get

φjðu; xAÞ ¼ −
aðujÞ3
4π

χ

�
tðujÞ − tj

T

�
: ð94Þ

To make explicit calculations, we need to use a concrete
scale factor. For our purposes, we are interested in
physically relevant scale factor aðtÞ associated with perfect
fluid stress-energy tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð95Þ
where uμ is the four-velocity of the fluid and ρ and p are the
energy density and pressure (as a function of only the
comoving/conformal time). The fluid is assumed to obey
the barotropic equation of state p ¼ ðγ − 1Þρ, where
0 ≤ γ ≤ 2. The conservation law ∇μTμν ¼ 0 implies that
the evolution of ρ, p is constrained to obey

_ρ

ρþ p
¼ −3

_a
a
: ð96Þ

This implies, in particular, that

ρ ¼ ρ0
a3γ

; ð97Þ

where ρ0 is some constant. For a dust-filled universe, we
have γ ¼ 1 so ρ ∝ a−3, and for radiation-filled universe, we
have γ ¼ 4=3 so ρ ∝ a−4. The value γ ¼ 0 corresponds to
the de Sitter universe with cosmological constant Λ > 0 by
setting Λ ¼ ρ0 (see Ref. [50] for more details on FRW
geometry).
Under the above assumptions of the matter content in the

bulk geometry, the corresponding scale factors for these
two classes of FRW spacetimes are given by

aγðηÞ ¼ ðHηÞ 2
3γ−2; adSðηÞ ¼ � 1

Hη
; ð98Þ

whereH > 0 is a constant with a dimension of inverse time.
The Penrose diagram for the respective classes of FRW
geometries are shown in Fig. 3. For concreteness, we will
restrict our attention to (a) radiation-filled universe
γ ¼ 4=3 with aðηÞ ¼ Hη and η > 0; (b) contracting de
Sitter universe with aðηÞ ¼ 1=ðHηÞ and η > 0. The reason
we include the de Sitter universe is to highlight one nontrivial
aspect of this construction: that is, even if the spacetime is
asymptotically de Sitter andIþ is spacelike, the cosmologi-
cal horizonH cosmo shares analogous features

17 as future null
infinity Iþ for asymptotically flat spacetimes [2].
As before, because of spherical symmetry we only need to

attempt the reconstruction of the bulkWightman function for

17It is important to note that the symmetry group of the horizon
is distinct from the BMS group but a careful treatment [2] shows
that the cosmological horizon’s algebraic state ωH cosmo

is invariant
under exactly these transformations.
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three types of pairs of events, which we label by the same
points O, A, B, and C. In the conformal coordinates
ðη; r; xAÞ, we set xA ¼ 0 by spherical symmetry.

1. Timelike pairs OA

Let us take O ¼ ðηðtOÞ; 0; 0; 0Þ and A ¼ ðηðtAÞ; 0; 0; 0Þ,
where tO and tA are some positive constants. From Eq. (94),
we have

φOðu; xAÞ ¼ −
aðuÞ3
4π

χ

�
tðuÞ − tO

T

�
; ð99Þ

φAðu; xAÞ ¼ −
aðuÞ3
4π

χ

�
tðuÞ − tA

T

�
; ð100Þ

and we define α ¼ tA − tO. For radiation and de Sitter scale
factors, the comoving time t is given in terms of conformal
time by

tradðηÞ ¼
Hη2

2
; η > 0; ð101aÞ

tdSðηÞ ¼ H−1 logðHηÞ; η > 0: ð101bÞ

Now we can compute the boundary correlator

WI ðφO;φAÞ ¼ −
1

4π2
lim
ϵ→0þ

Z
du du0 aðuÞ3aðu0Þ3

×
χ
�
tðuÞ
T

	
χ
�
tðu0Þ−α

T

	
ðu − u0 − iϵÞ2 : ð102Þ

The results are shown in Fig. 4 for both the radiation-
dominated universe and the de Sitter contracting universe.
We see that they clearly agree. However, observe that
χðtðuÞ=TÞ is not Gaussian and the supports of φj can be
quite different. For example, in the de Sitter contracting
universe case φj is a smooth function with support only on
the positive real axis, i.e., suppðψ jÞ ⊂ ð0;∞Þ. The take-
away is that different bulk geometries are accounted for by
different “boundary data” at the conformal boundary, in this
case either Iþ or H cosmo.

2. Spacelike pairs OB

Let us take O ¼ ðηðtOÞ; 0; 0; 0Þ, B ¼ ðηðtOÞ; α; 0; 0Þ,
where tO is some fixed constant chosen so that O and B
are on the same time slice and tA ¼ α > 0. From Eq. (94),
we have

φBðu; xAÞ ¼ −
aðuþ α cos θÞ3

4π
χ

�
tðuÞ
T

�
: ð103Þ

This time we have an angular integral, so the boundary
correlator reads

WI ðφO;φBÞ

¼ −
1

8π2
lim
ϵ→0þ

Z
du du0

Z
sin θdθ aðuÞ3aðu0 þ α cos θÞ3

×
χ
�
tðuÞ
T

	
χ
�
tðu0þα cos θÞ

T

	
ðu − u0 − iϵÞ2 : ð104Þ

By change of variable ũ0 ¼ u0 þ α cos θ and integrating
over θ, the boundary correlator can be simplified into

FIG. 3. Penrose diagram for the bulk-to-boundary reconstruction in FRW spacetime. Left: spatially flat FRW geometry with zero
cosmological constant and dust/radiation matter content. Right: spatially flat FRW geometry with positive cosmological constant
describing big crunch (left red patch) or big bang (right green patch). Both the past/future conformal infinity or initial/final singularity
I� are spacelike, and H cosmo is the past/future cosmological horizon.
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WI ðφO;φBÞ

¼ −
1

4π2
lim
ϵ→0þ

Z
du du0

aðuÞ3aðu0Þ3χ
�
tðuÞ
T

	
χ
�
tðu0Þ
T

	
ðu − u0 − iϵÞ2 − jαj2

¼ WðfO; fBÞ: ð105Þ

The second equality is obtained simply by comparing with
the bulk Wightman function expression, since ΔxOB ¼ α.
The results are shown in Fig. 5.

3. Holographic reconstruction of the bulk FRW
spacetimes

We have shown that the bulk-to-boundary correspon-
dence of the correlators work as well in FRW spacetimes.
The scheme works for the asymptotically flat radiation-
dominated universe where the “conformal boundary” is
future null infinityIþ as expected. A nice bonus is that, as
shown in [2], the same construction ought to work as well
for the de Sitter contracting universe. However, in this case
the bulk-to-boundary correspondence is not between the
bulk and the conformal boundaryIþ (which is spacelike),
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FIG. 5. Real part ofWðfO; fBÞ ¼ WI ðφO;φBÞ in FRW spacetimes (imaginary part vanishes). We pickHT ¼ 0.2, and we plot against
α ¼ jxO − xBj=T. Left: radiation-dominated universe. Right: de Sitter contracting universe.
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FIG. 4. Real and imaginary parts of WðfO; fAÞ ¼ WI ðφO;φAÞ in FRW spacetime. We pick HT ¼ 0.2, and we plot against
α ¼ ðtO − tAÞ=T. Top row: radiation-dominated universe with aðηÞ ¼ Hη and η > 0. Bottom row: de Sitter contracting universe with
aðηÞ ¼ ðHηÞ−1 and η > 0.
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but rather with the cosmological horizon H cosmo
(cf. Fig. 3). Hence for de Sitter cosmological spacetime
it is perhaps a misnomer to call it bulk-to-boundary
correspondence. However, since the cosmological horizon
is also a codimension-1 null hypersurface, we still have
holographic reconstruction of bulk geometry from “boun-
dary data.”
In principle, the metric can be reconstructed analogous to

the procedure outlined for Minkowski space using Eq. (58),
but because the boundary Wightman function does not
admit a simple closed-form expression, it is difficult to
perform this calculation numerically since we need T, δ to
be very small. However, it is worth noting that there is
something universal about the boundary correlator: take,
for instance, the case when the two points are spacelike in
Eq. (105) which we reproduce for convenience:

WI ðφO;φBÞ

¼ −
1

4π2
lim
ϵ→0þ

Z
du du0

aðuÞ3aðu0Þ3χ
�
tðuÞ
T

	
χ
�
tðu0Þ
T

	
ðu − u0 − iϵÞ2 − jαj2 :

This integral differs from the one in Minkowski space
[cf. Eq. (78)] only in the choice of boundary smearing
functions and the physical meaning of jαj: in Minkowski
space, it amounts to setting aðuÞ ¼ 1 and tðuÞ ¼ u.
Therefore, information of the bulk geometry is encoded
in the boundary data (smearing) that enters into this
“universal integral” over u, u0 and angular variable xA.
The fact that the boundary smearing functions contain

information about the geometry cannot be understated. In
particular, one cannot “cheat” by trying to reconstruct the
bulk metric from the unsmeared bulk correlator. If we use
the unsmeared bulk correlator (86), we can check that

lim
x0→x

∂μ∂ν0Wðx; x0Þ−1 ¼

8>><
>>:

þ8π2aðηÞ2 μ ¼ ν0 ¼ 0

−8π2aðηÞ2 μ ¼ ν0 ¼ j

0 otherwise

ð106Þ

so that, indeed, the metric components are gμνðxÞ ¼ ∓aðηÞ
for μ ¼ ν ¼ 0 and μ ¼ ν ¼ j, respectively (and zero
otherwise). This works because of the Hadamard form
of the (unsmeared) Wightman function (52). We cannot
quite do this literally for the boundary correlator because
the “unsmeared” part is universal: as we will see in the next
section, it has the structure of

WI ðu; u0; xA; yAÞ ∼ −
1

π

δS2ðxA − yAÞ
ðu − u0 − iϵÞ2 ; ð107Þ

where δS2ðxA − yAÞ is the Dirac delta distribution on two-
sphere. This universality is a manifestation of the univer-
sality of Iþ (or H cosmo for the de Sitter case).

V. ASYMPTOTIC EXPANSION OF THE
FIELD OPERATOR

We should mention that the projection Γ acting on the
space of solutions SolRðMÞ could also be viewed at the
level of canonical quantization. This is what is typically
done in the “infrared triangle” program [44,51,52], where
the idea is to perform asymptotic large-r expansion of the
field operator and keep only the leading term. This way of
thinking is highly intuitive because it does not require us to

think of unphysical spacetime fM, and it compels us to
think of scalar QFT at Iþ to be an approximation of
“faraway observers.” The price to pay is that the holo-
graphic nature of the QFT degrees of freedom is not
obvious because Iþ is not strictly speaking part of the
description by faraway observers (since they travel on
timelike curves).
Let us now show how the two methods are related, using

the Minkowski space example as a reference, and connect
the holographic nature of the QFT to asymptotic observers.
This connection implies that QFT atIþ can and should be
accessible to physical asymptotic (large-r) observers.
First, for Minkowski spacetime the canonical quantiza-

tion gives the “unsmeared” field operator

ϕ̂ðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3jkj

p âke−ijkjtþik·x þ H:c: ð108Þ

It is useful to write this in the Bondi chart x ¼ ðu; r; xAÞ.
Using the fact that the metric in Bondi coordinates is
given by

ds2 ¼ −du2 − 2dudrþ r2dΩ2; ð109Þ

we have kμxμ ¼ −ωu − ωrð1 − k̂ · r̂Þ, where ω ¼ jkj,
k̂ ¼ k=jkj and r̂ ¼ r=jrj are unit vectors. We can then write
k̂ · r̂ ¼ cos θ for some angle θ and d3k ¼ ω2dωdγS2 . The
field operator now reads

ϕ̂ðu; r; xAÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p Z
∞

0

ω
3
2dω

×
Z

dγS2 âke
−ijkju−iωrð1−cos θÞ þ H:c: ð110Þ

Now we take the large-r limit. The stationary phase
approximation says that for any function fðkÞ we have

Z
dγS2fðkÞe�ijkjrð1−k̂·r̂Þ ∼� 2πi

jkjr fðjkjr̂Þ þOðrÞ: ð111Þ

This implies that at leading order in r the field operator is
dominated by
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ϕ̂ðu;r;xAÞ∼−
i

2r
ffiffiffi
π

p
Z

∞

0

ω
1
2dω½âωr̂e−iωu− â†ωr̂e

iωu�: ð112Þ

The boundary data (unsmeared) operator is then defined
to be

φ̂ðu; xAÞ ≔ lim
r→∞

rϕ̂ðu; r; xAÞ; ð113Þ

and the creation operators satisfy the following commuta-
tion relation:

½âωr̂; â†ω0 r̂0 � ¼
δðω − ω0Þ

ω2
δS2ðr̂ − r̂0Þ: ð114Þ

Let us now compute the (unsmeared) Wightman two-
point function at Iþ with respect to the vacuum state.18

One important subtlety arises here—from dimensional
analysis and scaling arguments it can be seen that the
ordinary Wightman function, h0I jφ̂ðu; xAÞφ̂ðu0; yAÞj0I i,
is logarithmically divergent at Iþ. Thus, instead, we
compute the two-point correlators of its conjugate momen-
tum ∂uφ̂:

WI ðu;xA;u0;yAÞ
¼ h0I j∂uφ̂ðu;xAÞ∂uφ̂ðu0; yAÞj0I i

¼
Z

dωdω0

4π
dγS2 dγ

0
S2ðωω0Þ3=2e−iωu−iω0u0 h0I jâωr̂â†ω0 r̂0 j0I i

¼ 1

4π

Z
ωdωdγS2dγ

0
S2e

−iωðu−u0ÞδS2ðr̂− r̂0Þ

¼−
1

4π
lim
ϵ→0

1

ðu−u0 − iϵÞ2
Z

dγS2dγ
0
S2δS2ðr̂− r̂0Þ: ð115Þ

Now if we integrate this over smearing functions Ψ1, Ψ2

at Iþ, we get

WI ðΨ1;Ψ2Þ¼−
1

4π
lim
ϵ→0

Z
dudu0dγS2

Ψ1ðu;xAÞΨ2ðu0;xAÞ
ðu−u0− iϵÞ2 ;

ð116Þ

where we use capital Greek letter Ψ to distinguish it from
the boundary smearing function ψ ∈ SolRðIþÞ in the
AQFT approach.
Observe that Eq. (116) appears to be off by a factor

of 1=4 compared to Eq. (46) obtained using the algebraic
method. This discrepancy arises because the algebraic
approach calculates this two-point function somewhat
differently. To see this, note that for ψ ∈ SolRðIþÞ the
smeared boundary field operator φ̂ðψÞ is related to the
unsmeared one via symplectic smearing; i.e., we want to
define φ̂ðψÞ“ ≔ ”σI ðψ ; φ̂Þ. However, by using integration
by parts on Eq. (37), we get

σI ðψ ; φ̂Þ ¼ 2

Z
Iþ

du dγS2ψðu; xAÞ∂uφ̂ðu; xAÞ

≡ 2

Z
Iþ

du dγS2ψðu; xAÞΠ̂ðu; xAÞ

≕ 2Π̂ðψÞ; ð117Þ

where Π̂ðu; xAÞ ¼ ∂uφ̂ðu; xAÞ is the (unsmeared) conjugate
momentum to φ̂ðu; xAÞ. Hence the unsmeared boundary
field operator φ̂ðψÞ should be interpreted as the smeared
conjugate momentum operator ∂uφ̂, not the smeared
boundary field operator φ̂ itself. Note that in null surface
quantization, the operator Π is not independent of φ̂ [53],
unlike in the bulk scalar theory.
The holographic reconstruction works by fixing

f ∈ C∞
0 ðMÞ; propagate it to Iþ by taking

ψfðu; xAÞ ≔ lim
r→∞

ðΩ−1EfÞðu; r; xAÞ ð118Þ

and calculating

WI ðψf;ψgÞ ¼ −
1

π
lim
ϵ→0

Z
dγS2du du

0 ψfðu; xAÞψgðu0; xAÞ
ðu − u0 − iϵÞ2 :

ð119Þ

Since Eq. (116) is based on the interpretation of smeared
conjugate momentum operator

Π̂ðΨÞ ¼
Z
Iþ

du dγS2 Ψðu; xAÞ∂uφ̂ðu; xAÞ; ð120Þ

this means that ψf that appears directly in Eq. (46) is
related to symplectic smearing ψ in φ̂ðψÞ and “momentum
smearing” Ψ in Π̂ðΨÞ by

ψf ¼ ψ ¼ Ψ
2
∈ SolRðIþÞ: ð121Þ

The key takeaway is that the smeared Wightman two-point
functions computed using the algebraic approach and
large-r expansion of the bulk (unsmeared) field operator
only differ by a normalization.

VI. DISCUSSION AND OUTLOOK

In this work, we have shown that one can directly
reconstruct the bulk geometry of asymptotically flat space-
times from the boundary correlators atIþ. This makes use
of two previously unconnected results: augmenting the
bulk-to-boundary correspondence developed in the AQFT
community [1–4] with the recent metric reconstruction
method using scalar correlators based on [13,14]. The
version that is more relevant for us is the scheme used in
[18] is more appropriate due to the more direct use of
Wightman two-point functions. This makes explicit use of

18This vector state j0I i is obtained from the BMS4-invariant
algebraic state ωI via the GNS representation theorem.
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the uniqueness and Hadamard nature of the boundary field
state and importantly is relevant for asymptotic observers.
The idea is that while no physical observers can follow
null geodesics exactly on Iþ, we can perform a large-r
expansion of bulk the field operator. The asymptotic
observers near Iþ will thus find that the bulk correlation
function WMðf; gÞ very close to Iþ is at leading order
given exactly by WI ðψf;ψgÞ.
We perform our calculations for relatively simple exam-

ples, namely both Minkowski and FRW spacetimes, where
we can show concretely how the boundary smeared
correlators have a universal structure (reflecting the uni-
versal structure of Iþ) and much of the geometric
information is encoded in the boundary smearing functions,
i.e., boundary data. Furthermore, the calculations are
explicit enough for us to see that the boundary correlators
can be expressed in the language of Unruh-DeWitt (UDW)
detectors used in RQI.
That is, for asymptotic observers who carry qubit UDW

detectors interacting with a massless scalar field, the
expressions for the boundary correlators naturally appear
in the final density matrix of the detectors (see, e.g.,
Refs. [47,48]). In terms of detectors, the differences
between Minkowski and FRW scenarios manifest as differ-
ent “switching functions” (i.e., different interaction pro-
files). Therefore, the holographic reconstruction can be
properly expressed in operational language using tools
from RQI, since the correlators can, indeed, be extracted
directly via quantum state tomography, without assuming
that any correlators are simply “measurable.”
There are several future directions now to explore within

this framework. First, concretely understanding the projec-
tion map Γ in generic spacetimes seems difficult, since one
needs to have a very good handle on causal propagators
Eðx; x0Þ. However, by making use of Bondi coordinates
[e.g., Eq. (B10)] one may be able to systematically construct
the asymptotic expansion of the causal propagator and see
the radiative data of the gravitational field directly in the
boundary correlators for asymptotic observers.
For example, one may wonder if boundary correlators

may have imprints that can be used to infer the existence of
gravitational (shock) waves [54,55], since the bulk corre-
lators know about the background shock wave (see, e.g.,
Ref. [56]). On the other hand, recently complex calcula-
tions of bulk correlators have become possible for
Schwarzschild spacetimes and even the interior of Kerr
spacetime (see, e.g., Refs. [57,58]). Modest holography
suggests that near-horizon and near-I correlators [3] can
perhaps aid in these fronts, in which case one can then
reconstruct the black hole geometry from near-horizon and
asymptotic correlators.
Second, a natural extension of this construction is to see

whether the result generalizes to massive fields and spinors,
as well as higher dimensions. The main subtlety here is that
for massive fields null infinity is not the correct boundary

data to consider, and instead one would choose another
“slicing,” such as hyperboloid slicing that can resolve the
field behavior at timelike infinity iþ [37]. Furthermore,
even in flat space, in higher even-dimensional cases the
causal propagator contains higher distributional derivatives,
while in odd-dimensional cases strong Huygens’ principle
is violated (see, e.g., Ref. [48]) despite being conformally
coupled. Different spins also have different scaling behav-
ior for Hadamard states [59]. It would be interesting to see
how the boundary reconstruction works out explicitly.
Last but not least, although we have made use only of the

properties of ordinary free QFT in curved spacetime, these
ideas should in principle carry over to the asymptotic
quantization of gravity [43,60,61] and provide a new
direction to explore the key differences arising from the
nature of the gravitational field (see, for instance, [62–64]).
We leave these lines of investigations for the future.
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APPENDIX A: SYMPLECTIC SMEARING

Here we reproduce, for completeness, a few results
(from, e.g., [30], Lemma 3.2.1) on the symplectic smearing
(7) and the causal propagator. First, we have the claim
that (7) is equivalent to (5), i.e.,

ϕ̂ðfÞ ≔ σðEf; ϕ̂Þ ¼
Z

dV fðxÞϕ̂ðxÞ: ðA1Þ

To see this, we can consider more generally the differential
operator P ¼ ∇a∇a þ V1, where V ∈ C∞ðMÞ and the
Klein-Gordon operator is when V ¼ −m2 − ξR. Note that
since fðxÞ is compactly supported and sinceM is globally
hyperbolic M ≅ R × Σt, there are t1; t2 ∈ R such that
f ¼ 0 for t ∉ ½t1; t2�. Moreover, by definition of advanced
propagator P ∘E−f ¼ f, so for any ϕ ∈ SolRðMÞ so that
Pϕ ¼ 0, we have
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ϕðfÞ ¼
Z

dV ϕðxÞfðxÞ

¼
Z
t∈½t1;t2�

dV ϕðxÞðP ∘E−fÞðxÞ

¼
Z
t∈½t1;t2�

dV ½ϕ∇a∇aðE−fÞ þ ϕVE−f�: ðA2Þ

Now we need to do integration by parts. We will do this
really carefully since the minus sign is a cause of confusion.
We first write dV ¼ ffiffiffiffiffiffi−gp

dt d3x where t is the coordinate

time associated with the foliation of M, and we let dΣ ¼ffiffiffi
h

p
d3x be the induced three-volume element on the space-

like surfaces Σt. Then we have

ϕðfÞ ¼
Z
t¼t2

dΣð−taÞ½ϕ∇aðE−fÞ − ðE−fÞ∇aϕ�

−
Z
t¼t1

dΣð−taÞ½ϕ∇aðE−fÞ − ðE−fÞ∇aϕ�

¼
Z
t¼t1

dΣð−taÞ½ðE−fÞ∇aϕ − ϕ∇aðE−fÞ�; ðA3Þ

where ta is the future-directed unit normal vector [i.e., ta ¼
∂t → ð1; 0; 0; 0Þ in the adapted coordinates]. The second
equality follows from the fact that the smeared advanced
propagator E−f and its derivatives vanish on Σt2 due
to suppðE−fÞ ⊆ J−ðsuppfÞ.
Using similar reasoning for the smeared retarded propa-

gator, we also have that Eþf and its derivatives vanish at t1,
so we are free to replace E− in the final equality of
Eq. (A3) with the causal propagator E ¼ E− − Eþ.
Finally, by writing the directed three-volume element as
dΣa ≔ −tadΣ, so that the volume element is past-directed
(see, e.g., Ref. [39]), and using the definition of symplectic
form (6), we get

ϕðfÞ ¼
Z
t¼t1

dΣa½ðEfÞ∇aϕ − ϕ∇aðEfÞ�

¼ σðEf;ϕÞ; ðA4Þ

as desired. Hence the symplectically smeared field operator
reads ϕ̂ðfÞ ¼ σðEf; ϕ̂Þ. Note that as an immediate conse-
quence of this calculation we have

σðEf;EgÞ ¼ Eðf; gÞ ðA5Þ

simply by setting ϕðxÞ ¼ ðEgÞðxÞ into Eq. (A4).
We close this section by commenting on some issues

regarding convention that can cause some confusion. In
general relativity, often the convention for a directed
volume element is one in which it is future directed: that
is, dΣ̃a ¼ tadΣ ¼ −dΣa. In this convention, one would

keep the ordering in Eq. (A3) and write the symplectic
smearing as

σðEf;ϕÞ ¼
Z
Σt1

dΣ̃a½ϕ∇aðEfÞ − ðEfÞ∇aϕ�: ðA6Þ

All we have done here is to absorb the minus sign into the
integration measure. This “freedom” is somewhat confus-
ing because in some cases, some authors may want to write
Eq. (A7) “without tilde”: in this case, the new symplectic
form reads

σ0ðϕ1;ϕ2Þ ¼
Z
Σt1

dΣa½ϕ2∇aϕ1 − ϕ1∇aϕ2�; ðA7Þ

which implies that σ0 ¼ −σ. In this case, by antisymmetry
we have σ0ðEg;EfÞ¼−σðEg;EfÞ¼Eðf;gÞ. The symplec-
tic smearing is also now defined to be ϕðfÞ¼−σ0ðEf;ϕÞ¼
σ0ðϕ;EfÞ. Crucially, those who adopt σ0 as the symplectic
form and claim that σ0ðE0f; E0gÞ ¼ E0ðf; gÞ, they will have
E0 ¼ −E, the retarded-minus-advanced propagator.
Whichever convention is used, one should be consistent,

and one easy way to check this is as follows:
(1) Set the spacetime to be Minkowski space and fix

whatever convention for E and σ.
(2) Pick two functions f and g and compute Ef; Eg,

Eðf; gÞ, and σðEf; EgÞ in the chosen convention.
(3) Using canonical quantization [48,65], compute

h½ϕ̂ðxÞ; ϕ̂ðyÞ�i ¼ −iðWðx; yÞ −Wðy; xÞÞ, where
Wðx; yÞ is the unsmeared Wightman function. The
standard definition is that h½ϕ̂ðxÞ; ϕ̂ðyÞ�i ¼ iGðx; x0Þ,
where Gðx; yÞ is the Pauli-Jordan distribution [41].

(4) Match the conventions and find the relationship
between σðEf; EgÞ; Eðf; gÞ, and Gðf; gÞ (smeared
Pauli-Jordan distribution).

In Minkowski space we can be very explicit by choosing
specific f and g (even “strongly supported” functions
such as Gaussians will work). Our convention gives
σðEf; EgÞ ¼ Eðf; gÞ ¼ Gðf; gÞ with ϕ̂ðfÞ ¼ σðEf; ϕ̂Þ.

APPENDIX B: BMS SYMMETRIES AT I +

Below we briefly review some basic concepts of BMS
symmetries at Iþ and its relationship as asymptotic
symmetries of the bulk spacetimeM. It will be convenient
(since we have run out of letters/symbols) to use the
notation C∞ðN Þ to be the space of smooth functions on
some manifold N , XðN Þ to be the set of vector fields
on N .

1. BMS group

Recalling the definitions in Sec. III, we see that there is
an inherent freedom in the definition of null infinity for an
asymptotically flat spacetime: namely, the freedom to
rescale the conformal factor Ω > 0 in a neighborhood of
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Iþ by another smooth positive factor λ > 0: Ω → λΩ.
Under such a transformation the triple ðIþ; h ≔ gjIþ ;
na ≔ ∇̃aΩÞ transforms as

ðIþ; h; nÞ → ðIþ; λ2h; λ−1nÞ: ðB1Þ

Thus null infinity is really the set of equivalence classes,
C ¼ ½ðIþ; h; nÞ�, of all such triples, and there is in general
no preferred choice or representative within a class.
Moreover, null infinity is universal in the sense that given
any two equivalence classes C1 and C2 with representatives
ðIþ

1 ; h1; n1Þ and ðIþ
2 ; h2; n2Þ, there is a diffeomorphism

γ∶Iþ
1 → Iþ

2 such that

ðIþ
2 ; h2; n2Þ ¼ ðγðIþ

1 Þ; γ�h1; γ�n1Þ: ðB2Þ

It is this freedom that allows one to transform to a Bondi
frame (33)

hB ≔ þ2dudΩþ γS2 ; ðB3Þ

where γS2 is the usual metric on the two-sphere (not to be
confused with the diffeomorphism γ) and as well u is the
affine parameter of the null generators na ≔ ∂u.
The diffeomorphisms γ which preserve the equivalence

classes of Iþ in the sense of (B2) comprise the Bondi-
Metzner-Sachs [25,26] group BMS4ðIþÞ. In other words,
for any γ ∈ BMS4ðIþÞ ⊂ DiffðIþÞ and any equivalence
class C with representative ðIþ; h; nÞ we have

ðγðIþÞ; γ�h; γ�nÞ ¼ ðIþ; λ2h; λ−1nÞ: ðB4Þ

Clearly (B4) is independent of the representations chosen.
Importantly this statement is equivalent to the following
[40]: Given a one-parameter family of diffeomorphisms γt
generated by a vector ξ̃ onIþ, ξ̃ can be smoothly extended
(not uniquely) to a vector field ξ in M (for some
neighborhood of Iþ) such that Ω2Lξg → 0 in the limit
to Iþ.
To see that this definition leads to a conformal rescaling

of the metric at Iþ, we note that

Ω2Lξgab ¼ Lξĝab − 2Ω−1ncξcĝab: ðB5Þ

Since the left-hand side and the first term on the right-hand
side are smooth in the limit to Iþ this implies αðξÞ ≔
Ω−1ncξc is also smooth. Therefore Ω2LξgjIþ ¼ 0 implies
that the conformal Killing equation

Lξĝab ¼ 2αðξÞĝab: ðB6Þ

This preserves the null condition nanbLξĝab ¼ OðΩ2Þ.
Moreover, if we fix a Bondi frame ∇̃anb ¼ 0, the twist of

na vanishes, ∇½anb� ¼ 0, so we also have Lξna ¼ −αðξÞna

andLnαðξÞ ¼ 0 [42]. By pulling back toIþ, we obtain the
asymptotic symmetries of the bulk manifold M:

Lξ̃γS2 ¼ 2αðξ̃ÞγS2 ; ðB7aÞ

Lξ̃n
a ¼ −αðξ̃Þna: ðB7bÞ

Note that at Iþ we have ξ̃ ¼ ξ so we will drop the tilde
whenever it is clear from the context. Thus we see that these
reproduce the infinitesimal action of BMS4ðIþÞ (see,
e.g., Ref. [42]).
The general solution to (B7a) and (B7b) with LnαðξÞ ¼

0 is given by the vector field ξ ∈ XðIþÞ of the form

ξðf; YÞ ¼
�
f þ 1

2
uDAYA

�
nþ Y; ðB8Þ

where n ∈ XðIþÞ, Y ∈ XðS2Þ, and f ∈ C∞ðS2Þ and

Lnf ¼ 0 ¼ LnY; LYγS2 ¼ DAYAγS2 : ðB9Þ

Note that the metric on 2-sphere γS2 ¼ γABdxAdxB,
where xA are coordinates for S2, and γAB can be used to
raise indices A;B;C;…, with its associated covariant
derivative DA.
The vector fields ξðf; 0Þ ¼ fn are known as super-

translations: they are parametrized by smooth functions f
on the 2-spheres, and they form an ideal of the BMS
algebra bms4. The smooth conformal Killing vectors of the
two-sphere, Y ∈ XðS2Þ, generate the Lorentz algebra—but
there is generically no preferred Lorentz subgroup.
Therefore the structure of the BMS group generated by
these asymptotic Killing vectors is a semidirect prod-
uct BMS4 ¼ SOþð3; 1Þ ⋉ C∞ðS2Þ.
We review these asymptotic symmetries in a more direct

manner below.

2. Asymptotic symmetries of metric

The metric of any asymptotically flat spacetime can be
written in Bondi-Sachs coordinates [25,26]

ds2 ¼ −Udu2 − 2e2βdudr

þ gAB

�
dxA þ 1

2
UAdu

��
dxB þ 1

2
UBdu

�
; ðB10Þ

where detðgABÞ ¼ r4 detðγABÞ.
Now as a consequence of the assumptions in Sec. III, the

large-r expansion takes the form (see, e.g., Ref. [44])

U ¼ 1 −
2mB

r
þOðr−2Þ; ðB11aÞ

β ¼ Oðr−2Þ; ðB11bÞ
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UA ¼ 1

r2
DBCAB þOðr−3Þ; ðB11cÞ

gAB ¼ r2γAB þ rCAB þOðr0Þ: ðB11dÞ
Here, mB is the Bondi mass aspect, CAB is the shear

tensor,19 and NA is the angular momentum aspect. Together
with the Bondi news tensor NAB ¼ ∂uCAB (and the con-
straint equation for the Bondi mass coming from the
Einstein equations), these form the radiative data for
general relativity [44,61].
Observe that by introducingΩ ¼ r−1 (so dr ¼ −Ω−2dΩ)

and rescaling g̃μν ¼ Ω2gμν, the falloff conditions (B11)
imply that the metric in the unphysical spacetime takes the
Bondi form at Iþ where Ω ¼ 0, given by Eq. (33).
Importantly one can show, by direct computation, that

the falloff conditions are preserved by the asymptotic
Killing vectors [66,67]

ξ ¼
�
f þ 1

2
uDAYA

�
∂u þ

�
YA −

1

r
DAf þOðr−2Þ

�
∂A

þ 1

2
ð−rDAYA þDADAf þOðr−1ÞÞ∂r; ðB12Þ

where as before these vectors, ξðf; YÞ, are parametrized
by the scalar functions f ≡ fðxAÞ and the conformal
Killing vectors of the 2-sphere, Y ¼ YA

∂A, whose general
form is [68]

YA ≡ YAðxAÞ ¼ DAχe þ ϵABDBχm; ðB13Þ

where ðDADA þ 2Þχe=m ¼ 0; i.e., χe=m are l ¼ 1 spherical
harmonics.
In particular, ξð0; DAχeÞ generate boosts and ξð0;

ϵABDBχmÞ generate rotations [68].20 While expanding f
in a basis of spherical harmonics one finds that the first four
spherical harmonics YlmðxAÞ correspond to ordinary trans-
lations in the bulk (l ¼ 0, m ¼ 0 for time translations;
l ¼ 1; m ¼ 0;�1 for spatial translations).

3. Group action at I +

To see an explicit representation of the group at Iþ we
will work in a Bondi frame henceforth, and also, we will fix
the 2-sphere to have complex stereographic coordinates
xA ¼ fz; z̄g, where z ¼ cotðθ=2Þeiφ. In this system the
Bondi frame takes the form

hB ≔ þ2dudΩþ 4dzdz̄
ð1þ zz̄Þ2 : ðB14Þ

Keeping the notation in [1] one can show [26] that the
action of the BMS4 group takes the following form:

u0 ¼ KΛðz; z̄Þðuþ fðz; z̄ÞÞ;

z0 ≔ Λz ¼ aΛzþ bΛ
cΛzþ dΛ

; z̄0 ≔ Λz̄ ¼ āΛz̄þ b̄Λ
c̄Λz̄þ d̄Λ

: ðB15Þ

Here Λ ∈ SOþð3; 1Þ denotes a particular proper orthochro-
nous Lorentz transformation and

KΛðz; z̄Þ ¼
1þ jzj2

jaΛzþ bΛj2 þ jcΛzþ dΛj2
; ðB16Þ

and the coefficients ðaΛ; bΛ; cΛ; dΛÞ arise from the covering
map p∶SLð2;CÞ → SOþð3; 1Þ since SLð2;CÞ is a double
cover of the proper orthochronous Lorentz group
SOþð3; 1Þ, i.e., SLð2;CÞ=Z2 ≅ SOþð3; 1Þ.
Notice that the choice of sign does not change any of

the transformations, and hence we have the semidirect
product BMS4 ¼ SOþð3; 1Þ ⋉ C∞ðS2Þ. We see the semi-
direct product structure by considering the composition of
two of these transformations ðΛ; fÞ; ðΛ0; f0Þ ∈ SOþð3; 1Þ×
C∞ðS2Þ. This yields

KΛ0 ðΛðz; z̄ÞÞKΛðz; z̄Þ ¼ KΛ0·Λðz; z̄Þ; ðB17aÞ

ðΛ0;f0Þ∘ðΛ;fÞ¼ðΛ0 ·Λ;fþðKΛ−1 ∘ΛÞ ·ðf0∘ΛÞÞ;
ðB17bÞ

where in the second line we note that KΛ−1 ∘Λ ¼ 1=KΛ.

4. BMS-invariant asymptotic scalar field theory

To define the action of a one-parameter element γ0t of the
BMS group on the space of solutions SolRðIþÞ at Iþ,
one considers the action of its smooth extension γt into M
on ϕ and then uses the map Γ to project it to Iþ. That
is, working in a Bondi frame, for ϕ ∈ SolRðMÞ and
ψ ∈ SolRðIþÞ

Aγ0tψ ≔ lim
Iþ

½ðΩBÞ−1γ�tϕ�

¼ lim
Iþ

�
ΩBðγtðxÞÞ
ΩBðxÞ

�
× lim

Iþ
½ΩBðγtðxÞÞÞ−1ϕðγtðxÞÞ�

¼ KΛðz; z̄Þ−1ψðu; z; z̄Þ: ðB18Þ

Here, one can show making use of the asymptotic Killing
equation for ξt, the generator of γt, that the third line
follows. Alternatively this may be seen by noting that the
fields ψ ∈ SolRðIþÞ transform with conformal weight −1
under the induced conformal transformation at Iþ by
γ0t [cf. (B4)].

19Fixing Bondi gauge/coordinates and the determinant con-
dition ∂r detðgAB=r2Þ ¼ 0 implies that the shear tensor is trace-
free: γABCAB ¼ 0.

20A generalization YA to nonsmooth solutions leads to the
notation of superrotations [66,67] which will not concern us here.
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The induced symplectic form σI at Iþ given by

σI ðψ1;ψ2Þ ¼
Z
Iþ

dudγS2ðψ1∂uψ2 − ψ2∂uψ1Þ ðB19Þ

is also BMS invariant because the integration measure and
the derivative, respectively, transform as

dudγS2 → K3
ΛdudγS2 ; ∂u ¼ na → K−1

Λ na: ðB20Þ

Therefore all the resulting AQFT constructions (including
the induced state) are BMS invariant.
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