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We introduce an approach to find approximate numerical solutions of truncated bootstrap equations for
conformal field theories (CFTs) in arbitrary dimensions. The method is based on a stochastic search via a
Metropolis algorithm guided by an action S which is the logarithm of the truncated bootstrap equations for a
single scalar field correlator. While numerical conformal bootstrap methods based on semidefinite
programming put rigorous exclusion bounds on CFTs, this method looks for approximate solutions, which
correspond to local minima of S, when present, and can be even far from the extremality region. By this
protocol we find that if no constraint on the operator scaling dimensions is imposed, S has a single minimum,
corresponding to the free theory. Ifwe fix the external operator dimension, however,we encounterminima that
can be studiedwith our approach. Imposing a conserved stress-tensor, aZ2 symmetry and one relevant scalar,
we identify two regions where local minima of S are present. When projected in the ðΔσ ;ΔϵÞ-plane, σ and ϵ
being the external and the lightest exchanged operators, one of these regions essentially coincides with the
extremality line found in previous bootstrap studies. The other region is along the generalized free theories in
d ¼ 2 and below that in both d ¼ 3 and d ¼ 4. We empirically prove that some of the minima found are
associated to known theories, including the 2d and 3d Ising theories and the 2d Yang-Lee model.
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I. INTRODUCTION

Starting from the pioneering work [1], numerical boot-
strap methods have become a widespread work-tool for
studying conformal field theories (CFTs) in d > 2 space-
time dimensions, see [2] for a review with an extensive list
of references. The most established and developed methods
make use of semidefinite programming algorithms applied
to 4-point functions of local operators to rule in or rule out
theories, the state of the art program being currently SDPB
2.0 [3,4]. In this approach one makes assumptions on the
CFT spectrum (typically on the low-lying scaling dimen-
sion of primary operators) and is able to rigorously
establish if that assumption is allowed or not in the space
of all possible CFTs. By imposing suitable assumptions to a
set of 4-point functions one can restrict the allowed region
to a small island in parameter space, so that precise and
rigorous properties of theories living at the extremality
region can be determined [5–7]. Such CFTs at the edge of
the extremality bounds can also be studied using the so
called extremal functional method, first discussed in [8] and

later developed in [9,10]. Although not as rigorous as the
previous method, the extremal functional allows a quite
accurate and precise determination of the CFT data, see
e.g., [11] for an application to the 3d Ising model. These
powerful methods generally require that the theory in
question lies at the boundary of the allowed region in
parameter space to start with. In contrast, the “interior” of
the space of allowed CFTs is harder to characterize using
the current techniques.
In fact, it could be useful to have some numerical tool to

explore the structure of the space of allowed CFTs and, in
principle, a way to construct approximate CFT data that are
consistent with crossing symmetry of 4-point correlation
function of local operators.1 Locating, even approximately,
putative CFTs could be a useful first step to understand
which assumptions to impose so that these theories become
extremal and hence amenable to, e.g., a fully rigorous
bootstrap analysis. The aim of this paper is to propose a
novel numerical method to analyze the bootstrap equations
and possibly find a subset of its approximate solutions.
More specifically, we will try to answer to the following
question: Given a finite set of ni operators with spin li
below a given scaling dimension Δ�, exchanged in some
4-point correlation function, is there a set of CFT data
(scaling dimensions and OPE coefficients) for the ni

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1See [12] for recent progress in this direction.
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operators which best satisfy the truncated crossing equa-
tions? If so, where is the putative solution located in the
allowed CFT parameter space?
In one-dimensional systems, where there is no spin,

accurate solutions can be constructed [13]. For d > 1 this
problem is much harder because one has to look for
solutions by choosing among the many possible partitions
of the operators in the different spin channels. In addition to
that, it is unclear how to choose the initial conditions for
any search and which constraints should be imposed to
possibly get a finite set of solutions. Finally, it is far from
clear that the search would lead to an actual theory. In
particular, deterministic methods such as gradient descent,
would uniquely give an answer, but most likely this answer
will not correspond to an approximate solution to a physical
CFT. This is easily understood as follows. Suppose we find
a suitable set of constraints which guarantee the existence
of a finite set of approximate solutions (we will see below
that these are indeed necessary, but easy to identify). If we
define a positive definite function F as, say, the modulus
square of the conformal bootstrap equations for a single
4-point correlator, we see that in the infinite dimensional
space of all possible CFT data, scaling dimensions Δi and
operator product expansion (OPE) coefficients λijk, gen-
erally F ≥ 0. Putative physical theories can only be
associated to points where F ¼ 0, where crossing sym-
metry is realized.2 Suppose now to use a deterministic
numerical method that allows us, starting from an arbitrary
point in the (truncated) CFT data parameter space where
F > 0, to minimize F. The details of how to actually
achieve this do not matter for the argument we want to
make here. In a truncated numerical approach, of course, F
will never be zero, but we will nevertheless uniquely get the
minimum value F0, given the chosen initial conditions. It is
clear that generally F0 will be an approximation to a local
minimum of F (with Fmin > 0) and not an approximation to
one of the global minima of F (where F ¼ 0). Thus, the
solution found will not correspond to any CFT; it will be in
the “swampland.”
In order to alleviate the problem of being trapped at fake

CFT minima, we use a stochastic minimization via a
Metropolis algorithm. The function S we choose to
minimize (the “action”) is the logarithm of the truncated
bootstrap equations for a single scalar field correlator,
S ∼ logF. Configurations with higher actions are from time
to time accepted with a probability which depends on a
parameter T (“temperature”). In this way, thermal fluctua-
tions allow us to “escape” from local minima in the quest
for the global ones.3 The problem of choosing among the
many possible partitions of the operators in the different

spin channels is solved by adding as many operators as
possible to each spin channel and then allowing operators
to possibly decouple along the minimization process. The
complex dependence of S on the truncated CFT data
requires further nontrivial numerical manipulations, which
will be discussed in Sec. II, to finally determine the
approximate CFT data of a putative theory.
We consider in this work the simplest bootstrap set-up,

namely a single 4-point function of identical scalars in
Euclidean CFTs and focus on the exploration of the CFT
parameter space where the external scalar is close to the
unitarity bound. We start in Sec. II by presenting the
method. In Sec. II A we explain how the bootstrap
equations are truncated and discretized, in Sec. II B how
the stochastic minimization is defined and performed and
finally in Sec. II C the various steps entering in the
minimization process are reported and explained.
The results of our numerical explorations, all based on

severe truncations of the bootstrap equations with Δ� ≲ 15
and a total number of operators included NOps ≲ 20, are
reported in Sec. III. The first general qualitative feature that
emerged from our analysis is discussed in Sec. III A and is
the predominance of the free theory scalar theory. If no
constraints are imposed—aside unitarity, the presence of an
energy momentum tensor and a Z2 global symmetry—the
minimization of S leads only to a single global minimum,
associated to the free theory. It is enough to impose a single
constraint, such as fixing the scaling dimension of the
external operator, to get a finite set of minima. At fixed Δσ

we first study in Sec. III B the simplest spin partition with
one operator per spin. We test the method by rediscovering
the free theory and give indications that there are no other
CFTs with one operator per spin, at least in their lowest spin
channels and lowest lying operators. Our most interesting
results are contained in Sec. III C, where we study the more
realistic setup of more operators per spin. Now the situation
is reversed and we get generally too many minima, unless
extra assumptions are imposed. Demanding the presence of
only one Z2-even relevant scalar drastically reduces the
number of minima and makes the analysis feasible. A
general qualitative feature that emerged from our analysis is
the presence of two regions in the space of CFT data where
the bootstrap equations are more easily satisfied for CFTs
admitting a conserved energy-momentum tensor, a Z2

global symmetry and one Z2-even relevant scalar. When
projected in the ðΔσ;ΔϵÞ-plane, σ and ϵ being the external
and the lightest exchanged operator, respectively, one of
these regions essentially coincides with the extremality line
found in previous bootstrap studies. The other region is
along the generalized free theories (GFTs) in d ¼ 2 and
below the GFT line in both d ¼ 3 and d ¼ 4. The minima
found in the ðΔσ;ΔϵÞ-plane are reported in Figs. 5, 9, and
12 for the d ¼ 2, 3, 4 cases. The extremal minima in the
d ¼ 2 case are identified with the generalized minimal
models of [16], one extremal minimum in d ¼ 3

2Of course this is only a necessary condition, since other
constraints might arise from other correlators, etc.

3Very recently numerical methods based on reinforcement
learning have been used to find approximate solutions to the
bootstrap equations [14,15]. Though this is an interesting line of
research to pursue, it is not clear to us if and how such techniques
can alleviate the problem of fake local minima.
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corresponds to the 3d Ising model, while all the other
minima have not been identified. Unfortunately the numeri-
cal accuracy we have does not allow us to reach higher
values ofΔ� to establish more firmly if (and which of) these
minima are numerical artifact or not. CFTs without an
energy momentum tensor are considered in Sec. III D. The
minima now cluster around the GFT line and GFTs
themselves are well reproduced, especially in d ¼ 2 where
our numerical accuracy is higher. We finally briefly show in
Sec. III E how our algorithm can be applied to nonunitary
theories by rediscovering the 2d Yang-Lee model.
We discuss in the final outlook the limitations of our

algorithm and possible ways to improve it in the future.
Three Appendices contain some other details of our
numerical procedure and further more technical results.

II. METHOD

We present in this section the numerical method we used
to find approximate solutions of the bootstrap equations for
a 4-point function of identical scalar primary operators in a
generic CFT in d dimensions.

A. Discretization of the bootstrap equations

The crossing equations for 4 identical scalar fields σ with
scaling dimension Δσ can be written as (notation as in [2])

X
Δ>0;l

λ2σσOΔl
FΔ;lðzÞ ¼ IðzÞ: ð2:1Þ

Here λσσOΔl
are OPE coefficients, Δ and l are the scaling

dimensions and spin of the exchanged primary operator
OΔl

(even spin traceless symmetric tensors), z and z̄ are the
usual Dolan-Osborn conformal invariant cross ratios
[17,18], Iðz; z̄Þ ¼ jzj2Δσ − j1 − zj2Δσ is the identity contri-
bution to the OPE expansion, and finally

FΔ;lðzÞ ¼ j1 − zj2ΔσgΔ;lðz; z̄Þ − jzj2ΔσgΔ;lð1 − z; 1 − z̄Þ;
ð2:2Þ

with gΔ;lðz; z̄Þ the conformal blocks, normalized as in [1]
with an extra 2l factor.
As discussed in the introduction, we do not look for

rigorous disallowed regions in the space of CFT data, but
rather for approximate solutions of the above equations,
namely for approximate possibly allowed CFT data. To this
aim, we severely truncate (2.1) to the finite set of primary
operators with scaling dimension up to a given Δ� (chosen
to be integer), and assign a given number of operators nl to
each spin channel l up to some value lmax. If unitarity is
imposed, Δ� and lmax are related. We take

lmax ¼ Δ� − d − 1; ð2:3Þ

so that the scaling dimension of the operators with spin
lmax have a large enough range where they can be varied,
compatibly with unitarity: Δ� − 3 ≤ Δlmax

≤ Δ�. The total
number of exchanged operators Oa that we consider is

X
l¼0;2;…;lmax

nl ¼ NOps: ð2:4Þ

We then choose a finite sample of Nz points in the complex
z-plane in the neighborhood of z ¼ z̄ ¼ 1=2 and define the
Nz × NOps matrix M and the Nz vector Ii

Mi;a ≡ FΔa;lðziÞ; Ii ≡ IðziÞ; i ¼ 1;…; Nz;

a ¼ 1;…; NOps: ð2:5Þ

We define an “action” as (spin dependence omitted for
simplicity)

expðSðΔa; ρaÞÞ≡ 1

Nz

XNz

i¼1

σ−2i

����
XNOps

a¼1

ρaMi;a − Ii

����
2

; ð2:6Þ

where ρa ≡ λ2σσOa
, by taking a weighted sum of the absolute

square of the truncated crossing equations (2.1) at the Nz
points, with

σi ¼ jFΔ�;0ðziÞj: ð2:7Þ

The factor (2.7) is introduced to take into account that the
points with the best convergent conformal block expansion
are around z ¼ 1=2, point where on the other hand the
function F vanishes. For any finite truncation, our aim
would be then to minimize S in the space of CFT data.

B. Metropolis Montecarlo and stochastic minimization

Finding the 2NOps CFT data ðρa;ΔaÞ that minimize S is a
challenging task. First of all, in d > 1 dimensions, where
we have spin, one should in principle look for solutions in
all possible partitions of the nl operators in each spin
channel. In addition to that, deterministic methods, such as
gradient descent, can be highly inefficient because they
converge to a minimum of S depending on the initial
conditions. The actual dependence of S on the CFT data is
expectedly complicated and depends on the constraints
imposed, and can be characterized by the presence of
several local minima. One of the main motivations of this
work is in fact to shed some light on the “landscape/
swampland” space of CFT data. As we will explain in what
follows, both problems (avoiding to land on a local
minimum and the need to consider all spin partitions)
are significantly alleviated by the use of stochastic searches
based on Monte Carlo (MC) methods. We will in particular
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sample the parameter space via the Metropolis Monte Carlo
method, whose structure we now briefly describe.
Given a function fðxÞ∶U → R, where U ⊂ Rn, the

minima of f in U are sampled by taking an initial point
xð0Þ ∈ U and proposing an update

xð1Þ ¼ xð0Þ þ δx; ð2:8Þ

which is accepted with a probability given by

Pðxð0Þ → xð1ÞÞ ¼ min

�
1; exp

�
−
fðxð1ÞÞ − fðxð0ÞÞ

T

��
:

ð2:9Þ
The parameter T can be interpreted as a temperature and the
exponential factor in (2.9) as a Boltzmann suppression
factor. While a gradient descent method would uniquely
find the local minimum of f connected to the point x0, the
Metropolis algorithm, accepting from time to time moves
where the function increases rather than decreases, is able
to overcome barriers between different minima and sample
wider regions of U. The “efficiency” in overcoming
barriers depends on T. At fixed δx, the higher T the easier
it is. Of course, if T is chosen too large, we would explore
the entire region U but we might not detect the minima,
because with such a diffusive dynamics the probability
density PðxÞ will tend to be uniform in x.
In our MC implementation, the variables x which are

changed at each iteration procedure are the scaling dimen-
sions Δa (and possibly the external scaling dimension Δσ),
while the function f is identified with the action S in (2.6).
The procedure works as follows. Starting from some initial

scaling dimensions ðΔð0Þ
σ ;Δð0Þ

a Þ, we analytically minimize S
with respect to the OPE coefficients ρa, given that they
enter quadratically in the action. We get

ρð0Þa ¼
X
b

A−1
ab

X
i

ReðMb;iÞσ−2i Ii;

Aab ≡
X
i

ðM�
aiMbi þMaiM�

biÞσ−2i ; ð2:10Þ

where all the terms in the right-hand side of (2.10) are

evaluated at ðΔð0Þ
σ ;Δð0Þ

a Þ. We then plug (2.10) into (2.6) to

get an action Sð0Þ ¼ SðΔð0Þ
a ; ρð0Þa Þ which depends on oper-

ator scaling dimensions only (spin and external operator
dependence omitted for simplicity). At this stage, the

scaling dimensions ðΔð0Þ
σ ;Δð0Þ

a Þ are changed as in (2.8),
the OPE coefficients recomputed as above and then the
move is accepted or not according to (2.9). This procedure
is then iteratedNsteps times. In this way we explore different
the local minima of S, and then study the collective trends
of these minima as a function of Δ�. Of course, for the CFT
data ðΔσ;Δa; ρaÞ associated to a physical theory we should
have

lim
Δ�;NOps→∞

SðΔa; ρaÞ ¼ −∞: ð2:11Þ

It is then important to establish that, in a finite truncation,
the value of S at the minima decreases as Δ� increases.
This is in a nutshell how our protocol works. In the next

subsection we will describe in detail the various steps
involved.

C. The search protocol in detail

We choose to sample the Nz points in the z-plane from a
uniform grid with the constraint

λðzÞ < λ0; ð2:12Þ

with λðzÞ defined as in (3.11) of [19]. This condition
defines a compact and convex region around z ¼ z̄ ¼ 1=2,
the point of best convergence of the bootstrap equations.
The parameter λ0 is, together with Δ� and T, the most
relevant “hyperparameter” of our computational pipeline,
and has to be chosen carefully in order for the method
to work.
The number of MC iterations Nsteps needed to get

sensible results can be quite large (∼108). In order to be
able to perform exhaustive searches in parameter space we
developed a numerical approach which allows estimating
efficiently the action S defined in (2.6). Indeed, conformal
blocks are computationally expensive functions of Δ, l,
and z, which would make an extensive sampling impossible
with moderate computational resources without an appro-
priate numerical optimization. We tabulate the blocks for a
fixed z–point sample and each l, and then use cubic splines
[20] to interpolate their values. In this way we get a speedup
of Oð104Þ. The interpolation grid is chosen in such a way
that the numerical error induced by this procedure is
negligible compared to the truncation error (see Fig. 17
and the discussion in Appendix B 2).
It is important here to note that this speed up comes with

the tradeoff of limiting our working precision to that of
double type in Fortran (i.e., 64-bit). This might come as a
surprise to our more technical bootstrap readers, but an
important result of this paper is indeed that approximate
solutions to the bootstrap equations can be found without
resorting to 200 digits of precision. Nevertheless, limited
precision is a bottleneck to go to larger values of Δ� and to
improve the quality of our approximate solutions.
We now describe each step of the protocol more

thoroughly. Further details can be found in Appendix B.

1. Determining the hyper parameters

Once a physical system of interest (understood as a
global symmetry structure and the relevant bounds on the
operators’ scaling dimensions) has been chosen, some
exploratory work must be done in order to make our
search protocol as efficient as possible. In Appendix B we
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list the choices for each search discussed in Sec. III. Wewill
here concentrate on motivating our choice for T, since we
have found empirically that the other hyperparameters are
less determinant to the success of the search.
Since we will explore different truncations, the order of

magnitude of δS, see Eq. (2.9), can be very different from
spectrum to spectrum4 and thus the temperature T must be
adjusted accordingly. Although wewill use an adaptive step
that guarantees that in the stationary state roughly half of
the moves will be rejected, choosing a temperature that is
too high will make δΔ too coarse and the MC will “miss”
narrow features of the landscape. On the other hand, if T is
too small our method will move too slowly around the
landscape or might even “freeze” in the basin of a local
minimum.
In the following we will empirically choose T in such a

way that the projection of the trajectory to each coordinate
axis (which in our case correspond to the operators’ scaling
dimensions) covers the whole allowed range at least 10
times, but still low enough so that the dynamics does not
become diffusive, namely the local minima can still be
detected as metastable states.
For further detail, we show in Fig. 18 an example of

archetypal trajectories. This figure and further considerations
about the choice of T are presented and analyzed in B 3.

2. Finite temperature MCs

For each ansatz Δð0Þ
a

5 we sample the CFT parameter
space at the temperature T chosen according to the criteria
discussed in the previous step. This is the most important
and computationally expensive step, but one must bear in
mind that it gives all the necessary information to under-
stand the landscape of possible CFTs at several different
truncations.
The variation of the scaling dimensions δΔa is taken

randomly with uniform distribution over an hyperparalle-
lepiped centered around the origin. This was observed to be
more efficient than moving one operator at a time since the
landscape shows highly correlated features and thus
attempting moves in which all the operators change
simultaneously improves the sampling efficiency. The user
can choose the length of each side but the overall scale is
adaptive and changes at each MC step. This is done in order
to guarantee a 50% acceptance rate in the stationary state.
In practice, when a move is rejected (resp. accepted) this
overall scale is decreased (resp. increased) by a fixed factor.
Each operator scaling dimension is confined within a finite
region within two boundary values decided by the user. The
MC then explores the landscape for ∼108 steps. Our choice
of the temperature guarantees that after this number of

iterations the initial conditions are irrelevant. For each of
these spin partitions we store each 1000th configuration
visited. We will refer to these as frames.

3. Separation by sectors

In a given MC run not all the operators in the ansatz will
have sizable OPE coefficients at each iteration step. In this
work we assume that if the OPE coefficient associated to a
primary operator is smaller than a given tolerance (we found
10−8 to be a sensible choice for the lmax used in this paper)
this operator is decoupled and can be neglected. If unitarity is
imposed, OPE coefficients that turn out to be negative from
(2.10) are set to zero in that iteration.These two effects lead to
a classification of the different points visited by the MC in
terms of the effective spectrum contributing to the crossing
equations. In order to describe these different sectors we
introduce the following shorthand notation to indicate each
one of them: ðm0Þ ðm2Þ � � � ðmlmax

Þ. For example, a point
with 3 scalars, 2 spin-2 operators, 2 spin 4 and one spin-6
would belong to spin sector 3 2 2 1. Crucially,

X
l

ml ≤ NOps: ð2:13Þ

This implies that there is no need to consider different
partitions of operators in each spin channel. All partitions
with ml ≤ nl will be automatically searched for by MC.
Moreover, the same sector can be visited in two different
MC runs with different nl. Thus, this step effectively
recombines all the information from the different spin
partitions studied in the previous step.

4. Identification of putative local minima

Now that we have sampled the landscape we must
identify the points that are more likely to be close to a
local minimum of the action. For a low-dimensional
parameter space we could visualize the action as a contour
plot and identify the points by inspection. It is clear,
though, that for more than 3 scaling dimensions, this
approach cannot be followed.
Our proposal is thus the following. For each set of frames

obtained in the previous step (namely, those corresponding to
spin sectorswithmore than 120k frames and those describing
the trajectory of every search)6 we sort their elements
according to the number of nearest neighbors with higher
action, in the philosophy of density peak clustering [21]. We
consider as putative local minima the 20 configurations with
highest rank. We have observed empirically that in each

4We have found empirically that the most important parameter
in this case is lmax, not necessarily Δ� on its own.

5For simplicity of notation, we do not explicitly report Δð0Þ
σ as

input data.

6It might seem redundant to analyze sector by sector frames
that are already contained in the trajectories that result from the
MC search described in point 2. Since exhaustivity is paramount
and the definition of local minimum depends on the neighboring
points, it makes sense to consider the same frame in two different
settings in order not to miss any interesting features.
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sector the number of actual minima is always much smaller
than this number, and that many of the smaller rank frames
actually converge to other minima, so this is a conservative
estimate. To clarify, the pointwith the highest rankwill be the
global minimum of that set of frames because every other
point will have higher action.

5. Local minimization

For each putative local minimum we launch Newton—
Rhapson (NR) minimizations. This deterministic algorithm
is justified because the points found in the previous step are
likely contained in the basin of attraction of a local
minimum. More details about the implementation of this
algorithm can be found in Appendix A.
All the endpoints from the NR minimizations are

collected and those that violate the bounds imposed on
the spectrum are discarded.7 We then assign to the
corresponding sector the minima where one or more
operators decouple (in the sense described above). In the
case of two or more minimizations converging to the same
point (i.e., the relative difference for any scaling dimension
is smaller than 20%) we keep only the point with the lowest
action. At the end of this step we have a list of approximate
solutions to crossing that are local minima of S.

6. Convergence and boundary check

Since we usually impose boundaries on the subleading
operators in order to better control the type of CFTs that we
might find, it is important to rule out the possibility of some
of the local minima found in the previous step actually
being induced by the presence of this boundary.
To this end, a final NR minimization is performed from

all the minima found in the previous step, relaxing all the
boundaries except strict unitarity (if imposed). We consider
as true minima the ones that reach convergence according
to our NR implementation and are contained within the
region of interest: this means a minimum can be at the
boundary of unitarity, but not at one of the boundaries
introduced in step 1.

7. Identifying akin minima at different truncations

Minima belonging to different spin sectors but with
similar CFT data in their common operators should be
identified. In this case the minimum with more primaries
should have a value of S lower than the minimum with less
primaries. This is a necessary (but by no means sufficient)
condition to associate such minima to approximate sol-
utions of the crossing equations of one and the same CFT.
In order to find akin minima and quantify their similarity
we organize all the minima in a directed graph where the
minima are the nodes and A → B if: (i) the sector to which

A belongs is contained in the one of B, namely if B has at
most maxMismatch more operators than A and (ii) the
operators which are in common between the two sectors
differ in their scaling dimensions by at most relTol in
relative error. The final result of our protocol are the leaves
of this directed graph, namely the nodes with no outgoing
links. One can also study the branches (i.e., subsets of this
directed graph) in order to understand the asymptotic
behavior of certain values, such as the action S or the Δ
of some leading operators.

III. RESULTS

We report in this section the results obtained with our
method. We have considered a single 4-point function with
four identical scalar operators in d ¼ 2, 3, 4 dimensions.
Except for a short discussion of the Yang Lee CFT (see
Sec. III E), we have considered CFTs where the fusion rules
are compatible with a Z2 discrete symmetry under which
the external operator is odd.8 We will use a Ising-like
notation and denote the external operator by σ and the
lowest dimensional exchanged scalar (besides the identity)
by ϵ. As will be later explained, demanding that ϵ be the
only Z2-even relevant (in the renormalization group sense)
primary operator that can appear in the σ × σ OPE is
necessary to avoid the proliferation of minima. We consider
both local and nonlocal theories, demanding or not the
existence of a spin-two energy-momentum tensor operator
at the unitarity bound ΔT ¼ d. Given its relevance in our
analysis, we have also considered the space of nonlocal
theories where the scaling dimension of the first spin 2
operator is fixed and equals that of generalized free theories
(GFT), ΔT ¼ 2Δσ þ 2. We then get further insights by
allowing ΔT to vary. We focus mostly on unitary theories,
though our method does not rely on it. As a proof of
concept, we study the nonunitary landscape around the 2d
Yang-Lee model.
As already anticipated in the introduction, when Δσ is

allowed to vary, the landscape of S becomes very simple:
the global minimum is at the lower edge of the unitarity
region, which in d ¼ 3, 4 coincides with the free theory
(FT) of a scalar field. Moreover, for generic spectra we find
that it is in fact the only reachable minimum. For this reason
in most of our analysis we will study “slices” of the
landscape by keeping fixed Δσ in each MC run.
The section is structured as follows. We start in Sec. III A

by showing that the FT is the global (and in many cases the
only) minimum of S. From Sec. III B we look for local
minima by keeping the external operator fixed. We first
consider the simplest possible scenario, namely very sparse
CFTs where just one operator per spin appears below Δ�.

7Spectra where a whole spin sector is missing, such as
2 1 0 1 1, have been ignored for simplicity.

8Note that in general such a Z2 symmetry is not required to be
a genuine faithful symmetry of the whole CFT. We will encounter
an instance of this phenomenon when discussing 2d minimal
models in Sec. III C.
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We then discuss in Sec. III C more general CFTs with
multiple operators per spin. In Sec. III D we discuss
nonlocal theories with a special focus on the GFT.
Finally, we briefly discuss the 2d Yang-Lee model as a
proof of concept of the validity of the method for
nonunitary theories in Sec. III E.

A. The free theory is the global minimum of S

Before attempting to identify the local minima of S it is
useful to have a qualitative idea of how S behaves as a
function of the CFT data. This analysis can be made by
launching MC runs with a given temperature and spin
partition of operators, and simply looking for the values of
the Δ’s corresponding to the lowest value of S explored
during the run.
The most important property that comes out from this

analysis, common to every scenario studied in this paper, is
that the global minimum of S corresponds to the FT (or the
point Δσ ¼ Δϵ ¼ 0 for d ¼ 2). This has been observed in
all our searches, and in particular for all the spin partition of
operators which we considered. Of course, this does not
imply the nonsensical result that the FT is the only
consistent CFT. Rather, it implies that among all the
physical CFTs allowed within the given assumptions at
fixed truncation, within our numerical accuracy and in
absence of further constraints, only the FT shows up as an
isolated minimum of S.
In order to test the (non)existence of other minima, we

performed a very large number of MC minimizations at
T ¼ 10−4. This temperature, being of the order of the
numerical error of the action,9 guarantees that the MC can
only diffuse toward configurations of lower action, since the
temperature is too low to cross any relevant barrier.
Independently of the choice of nl and of the operator scaling

dimensions ðΔð0Þ
σ ;Δð0Þ

a Þ, all the low temperatureMC runs we
performed converge to the FT point within 108 steps,
although longer times might be needed for higher NOps.

10

We report as an example in Fig. 1 the low–T evolution
for a 3d CFT spectrum with lmax ¼ 6, NOps ¼ 8 and an
initial spin partition 3 2 2 1. Here the first spin two
operator is fixed at ΔT ¼ 3 and no gap on the number
of relevant scalars has been imposed.11 The starting point of
each colored line (indicated with a black bullet) corre-

sponds to a MC with initial values of ðΔð0Þ
σ ;Δð0Þ

ϵ Þ at that
point. The black arrows on the colored lines indicate the

direction of the MC evolution. As can be seen, the final
point of all the MC runs (highlighted by red circles) have
Δσ ≈ 1=2;Δϵ ≈ 1. The contour plot shown in the back-
ground is indicative of the value of S for the same spin
partition but sampled at a much higher temperature
(roughly 100 times larger). A two-dimensional representa-
tion of S is then obtained by binning the points visited on
the ðΔσ;ΔϵÞ-plane and plotting the minimum value of S in
each bin.12 They are reported as a visual aid. As can be seen

from the figure, the initial values of ðΔð0Þ
σ ;Δð0Þ

ϵ Þ can be
taken in the excluded region, in which case they quickly
approach the extremality line. The discrepancy between the
rigorous bootstrap extremal line and the trajectories of our
MC solutions is due to the severity of our truncation.
During the MC evolution the OPE coefficients of the extra
scalars and higher spin operators decrease in such a way
that at the final point we effectively have the FT spectrum
with one operator per spin. We illustrate this phenomenon
by plotting in Fig. 2 the scaling dimensions of σ, ϵ and the
spin-4 current as well as the squared OPE coefficients of ϵ,
T and ϵ0 (the second exchanged scalar) associated to the
green line starting at (0.55, 1.5) in Fig. 1. A similar
situation occurs for other choices of initial partitions and
by keeping ΔT unconstrained. The same also holds in
d ¼ 2 and d ¼ 4 dimensions. This is the first important
result of our analysis: for most of the spin partitions studied
in this work, the landscape of S has a single minimum,
which can be reached by trivial gradient descent from
(generically) any initial configuration. Note that most
trajectories in Fig. 1 reach the FT point following two
broad paths in the (Δσ;Δϵ)-plane: (i) the extremality line
from above, (ii) a curve, almost constant in ϵ, from below.
The presence of regions in the (Δσ;Δϵ)-plane where the

FIG. 1. Convergence of different trajectories to the d ¼ 3 free
scalar CFT. The contour lines represent the minimum value of the
action in each bin for a spectrum of the kind 3 2 2 1. The dashed
line is the upper bound for Δϵ from [22]. The black arrows on the
colored lines indicate the direction of the MC evolution.

9See Appendix B 2.
10There is an important exception described in detail in Sec. III B.

In d ¼ 3 for spectra of the kind 1 1 1 and 1 1 1 1 there are actually
two local minima, though the FT still is the global one.

11Note that in d ¼ 3 (the case shown in Fig. 1), if a scalar gap
is imposed (for example, demanding that there can only be one
exchanged relevant scalar), depending on the initial CFT data it
can happen that the FT cannot be reached and a local minimum is
induced. 12Understood as a cell of fixed width in Δσ and Δϵ.
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bootstrap equations are more easily satisfied is going to be a
common theme in our results.
As we are going to show next, if one fixes at least another

Δ one can find local minima along these slices. In the
following subsections we will apply the protocol described
in Sec. II C for fixed values of Δσ and we will show that
some of the local minima that are present correspond to
known theories (for example the Ising model). However, it
is important to remark that none of the minima that we will
describe are stable if Δσ is allowed to vary, not even the
minimum corresponding to the Ising models in d ¼ 2 and
d ¼ 3, in agreement with the results presented in this
subsection.

B. One operator per spin: d = 3, 4

We now describe the results of a systematic search of
local minima at fixed Δσ by the protocol described in
Sec. II C. It is instructive to begin by exploring the simplest
possible scenario where

nl ¼ 1; l ¼ 0; 2;…;lmax: ð3:1Þ

Although this assumption looks very restrictive, some basic
features of the shape of the landscape of CFTs is already
visible in this set-up. Step 3 of the protocol is clearly
unnecessary when nl ¼ 1, since all the configurations in
each run will belong to just one spin sector. We focus on
d ¼ 3 and d ¼ 4 CFTs and ask the following question:
aside from the FT, are there other viable approximate
solutions to the crossing equations in which (3.1) is
satisfied? This question might seem academic, given that
interacting CFTs have an infinite number of Regge tra-
jectories [23]. However, we are severely truncating the
spectrum, so the question we address here is if we can have
CFTs where there is a substantial gap between the first
Regge trajectory and the others.
An extensive high-T search in d ¼ 3 with lmax ¼ 6 and

freeΔσ—the contour lines in the background of Fig. 3(a)—
shows that there are two (very elliptic) disjoint basins of
attraction. The one at the bottom of the panel contains the

FT. The upper one, elongated along the extremality boot-
strap line, approximately contains the Ising point in the
ðΔσ;ΔϵÞ-plane. Note that the latter basin of attraction has a
higher action with respect to the former one.
We searched local minima of S at different fixed values

of Δσ ¼ 1=2þ n=20, n ¼ 0, 1, 2, 3, with input spin sectors
1 1 1, 1 1 1 1, 1 1 1 1 1 and 1 1 1 1 1 1. The minima
that we found are represented in Fig. 3(a). In order to better
appreciate the value of S at the minima i, the latter are
indicated with a circle whose radius ri is given by

ri ∝ Smax − Si þ α; ð3:2Þ

where Smax is the value of S in the minimum with larger
action, and α is an offset so that this minimum can still be
visible in the figure.
For n ¼ 0, 1 two classes of minima are found, one for

each of the two basins of attraction. For n ¼ 2, 3, instead,
we find only minima along the lower basin, with Δϵ < 1. It
should be clear that there is nothing special to the above
chosen values of Δσ. For each fixed value of Δσ we expect
to find two local minima if Δσ ≲ 0.6 and one for higher
values.
We then use the protocol described in Sec. II 3 with

relTol ¼ 0.1 and maxMismatch ¼ 2 to identify the
different branches, which correspond to sets of minima
with different input sectors that can however be considered
to represent the same “theory” at different truncations. In
this way we find that, among these minima, some are
isolated and do not from any branch (orange diamonds in
panel (b) of Fig. 3), while others form branches (green, pink
and blue bullets). The only branch in which the action
decreases as a function of Δ� is the one associated to the
free theory, the blue branch in panel (b) of Fig. 3.
In d ¼ 4 a similar high-T search with lmax ¼ 6 and free

Δσ gives rise to the contour lines in the background of panel
(c) of Fig. 3. A search of the minima at different fixed values
of Δσ ¼ 1þ n=10, n ¼ 0, 1, 2, 3, with input sectors 1 1 1,
1 1 1 1, 1 1 1 1 1 and 1 1 1 1 1 1 with relTol ¼ 0.1
and maxMismatch ¼ 2 allows us to identify, also in this

FIG. 2. Convergence in tMC for representative scaling dimensions (left) and squared OPE coefficients (right).
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case, some local minima at fixedΔσ. Like in the d ¼ 3 case,
some minima are isolated and do not from any branch
(orange circles in panel (d) of Fig. 3), while others form
branches (green, pink and blue circles). The only branch in
which S consistently decreases withΔ� is the one associated
to the FT, the blue branch in Fig. 3(d).
As we will show in the following, the main structure of

the S landscape with two elongated basins of attractions
(valleys) will appear repeatedly in the analysis of more
complex situations. Note the striking difference between
the d ¼ 3 and d ¼ 4 cases: in the former the basins are two,
in the latter the basin is only one. One could argue that this
difference is due to the presence of another actual theory in
d ¼ 3 close to the FT point, the Ising theory, and none in 4d
within the above assumptions. Indeed, our results in
Secs. III B and III C further point to this explanation.
We also find that if the unitarity bounds are relaxed (both

on Δ and on the OPE coefficients squared), the afore-
mentioned disjoint valleys in d ¼ 3 join in a nonunitary
point of the parameter space. This is shown in Fig. 4, where
we compare the lowest-lying points in an unitary MC
search to those of a nonunitary setting.
The main take-away of this test is that the evolution with

respect to Δ� of the action in branches formed by akin
minima seems to be a discriminant factor between spurious

minima and physically meaningful ones (the FT in this
case); namely, the spurious minima do not create long
branches that go down into small values of the action S,
while the FT is present for every truncation with very high
consistency. We find that in the FT minimum high spin

(a) (b)

(c) (d)

FIG. 3. Overview of the different minima found in d ¼ 3 (top) and d ¼ 4 (bottom) with spectra containing one operator per spin. The
color code is the same across the panels. Left: minima at fixed Δσ . The radii indicate the value of the action S. The larger the radius the
smaller S. The contour lines are taken from an high-T search with lmax ¼ 6. Right: value of S for each point along the colored branches
in the left panel, identified by its Δ�.

FIG. 4. Locus of the lowest-action points visited by a wide-
search MC in d ¼ 3 with spectrum 1 1 1 1. When unitarity is
imposed we find two disjoint basins. Allowing for nonunitary
configurations gives rise to a single connected basin.
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operators are determined quite accurately (∼1% error)
except for the highest-Δ at each truncation, as can be seen
in Table I.
Although it is clear that the minima at Δσ ¼ ðd − 2Þ=2

are deeper than those away from it, we performed a MC
search at lmax ¼ 10 without any constraint on Δσ besides
unitarity. This allows us to understand the precise shape of
the landscape around the FT point. After 2 × 108 steps of an
extensive search (T ∼ 1), we chose the global minimum and
performed a T ¼ 10−4 minimization in order to refine the
precise location of this minimum. In Table II we report
these values. For completeness we also show in Table III
the OPE coefficients determined in this case.
We finally note that for higher Δ�, namely higher NOps,

the FT minimum is much deeper than the other minima.
This means that the latter are very poor solutions to the
crossing equations. In other words, we did not find other
consistent approximate solutions to the crossing equations,
besides the FT, where (3.1) is satisfied up to lmax ¼ 10.

C. More operators per spin

We now use our protocol to study CFTs with more than
one operator per spin with the assumptions discussed at the
beginning of the section (presence of an effective Z2

symmetry and only one relevant Z2–even scalar).
We here consider viable solutions to the crossing

equations the endpoint of branches13 that arrive up to a
given lmax and include at least 2 different minima with
strictly decreasing S. For brevity, we will refer to these end
points simply as “end-minima”. For example, in the case of
only one operator per spin, the “end-minima” are the blue,
pink and green circles at the end of the branches in the right
panels of Fig. 3. The rationale behind concentrating on

end-minima is that they summarize the information from
minima at higher lmax and thus allow for a cleaner
visualization. Since this approach might exclude possible
branches that start only at the largest Δ� here considered,
we will also include in our discussion isolated minima at
the largest lmax considered. They will be also called end-
minima in a slight abuse of notation.
Our whole search space includes spectra with lmax ¼ 4,

6, 8, 10. For d ¼ 2 we limit the analysis to lmax ¼ 8, since
at lmax ¼ 10 the end-minima that we find are so many that
they obscure the visualization. Here we only observe that,
qualitatively, all the minima that we find at lmax ¼ 10 differ
only by the least relevant operators.
The role of the stress-energy tensor deserves some

consideration. For the study of local theories it is necessary
to impose the presence of a spin-2 operator withΔT ¼ d. In
practice, we have also found it necessary to impose a gap
on the scaling dimension ΔT 0 of the second spin-2 operator
so that it does not come too close to d and create the effect
of a nonlocal theory by “supplanting” the stress energy
tensor. In Sec. III D we will study the effect of allowing for
nonlocal theories but hereafter it should be understood that
unless specified otherwise we fix ΔT ¼ d and impose the
gap ΔT 0 ≥ dþ 1.
We report the end-minima found in the ðΔσ;ΔϵÞ-plane in

Figs. 5, 9, and 12 for the d ¼ 2, 3, 4 cases, respectively. We
discuss these results separately in the sections below, but a
few considerations apply to all cases. The contour lines of
the lowest-lying configuration sampled by an high–T MC
is shown in the background as a visual aid. The orange
dashed line corresponds to rigorous bootstrap bounds,
while the green continuous line is the line of GFTs. We
use the radius of the points to represent the action as before
[see (3.2)] and use transparent markers so that coincident
minima appear darker. To understand the fact that several
minima are superimposed in this representation it is
important to keep in mind that there can be up to 10 other
dimensions not shown in the plot. Indeed, in many cases
there are end-minima which have almost identical values of
Δσ and Δϵ but differ in the scaling dimensions of the other
operators.

1. d = 2

One can wonder if our method can work in 2d given that
the landscape of CFTs is notoriously very rich. On the other
hand, 2d is the ideal playground to test the method, since
entire classes of CFTs are exactly soluble.
We have considered various MCs for 8 different fixed

values of Δσ:

Δσ ¼
1

8
;
3

20
;
7

40
;
1

5
;
1

4
;
2

7
;
3

10
;

ffiffiffi
5

p

10
: ð3:3Þ

When Δσ is too small the numerical analysis becomes quite
noisy. For this reason, we did not explore values of

TABLE I. Scaling dimensions of the first operators appearing in
the OPE of σ in the free scalar theory. In these settings Δσ ¼
ðd − 2Þ=2 and ΔT ¼ d.

Δ0 (Δϵ) Δ4 Δ6 Δ8 Δ10

d ¼ 3 1.0000 5.0000 6.9999 8.9999 11.0178
d ¼ 4 1.9999 6.0000 7.9999 9.9993 12.0308

TABLE II. Scaling dimensions of σ and of the first operators
appearing in the OPE of σ in the free scalar theory. Besides
unitarity the only constraint imposed is ΔT ¼ d.

Δσ Δ0 (Δϵ) Δ4 Δ6 Δ8 Δ10

d ¼ 3 0.50009 0.9997 5.0009 6.9974 8.9973 11.1505
d ¼ 4 1.00000 2.0035 6.0000 7.9995 9.9997 12.0368

13Our parameters for determining the connection between
minima are relTol¼ 0.2 and maxMismatch¼ 2.
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Δσ < 1=8. 7 of the values in (3.3) have been chosen to be
“small” rational numbers, while one was chosen irrational,
e.g., numerically equivalent to a “large” rational number.
Rational scaling dimensions can be associated to exactly
known rational conformal field theories (RCFT). As we
will see, in order to limit the number of allowed theories
and make the analysis feasible, the assumption of having
only one relevant Z2-even scalar turns out to be particularly
important in 2d. Before presenting our results, it is useful to
report some (by no means exhaustive) instances of known
CFTs admitting scalars with the above scaling dimensions.
A glimpse at the 2d CFT landscape The landscape of the

known CFTs in 2d is amazingly rich. In contrast to the
situation for d > 2, in particular, 2d CFTs can have a
continuum spectrum (e.g., Liouville field theory). It is clear
that we cannot detect such theories.14 Exactly marginal
deformations are ubiquitous in 2d. These theories will not
give rise to minima of S, but to a valley of minima, each
corresponding to a CFT as we vary the marginal couplings.
Since we look for isolated minima in our search, such
theories will also be difficult to detect. The CFTs we can
hope to find should have a discrete, relatively sparse,
spectrum and should be isolated. Their central charge c
is expected to be of order one. Prototypical theories of this
kind are RCFTs. Even if we focus on these theories only, we
need to further restrict our search space to avoid a prolifer-
ation of theories. We will do so by assuming, as mentioned,
that only one relevant scalar ϵ can appear in the σ × σ OPE.
The importance of this assumption can be appreciated by
focusing on specific exactly soluble CFTs. We will briefly
consider in what follows the space of diagonal unitary
minimal models (c < 1), the S1=Z2 orbifold (c ¼ 1) and
SUð2Þk Wess-Zumino-Witten (WZW) models (c > 1).
Recall that the scaling dimensions of the (Virasoro)

primary fields ϕr;s in diagonal unitary minimal models
Mðmþ 1; mÞ is (conventions as in [25])15:

Δr;s ¼ hr;s þ h̄r;s; ð3:4Þ

where

hr;s ¼ h̄r;s ¼
ððmþ 1Þr −msÞ2 − 1

4mðmþ 1Þ ; 1 ≤ r ≤ m − 1;

1 ≤ s ≤ m; m ∈ Z≥3: ð3:5Þ

The range in s in (3.5) can be restricted to 1 ≤ s ≤ r using
the field equivalence

ϕr;s ¼ ϕm−r;mþ1−s: ð3:6Þ

Minimal models feature a faithful discrete Z2 symmetry for
any m (see e.g., [26] for a pedagogical exposition).16 Using
the equivalence class (3.6), for any r and s we can choose
the representative field ϕr;s with rþ s an even integer. On
these representatives, Z2-even fields are those with r and s
odd, while Z2-odd fields have r and s even (the identity
operator is ϕ1;1). It is a straightforward exercise to show
that there are one or more unitary minimal models which
contain a Z2-odd field σ with scaling dimension equal
to each of the first 7 values of Δσ reported in (3.3).17 For
instance, for Δσ ¼ 3=20 within minimal models with m ≤
100we find two which contain a Virasoro primary with that
dimension: ϕ8;8 ⊂ Mð15; 14Þ and ϕ14;14 ⊂ Mð26; 25Þ.
The fusion rules σ × σ contain respectively 42 and 132
Virasoro primaries. Aside from the identity operator, 11
and 21 of these Z2-even fields have Δ < 2, respectively.
The smallest Virasono primaries in the two cases are ϕ5;5

and ϕ3;3, with scaling dimensions Δϵ ¼ 2=105; 2=325,
respectively. Models in such kind of field correlators cannot
be detected by our method, because (i) their OPE contain
too many light operators and (ii) operators with a too small
scaling dimension makes the numerical analysis unfeasible.

TABLE III. Comparison between the exact and the numerically determined values of the OPE coefficients squared
for the first operators in the free scalar theory. Besides unitarity the only constraint imposed is ΔT ¼ d.

λ2ϵ λ2T λ24 λ26 λ28 λ210

d ¼ 3 2.0022 0.093796 0.0042723 0.00022128 1.1604 × 10−5 8.3384 × 10−7

Exact 2.0 0.09375 0.0042725 0.0002203 1.1986 × 10−5 6.7214 × 10−7

d ¼ 4 1.9927 0.33343 0.02853 0.0021857 0.00014554 1.4538 × 10−5

Exact 2.0 0.33333 0.028571 0.0021645 0.0001554 1.0825 × 10−5

14Unless the continuum starts beyond Δ� in all spin channels,
in which case the CFT will simply appear discrete.

15In the 2d CFT literature, Virasoro and SLð2;CÞ primaries are
usually denoted primaries and quasiprimaries (respectively). In
numerical bootstrap analysis we usually care about SLð2;CÞ
primaries, which are the analogs of the primary fields in d > 2
CFTs. Most of the considerations that follow can be made at the
level of Virasoro primaries with no need to decompose them
in SLð2;CÞ primaries.

16The presence of such a Z2 symmetry is clear from the
equivalence of minimal models with Wess-Zumino-Witten cosets
of the form [SUð2Þm−2 × SUð2Þ1�=SUð2Þm−1, where Z2 is the
combination of the two Z2 center symmetries of SUð2Þm−2
and SUð2Þ1 which is not gauged by the center of SUð2Þm−1.17Of course, minimal models associated to the irrational value
of Δσ reported in (3.3) can also be found provided we take m
large enough and approximate

ffiffiffi
5

p
=10 with an appropriately

chosen rational number.
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Imposing that we have only one relevant Z2-even scalar
removes most of these field identifications. The only
identification left, for any m ≥ 3, is the one where σ ¼
ϕm−1;m−1ð∼ϕ1;2Þ and ϵ ¼ ϕ1;3, already considered in [27],
which have

Δσ ¼
1

2
−

3

2ðmþ 1Þ ; Δϵ ¼ 2 −
4

mþ 1
; ð3:7Þ

and the simple fusion rules

σ × σ ¼ 1þ ϵ: ð3:8Þ

Only 4 among the 7 rational values of Δσ in (3.3) equal the
scaling dimensions of ϕm−1;m−1: ordinary ðm ¼ 3;
Δσ ¼ 1=8Þ, tricritical ðm ¼ 4;Δσ ¼ 1=5Þ, tetracritical ðm ¼
5;Δσ ¼ 1=4Þ and pentacritical ðm ¼ 6;Δσ ¼ 2=7Þ Ising
theories. Note that for even m we have Z2ðσÞ ¼ þσ.
However, as far as we consider the four-point function of
σ only, given the fusion rules (3.8), we can effectively assign
an unfaithful Z0

2 charge to σ such that Z0
2ðσÞ ¼ −σ and

identify such Z0
2 as the global discrete symmetry of the four-

point correlator.
Another notable example which shows the importance of

restricting to one relevant scalar is given by the theory of a
free compact scalar on a S1=Z2 orbifold. This CFT has two
Virasoro primaries with Δσ ¼ 1=8, which are the twisted
ground states of the orbifold. They are odd under the
quantum Z2 global symmetry that emerges after the
gauging and hence we can consider any of them as our
field σ. As well-known, the S1=Z2 orbifold is a c ¼ 1
theory admitting an exactly marginal deformation, given by
the radius R of S1. At R2 ¼ 1 the theory is equivalent to a
decoupled pair of Ising theories.18 Deforming the radius
gives rise to a family of theories related to the Ashkin-Teller
model, namely the theory obtained by coupling two Ising
models [28]. The OPE of two twist fields give rise to an
infinite number of Kaluza-Klein and winding vertex
operators (Virasoro primaries) with scaling dimensions [29]

Δm;n ¼
m2

R2
þ n2R2

4
; m ∈ Z; n ∈ 2Z: ð3:9Þ

At R2 ¼ 1, the two Ising theories are decoupled and this
theory is indistinguishable from a single Ising copy. When
R ≠ 1 the two couples to each other and we get a
continuum of c ¼ 1 CFTs parametrized by R. For any R
such theories contain more than 1 relevant Z2-even scalar,
as we see from (3.9) by setting either m or n to zero. In this
case, restricting to only one relevant Z2-even scalar is
crucial to avoid a continuum of theories, which would be a
challenge for our numerical methods.

The external operator σ could also be part of a CFTwith
a continuous global symmetry G. CFTs with continuous
global symmetries should of course be analyzed in a
covariant way exploiting the symmetry, see e.g., [30].
However, if G ⊃ Z2 the field σ could be considered some
(real) component of a multiplet in a representation of G for
which Z2ðσÞ ¼ −σ. For example, σ could be the real
component of a spin j multiplet, with half-integer j, of a
SUð2Þk WZW model. More specifically, we could have

σ ∼ ϕj;mðzÞϕ̄j;−mðz̄Þ þ ϕj;−mðzÞϕ̄j;mðz̄Þ; ð3:10Þ

where ϕj;mðzÞ and ϕ̄j;m̄ðz̄Þ are the holomorphic and anti-
holomorphic highest-weight state components of the spin j
field. The symmetry Z2 could be identified with the center
of either the holomorphic or of the antiholomorphic SUð2Þ
gauge group. With the identification (3.10), we have

Δσ ¼
2jðjþ 1Þ
kþ 2

; j ∈
Z
2
: ð3:11Þ

At Δσ ¼ 1=5; 2=7 there are no solutions with integer k and
half-integer j of (3.11). For the remaining rational values in
(3.3) we have an infinite number of solutions with
increasing values of j and k. Solutions with j > 1=2 have
more than one relevant Z2-even scalar exchanged in the
σ × σ OPE. On the other hand, for j ¼ 1=2 we get only one
relevant Z2-even scalar with19

Δϵ ¼
4

kþ 2
: ð3:12Þ

This occurs for four of the values reported in (3.11):

�
k ¼ 3;Δσ ¼

3

10

�
;

�
k ¼ 4;Δσ ¼

1

4

�
;

�
k ¼ 8;Δσ ¼

3

20

�
;

�
k ¼ 10;Δσ ¼

1

8

�
: ð3:13Þ

This quick detour on some well-known 2d CFTs shows
the importance of reducing the space of viable theories by
demanding only one relevant scalar. Needless to say, the
space of CFTs is vastly larger than the three classes we
discussed, so it is likely that other CFTs with σ operators
with scaling dimensions as in (3.3) and only one relevant
Z2-even scalar exist.
Results in d ¼ 2 We report in Figs. 5 and 6 the location

of the end-minima found with lmax ≤ 8 in the ðΔσ;ΔϵÞ and
ðΔσ; c)-planes, respectively. The end-minima belong to
different sectors, all of them contained in 4 4 3 2 1.

18In our normalizations, like those of [25], the self-dual radius
is R2 ¼ 2.

19We also have marginal scalars with Δ ¼ 2 associated to the
JJ̄ operators arising from the identity character.
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Most of the end-minima are aligned along two approx-
imately straight trajectories in the ðΔσ;ΔϵÞ-plane. The blue
end-minima are along the upper extremal bootstrap bounds,
while the green ones are aligned along the GFT line, despite
the constraint ΔT ¼ 2.
Let us first discuss the blue end-minima. Two less

significant blue end-minima appear above the extremal
line in the disallowed region, indication of being fake end-
minima not associated to CFTs. The rest are in good
agreement with the bootstrap bounds.
It is reassuring that, among such end-minima, we

reproduce the first four minimal models (red crosses in
Fig. 5), with the field identification as in (3.7) discussed

before. The remaining four points along the line correspond
instead to the so called generalized minimal models [16],
i.e., nonunitary minimal models obtained by analytically
continuing the CFT data appearing in the 4-point correla-
tion function from integer values of m (minimal models) to
real values of m (generalized minimal models). Such
theories are visible in the conformal bootstrap, despite
the enforcement of unitarity, because the OPE coefficients
squared of the exchanged quasiprimaries have been con-
jectured in [16] (see also [31]) and then proved in [24], to
be positive for any m.
Given (3.7), the blue end-minima should be aligned

along the line

Δϵ ¼
2

3
þ 8

3
Δσ: ð3:14Þ

In terms of the central charge, we have

c ¼ 9Δσ

Δσ þ 1
− 4Δσ: ð3:15Þ

We compare in Fig. 6 the central charge (3.15) with the one
extracted from the OPE coefficient λσσT by means of the
relation

c ¼ d
d − 1

Δ2
σ

4λ2σσT
; ð3:16Þ

valid for general d dimensions. We see that the agreement is
very good, despite the severity of our truncation, and
confirm also the identification of such end-minima with
generalized minimal models.
As a further check we compare in Fig. 7 the OPE

coefficient squared λ2σσϵ with the one analytically found for
such models in Appendix B of [16]. The good agreement

FIG. 5. d ¼ 2. Location of the end-minima with lmax ≤ 8 in the
(Δσ ;Δϵ)-plane. The end-minima belong to different sectors all of
them contained in 4 4 3 2 1. The dashed orange line corresponds
to the bounds obtained in [24] assuming only one Z2-even
relevant scalar. All the end minima correspond to local theories
ΔT ¼ 2, Δ0

T ≥ 3.

FIG. 6. Central charge c as a function of Δσ for end-minima
with lmax ≤ 8 in d ¼ 2. The end-minima belong to different
sectors all of them contained in 4 4 3 2 1. Comparison of our
results to the analytic expectation (3.15) (red line) for the
generalized minimal models. All the end minima correspond
to local theories ΔT ¼ 2, Δ0

T ≥ 3.

FIG. 7. d ¼ 2. Comparison between the OPE squared coef-
ficient λ2σσϵ numerically determined from the blue end-minima in
Fig. 5 and its analytic expression for generalized minimal models
(red line) [16], as a function of Δϵ.
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found is yet another indication of the accuracy of our
determination and of the nature of the blue end-minima.
The only exception is the minimum at Δσ ¼ 7=40, which
falls slightly above the SDPB bounds in Fig. 5 and its
values of c and λ2σσϵ in Figs. 6 and 7 are slightly misaligned
with those of the generalized minimal models. We expect
this to be due to some numerical artifact and that a more
thorough study will find a lower action minimum that better
agrees with the theoretical values.
Let us now discuss the green end-minima of Fig. 5. In

contrast to the blue ones, we do not have a convincing
explanation for the nature of these end-minima as local
CFTs, assuming they are not numerical artifacts. Most of
them lie on the GFT lineΔϵ ¼ 2Δσ . A notable class of local
CFTs that have in their spectrum operators with scaling
dimensions related in this way are N ¼ 2 CFTs. It would
be interesting to understand if the green points along the
GFT line (or some of them) can be identified as N ¼ 2
supersymmetric minimal models, provided an appropriate
identification of σ is made. This analysis would probably
require also to understand whether generalized N ¼ 2
minimal models, in the spirit of [16], exist and can be
constructed.
Despite the fact that we enforced the presence of an

energy momentum tensor, the green end-minima along the
GFT line could simply be an approximation of GFTs
themselves. This observation is supported by the fact that if
we remove the gap assumption ΔT 0 ≥ 3 most of the green
minima are unstable. In particular, λ2σσT ∼ 0 and ΔT 0 ≈
2Δσ þ 2 effectively replaces T as the first spin-2 operator.
Similarly, if we do not assume the existence of an energy
momentum tensor, most minima turn out to be GFTs. As
we will see in the next subsections, the analog of the green
points in Fig. 5 will not occur in d > 2when we enforce the
presence of an energy-momentum tensor.
It is useful to also report the spectrum of SLð2;CÞ-

primary operators which appear at the end-minimum at a
given truncation. We report as an example in Fig. 8 the full

spectrum of some end-minima found at Δσ ¼ 1=8; 1=5
(two in each case). The operators associated to the same
end-minimum are connected with lines. In the Ising case,
where the identification of the end-minima with the Ising
model is quite convincing, we see how the agreement of the
whole low-lying spectrum is quite accurate, with small
deviations occurring for higher-spin operators in the first
Regge trajectory (the spin-8 orange diamond) or for
operators in the second Regge trajectory (the second
spin-0 green diamond, the second spin-4 orange diamond).
In the GFT-like case, as already mentioned, we do not

have a convincing explanation for the nature of such
theories. Despite having enforced the presence of a spin
2 operator at Δ ¼ 2, we can see from the right panel of
Fig. 8 that the spectrum resembles roughly the one of
GFTs. The presence of more operators with respect to the
Ising case makes the accuracy of the numerics less accurate.
In particular, it is not possible to disentangle if the significant
deviations from the GFT spectrum at higher Regge trajecto-
ries are, in addition to numerical noise, due trivially to the fact
that we have imposed the presence of a nonexistent operator
(the stress-tensor), or because the theory under question is in
fact distinct from a GFT. See Appendix C for some further
details, in particular for examples of selected branches, the
endpoints of which correspond to the blue and green end-
minima discussed above.
It is well possible that other theories with a relatively

sparse spectrum satisfying our assumptions (or effectively
doing it, like the generalized minimal models) might have
not been found by our search protocol, given also the
limitations imposed by machine precision computations
and the small values of Δ� and NOps we sampled. Possible
theories of this kind are for instance the SUð2Þk WZW
models (3.13) with the field identification (3.10).

2. d = 3, 4

In d ¼ 3 we run our protocol for the following values
of Δσ:

FIG. 8. Full spectrum of selected end-minima in d ¼ 2 with ΔT ¼ 2 and ΔT 0 ≥ 3. Left: Ising-like end-minima. Right: GFT-like end-
minima. The colors and the lines connect operators within the same end-minimum. For comparison we also report the exact scaling
dimension of the 2d Ising and GFT with purple lines.
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Δσ ¼ 0.5; 0.505; 0.51; 0.5181489; 0.524; 0.53;

0.535; 0.54; 0.545; 0.55; 0.555; 0.56; 0.565: ð3:17Þ

We plot in Fig. 9 the end-minima found in the ðΔσ;ΔϵÞ-
plane, with ΔT ¼ 3, ΔT 0 ≥ 4, Δϵ0 ≥ 3. All the end-minima
lie at the extremality bound, like in the d ¼ 2 case. In
contrast to the latter, no end-minima along the GFT line
appear, while we find a couple of faint end-minima with
Δϵ < 1, below the GFT line.20

Reassuringly, we get end-minima in correspondence of
the 3d Ising model, which sits at the kink of the dashed
orange lines. End-minima are found for all the Δσ in (3.17)
with the exception of Δσ ¼ 0.505. The lack of an end-
minimum at such value is due to the imposed gap Δϵ0 ≥ 3.
Indeed, by repeating the MC analysis of Sec. III Awith Δσ

unconstrained assuming Δϵ0 ≥ 3, the “flow” toward the FT
passing through the valley connecting the Ising point with
the FT in Fig. 1 gets interrupted aroundΔσ ¼ 0.510. This is
an indication that possible extremal CFTs with 0.5 ≤ Δσ ≤
0.510 do have more than one Z2-even scalar.21

We plot in Fig. 10 the central charge of the end-minima,
computed using (3.16), as a function of Δσ . The dashed
orange lines delineate the rigorous lower bound of [31].
Most of the end-minima in Figs. 9 and 10 lie in the
forbidden region, slightly in the former case and more
evidently in the latter. This difference should not come as a
surprise, since it is known that the bounds on the central
charge are more sensitive than those on Δϵ to higher
dimensional operators. Compare e.g., Figs. 3 and 4 of [19]

to appreciate the different convergent properties of the two
bounds as the degree of truncation is varied.
The spectra associated to the branches with

Δσ ¼ 0.5181489, 0.53 is reported in Fig. 11. In the left
panel we also report as reference values the Ising spectrum
found in [11] using the extremal functional method (purple
lines). The operators associated to the same end-minimum
are connected with lines. In the Ising case we see how the
accuracy is significantly worse with respect to the 2d case.
We have a reasonably good agreement of the low-lying
spectrum in the first Regge trajectory, but the remaining
operators have a significant indeterminacy. Similarly, in the
right panel of Fig. 11 the operators in the first Regge
trajectory agree among the two orange and green branches,
but significantly differ at higher levels.
In d ¼ 4 we run our protocol for the following values

of Δσ:

Δσ ¼ 1; 1.05; 1.1; 1.15; 1.2; 1.3: ð3:18Þ

Due to the limited numerical accuracy of our protocol in
d ¼ 4 we just report in Fig. 12 the end-minima found in the
ðΔσ;ΔϵÞ-plane with ΔT ¼ 4, ΔT 0 ≥ 5, Δϵ0 ≥ 4, with
lmax ≤ 10. Once again we have end-minima along the
extremality bound but it is interesting to see how our
minima satisfy the older bounds (with less derivatives) of
[1] but are slightly excluded by the bounds in [32].
Interestingly enough, for each value of Δσ sampled we
also find end-minima below the GFT line.

D. Nonlocal theories

In this subsection we analyze the structure of the minima
found when relaxing the condition ΔT ¼ d. The most
notable and exactly calculable nonlocal theory is the
GFT. At a given Δ� the number of operators in the GFT

FIG. 9. d ¼ 3. Location of the end-minima with lmax ≤ 10 in
the ðΔσ ;ΔϵÞ-plane. The end-minima belong to different sectors
all of them contained in 4 4 4 3 2 1. The dashed line is the upper
bound for Δϵ from [22].

FIG. 10. Central charge c as a function of Δσ for end-minima
with lmax ≤ 10. The end-minima belong to different sectors all of
them contained in 4 4 4 3 2 1. The rigorous lower bounds are
taken from [31]. The color code of the end-minima is the same as
in Fig. 9.

20At low lmax we get an entire line of minima, but these do not
create consistent branches. As we will see later when discussing
nonlocal theories, end-minima along the GFT line are reassuringly
found when we fix ΔT ¼ 2Δσ þ 2 (the GFT value), as expected.

21Note that this region is devoid of not only end-minima, but of
minima at all.

MONTE CARLO APPROACH TO THE CONFORMAL BOOTSTRAP PHYS. REV. D 106, 025019 (2022)

025019-15



spectrum is larger than the maximal truncation we consid-
ered in this paper. Although in principle this rules out the
possibility of finding exactly the GFTas end-minima in our
approach, the limitation is only theoretical, considering that
our numerical accuracy does not anyhow allow to precisely
determine operators beyond the first Regge trajectories, as
we have seen. In fact, we will find end-minima which seem
quite compatible with the leading operators of the GFT at
different values of Δσ.
The landscape of end-minima is now much richer and

cover most of the allowed region. Interestingly enough,
along the ΔT direction we find that there is a clear tendency
of the minima to cluster around ΔT ≈ 2Δσ þ 2, see
Fig. 13(a) for d ¼ 2 (a similar phenomenon occurs in
d ¼ 3 and d ¼ 4), where we report the distribution of the
end-minima in the ðΔσ;ΔTÞ plane. As can be seen, we have
many more end-minima with respect to those found when
ΔT ¼ d and ΔT 0 > dþ 1 were imposed. Interestingly

enough, most end-minima have d ≤ ΔT ≤ dþ 2Δσ . Note
that only for a limited range in Δσ , end-minima with ΔT ¼
d are found. This is particularly evident in d ¼ 2, where an
end-minimum at ΔT ¼ 2 is found only at Δσ ¼ 1=8. This
signals the fact that the extremal end-minima associated to
the (generalized) minimal models with m > 3 found in
Sec. III C 1 become unstable when we relax ΔT and move
toward the GFT region. In panel (a) of Fig. 13 two specific
end-minima points have been singled out at Δσ ¼ 1=8
(green circle) and at Δσ ¼ 3=10 (red circle). They have
been selected as those resembling most closely the GFT
conformal data using (3.19) as criterion. The truncated
spectrum at those points is reported in panel (b) of Fig. 13.
Note the good agreement beyond the first Regge trajectory,
in particular in the scalar sector where the first three scalars
are well reproduced in both theories.
We have also explored the effect of fixing the scaling

dimension of the first spin 2 operator at the exact GFT
value, still assuming ΔT 0 ≥ dþ 1. This is useful to under-
stand whether minima at fixed ΔT are “harder” to reach
than similar points when ΔT is allowed to vary. We show
these results in Fig. 14 for the d ¼ 3 case, where the blue
circles are obtained at ΔT ¼ 3 and are the same as in Fig. 9,
while the red ones are those arising at ΔT ¼ 2Δσ þ 2. The
red end-minima align along the GFT line, as expected, but
they spread a wider area, which however does not include
the extremality region. Similar considerations apply also in
d ¼ 2 and d ¼ 4.
We saw in Fig. 13(a) that some of the minima found by

our protocol at Δσ ¼ 1=8 do resemble local theories,
although they are clearly disfavored in front of the GFT-
like ones. We would like to determine more precisely how
well we reproduce local theories when no constraint on ΔT
is imposed. This can be attained by taking the 2d Ising
theory and the GFT as reference points and defining a
distance measure between our minima and these exactly
known CFTs. We will here take the scaling dimensions of
the first scalar and first spin-2 operators and their associated

FIG. 11. Left: full spectrum of the minima found at Δσ ¼ 0.5181489, ΔT ¼ 3 that resemble the critical Ising model in d ¼ 3. Ising
reference values taken from [11]. Right: full spectrum of the minima found at Δσ ¼ 0.53, ΔT ¼ 3 that have Δϵ below the GFT line. The
colors and the lines connect operators within the same end-minimum.

FIG. 12. d ¼ 4. Location of the end-minima with lmax ≤ 10 in
the ðΔσ ;ΔϵÞ-plane. The end-minima belong to different sectors
all of them contained in 4 4 4 3 2 1. The dashed orange and
purple lines correspond to the bounds obtained in [1,32],
respectively.
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OPEs coefficients, and compute the average relative error
with respect to those of the known theory:

Qðvmin; vexactÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

�
vimin − viexact

viexact

�
2

vuut ; ð3:19Þ

where v ¼ ðΔϵ;ΔT; λ2σσϵ; λ2σσTÞ.
In Fig. 15 we show how the blue circles reach configu-

rations that are not too far away from the 2d Ising theory
(roughly 10% mean relative error) but also cover configu-
rations which reproduce the leading conformal data of the
GFT even better than the MC which had ΔT ¼ 2þ 2Δσ to
begin with. Finally, Fig. 15 supports the interpretation of
the green minima in Fig. 5 to be “images” of the GFT, since
we can appreciate that they correspond to solutions which
reproduce the conformal data of this theory with an error of
less than 10%.

E. A taste of nonunitarity: The 2d Yang-Lee model

The MC search protocol of Sec. II C does not rely on
unitarity. Although we mostly focus on unitary models in
this paper, we would like to briefly show here a proof of
concept of its use in the nonunitary realm, by checking that
the d ¼ 2 Yang-Lee (YL) model can easily be found using
our method. Nonunitary theories have received less atten-
tion from the bootstrap community due to their non
tractability with linear or positive semidefinite program-
ming methods. The best approach so far to solve nonunitary
theories with the conformal bootstrap is given by [33,34],
which also severely truncates the crossing equations
(as we do). As is well-known, the d ¼ 2 YL model can
be described by the nonunitary minimal model Mð5; 2Þ,
which contain only two Virasoro primaries related by the
following fusion rule:

Φ ×Φ ∼ 1þΦ: ð3:20Þ

(a) (b)

FIG. 13. (a) End-minima in d ¼ 2 with no condition on ΔT besides unitarity. (b) Spectra for the closest match to the GFT for
Δσ ¼ 1=8; 3=10. The colors and the lines connect operators within the same end-minimum. Purple lines represent the theoretical values
of the GFT at that Δσ .

FIG. 14. d ¼ 3. Same as Fig. 9 but we also show with red
circles the minima found by fixingΔT to the GFT value. Note that
we show here in blue all the end-minima that in Fig. 9 were
reported in blue and green.

FIG. 15. Distance of different end-minima to the d ¼ 2 Ising
and the GFT with Δσ ¼ 1=8. The quantity Q is computed
according to (3.19) for end-minima with ΔT ¼ 2; 2þ 2Δσ and
those in which ΔT is determined dynamically.

MONTE CARLO APPROACH TO THE CONFORMAL BOOTSTRAP PHYS. REV. D 106, 025019 (2022)

025019-17



This means in practice that the external dimension Δϕ will
also be the scaling dimension of the first exchanged scalar
and that we must not impose positivity of the OPE
coefficients.
We launched a Metropolis Monte Carlo search with T ¼

0.5 and a spectrum 3 1 2 1 (Δ� ¼ 9) to sample a parameter
space close to the one containing the exact CFT data of
the 2d YL model. We find that the global minimum is
compatible with the exact values, as can be seen in Fig. 16
for Δϕ and Δ4 (the first spin 4 operator). At the global
minimum the other operators show also similar agreements
with the exact values.
We note in passing that in d ¼ 3, if we relax the

positivity constraint on the OPE coefficients, a search with
a 1 1 1 1 spectrum shows another basin of attraction
besides those discussed in Sec. III B. The basin is in a
region well below the unitarity bounds for Δσ and lies
roughly along the line Δσ ¼ Δϵ. Besides being an interest-
ing feature of the landscape in itself, we consider this to be
an indication that the d ¼ 3 YL model should also appear
as a minimum if investigated with our method.

IV. OUTLOOK

Motivated by the pressing need of a tool to explore the
inner part of the allowed space of CFTs, we have
introduced in this paper a method based on a stochastic
minimization via a Metropolis algorithm to find approxi-
mate numerical solutions with a sufficiently sparse spec-
trum of operators to truncated bootstrap equations for CFTs
in arbitrary dimensions. Given an initial value of scaling
dimensions for a reduced set of primary operators up to
some scaling dimension Δ�, the action (2.6) is minimized
and an approximate set of CFT data found.
While for all physical CFTs we should eventually have

F ¼ eS → 0 in the limit when all operators are taken into

account, at fixed operator truncation the rate in which this
limit is reached does matter. For instance, we have seen that
for arbitrary severe truncations of the operator spectrum,
the free theory minimum dominates over all and no other
theory can be found, see e.g., Fig. 1. In order to find other
theories, extra conditions, such as fixing the external
operator dimension, have to be imposed. It is clear that,
at fixed truncation, not all CFTs are equally accessible,
even assuming the same sparsity of spectrum. We expect
that a richer set of solutions can be found by generalizing
our method to multiple correlators and by imposing further
constraints that would halt the MC evolution toward
specific attractors (e.g., the extremality line or the GFT
line in d ¼ 2). Though we mostly focused on unitary
theories, the method does not rely on it and can efficiently
be used in the nonunitary realm. This is particularly
important considering that for nonunitary theories we still
do not have rigorous numerical protocols. It would be
interesting to see how our numerical method performs with
respect to Gliozzi’s method [33,34] and its subsequent
versions [35,36]. The aim of this work is very similar to
that of [14,15], where approximate solutions to crossing have
been achieved using a similar logic but a different technique
(reinforcement learning instead of MC techniques). It would
be interesting to systematically compare the two approaches.
In this work the bootstrap equations have been evaluated

in a given sample of points in cross-ratio space. This choice
has been primarily dictated by the flexibility, when devel-
oping the algorithm, of changing the number of points and
the possibility (used in earlier versions of the code) of
sampling stochastically these points. The actual perfor-
mance of the code sensitively depends on how points in
cross-ratio space are chosen. It would be interesting to
further improve on this aspect. In particular, an improve-
ment could result by choosing derivatives evaluated at the
crossing symmetric point z ¼ z̄ ¼ 1=2, as currently done in
functional bootstrap studies.
The FORTRAN-code used in this work is limited to

machine-like precision. While this allowed us to perform
extensive MC searches at little cost, limited precision does
not allow us to systematically increase the value of Δ� and
NOps. For example we do not have enough accuracy to
understand the nature of the green end-minima we found in
2d (Fig. 5), whether they are unidentified local CFTs of
some kind or some sort of numerical artifacts resembling
GFT theories. For d > 2 the accuracy is even less and the
nature of the found end-minima is yet to be understood.
Despite the limited accuracy of the algorithm, we think the
results of this paper have shown that the method works.
Upgrading the current code to arbitrary precision will be
the key for a fully working program and is the most
important thing to do in the near future. We believe this is
feasible, given the ample room for improvement of the code
performance in terms of speed.

FIG. 16. Projection of the value of the action S on the ðΔϕ;Δ4Þ-
plane. The lowest-action point visited by the MC at T ¼ 0.5 and
the exact values are shown as red and blue circles, respectively.
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In summary, we hope that the nonrigorous approach
initiated in this work, properly extended and improved,
might be a useful tool to navigate in the space of allowed
CFT and guide subsequent analysis performed using more
rigorous numerical algorithms.
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APPENDIX A: NEWTON RHAPSON
MINIMIZATION

The Newton-Rhapson algorithm is a way of finding
the local minima of C2-functions with a positive definite
Hessian H. We will now discuss the basic idea behind this
method and the implementation used in this work. For a
detailed explanation the reader is suggested to consult [20].
In short, the method uses the Hessian matrix to approxi-

mate the function to be minimized up to quadratic order and
solves iteratively for the minimum of this hyper paraboloid.
In this work a modified version of this method is used
(known as the Levenberg-Marquardt algorithm [37,38]), in
which a damping factor β interpolates between gradient
descent and the bare Newton-Rhapson method, avoiding
the overshooting of the minimum when very close to it.
This is necessary because due to numerical noise some
eigenvalues of the Hessian might not be positive, which
violates the conditions for the convergence Newton-
Rhapson method.
More concretely, let fðxÞ∶Rn → R be a twice-differ-

entiable function. Given an initial guess x0 we find the next
point by using the following formula:

x1 ¼ x0 − ðHðx0Þ þ β1Þ−1 ·∇fðx0Þ: ðA1Þ

At each step, if fðx1Þ < fðx0Þ then β is decreased by a
factor of 3. Otherwise it is increased by a factor of 2. This is
known in the literature as “delayed gratification” [39] and
gives stable results in the minimization problems explored
in this work.
The factor β also gives the termination condition for the

algorithm: when β > 106 it is clear that a stationary point
has been reached.

APPENDIX B: IMPLEMENTATION DETAILS

The protocol detailed in Sec. II C was implemented in a
series of automatized bash scripts that used Julia for the
data processing and FORTRAN90 (compiled with ifort
v2021.2) for the numeric evaluation of the action and the
different minimization algorithms. LAPACK was used for
the linear algebra manipulations. They were run on Intel
XeonTM processors in an institutional cluster. The CPU
time to run 108 steps was of roughly 12 hours for
representative spin partitions. The parameters used in the
searches are shown in Table IV.
In order to provide the technical details wewill discuss in

the following subsections the different elements of our
pipeline and their implementation.

1. Numerical evaluation of S

We start by discussing the approximation and numerical
evaluation of (2.6). We describe each of the approximations
used in order to render computationally feasible sampling
Oð108Þ points in ∼10 hours on a single CPU.

a. Discretization in z

The grid is parametrized as z ¼ x0 þ anþ y0 þ ibm
with m; n ∈ N and x0 ¼ 1=2þ 1=1000, y0 ¼ 1=1000. In
this work we used a ¼ 1=100 and b ¼ 1=50 but in the
computation of S only a randomly chosen sample of nZ
points was considered. This was done by ordering them
with respect to their value of λ and then sampling this list.

TABLE IV. Summary of the relevant parameters for the wide searches (first step of the protocol).

Parameter Value(s) Description

nZ 200 Number of points taken in the z-plane.
lambda0 0.42 Size of the region in which the points are sampled.
NT 2 × 108 Number of steps (MC time).
positiveOPEs true Enforcement of real OPE coefficients.
externalInOPE false Fixing the first exchanged scalar to be equal to the external operator.
Temp 0.3–0.9 Temperature (T) of the Metropolis Monte Carlo algorithm.
MCstep 0.001 Overall scale factor for the MC-step.
wall 104 Constant for the quadratic penalty that enforces the bounds on Δi.
frameRate 1000 The MC saves one out of frameRate steps as a frame.
nops 3–20 Number of operators (besides the identity).
boundaries ½Δunit:; Δ�� Range to which each operator is constrained.

MONTE CARLO APPROACH TO THE CONFORMAL BOOTSTRAP PHYS. REV. D 106, 025019 (2022)

025019-19



b. Truncation of the spectrum

This was implemented by passing to the FORTRAN

routine the list of the spins of each operator in the
truncation under study. It is in this step that we input
important parameters such as the spin partition, Δ�
and lmax.

c. Evaluation of the conformal blocks

The conformal blocks were tabulated using 160 digits of
internal precision in MATHEMATICA and stored as plain text
files for each l. In d ¼ 2, 4 we used the closed expressions
in terms of hypergeometric functions [17]. For d ¼ 3 the
recursion relations implemented as in [40] were used. For
each point in z we computed the CBs at 5000 points evenly
spaced in ½ΔunitðlÞ − 99=100;Δ�� with Δ� ¼ dþ 15. We
note in passing that this gives a lower bound on the error in
our determination of the scaling dimensions (Δ) of the
exchanged operators. In the FORTRAN code, the interpola-
tion is done with cubic splines.

d. Determination of the OPE coefficients

Once the matrix of the conformal blocks for each z and
operator ðΔ;lÞ has been computed, the determination of
the OPE coefficients is then a weighted least squares
problem which we solve using LAPACK (see (2.7).
If positiveOPEs is true, this is not the end of the

story because the OPE coefficients that solve the quadratic
problem might as well be negative. To enforce unitarity, we
iteratively decouple the offending operators until every
OPE coefficient is positive. It is important to underline that
this is done at each point evaluated in our algorithm, and
thus operators do not decouple for the whole test but only
for those particular configurations.

e. Computation of S

As described in Sec. II, we obtain S by taking the
logarithm of the sum of the squared residuals. If any
operator has a Δ outside its allowed boundaries we impose
a quadratic penalty that is then added to the action. This
guarantees the analyticity of our potential and thus avoids
noxious boundary effects.
More concretely, suppose an operator bound to be in the

interval ½Δ0;Δ1� has Δ < Δ0. In that case, the effective
action will be

Seff ¼ Sþ wallðΔ − Δ0Þ2;

where the constant wall is set to 104.

2. Numerical error

After all the approximations discussed above, reasonable
doubt could remain about the accuracy of S computed with
our method. Thus, we consider it necessary to quantify the
magnitude of the numerical errors in our implementation.

We accomplish this by computing S at representative points
with our framework and by comparing them to the values of
S obtained in Mathematica with arbitrary precision.
From this analysis we conclude that the action computed

withMathematica is systematically lower than the approxi-
mated one using our FORTRAN implementation. However,
the discrepancy is such that at the values of Δ� studied in
this paper we can still trust the results. Naturally, the errors
become larger for bigger NOps andΔ�, but even in the cases
with the worst agreement the relative errors are smaller than
10−3. Moreover, the largest discrepancy sets a natural lower
bound for T, since we must allow for fluctuations of this
height in order not to wrongly identify artifacts as minima.
For example, in d ¼ 3 the minimum temperature for
lmax ¼ 6 is T ∼ 10−4, whereas for lmax ¼ 8 is T ∼ 10−3.
We note that this resolution is likely enough for any
physical minimum, given that in the Δ� → ∞ limit any
physical theory should have S → ∞.
As an example, we show in Fig. 17 the relative error

computed for 104 gaussian perturbations of a local mini-
mum in sector 2 2 1 1 1 for d ¼ 3, λ0 ¼ 0.42 and
nZ ¼ 200. The fact that the error is mostly negative can
be easily understood from the delicate numerics of the
bootstrap equations. It is known that in order to solve (2.1)
to a high degree of precision, very fine-tuned cancellations
between the terms must occur. When using our double-
precision interpolation of the blocks, there will be points
where these errors will spoil the cancellations and thus the
value of S can only be bigger than the “exact” one.
Another point that deserves discussion is the determi-

nation of the OPE coefficients (ρ in eq. (2.6)). Solving for ρ
amounts to finding the minimum of a quadratic form. We
find that the curvature of this form is very anisotropic, with
hierarchies of as much as 10 orders of magnitude. This is in
fact one of the main bottlenecks to adding too many

FIG. 17. Distribution of the relative error defined as
SMathematica − SFORTRAN. The action was evaluated at 104 points
normally distributed around an apparent local minimum in d ¼ 3
with spin sector 2 2 1 1 1, λ0 ¼ 0.42 and nZ ¼ 200. Note the
long tail for negative values.
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operators: the curvature of the subleading operators at some
points becomes too small to be resolved with double
precision and the OPE coefficient of these operators cannot
be reliably determined.

3. Ideal temperature

As mentioned earlier in Sec. II, the key step of our
protocol is the wide search performed using the Metropolis
Monte Carlo algorithm. In order for this step to be efficient
the temperature must be chosen wisely. To this end we
performed test searches for different values of d, NOps and
Δ�, where several different temperatures were used. Then,
we determined by inspection the ideal one in each setting,
according to the criterion described in Sec. II C.
In Fig. 18 we show a concrete example of how to identify

the ideal temperature. We show “cold,” “hot” and just right
temperatures in blue, red and green (respectively). We can
see clearly that the blue line “freezes” into the first local

minimum found by the MC and then stays there for the
whole test, whereas the red trajectory travels back and forth
randomly. We consider the green trajectory to be repre-
sentative of an efficient search because it oscillates around
local minima for some time before making a transition into
another one. While this could mislead the reader into
thinking that the time spent oscillating around a local
minimum is in some sense “wasted” one must bear in mind
that during those steps, the MC effectively samples the rest
of the scaling dimensions, thus refining the solution to
crossing in that neighborhood.

APPENDIX C: MINIMA AND END-MINIMA

In this appendix we illustrate the relation between
minima and end-minima. As discussed in the main text,
end-minima are defined as those special minima which are
the endpoints of branches. The latter are a set of akin
minima, supposedly associated to the same CFT.

FIG. 18. Sample trajectories for MC runs at different temperatures. Left: value of the action S of the points visited. Right: scaling
dimension of the lightest exchanged scalar operator. This particular test was done in d ¼ 3 by taking Δσ ¼ 0.519 fixed, with a spin
partition 3 2 2 1 and Δ� ¼ 10. The trajectories are shown for T ¼ 0.05, 0.3, 0.9. In this case, T� ¼ 0.3.

(a) (b)

FIG. 19. Representative branches in d ¼ 2 local CFTs. (a) Location of individual minima (colored circles) with lmax ≤ 8 in the
ðΔσ ;ΔϵÞ-plane. The minima belong to different sectors all of them contained in 4 4 3 2 1. The dashed orange line corresponds to the
bounds obtained in [24] assuming only one Z2-even relevant scalar. (b) Value of the action as a function of Δ� for each branch. Color
codes are the same in the two panels. Namely, each minimum in (a) corresponds to a related small circle in (b) of the same color. The
purple Ising ref. branch is the one obtained by our protocol when starting from the exact scaling dimensions for the 2d Ising model.
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We report in the left panel of Fig. 19 the individual
minima found in d ¼ 2 for some selected branches at Δσ ¼
1=8 (Ising) and at Δσ ¼ 1=5 (GFT-like). Note the differ-
ence with respect to Fig. 5. There we reported only the end-
minima associated to the end-points of all the branches.
Here, we pick up a given branch and show all the minima
contained in it. Since most of these minima overlap in
Fig. 19 and similarly several branches overlap in Fig. 5
(detectable from the darker color of the circles), the
difference between the two figures can be overlooked at
first glance. In the right panel of Fig. 19 we report the value
of the action S for each of these minima making the
branches manifest. We also note in passing that the
spectrum at the end-minimum for each value of Δσ is
shown in Fig. 8 in orange (the green spectrum corresponds
to a similar spectrum not belonging to the same branch).
In order to have an estimate of how the action is

supposed to decrease with Δ�, we also report the branch
obtained by starting low T-MCs from several truncations of
the exact Ising scaling dimensions (purple squares in the
right panel of Fig. 19). This implies that there are several
minima in the vicinity of the exact Ising values and that our

protocol is able to find at least a subset of them. It is also
reassuring to see that the decrease in S of the branches
found and of the Ising benchmark branch are fully
compatible. The good behavior of the GFT-like branches
is the main reason why we believe such theories are not
numerical artifacts.
As further example we show in the left panel of Fig. 20

the individual minima for three selected end-minima in
d ¼ 3. The blue one corresponds to the Ising model, the
green one to the end-minimum below the GFT green line
and the olive one to one of the end-minima atΔσ ¼ 0.55. In
the right panel we show the value of the action S for each of
these minima (the color code indicates the different
branches).
We point out in passing that a consistent branch should

not necessarily be monotonically decreasing as Δ�
increases, because it can happen that minima with less
operators have a slightly higher Δ� than a related minima
with a denser spectrum. For instance, the green branch in
Fig. 20(b) would seem to “turn around” at the beginning,
but the important fact is that we make sure that minima with
more operators have strictly smaller S.
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