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We propose an approach to describe spontaneous symmetry breaking that does not rely on the order
parameter dependent free energy (Landau theory). We use the functional renormalization group evolution
of the explicitly broken theory, using a truncation scheme that is compatible with the Ward identities.
To represent the symmetry breaking, we propose to use the “Ward ratio” which is zero in the symmetric
phase and unity in the broken phase. In this approach a unified scale evolution of the effective potential is
applicable in both phases. It is peculiar that the scale evolution is accelerated in the critical regime.
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I. INTRODUCTION

We try to overview the problem of spontaneous sym-
metry breaking (SSB) from the point of view of functional
renormalization group (FRG). SSB is one of the most
successful proposals in many particle quantum mechanics
and quantum field theory (QFT). With the help of this
concept we could give an account for superconductivity [1],
superfluidity [2], Higgs mechanism, and weak gauge boson
masses [3] (and we could continue the list).
Usually we call a transformation symmetry, if under its

action the dynamics (for example the Hamiltonian) is
invariant [1]. It is still possible that the symmetry is not
manifested in the observables, then we speak about
spontaneous symmetry breaking.
To describe SSB, we may apply the Landau theory of

phase transitions [4]. We shall define the order parameter of
the symmetry, which is a microscopic observable that
transforms with an irreducible representation under the
symmetry transformation. We shall calculate the free
energy (effective potential) at a fixed value of the order
parameter. If the minimum of the effective potential is at an
order parameter value which is invariant under the sym-
metry transformation, then we are in the symmetric phase,
otherwise we are in the broken phase. In the broken phase
there must be multiple minima of the free energy, con-
nected by the symmetry transformation.
To implement Landau theory in quantum systems [1], we

need an order parameter operator whose ground-state

(vacuum) expectation value yields the value of the order
parameter. The order parameter operator transforms with an
irreducible representation of the symmetry transformation.
But its vacuum expectation value is still zero, if the vacuum
itself is invariant. Thus the order parameter may have
nonzero expectation value, if both the order parameter
operator and also the vacuum itself are not invariant under
the symmetry transformation. As it is usual to express, in
SSB the dynamics reflects the symmetry, but the ground
state (the vacuum) breaks it. As an immediate consequence,
there must be several vacua that are connected by the
symmetry transformation.
The concept of the order parameter, and the order

parameter dependent effective potential, however, some-
times lead to spurious consequences. Let us recall some of
the challenges.
(1) In quantum mechanics we have a theorem that the

ground state is unique, thus it must be a singlet state,
while in SSB the vacuum must change under the
symmetry transformation. This seems to be in
contradiction with the several vacua required by
the SSB. The only way out [5,6] is that there are
superselection classes with ground states jai where
these states are unitary inequivalent [i.e., there is no
physical (local) unitary transformation U that would
have nonzero matrix elements between these vacua].
The drawback of this solution is that, although it
makes it possible to have equal energy multiple
vacua, but the lack of communication forbids the
change between them by physical processes, even in
the presence of external fields. This means that we
are stuck to a single vacuum forever; this would
forbid for example the phenomenon of hysteresis. If,
on the other hand, the transition matrix elements are
not zero then a new singlet ground state is formed
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where the symmetry is not broken. Actually, this is
the problem of the quantum computers; maintaining
a state against decoherence effects, and the need to
change the states in order to perform computations
are two contradicting requirements.

(2) The effective potential, which is the effective action
for constant order parameter, is the result of a
Legendre transformation, and therefore it must be
convex [7]. If there are several minima with the same
energy, then convexity requires flat potential for a
certain domain. But the derivatives of the effective
potential at the minimum correspond to physical
quantities, for example the second derivative gives
the particle mass. A flat potential would yield
massless and free particles, which is clearly not
correct. Even in the presence of a small external field
which explicitly breaks symmetry, the curvature
mass remains close to zero, as opposed to the
observations.

(3) It is not clear that the effective potential is sensible at
all anywhere else than in the infinitesimal open
neighborhood of the vacuum. In gauge theories, for
example, the effective potential and its derivatives
are gauge invariant only at the physical point [8,9].

Although there are practical recipes to overcome these
difficulties, but they still exhibit a motivation to rephrase
the mechanism of SSB in a different language. In this
rephrasing we shall avoid all of the problems listed above.
To avoid problem one, we shall use a single vacuum,

which is the unique ground state of the system. To comply
with the problems of two and three, we shall use only the
infinitesimal neighborhood of the vacuum, where the
effective potential is strictly convex. Since we do not try
to include those regions into the domain where the effective
potential would be concave, no flattening will take place.
The price we have to pay is that in the vicinity of the

vacuum the effective potential is not manifestly symmetric
in the case of SSB. The remnants of the symmetry are the
Ward identities. This suggests that we shall use a descrip-
tion that can give an account for the Ward identities [10].
The other difficulty is that we lose the direct handle to the

background field. We can approach it indirectly, for
example through the nonsymmetric couplings or through
the Ward identities.
In this paper the above program is performed on the

simplest case, the Z2 symmetric quartic scalar model. In
order to describe the theory around the vacuum both in the
symmetric and the broken phase, we need to introduce also
symmetry breaking terms. Up to Φ4 power, the only
candidate is the cubic interaction.
The technique to obtain the effective action will be the

functional renormalization group [10], in the local potential
approximation (LPA) approximation. We will follow the
scale evolution of the couplings of the theory written up
around the physical vacuum, containing also symmetry

breaking terms. We also have to give an account to the
changing vacuum, this will result a small difference in the
FRG equations [11].
The paper will be organized as follows. In Sec. II we

overview the basic definitions of the regularization depen-
dent effective action, and its FRG evolution equation. In
Sec. III we demonstrate the method, how can one write up
the FRG evolution equation for a system with a changing
vacuum. The same computation with the standard tech-
niques is repeated in Sec. IV to convince the reader about
the correctness of the equations. In Sec. V we analyze the
typical behavior of the running, and demonstrate that the
structure of the Ward ratio indeed reflects the symmetry
group of the action. Section VI is devoted to the discussion
of the results, for the outlook and conclusions.

II. FUNCTIONAL RENORMALIZATION GROUP

In quantum field theory or in many particle quantum
theory, in order to calculate the effective action, we can use
the method where the quantum fluctuations are introduced
gradually. To this end we add a quadratic “regulator” term
Rk to the Lagrangian, where k corresponds to some scale,
and compute the partition function

Zk½J� ¼
Z

DΦe−S½Φ�−1
2

R
ΦRkΦþ

R
JΦ: ð1Þ

The regulator should satisfy in Fourier space

RkðpÞ ¼
�
0 for p ≫ k

large for k ≫ p:
ð2Þ

This means that small momentum fluctuations are sup-
pressed because they have a large effective mass. By
lowering k more and more low-energy modes are taken
into account. As we see, Zk½J� is a result of a quantum field
theory with a modified action.
From Zk½J� we compute the effective action using the

Legendre transformation

Γk½Φ� þ 1

2

Z
ΦRkΦ ¼ sup

J∈D

�Z
JΦ − lnZk½J�

�
; ð3Þ

where D is the domain of the J variable. We shall remark
that the Legendre transformation depends on the choice of
the domain. If we choose D to be an infinitesimal
neighborhood of the J ¼ 0 physical point, then Γk½Φ� will
be analytic and convex in the infinitesimal neighborhood of

Φ0ðxÞ ¼
δZ½J�
δJðxÞ

����
J¼0

: ð4Þ

We can follow the changing of the regulator with a
(functional) differential equation (Wetterich equation or
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FRG equation [10]). In the Euclidean case the Wetterich
equation for the effective action reads

∂kΓk ¼
1

2
∂̂kTr ln ðΓð2Þ

k þ RkÞ; ð5Þ

where ∂̂k acts on the k variable of the regulator only.1

Clearly the Wetterich equation is sensible only for the
domain where the second derivative exists.
To solve the FRG equations one usually assumes an

ansatz. One of the simplest choice is the LPAwhere the ΓðnÞ
proper vertices are assumed to be local for n > 2, andwe also
neglect thewave function renormalization term. In the scalar
model which will be our example theory, the ansatz reads

Γ½Φ� ¼
Z

ddx

�
1

2
ð∂μΦÞð∂μΦÞ þ UðΦÞ

�
: ð6Þ

Applying Litim’s optimized regulator [12] we arrive at the
equation for the evolution of the potential

∂kUk ¼ U0 þ
Ωdkdþ1

k2 þ ∂
2
ΦUk

;

Ω−1
d ¼ ð4πÞd=2Γ

�
d
2
þ 1

�
; ð7Þ

where the last Γ is the gamma function. To have numeri-
cally simpler form, we rescale Uk ¼ ΩdVk andΦ ¼ ffiffiffiffiffiffi

Ωd
p

φ
to obtain

∂kVk ¼
kdþ1

k2 þ ∂
2
φVk

: ð8Þ

III. EFFECTIVE POTENTIAL AROUND
THE VACUUM

As it was discussed in the Introduction, we want to
establish an FRG evolution for the effective potential,
expanded around the true vacuum situated at φ ¼ 0. To
accommodate to the changing position of the minimum (the
changing vacuum), we need to apply a slight modification
to the usual FRG equations (cf. [11]). We shall write

Vkþdkðφ − dkδAkÞ ¼ VkðφÞ þ dkRHS; ð9Þ

where δAk is a k-dependent constant, and RHS is the right-
hand side of (8). This means

∂kVk ¼ δAk∂φVk þ
kdþ1

k2 þ ∂
2
φVk

: ð10Þ

The task of the δAk term is to ensure that the minimum
stays at φ ¼ 0. This means that we have to ensure

∂φVkðφ ¼ 0Þ ¼ 0: ð11Þ

We also know that the effective potential is convex, at
least in a small neighborhood of the vacuum. This means in
particular

∂
2
φVkðφ ¼ 0Þ ≥ 0: ð12Þ

To avoid IR divergences, we use an approach where the
curvature is strictly positive (although we can be arbitrarily
close to zero).
Our model in this paper is the scalar model up to the

renormalizable Φ4 term. As we also discussed in the
Introduction, the effective potential is not symmetric in
the broken phase.We shall write therefore the LPA ansatz as

VkðφÞ ¼
m2

k

2
φ2 þ gk

6
φ3 þ λk

24
φ4: ð13Þ

Note that the linear term is missing, according to (11). If
gk ¼ 0, then Γ½φ� ¼ Γ½−φ�, so the action is Z2 symmetric;
if g ≠ 0 then the symmetry is broken. From the condition
(12) and the discussion after it, we will have m2

k > 0.
In (13) there is no difference between the spontaneous

and explicit symmetry breaking. The spontaneity of the
symmetry breaking is reflected by the Ward identity

g2k ¼ 3λkm2
k: ð14Þ

A formal derivation of this statement using the background
field method can be found in the next section. But in the
FRG evolution we shall recover this relation, if the
evolution leads from a symmetric regime to the broken
phase regime. This is in fact a consistency requirement of
the FRG evolution equations, cf. [10].
To solve (8) we have to take into account that the right-

hand side is not a polynomial, so we have to apply an
expansion, and truncate the resulting expression. We will
use the following recipe

1

k2 þ ∂
2
φVk

≈
1

ω2
−
∂
2
φVk −m2

k

ω4
þ ð∂2φVk −m2

kÞ2
ω6

þ…; ð15Þ

where m2
k ¼ ∂

2
φVð0Þ and ω2 ¼ k2 þm2

k, and we omit all
further terms. The justification of this truncation scheme is
that, as it will turn out soon, it is compatible with the Ward
identity (14).
With this truncation we can determine δAk from the

condition that there is no linear term

δAk ¼ kdþ1
gk

ω4m2
k

: ð16Þ

Then we obtain1That is ∂̂kf½Rk;Γk� ¼ ∂k0f½Rk0 ;Γk�jk0¼k.
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∂km2
k ¼

kdþ1

ω4

�
−λþ g2k

m2
k

�
1þ 2m2

k

ω2

��
;

∂kgk ¼
kdþ1gkλk
m2

kω
4

�
1þ 6m2

k

ω2

�
;

∂kλk ¼
6kdþ1λ2k

ω6
: ð17Þ

These are the equations that we propose to describe both
the symmetric and the SSB phase scale evolution.

IV. ALTERNATIVE DERIVATION OF THE
EVOLUTION EQUATIONS

In this section we give an alternative derivation for
Eq. (17), using the standard technique based on the
evolution of the field expectation value. After we know
the value of the background field, we can expand the
potential around the actual minimum.
In the symmetric phase we find

Vk ¼
1

2
m2

kφ
2 þ 1

24
λkφ

4; ð18Þ

and so

∂
2
φVk −m2

k ¼
1

2
λkφ

2: ð19Þ

We also find

∂kVk ¼
1

2
∂km2

kφ
2 þ 1

24
∂kλkφ

4: ð20Þ

Using (15) we obtain

∂km2
k ¼ −

kdþ1λk
ω4
k

; ∂kλk ¼
kdþ16λ2k

ω6
k

: ð21Þ

These equations are the same as (17) for g ¼ 0.
In the broken phase we have a background field Φk,

characterizing the position of the minimum of the potential,

Vk ¼
λk
24

ðφ2 −Φ2
kÞ2: ð22Þ

We expand the potential around the φ ¼ Φk minimum to
find

Vk ¼
λk
6
Φ2

kφ
2 þ λk

6
Φkφ

3 þ λk
24

φ4: ð23Þ

The curvature mass and the cubic coupling read

m2
k ¼

λk
3
Φ2

k; gk ¼ λkΦk: ð24Þ

From these equations the Ward identity (14) follows
immediately.
We obtain from (24)

∂
2
φVk −m2

k ¼
λk
2
ðφ2 −Φ2

kÞ ¼ λkϱ; ð25Þ

where ϱ ¼ ðφ2 −Φ2
kÞ=2. The k derivative of the potential

reads

∂kVk ¼
1

6
∂kϱ

2 −
λk
6
ð∂kΦ2

kÞϱ: ð26Þ

Then from (15) we find

∂kΦ2
k ¼

6kdþ1

ω4
k

; ∂kλk ¼
kdþ16λ2k

ω6
k

: ð27Þ

The equation for the curvature mass reads,

∂km2
k ¼

1

3
∂kðλkΦ2

kÞ ¼
kdþ12λk

ω4
k

þ kdþ16λkm2
k

ω6
k

: ð28Þ

Using the Ward identity (14), we find agreement
with Eq. (17).
We can collect the symmetric and the broken phase

equations introducing the “Ward ratio”

r2k ¼
g2k

3λkm2
k

¼
�
0 symmetric

1 SSB:
ð29Þ

Then (21) and (28) can be unified as

∂km2
k ¼

kdþ1

ω4
k

�
−λkð1 − r2kÞ þ λkr2k

�
2þ 6m2

k

ω2
k

��
: ð30Þ

Using the actual form of r2k we find

∂km2
k ¼

kdþ1

ω4
k

�
−λk þ

g2k
m2

k

�
1þ 2m2

k

ω2
k

��
: ð31Þ

This reproduces the first equation of (17).
We can also derive the evolution equation for the cubic

coupling. In the symmetric phase it is zero, in the broken
phase it is

∂kg2 ¼ r2k∂kðλ2kΦ2
kÞ ¼ r2k

�
kdþ112λ3kΦ2

k

ω6
k

þ kdþ16λ2k
ω4
k

�
: ð32Þ

By substituting λkΦ2
k ¼ 3m2

k we obtain,

∂kg2 ¼
kdþ12λkg2k

ω4
k

�
1þ 6m2

k

ω2
k

�
: ð33Þ

This reproduces the second equation of (17).
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V. RESULTS

Before we solve the equations numerically, we shall
analyze them qualitatively. First of all, since the derivative
of gk is proportional to gk, thus gk ≡ 0 seems to be a good
solution—at least for m2

k > 0. At m2
k ¼ 0, namely, the

g2k=m
2
k factors in (17) yield 0=0 expressions. And we can

also realize that at gk ¼ 0 the derivative of m2
k is negative,

so sooner or later we encounter this weird situation.
To avoid the singular behavior we shall start the running

of gk with a nonzero value. The numerical solution provides
the plot shown in Fig. 1. As we expected, the mass
decreases, and tries to cross zero. But when it decreases
below gk, the g2k=m

2
k term starts to dominate, and it

overcompensates the −λk term in the running of the mass.
Consequently, the mass start to grow again, an we get into
the broken phase.
We can also check, how well the Ward identities are

satisfied. Therefore we plot the Ward ratio of (29) in Fig. 2.
As we see, the Ward ratio almost immediately takes the
r2k ¼ 1 value characteristic for the SSB phase.
To understand the symmetry breaking better, we derive

an equation for the Ward ratio,

∂krk ¼
kdþ1

ω4
k

3λk
2m2

k

�
1þ 2m2

k

ω2
k

�
rkð1 − r2kÞ: ð34Þ

As we can see, the right-hand side is zero at rk ¼ �1 and at
rk ¼ 0. These are “partial fixed points”, meaning that
although the running has no fixed point, but a special
combination of them is still constant. The rk ¼ �1 are UV
stable, which means that if we increase the scale we run into
this partial fixed point. The rk ¼ 0 is IR stable, we
approach this partial fixed point by decreasing the scale.
The speed of change is proportional to 1=m2

k, which means
that in the vicinity of the phase transition point the change
in the Ward ratio is very fast.
We shall also emphasize that the physics at rk ¼ 1 and at

rk ¼ −1 are very similar. The two fixed points differ only in
the sign of the cubic coupling, and all correlation functions
are the same up to a sign. Therefore, theZ2 symmetry is not
manifested in the dynamics, but it is manifested in the
partial fixed point structure of the Ward ratio. This state-
ment is the analog of the standard wisdom, saying that the
symmetry is manifest in the dynamics, and it is broken by
the background field value.
A very interesting feature of the above equations is the

mass term appearing in the numerator. This means that the
process of approaching a fixed point is accelerated con-
siderably near m2

k ¼ 0 points. This is an example of the IR
divergences in the FRG equations.

VI. DISCUSSION AND CONCLUSIONS

The formalism derived in this paper uses exclusively the
parameters of the Lagrangian (effective action) to describe
SSB. Here we avoided all of the potentially problematic
consequences of the traditional treatment using Landau
theory, like the proliferation of the vacua or the flattening of
the effective potential. For our formalism to go through, the
effective potential need to be defined only in the infini-
tesimal neighborhood of the physical vacuum, which
domain is gauge invariant in the gauge theories.
In this scenario the symmetry is broken by an explicit

term in the action. In the symmetric phase the symmetry
breaking terms are zero, in the SSB phase they are nonzero.
In the Φ4 model studied in this paper, the only symmetry
breaking renormalizable term was the cubic Φ3 with a
coupling g. Here g ¼ 0 corresponds the symmetric, g ≠ 0
the broken phase. The Z2 symmetry is manifested in the
fact that for g → −g the correlation functions remain
the same.
It is very interesting how Ward identities appear in the

system. If we start from a symmetric phase, and the
symmetry breaking occurs through the scale evolution,
then in the broken phase the Ward identities are automati-
cally satisfied to a good precision. We can also study the
dynamics of the Ward identity by following the scale
evolution of the Ward ratio rk [cf. (29)]. The evolution

FIG. 1. Running of the coupling near the SSB point with
coupling values ðm2

0; g0; λ0Þ ¼ ð1; 10−6; 0.15Þ at k ¼ 0.

FIG. 2. This figure shows the fulfillment of the Ward identity in
a run with coupling values ðm2

0; g0; λ0Þ ¼ ð1; 10−6; 0.15Þ at
k ¼ 0. In symmetric phase we expect rk ¼ 0, in the broken
phase rk ¼ 1. Numerical solution support these expectations.
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equation shows partial fixed points, where the Ward ratio is
zero or �1. These partial fixed points can be used to
characterize the phase of the system, and as so they can
substitute the order parameter. The symmetry is either
realized in the spectrum, or it is realized in the partial fixed
point structure, transforming r ¼ þ1 to r ¼ −1.
We still have a handle to speak about “field expectation

value” using only the proper vertices, since

Φk ¼
gk
λk

; ð35Þ

and both gk and λk are well defined.
A very interesting property of the proposed equations is

the accelerated running around the scale where the phase
transition occurs, i.e., when m2

k ≈ 0. This is an “IR
divergence” in the FRG running equations, since the
running is coming from the correlation of large volumes.
This property assures also that the Ward identity, character-
istic for spontaneously symmetry breaking, will be satisfied

immediately after a phase transition, if we started from a
g ≈ 0 action. This is true despite the fact that the formalism
is not symmetric, only the initial state. From this point of
view a symmetry breaking is “spontaneous” if it comes
from an initial condition that is (almost) symmetric.
A possible consequence of this technique is that it can

give an account for a “classical” process, the formation of
the “classical field” purely based on notions that are
sensible in quantum theory. By generalizing this thoughts
we may get a better understanding of the measurement
theory where a quantum wave starts to behave as a classical
point mass.
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