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A proton is known for its longevity, but what is its lifetime? While many grand unified Theories predict
the proton decay with a finite lifetime, we show that the Standard Model (SM) and some versions of
ultraunification (which replace sterile neutrinos with new exotic gapped/gapless sectors, e.g., topological or
conformal field theory under global anomaly cancellation constraints) with a discrete baryon plus lepton
symmetry permit a stable proton. For the 4D SM with Lie group GSMq

≡ SUð3Þ×SUð2Þ×Uð1ÞỸ
Zq

of q ¼ 1, 2, 3, 6
and Nf families of 15 or 16 Weyl fermions, in addition to the continuous baryon minus lepton Uð1ÞB−L
symmetry, there is also a compatible discrete baryon plus lepton Z2Nf;BþL symmetry. The Z2Nf;BþL is

discrete due to the Adler-Bell-Jackiw anomaly under the BPST SU(2) instanton. Although both Uð1ÞB−L
and Z2Nf;BþL symmetries are anomaly free under the dynamically gauged GSMq

, it is important to check

whether they have mixed anomalies with the gravitational background field (spacetime diffeomorphism
under Spin group rotation) and higher symmetries (whose charged objects are Wilson electric or ’t Hooft
magnetic line operators) of SM. We can also replace the Uð1ÞB−L with a discrete variant Z4;X for X ≡
5ðB −LÞ − 2

3
Ỹ of electroweak hypercharge Ỹ. We explore a systematic classification of candidate

perturbative local and nonperturbative global anomalies of the 4D SM, including all these gauge and
gravitational backgrounds, via a cobordism theory, which controls the SM’s deformation class. We discuss
the proton stability of the SM and ultraunification in the presence of discrete BþL symmetry protection,
in particular ðUð1ÞB−L × Z2Nf;BþLÞ=ZF

2 or ðZ4;X × Z2Nf;BþLÞ=ZF
2 with the fermion parity ZF

2 .

DOI: 10.1103/PhysRevD.106.025016

I. INTRODUCTION AND SUMMARY

A proton is known for its longevity, but what is its
lifetime? The observed Universe is about 1010 years old,
while the proton mean lifetime is experimentally tested to
be more than 1030–1034 years [1–3]. To date, all experi-
ments that attempt to go beyond the Standard Model (SM)
[4–6] to observe proton decay predicted by grand unified
theories (GUTs) [7–9] have not yet succeeded. This
motivates us to ask the following questions and seek their
resolutions:
(1) Are there alternative routes to test GUTs, other than

conventionally seeking GUTs as effective field
theories that appeared at a higher energy unification?

(2) Can the proton be stable with an infinite lifetime?
What mechanism protects the proton from decay?

For the first question, Refs. [10–13] recently suggested
that instead of only increasing the energy scale from the SM
to higher energy looking for the GUT structure (imagining
tuning the energy scale along a vertical axis in a phase
diagram), we can indeed move from the Standard Model
(SM) vacuum to a neighbor GUT vacua via quantum phase
transitions [14] (imagining tuning the vacuum changing
parameters along a horizontal axis in a quantum phase
diagram at zero temperature). In Refs. [10–13] viewpoint,
the 4D SM and other GUTs are in the same deformation
class of quantum field theories [15], labeled by ðG;Z5Þ, the
symmetry G, and its anomaly Z5: in the limit when internal
symmetry is weakly coupled or ungauged, the SM and
GUTs could be labeled by an enlarged spacetime-internal
symmetry group G and a certain ’t Hooft anomaly [16] of
the symmetry G. In a modern quantum field theory (QFT)
language, ’t Hooft anomaly of the symmetry G in dD
spacetime is specified via the anomaly inflow [17,18] by a
ðdþ 1ÞD G-symmetric invertible topological quantum
field theory (TQFT) denoted as a cobordism invariant
Zdþ1 [19]. Thus, we can tune the SM via quantum phase
transitions to the neighbor GUT phases that necessarily
allow proton decays. Theoretically, those quantum vacua
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tuning parameters can be the sign flipping of the r
coefficient of the GUT-Higgs potential UðΦGUTÞ ¼
ðrðΦGUTÞ2 þ λðΦGUTÞ4Þ or the sign flipping of the fermion
mass.
For the second question, the proton longevity may be

protected by subtle symmetries of the QFT vacuum (low-
energy ground states). Those subtle symmetries, if found,
may not be accidental, but be exact—they seem global
symmetries at SM energy scales, but they should be
dynamical gauge symmetries [20] when approaching the
Planck or quantum gravity scales, due to “no global
symmetries in quantum gravity” reasoning (see a recent
overview [21]).
Those subtle symmetries likely are discrete symmetries,

subject to the nontrivial check of their anomaly matching or
cancellation that we will perform. These discrete sym-
metries and their anomalies were investigated in the past
(e.g., [22–25]), they are famous for having potential non-
perturbative global anomalies [26] (classified by finite
Abelian group Zn, detectable via large gauge/diffeomor-
phism transformations that cannot be continuously
deformed from the identity), in contrast to the familiar
perturbative local anomalies (classified by integer Z
classes, detectable via infinitesimal gauge/diffeomorphism
transformations continuously deformable from the identity,
captured by Feynman diagram calculations). These local
and global anomalies include gauge, gravitational, or mixed
gauge-gravitational anomaly types depending on whether
their path integral noninvariance is due to gauge or
gravitational background fields. But only recently, thanks
to the development of cobordism group classification of
anomalies, these global anomalies become systematically
computable [19,27–31].
Discrete symmetries and their global anomalies can

drastically challenge the paradigm that we used to think
of QFT vacuum. For example, if the baryon minus lepton
B −L vector symmetry or more precisely X ≡ 5ðB −LÞ−
2
3
Ỹ chiral symmetry [32,33] (with the integer quantized

electroweak hypercharge Ỹ) is a discrete Z4;X symmetry,
although the Z4;X has no local anomalies, the Z4;X imposes
various global anomaly cancellation conditions
[27,28,31,34]. In particular, a Z16 class global anomaly
of the mixed gauge-gravity type (variation on the Z4;X

gauge field and the Spin spacetime diffeomorphism)
implies that 15Nf Weyl fermion SM alone cannot cancel
the Z16 global anomaly—its anomaly cancellation requires
introducing either the 16th Weyl fermion (the right-handed
neutrino), 4D noninvertible TQFT, interacting conformal
field theory (CFT), 5D invertible TQFT, or breaking the
Z4;X down to fermion parity ZF

2 , etc., [35–37]. In other
words, rephrasing in terms of quantum phases of QFT
language, the QFT vacuum beyond the SM (BSM) could be
more quantumly entangled than the Landau-Ginzburg old
paradigm. These possible exotic BSM phases are analo-
gous to many exotic quantum phases explored in the

contemporary condensed matter community [38]. The
SM together with those exotic BSM phases constrained
by nonperturbative global anomaly cancellation is called
ultraunification (UU) [35–37].
Another motivation for our present work is expanding

the exploration of the deformation class of SM [12].
In Ref. [12], we explored the deformation of SM to
GUTs. We had included the spacetime symmetry (Spin
group), the internal symmetry [Lie algebra suð3Þ×
suð2Þ × uð1ÞỸ , and four compatible versions Lie groups

GSMq
≡ SUð3Þ×SUð2Þ×Uð1ÞỸ

Zq
, with q ¼ 1, 2, 3, 6 [39] ], and a

continuous or discrete (B −L)-like symmetry of the SM.
In Ref. [12], we had left the inclusion of the discreteBþL
vector symmetry for future work. [The Uð1ÞBþL is explic-
itly broken down to Z2Nf#;BþL due to the SU(2) instanton
[40–42] by the Adler-Bell-Jackiw (ABJ) anomaly [43,44],
where Nf is the family number with an extra q-dependent
factor denoted as #, see [45].] Previously we had excluded
the BþL because it is not a symmetry for many GUTs.
Now the discrete BþL, allowed in SM but disobeyed by
GUTs, gives us the exact opportunity to distinguish the SM
from other GUTs. Our present work means to fill this gap
left in [12] to include the discrete BþL symmetry,
examining the BþL anomaly and its SM deformation
class. We will see that the discrete BþL is a good
symmetry for SM and some versions of UU, such that it
implies the proton stability in those models. Remarkably,
recently Refs. [46,47] also emphasize that the discrete
BþL can avoid the proton decay.

II. REVISIT THE STANDARD MODEL

Now we revisit the SM and its symmetry, then explicitly
derive the discrete BþL symmetry. SM is a 4D chiral
gauge theory of local Lie algebra suð3Þ × suð2Þ × uð1ÞỸ
coupling to Nf ¼ 3 families of 15 or 16 Weyl fermions
(written as a left-handed 15 or 16 multiplet ψL) in the
following representation

ðψLÞI ¼ ðd̄R ⊕ lL ⊕ qL ⊕ ūR ⊕ ēRÞI ⊕ nνI;R ν̄I;R

∼ ðð3̄; 1Þ2 ⊕ ð1; 2Þ−3 ⊕ ð3; 2Þ1
⊕ ð3̄; 1Þ−4 ⊕ ð1; 1Þ6ÞI ⊕ nνI;Rð1; 1Þ0 ð1Þ

for each family (family index I; J ¼ 1, 2, 3; with ψL1 for u,
d, e type, ψL2 for c, s, μ type, and ψL3 for t, b, τ type of
quarks and leptons) of suð3Þ × suð2Þ × uð1ÞỸ . We use
I ¼ 1, 2, 3 for nνe;R ; nνμ;R ; nντ;R ∈ f0; 1g to label either the
absence or presence of electron e, muon μ, or tauon τ types
of sterile neutrinos. Readers should keep in mind that all
unitary internal symmetries that we will discuss below are
part of the subgroup of the largest internal Uð15NfÞ or
Uð16NfÞ acting on those Weyl fermions as unitary rota-
tions. The SM Lagrangian consists of Yang-Mills terms
[their gauge sector indices I ¼ 1, 2, 3 for uð1Þ, suð2Þ,
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suð3Þ], a possible theta term for suð3Þ, the Weyl fermions
coupled to Yang-Mills gauge fields, Yukawa-Higgs term,
and the electroweak Higgs kinetic-potential term:

LSM ¼
X

I¼1;2;3

−
1

4
Fa
I;μνF

aμν
I −

θ3
64π2

g23ϵ
μνμ0ν0Fa

3;μνF
a
3;μ0ν0

þ ψ†
Lðiσ̄μDμ;AÞψL − ðψ†

LϕψR

þ H:c:Þ þ jDμ;Aϕj2 − UðϕÞ: ð2Þ

The LYH ¼ ψ†
LϕψR þ H:c: is a shorthand of Ld

YH þ
Lu
YH þ Le

YH ¼ λdIJq
I†
Lϕd

J
R þ λuIJϵ

abqI†Laϕ
�
bu

J
R þ λeIJl

I†
Lϕe

J
R þ

H:c: with a, b the suð2Þ fundamental’s index, and the H.c.

as a Hermitian conjugate. Diagonalization of Yukawa-
Higgs term of quark sector implies that the W� boson
induces a flavor-changing current mixing between different
families, thus we only have a Uð1ÞB symmetry for all
quarks [instead of an individual U(1) for each quark
family], at least classically. The diagonalization of
Yukawa-Higgs term of lepton sector without neutrino mass
term Lν

YH ¼ λνIJϵ
ablI†Laϕ

�
bν

J
R þ H:c: implies that LSM has

individual Uð1Þe, Uð1Þμ, Uð1Þτ for each lepton family.
However, established experiments say that each lepton U(1)
is violated, only the total lepton number Uð1ÞL should be
considered, at least classically. Thus, we focus on Uð1ÞB
and Uð1ÞL transformations, which send

Uð1ÞB∶ ðψLÞI ↦ ððe−iαB3 I3 · d̄RÞ ⊕ lL ⊕ ðeiαB3 I6 · qLÞ ⊕ ðe−iαB3 I3 · ūRÞ ⊕ ēRÞI ⊕ nνI;R ν̄I;R;

Uð1ÞL∶ ðψLÞI ↦ ðd̄R ⊕ ðeiαL I2 · lLÞ ⊕ qL ⊕ ūR ⊕ ðe−iαL ēRÞÞI ⊕ ðe−iαLnνI;R ν̄I;RÞ; ð3Þ

with αB ∈ ½0; 2π · 3Þ and αL ∈ ½0; 2πÞ. The quark’s Uð1Þq
is related to baryon’s Uð1ÞB via αq ¼ αB=3 ∈ ½0; 2πÞ. Here
IN means a rank-N diagonal identity matrix that can act on
the N multiplet.
It is well known that the Uð1ÞB-Uð1Þ2Ỹ , Uð1ÞL-Uð1Þ2Ỹ

Uð1ÞB-SUð2Þ2, and Uð1ÞL-SUð2Þ2 have local anomalies
captured by triangle Feynman diagrams, with their anomaly
coefficients, respectively: 2 · 12 − 22 − ð−4Þ2 ¼ −18,
2 · ð−3Þ2 − 62 ¼ −18, 1, and 1. Upon dynamically gauging

electroweak suð2Þ × uð1ÞỸ , the consequential ABJ ano-
maly implies that the classical continuous Uð1ÞB × Uð1ÞL
symmetry is broken quantum mechanically. Next we check
whether any subgroup of the Uð1ÞB × Uð1ÞL still survives
under dynamically gauged GSMq

. The Fujikawa path
integral method [48] shows that under Uð1ÞB and Uð1ÞL
transformations with corresponding currents JB and JL, the
path integral Z changes to

Z
½DψL�½Dψ†

L�eið
R

d4xðLSMþαBð∂μJμBÞþαLð∂μJμLÞÞ−18ðαBþαLÞNfnð1Þ−ðαBþαLÞNfnð2ÞÞ: ð4Þ

Here the instanton numbers nð1Þ≡R
d4x g2

1

32π2
ϵμνμ

0ν0

F1;μνF1;μ0ν0 and nð2Þ≡R
d4x g2

2

64π2
ϵμνμ

0ν0F2;μνF2;μ0ν0 are quan-
tized in integer Z on spin manifolds.
(1) Uð1ÞB−L symmetry: when αB−L ≡ αB ¼ −αL, its

Ward identity (the derivative of the partition function
Z with respect to α variation δZ

δðαÞ jα¼0 ¼ 0 vanishes)

says that h∂μðJμB − JμLÞi ¼ 0. This shows that
Uð1ÞB−L is still a symmetry and is anomaly free
under GSMq

.
(2) Z2Nf;BþL symmetry: the continuous Uð1ÞB, Uð1ÞL,

and Uð1ÞBþL all are broken by the ABJ anomaly.
But when αBþL ≡ αB ¼ αL, the quantization
18ðαB þ αLÞNfnð1Þ ¼ 18αBþLð2NfÞnð1Þ ∈ 2πZ
under the U(1) instanton holds when αBþL ∈ 2π

36Nf
Z;

the quantization ðαB þ αLÞNfnð2Þ ¼ αBþLð2NfÞ ∈

2πZ under the SU(2) instanton holds when
αBþL ∈ 2π

2Nf
Z. Overall, this shows Z2Nf;BþL is still

a symmetry and is anomaly free under GSMq
.

(3) Uð1ÞB−L ×ZF
2
Z2Nf;BþL symmetry: since Uð1ÞB−L

and Z2Nf;BþL share the fermion parity ZF
2 that

acts on fermions ψ ↦ −ψ , the precise surviving
subgroup (which is not broken under ABJ
anomaly with dynamically gauged GSMq

) is
Uð1ÞB−L ×ZF

2
Z2Nf;BþL. Hereafter we use a standard

notation that G1 ×GN
G2 ≡ ðG1×G2

GN
Þ as modding out

their common normal subgroup GN .
The above result is not affected by whether the ðψLÞI
multiplet in (1) includes the 16th Weyl fermion ν̄I;R ¼
ð1; 1Þ0 for each of the Nf families, because ν̄I;R is sterile to
GSMq

gauge forces.

PROTON STABILITY: FROM THE STANDARD MODEL TO … PHYS. REV. D 106, 025016 (2022)

025016-3



III. PROTON STABILITY

We have shown that Uð1ÞB−L and Z2Nf;BþL are good
symmetries, anomaly free with respect to dynamically

gauged GSMq
for the SM. Precisely they send the multiplet

ðψLÞI to [here αB−L ∈ ½0; 2π · 3Þ while αBþL ∈ 2π
2Nf

Z is

discrete]

Uð1ÞB−L∶ ððe−iαB−L3 I3 · d̄RÞ ⊕ ðe−iαB−L I2 · lLÞ ⊕ ðeiαB−L3 I6 · qLÞ ⊕ ðe−iαB−L3 I3 · ūRÞ ⊕ ðeiαB−L ēRÞÞI ⊕ ðeiαB−LnνI;R ν̄I;RÞ;
Z2Nf;BþL∶ððe−i

αBþL
3 I3 · d̄RÞ ⊕ ðeiαBþL I2 · lLÞ ⊕ ðeiαBþL

3 I6 · qLÞ ⊕ ðe−iαBþL
3 I3 · ūRÞ ⊕ ðe−iαBþL ēRÞÞI ⊕ ðe−iαBþLnνI;R ν̄I;RÞ: ð5Þ

Let us check whether they are symmetries for the familiar
GUTs and UU.
(1) Uð1ÞB−L vector or Uð1ÞX chiral-like symmetry:

Uð1ÞB−L is a factor of the left-right (LR) suð3Þ ×
suð2ÞL × suð2ÞR × uð1ÞB−L

2
model [49]. Uð1ÞB−L is

part of SU(4) subgroup of Pati-Salam (PS) suð4Þ ×
suð2ÞL × suð2ÞR [7]. Thus Uð1ÞB−L is not only an
anomaly-free symmetry but also already dynami-
cally gauged for LR and PS models. Similarly for
the Trinification (Tri) [50–52] with the gauged Lie
algebra suð3Þ × suð3ÞL × suð3ÞR, the Uð1ÞB−L is
contained in the SUð3ÞR; thus Uð1ÞB−L is auto-
matically anomaly-free and dynamically gauged in
the Trinification. Uð1ÞB−L is not quite correct for
Georgi-Glashow suð5Þ [8], because Uð1ÞB−L does
not act on the ψL reducibly as 5̄, 10, 1 multiplets of
suð5Þ. But the Uð1ÞX with X ≡ 5ðB −LÞ − 2

3
Ỹ

[32,33] fits the role so that ðd̄R ⊕ lLÞ ⊕ ðqL ⊕
ūR ⊕ ēRÞ ⊕ ðν̄RÞ ¼ 5̄−3 ⊕ 101 ⊕ 15 in
suð5Þ × uð1ÞX. Neither Uð1ÞB−L nor Uð1ÞX is a
symmetry for the flipped uð5Þ model [53], but the
Uð1ÞX2

with X2 ≡ 1
5
X þ 4

5
Ỹ ¼ ðB −LÞ þ 2

3
Ỹ repla-

ces the role so that ðūR ⊕ lLÞ ⊕ ðqL ⊕ d̄R ⊕ ν̄RÞ ⊕
ðēRÞ ¼ 5̄−3 ⊕ 101 ⊕ 15 in suð5Þ × uð1ÞX2

. Neither
Uð1ÞB−L, Uð1ÞX, nor Uð1ÞX2

is correct for the
soð10Þ GUT [54]. The only sensible U(1) factor
allowed for the soð10Þ GUT is an identical U(1)

phase that acts on the 16 that together with Spin(10)
forms a ½Spinð10Þ ×Z4;X

Uð1Þ� internal symmetry.
But this chiral U(1) has a discrete Z4;X ¼ Z4;X2

subgroup (which replaces the role of discrete
B −L) that is a good symmetry (indeed anomaly
free and gauged) for the soð10Þ GUT. Finally, UU
[35–37] requires a discreteB −L or X symmetry to
enforce a Z16 class global anomaly constraint that
can be canceled by replacing the ν̄R with TQFT/
CFT exotic phases. See (6) for a summary.

(2) Z2Nf;BþL vector symmetry: Z2Nf;BþL is a good
global symmetry for the LR model, broken down
from Uð1ÞBþL by the dynamical SUð2ÞL and
SUð2ÞR instantons. For other models such as PS,
suð5Þ, flipped uð5Þ and soð10Þ, the only compatible
subgroup of Uð1ÞBþL is the fermion parity ZF

2 . For
UU, we have choices to include the 15Nf Weyl
fermion SM only but without GUT structure plus
exotic TQFT/CFT sectors; those UU models can
obey the Z2Nf;BþL symmetry. Other UU that in-
cludes the suð5Þ GUT allows only the ZF

2 subgroup
ofZ2Nf;BþL. For Trinification, we can even choose a
generalized unbroken Uð1ÞBþL global symmetry,
which is not only outside the Trinification gauge
group but also anomaly-free under that gauge group
with Lie algebra suð3Þ × suð3ÞL × suð3ÞR. See (6)
for a summary.

SM LR½49� PS½7� suð5Þ½8� flippeduð5Þ½53� soð10Þ½54� Tri½50−52� UU ½37�
B−L like Uð1ÞB−L Uð1ÞB−L Uð1ÞB−L Uð1ÞX Uð1ÞX2

Z4;X Uð1ÞB−L discreteB−LorX

BþLlike Z2Nf;BþL Z2Nf;BþL ZF
2 ZF

2 ZF
2 ZF

2 Uð1ÞBþL Z2Nf;BþLorZF
2

: ð6Þ

We check whether these symmetries avoid the proton pþ (or other nucleons like neutron n) decay for some dominant
channels. These channels are constrained to have the lifetime τT lower bound around or more than 1033 years [1–3]. We list
down the changes of baryon or lepton number (ΔB or ΔL):

pþ → eþπ0 pþ → μþπ0 pþ → μþK0 pþ → eþK0 n → eþK− n → e−Kþ

ðΔB;ΔLÞ ð−1;−1Þ ð−1;−1Þ ð−1;−1Þ ð−1;−1Þ ð−1;−1Þ ð−1;þ1Þ : ð7Þ

All these processes have ΔðB −LÞ ¼ 0 and ΔðBþLÞ ¼ −2, except the last one has ΔðB −LÞ ¼ −2 and ΔðBþLÞ ¼ 0
If Z2Nf;BþL is an exact symmetry of our vacuum, then ΔðBþLÞ ¼ 0 mod 2Nf ¼ 0 mod 6must hold. Many proton decay
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channels are thus forbidden. The last channel n → e−Kþ is
also unlikely because it violates even the discrete Z4;B−L,
which demands that ΔðB −LÞ ¼ 0 mod 4.
Proton decay is forbidden as long as Z2Nf;BþL is an

exact symmetry and Nf > 1. (Although a single proton
decay may be forbidden, the Z2Nf;BþL symmetry still
allows Nf protons or baryons together to decay because
their ΔðBþLÞ ¼ −2 × Nf ¼ −6 ¼ 0 mod 6 is consis-
tent with Z2Nf;BþL here for Nf ¼ 3.) If all experiments
support that a proton indeed does not decay at all in our
vacuum, then the SM and the UU (which contains only
SM without GUT) are viable candidates deserving further
studies, their generalizations with Z2Nf;BþL symmetry is
preferable for future model buildings. For example,
anomaly-free discrete gauge symmetries were recently
discussed in [55] (see also references therein), which
serve to exactly stabilize the proton via the all-orders
selection rule.

IV. COBORDISM AND HIGHER ANOMALIES OF
THE STANDARD MODEL WITH Z2Nf ;B +L

SYMMETRY

Wehave checked that Uð1ÞB−L ×ZF
2
Z2Nf;BþL is free from

a perturbative local anomaly under the dynamical SM gauge

groupGSMq
≡ SUð3Þ×SUð2Þ×Uð1Þ

Zq
. Nowwe follow the procedure

in [12,31] to check whether the full spacetime-internal
symmetry G has any local and global anomalies, including
all gauge or gravitational background fields. The spacetime
symmetry is Spin group (the double cover of the special
orthogonal SO group), and the internal symmetry is
Uð1ÞB−L ×ZF

2
Z2Nf;BþL ×GSMq

, or Z4;X ×ZF
2
Z2Nf;BþL ×

GSMq
if the discrete X replacing the continuous

B −L symmetry. We focus on Nf ¼ 3 thus Z6;BþL ¼
ZF

2 × Z3;BþL. Given the spacetime-internal G, we classify
all possible 4D local (Z class) and global (Zn class) anomalies
via computing the fifth cobordism group TP5ðGÞ [19]:

TP5ðSpin ×ZF
2
Uð1ÞB−L × Z3;BþL ×GSMq

Þ ¼ ðZ11Þ × ðZ9 × Z7
3Þ; ð8Þ

TP5ðSpin ×ZF
2
Z4;X × Z3;BþL ×GSMq

Þ ¼
� ðZ5 × Z2 × Z2

4 × Z16Þ × ðZ9 × Z4
3Þ; q ¼ 1; 3

ðZ5 × Z2
2 × Z4 × Z16Þ × ðZ9 × Z4

3Þ; q ¼ 2; 6
; ð9Þ

The anomaly classifications on the right-hand side in the
first big bracket ð…Þ are obtained in [12,31], while those in
the second big bracket ð…Þ are new to the literature. The
Z11 and Z5 classes of local anomalies are familiar to QFT
textbook readers [56]. The Z…

2 × Z…
4 × Z16 classes of

global anomalies were characterized in detail before
[31]. These anomalies all canceled, except only Z2 (in
Z11) classes [involving the cubic pure gauge Uð1Þ3B−L and
mixed gauge-gravity Uð1ÞB−L − ðgravityÞ2 anomalies] and
the Z16 class (involving the mixed gauge-gravity global
anomaly between the Z4;X and the spacetime diffeomor-
phism), anomalies can have a nonzero coefficient −Nf þ
nνR ≡ −Nf þ

P
I nνI;R if the number of familyNf is distinct

from the total number of right-handed neutrinos nνR [12].
The nonzeroZ2 andZ16 anomalies ofB −L; X and gravity
background fields as ’t Hooft anomalies do not imply the
sickness of SM as long as B −L; X and gravity are
nondynamical. But when B −L; X, and gravity are
dynamical, to cancel these anomalies [57], we can either
introduce enough nνR , or break B −L, or introduce new
exotic phases from UU [35–37].
The Z9 × Z7

3 global anomalies in (8) [which exactly
overlaps the Z9 × Z4

3 in (9) for the first five generators],
involving the discrete B −L background field, are
new to the literature: they are generated by cobor-
dism invariants P3ðB0

Z3;BþL
Þ, A0

Z3;BþL
B0
Z3;BþL

c1ðUð1ÞÞ;

A0
Z3;BþL

c1ðUð1ÞÞ2, A0
Z3;BþL

c2ðSUð2ÞÞ, A0
Z3;BþL

c2ðSUð3ÞÞ,
A0
Z3;BþL

B0
Z3;BþL

c1ðUð1ÞB−LÞ, A0
Z3;BþL

c1ðUð1ÞB−LÞ2, and
A0
Z3;BþL

c1ðUð1ÞB−LÞc1ðUð1ÞÞ. Here the generators are writ-
ten for the q ¼ 1 case. Let us explain the notations. Here all
cohomology classes are pulled back to the manifold M
along the maps given in the definition of cobordism
groups, e.g., the A0

Z3;BþL
∈ H1ðBZ3;BþL;Z3Þ is pulled

back to H1ðM;Z3Þ. The B0
Z3;BþL

≡ ð1
3
δA0

Z3;BþL
mod 3Þ ∈

H2ðBZ3;BþL;Z3Þ is pulled back to H2ðM;Z3Þ, defined via
the coboundary operator 1

3
δ for cochains (similar to the

differential operator d for differential forms) that
maps H1 to H2. The cjðGÞ is the jth Chern class of the
associated vector bundle of the principal G bundle. The
Postnikov square P3ðB0

Z3;BþL
Þ≡ βð9;3ÞðB0

Z3;BþL
∪ B0

Z3;BþL
Þ

maps H2ð…;Z3Þ → H5ð…;Z9Þ via the cup product ∪
for cochains (similar to the wedge product ∧ for differential
forms) and the Bockstein homomorphism βð9;3Þ associated
with the induced long exact sequence of cohomology
with coefficients from the short exact sequence
0 → Z9 → Z27 → Z3 → 0. Cobordism invariants for other
q are similar [31]. For q ¼ 2, the SUð2Þ and U(1) labels
change to U(2). For q ¼ 3, the SUð3Þ and U(1) labels
change to U(3). For q ¼ 6, the SUð2Þ label changes to
U(2), the SUð3Þ label changes to U(3), and the U(1) label
changes to either U(2) or U(3) since c1ðUð2ÞÞ ¼ c1ðUð3ÞÞ.
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Because all these Z9 × Z7
3 global anomalies involve

internal symmetries (thus gauge anomalies among B�L,
X, and GSMq

) without turning on the spacetime symmetry
background (thus they are not mixed gauge-gravitational or
gravitational anomalies), as long as these internal sym-
metries are dynamically gaugeable, we expect all these
anomalies are canceled.
Moreover, once GSMq

is dynamically gauged as in the
SM vacuum, we obtain extra 1-form electric and magnetic
symmetries, Ge

½1� and Gm
½1� kinematically as generalized

global symmetries [58] that act on charged objects (1D
electric Wilson lines and 1D magnetic ’t Hooft lines). By
gauging GSMq

, we obtain Ge
½1� ×Gm

½1� ¼ Ze
6=q;½1� × Uð1Þm½1�

[11,45,59] in the dynamical SM gauge theory, for q ¼ 1, 2,
3, 6 and we define q0 ≡ 6=q≡ 2n2 · 3n3 ¼ 6, 3, 2, 1 as
ðn2; n3Þ ¼ ð1; 1Þ; ð0; 1Þ; ð1; 0Þ; ð0; 0Þ, respectively. We
compute the potential ’t Hooft anomaly classification of
the gauged-GSMq

SM via removing GSMq
and including

Ge
½1� ×Gm

½1� into (8) and (9),

TP5ðSpin ×ZF
2
Uð1ÞB−L × Z3;BþL × Ze

6=q;½1� × Uð1Þm½1�Þ ¼ ðZ2 × Z6=qÞ × ðZ9 × ðZ3Þ2 × ðZ3Þ3n3Þ; ð10Þ

TP5ðSpin ×ZF
2
Z4;X × Z3;BþL × Ze

6=q;½1� × Uð1Þm½1�Þ ¼ ðZ16 × ðZ4Þn2 × Z6=qÞ × ðZ9 × ðZ3Þ2n3Þ: ð11Þ

The anomaly classifications on the right-hand side in the
first big bracket ð…Þ are obtained recently in [12], while
those in the second big bracket ð…Þ are new to the
literature. The Z2 local and Z16 global anomalies are
discussed earlier in (8) and (9), with its anomaly coefficient
proportional to ð−Nf þ nνRÞ [12]. The Z6=q global
anomaly is a mixed anomaly between 1-form symmetries
of Ze

6=q;½1� and Uð1Þm½1�, which is identified to be nonzero in

[12]—which has dynamical constraints on the SM
gauge theories. The ðZ4Þn2 global anomaly is canceled
[12]. The Z9 global anomaly P3ðB0

Z3;BþL
Þ and the

ðZ3Þ2 global anomalies A0
Z3;BþL

B0
Z3;BþL

c1ðUð1ÞB−LÞ and

A0
Z3;BþL

c1ðUð1ÞB−LÞ2 are already canceled to zero in the

SM earlier in (8). The remaining ðZ3Þ3n3 in (10) [which
exactly overlaps the ðZ3Þ2n3 in (11) for the first
two generators] contains three more extra generators
(for n3 ¼ 1): A0

Z3;BþL
ðBe

Z3;½1� Þ2, A0
Z3;BþL

B0
Z3;BþL

Be
Z3;½1� and

A0
Z3;BþL

c1ðUð1ÞB−LÞBe
Z3;½1� . The first two of these three

terms are mixed anomalies between the 0-symmetry
BþL (coupled to 1-form background field A0

Z3;BþL
) and

the electric 1-symmetry Z3;½1� (coupled to 2-form back-
ground field Be

Z3;½1� ). It is interesting to check whether these

two mixed ðBþLÞ − Z3;½1� anomalies occur for the SM
with q ¼ 1, 2 (thus n3 ¼ 1). We can check this mixed
anomaly between 0-symmetry and 1-symmetry via the
techniques of the analogous anomaly studied previously in
[60–65]. If the Z3 class of A0

Z3;BþL
ðBe

Z3;½1� Þ2 anomaly is

present, then this means that the Z2Nf;BþL ¼ Z6;BþL

symmetry should be broken down to a ZF
2 subgroup by

the PSUð3Þ ¼ SUð3Þ=Z3 fractional instanton. Note that the

instanton number nðNÞ ≡ R
d4x g2

2

64π2
ϵμνμ

0ν0FμνFμ0ν0 for

SUðNÞ gauge theory has nðNÞ ∈ Z on spin manifolds,
while turning on 1-form symmetry ZN;½1� background field

can produce PSUðNÞ fractional instantons such that nðNÞ ∈
Z=N on spin manifolds, and nðNÞ ∈ Z=N (for odd N) or
nðNÞ ∈ Z=2N (for even N) on nonspin manifolds. So if
SUð3Þ instanton was a source of Uð1ÞBþL → Z2Nf;BþL

symmetry breaking in (4), the PSUð3Þ fractional
instanton can further trigger the breaking Z2Nf;BþL →
Z2Nf=Nc;BþL ¼ ZF

2 symmetry, here the family and color
numbers match Nf ¼ Nc ¼ 3. But it is the SUð2Þ instanton
[not the SUð3Þ instanton] causing the Uð1ÞBþL →
Z2Nf;BþL symmetry breaking. So we conclude that the
PSUð3Þ fractional instanton cannot trigger the further
breaking even in the presence of Ze

6=q;½1�-background field

(for q ¼ 1, 2). Namely, this suggests no A0
Z3;BþL

ðBe
Z3;½1� Þ2

anomaly in the gauged SM.
In comparison, Ref. [45] checked various fractional

instanton contributions also showing a negative result on
the mixed ðBþLÞ − Z6=q;½1� anomalies. Reference [45]
found that in the presence of various fractional instantons
constructed on a torus with ’t Hooft twisted boundary
condition [66], the continuous Uð1ÞBþL breaks down to
Z2Nf;BþL,Z8Nf;BþL,Z4Nf;BþL,Z6Nf;BþL for q ¼ 1, 2, 3, 6.
But the familiar BPST SU(2) instanton [40] already breaks
Uð1ÞBþL to Z2Nf;BþL shown in (4). Since Z2Nf;BþL is not
further broken down to its subgroup by fractional instan-
tons, Ref. [45] also found no mixed ’t Hooft anomaly
between Z2Nf;BþL and Z6=q;½1� symmetry.
Näively, all these so-called three-torsion ðZ9 × ðZ3Þ2 ×

ðZ3Þ3n3Þ and ðZ9 × ðZ3Þ2n3Þ classes correspond to
potential global anomalies in the SM between
vector symmetries [the vector B�L and the Ze

3;½1� from

gauging the vector suð3Þ color], so there should be no
anomalies among vector symmetries. But the Ze

3;½1� also

partly descends from gauging the chiral uð1ÞỸ . In
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particular, the last two terms in the ðZ3Þ3n3 , namely
A0
Z3;BþL

B0
Z3;BþL

Be
Z3;½1� ≡ A0

Z3;BþL
ð1
3
δA0

Z3;BþL
mod 3ÞBe

Z3;½1�
and A0

Z3;BþL
c1ðUð1ÞB−LÞBe

Z3;½1� anomalies, are subtle anoma-

lies that cannot be checked by the fractional instanton
argument above, thus they deserve further future
investigations.

V. CONCLUSION

We had identified a continuous B −L or discrete X, and
discrete BþL symmetry in the SM. For Nf ¼ 3, we had
shown that Z2Nf;BþL is free from anomaly with the SM
gauged Lie group GSMq

for all four versions of q ¼ 1, 2, 3,
6. We also classify all potential mixed anomalies between
Z2Nf;BþL and gravitational background field (from Spin
diffeomorphism) or higher symmetries Ze

6=q;½1� × Uð1Þm½1� of
SM in (10) and (11). We show thatZ2Nf;BþL is free from all
anomalies in (8) and (9), and it is free from many potential
anomalies in (10) and (11) involving higher symmetries as
well. Although Z2Nf;BþL is illegal in many GUTs in (6),
Z2Nf;BþL is a perfectly legal symmetry in the SM and some
versions of UU to protect the proton stability. Are there
other ways to protect the proton stability in UU? Notice that
UU allows a 4D TQFTwith discrete gauge forces (e.g., two
layers of ½Z2� gauge theories) constructed out of the
symmetry extension [67] (e.g., the first layer 1 → ½Z2� →
Spin × Z4 → Spin ×ZF

2
Z4;X → 1 and the second layer

1 → ½Z2� → Spin × Z8 → Spin × Z4 → 1) such that the
even class of Z16 global anomaly in the original Spin ×ZF

2

Z4;X symmetry is trivialized and pulled back to the

extended Spin × Z8 symmetry [28,35,37]. Since the
quark and baryon all carry odd Z4;X charges, it will be
interesting to study the impact of the projective symmetry
fractionalization of Spin ×ZF

2
Z4;X on the line or surface

operators of the 4D discrete gauge TQFT on the proton
stability.
In the language of deformation class of quantum field

theories [15], our present work together with Ref. [12]
suggests that the 4D SM and GUTs can still be in the larger
deformation class of QFT by including the Z2Nf;BþL
symmetry, except that the SM and UU can preserve
Z2Nf;BþL, but many GUTs break Z2Nf;BþL explicitly. It
will be important to understand deeper the implications of
the subtle anomaly cancellation data presented in (8)–(11),
so we may use these results to investigate the SM dynamics
better.
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